Diff for /imach/src/imach.c between versions 1.35 and 1.129

version 1.35, 2002/03/26 17:08:39 version 1.129, 2007/08/31 13:49:27
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.129  2007/08/31 13:49:27  lievre
      Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.128  2006/06/30 13:02:05  brouard
   first survey ("cross") where individuals from different ages are    (Module): Clarifications on computing e.j
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.127  2006/04/28 18:11:50  brouard
   second wave of interviews ("longitudinal") which measure each change    (Module): Yes the sum of survivors was wrong since
   (if any) in individual health status.  Health expectancies are    imach-114 because nhstepm was no more computed in the age
   computed from the time spent in each health state according to a    loop. Now we define nhstepma in the age loop.
   model. More health states you consider, more time is necessary to reach the    (Module): In order to speed up (in case of numerous covariates) we
   Maximum Likelihood of the parameters involved in the model.  The    compute health expectancies (without variances) in a first step
   simplest model is the multinomial logistic model where pij is the    and then all the health expectancies with variances or standard
   probabibility to be observed in state j at the second wave    deviation (needs data from the Hessian matrices) which slows the
   conditional to be observed in state i at the first wave. Therefore    computation.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    In the future we should be able to stop the program is only health
   'age' is age and 'sex' is a covariate. If you want to have a more    expectancies and graph are needed without standard deviations.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.126  2006/04/28 17:23:28  brouard
   you to do it.  More covariates you add, slower the    (Module): Yes the sum of survivors was wrong since
   convergence.    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
   The advantage of this computer programme, compared to a simple    Version 0.98h
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.125  2006/04/04 15:20:31  lievre
   intermediate interview, the information is lost, but taken into    Errors in calculation of health expectancies. Age was not initialized.
   account using an interpolation or extrapolation.      Forecasting file added.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.124  2006/03/22 17:13:53  lievre
   conditional to the observed state i at age x. The delay 'h' can be    Parameters are printed with %lf instead of %f (more numbers after the comma).
   split into an exact number (nh*stepm) of unobserved intermediate    The log-likelihood is printed in the log file
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.123  2006/03/20 10:52:43  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Module): <title> changed, corresponds to .htm file
   and the contribution of each individual to the likelihood is simply    name. <head> headers where missing.
   hPijx.  
     * imach.c (Module): Weights can have a decimal point as for
   Also this programme outputs the covariance matrix of the parameters but also    English (a comma might work with a correct LC_NUMERIC environment,
   of the life expectancies. It also computes the prevalence limits.    otherwise the weight is truncated).
      Modification of warning when the covariates values are not 0 or
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    1.
            Institut national d'études démographiques, Paris.    Version 0.98g
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.122  2006/03/20 09:45:41  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Weights can have a decimal point as for
   software can be distributed freely for non commercial use. Latest version    English (a comma might work with a correct LC_NUMERIC environment,
   can be accessed at http://euroreves.ined.fr/imach .    otherwise the weight is truncated).
   **********************************************************************/    Modification of warning when the covariates values are not 0 or
      1.
 #include <math.h>    Version 0.98g
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.121  2006/03/16 17:45:01  lievre
 #include <unistd.h>    * imach.c (Module): Comments concerning covariates added
   
 #define MAXLINE 256    * imach.c (Module): refinements in the computation of lli if
 #define GNUPLOTPROGRAM "wgnuplot"    status=-2 in order to have more reliable computation if stepm is
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    not 1 month. Version 0.98f
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.120  2006/03/16 15:10:38  lievre
 #define windows    (Module): refinements in the computation of lli if
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    status=-2 in order to have more reliable computation if stepm is
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    not 1 month. Version 0.98f
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.119  2006/03/15 17:42:26  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.118  2006/03/14 18:20:07  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): varevsij Comments added explaining the second
 #define NCOVMAX 8 /* Maximum number of covariates */    table of variances if popbased=1 .
 #define MAXN 20000    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define YEARM 12. /* Number of months per year */    (Module): Function pstamp added
 #define AGESUP 130    (Module): Version 0.98d
 #define AGEBASE 40  
     Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 int erreur; /* Error number */    table of variances if popbased=1 .
 int nvar;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Function pstamp added
 int npar=NPARMAX;    (Module): Version 0.98d
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.116  2006/03/06 10:29:27  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Variance-covariance wrong links and
 int popbased=0;    varian-covariance of ej. is needed (Saito).
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.115  2006/02/27 12:17:45  brouard
 int maxwav; /* Maxim number of waves */    (Module): One freematrix added in mlikeli! 0.98c
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.114  2006/02/26 12:57:58  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Some improvements in processing parameter
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    filename with strsep.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.113  2006/02/24 14:20:24  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Memory leaks checks with valgrind and:
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    datafile was not closed, some imatrix were not freed and on matrix
 FILE *ficgp,*ficresprob,*ficpop;    allocation too.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.112  2006/01/30 09:55:26  brouard
  FILE  *ficresvij;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.111  2006/01/25 20:38:18  brouard
   char fileresvpl[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 #define NR_END 1    can be a simple dot '.'.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define NRANSI  
 #define ITMAX 200    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 #define TOL 2.0e-4  
     Revision 1.108  2006/01/19 18:05:42  lievre
 #define CGOLD 0.3819660    Gnuplot problem appeared...
 #define ZEPS 1.0e-10    To be fixed
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.107  2006/01/19 16:20:37  brouard
 #define GOLD 1.618034    Test existence of gnuplot in imach path
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.105  2006/01/05 20:23:19  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    *** empty log message ***
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.104  2005/09/30 16:11:43  lievre
 #define rint(a) floor(a+0.5)    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 static double sqrarg;    that the person is alive, then we can code his/her status as -2
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (instead of missing=-1 in earlier versions) and his/her
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int imx;    the healthy state at last known wave). Version is 0.98
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.102  2004/09/15 17:31:30  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Add the possibility to read data file including tab characters.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 double *weight;  
 int **s; /* Status */    Revision 1.100  2004/07/12 18:29:06  brouard
 double *agedc, **covar, idx;    Add version for Mac OS X. Just define UNIX in Makefile
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.99  2004/06/05 08:57:40  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    *** empty log message ***
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.98  2004/05/16 15:05:56  brouard
 /**************** split *************************/    New version 0.97 . First attempt to estimate force of mortality
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    directly from the data i.e. without the need of knowing the health
 {    state at each age, but using a Gompertz model: log u =a + b*age .
    char *s;                             /* pointer */    This is the basic analysis of mortality and should be done before any
    int  l1, l2;                         /* length counters */    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
    l1 = strlen( path );                 /* length of path */    from other sources like vital statistic data.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    The same imach parameter file can be used but the option for mle should be -3.
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Agnès, who wrote this part of the code, tried to keep most of the
    s = strrchr( path, '/' );            /* find last / */    former routines in order to include the new code within the former code.
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    The output is very simple: only an estimate of the intercept and of
 #if     defined(__bsd__)                /* get current working directory */    the slope with 95% confident intervals.
       extern char       *getwd( );  
     Current limitations:
       if ( getwd( dirc ) == NULL ) {    A) Even if you enter covariates, i.e. with the
 #else    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
       extern char       *getcwd( );    B) There is no computation of Life Expectancy nor Life Table.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.97  2004/02/20 13:25:42  lievre
 #endif    Version 0.96d. Population forecasting command line is (temporarily)
          return( GLOCK_ERROR_GETCWD );    suppressed.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.96  2003/07/15 15:38:55  brouard
    } else {                             /* strip direcotry from path */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       s++;                              /* after this, the filename */    rewritten within the same printf. Workaround: many printfs.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.95  2003/07/08 07:54:34  brouard
       strcpy( name, s );                /* save file name */    * imach.c (Repository):
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Repository): Using imachwizard code to output a more meaningful covariance
       dirc[l1-l2] = 0;                  /* add zero */    matrix (cov(a12,c31) instead of numbers.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.94  2003/06/27 13:00:02  brouard
 #ifdef windows    Just cleaning
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.93  2003/06/25 16:33:55  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): On windows (cygwin) function asctime_r doesn't
 #endif    exist so I changed back to asctime which exists.
    s = strrchr( name, '.' );            /* find last / */    (Module): Version 0.96b
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.92  2003/06/25 16:30:45  brouard
    l1= strlen( name);    (Module): On windows (cygwin) function asctime_r doesn't
    l2= strlen( s)+1;    exist so I changed back to asctime which exists.
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.91  2003/06/25 15:30:29  brouard
    return( 0 );                         /* we're done */    * imach.c (Repository): Duplicated warning errors corrected.
 }    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 /******************************************/    concerning matrix of covariance. It has extension -cov.htm.
   
 void replace(char *s, char*t)    Revision 1.90  2003/06/24 12:34:15  brouard
 {    (Module): Some bugs corrected for windows. Also, when
   int i;    mle=-1 a template is output in file "or"mypar.txt with the design
   int lg=20;    of the covariance matrix to be input.
   i=0;  
   lg=strlen(t);    Revision 1.89  2003/06/24 12:30:52  brouard
   for(i=0; i<= lg; i++) {    (Module): Some bugs corrected for windows. Also, when
     (s[i] = t[i]);    mle=-1 a template is output in file "or"mypar.txt with the design
     if (t[i]== '\\') s[i]='/';    of the covariance matrix to be input.
   }  
 }    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int nbocc(char *s, char occ)  
 {    Revision 1.87  2003/06/18 12:26:01  brouard
   int i,j=0;    Version 0.96
   int lg=20;  
   i=0;    Revision 1.86  2003/06/17 20:04:08  brouard
   lg=strlen(s);    (Module): Change position of html and gnuplot routines and added
   for(i=0; i<= lg; i++) {    routine fileappend.
   if  (s[i] == occ ) j++;  
   }    Revision 1.85  2003/06/17 13:12:43  brouard
   return j;    * imach.c (Repository): Check when date of death was earlier that
 }    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 void cutv(char *u,char *v, char*t, char occ)    was wrong (infinity). We still send an "Error" but patch by
 {    assuming that the date of death was just one stepm after the
   int i,lg,j,p=0;    interview.
   i=0;    (Repository): Because some people have very long ID (first column)
   for(j=0; j<=strlen(t)-1; j++) {    we changed int to long in num[] and we added a new lvector for
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    memory allocation. But we also truncated to 8 characters (left
   }    truncation)
     (Repository): No more line truncation errors.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.84  2003/06/13 21:44:43  brouard
     (u[j] = t[j]);    * imach.c (Repository): Replace "freqsummary" at a correct
   }    place. It differs from routine "prevalence" which may be called
      u[p]='\0';    many times. Probs is memory consuming and must be used with
     parcimony.
    for(j=0; j<= lg; j++) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.83  2003/06/10 13:39:11  lievre
 }    *** empty log message ***
   
 /********************** nrerror ********************/    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 void nrerror(char error_text[])  
 {  */
   fprintf(stderr,"ERREUR ...\n");  /*
   fprintf(stderr,"%s\n",error_text);     Interpolated Markov Chain
   exit(1);  
 }    Short summary of the programme:
 /*********************** vector *******************/    
 double *vector(int nl, int nh)    This program computes Healthy Life Expectancies from
 {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   double *v;    first survey ("cross") where individuals from different ages are
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    interviewed on their health status or degree of disability (in the
   if (!v) nrerror("allocation failure in vector");    case of a health survey which is our main interest) -2- at least a
   return v-nl+NR_END;    second wave of interviews ("longitudinal") which measure each change
 }    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 /************************ free vector ******************/    model. More health states you consider, more time is necessary to reach the
 void free_vector(double*v, int nl, int nh)    Maximum Likelihood of the parameters involved in the model.  The
 {    simplest model is the multinomial logistic model where pij is the
   free((FREE_ARG)(v+nl-NR_END));    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /************************ivector *******************************/    'age' is age and 'sex' is a covariate. If you want to have a more
 int *ivector(long nl,long nh)    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   int *v;    you to do it.  More covariates you add, slower the
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    convergence.
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    The advantage of this computer programme, compared to a simple
 }    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /******************free ivector **************************/    intermediate interview, the information is lost, but taken into
 void free_ivector(int *v, long nl, long nh)    account using an interpolation or extrapolation.  
 {  
   free((FREE_ARG)(v+nl-NR_END));    hPijx is the probability to be observed in state i at age x+h
 }    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /******************* imatrix *******************************/    states. This elementary transition (by month, quarter,
 int **imatrix(long nrl, long nrh, long ncl, long nch)    semester or year) is modelled as a multinomial logistic.  The hPx
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    hPijx.
   int **m;  
      Also this programme outputs the covariance matrix of the parameters but also
   /* allocate pointers to rows */    of the life expectancies. It also computes the period (stable) prevalence. 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    
   if (!m) nrerror("allocation failure 1 in matrix()");    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m += NR_END;             Institut national d'études démographiques, Paris.
   m -= nrl;    This software have been partly granted by Euro-REVES, a concerted action
      from the European Union.
      It is copyrighted identically to a GNU software product, ie programme and
   /* allocate rows and set pointers to them */    software can be distributed freely for non commercial use. Latest version
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    can be accessed at http://euroreves.ined.fr/imach .
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m[nrl] -= ncl;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    **********************************************************************/
    /*
   /* return pointer to array of pointers to rows */    main
   return m;    read parameterfile
 }    read datafile
     concatwav
 /****************** free_imatrix *************************/    freqsummary
 void free_imatrix(m,nrl,nrh,ncl,nch)    if (mle >= 1)
       int **m;      mlikeli
       long nch,ncl,nrh,nrl;    print results files
      /* free an int matrix allocated by imatrix() */    if mle==1 
 {       computes hessian
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    read end of parameter file: agemin, agemax, bage, fage, estepm
   free((FREE_ARG) (m+nrl-NR_END));        begin-prev-date,...
 }    open gnuplot file
     open html file
 /******************* matrix *******************************/    period (stable) prevalence
 double **matrix(long nrl, long nrh, long ncl, long nch)     for age prevalim()
 {    h Pij x
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    variance of p varprob
   double **m;    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Variance-covariance of DFLE
   if (!m) nrerror("allocation failure 1 in matrix()");    prevalence()
   m += NR_END;     movingaverage()
   m -= nrl;    varevsij() 
     if popbased==1 varevsij(,popbased)
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    total life expectancies
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Variance of period (stable) prevalence
   m[nrl] += NR_END;   end
   m[nrl] -= ncl;  */
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  
 }   
   #include <math.h>
 /*************************free matrix ************************/  #include <stdio.h>
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #include <stdlib.h>
 {  #include <string.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <unistd.h>
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #include <limits.h>
   #include <sys/types.h>
 /******************* ma3x *******************************/  #include <sys/stat.h>
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #include <errno.h>
 {  extern int errno;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  /* #include <sys/time.h> */
   #include <time.h>
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include "timeval.h"
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /* #include <libintl.h> */
   m -= nrl;  /* #define _(String) gettext (String) */
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define MAXLINE 256
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define GNUPLOTPROGRAM "gnuplot"
   m[nrl] -= ncl;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   m[nrl][ncl] -= nll;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  #define NINTERVMAX 8
    #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   for (i=nrl+1; i<=nrh; i++) {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define NCOVMAX 8 /* Maximum number of covariates */
     for (j=ncl+1; j<=nch; j++)  #define MAXN 20000
       m[i][j]=m[i][j-1]+nlay;  #define YEARM 12. /* Number of months per year */
   }  #define AGESUP 130
   return m;  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 /*************************free ma3x ************************/  #define DIRSEPARATOR '/'
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define CHARSEPARATOR "/"
 {  #define ODIRSEPARATOR '\\'
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #else
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define DIRSEPARATOR '\\'
   free((FREE_ARG)(m+nrl-NR_END));  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /***************** f1dim *************************/  
 extern int ncom;  /* $Id$ */
 extern double *pcom,*xicom;  /* $State$ */
 extern double (*nrfunc)(double []);  
    char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
 double f1dim(double x)  char fullversion[]="$Revision$ $Date$"; 
 {  char strstart[80];
   int j;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double f;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   double *xt;  int nvar;
    int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   xt=vector(1,ncom);  int npar=NPARMAX;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int nlstate=2; /* Number of live states */
   f=(*nrfunc)(xt);  int ndeath=1; /* Number of dead states */
   free_vector(xt,1,ncom);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   return f;  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /*****************brent *************************/  int maxwav; /* Maxim number of waves */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   int iter;  int gipmx, gsw; /* Global variables on the number of contributions 
   double a,b,d,etemp;                     to the likelihood and the sum of weights (done by funcone)*/
   double fu,fv,fw,fx;  int mle, weightopt;
   double ftemp;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   double e=0.0;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
               * wave mi and wave mi+1 is not an exact multiple of stepm. */
   a=(ax < cx ? ax : cx);  double jmean; /* Mean space between 2 waves */
   b=(ax > cx ? ax : cx);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   x=w=v=bx;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   fw=fv=fx=(*f)(x);  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   for (iter=1;iter<=ITMAX;iter++) {  FILE *ficlog, *ficrespow;
     xm=0.5*(a+b);  int globpr; /* Global variable for printing or not */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  double fretone; /* Only one call to likelihood */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  long ipmx; /* Number of contributions */
     printf(".");fflush(stdout);  double sw; /* Sum of weights */
 #ifdef DEBUG  char filerespow[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  FILE *ficresilk;
 #endif  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  FILE *ficresprobmorprev;
       *xmin=x;  FILE *fichtm, *fichtmcov; /* Html File */
       return fx;  FILE *ficreseij;
     }  char filerese[FILENAMELENGTH];
     ftemp=fu;  FILE *ficresstdeij;
     if (fabs(e) > tol1) {  char fileresstde[FILENAMELENGTH];
       r=(x-w)*(fx-fv);  FILE *ficrescveij;
       q=(x-v)*(fx-fw);  char filerescve[FILENAMELENGTH];
       p=(x-v)*q-(x-w)*r;  FILE  *ficresvij;
       q=2.0*(q-r);  char fileresv[FILENAMELENGTH];
       if (q > 0.0) p = -p;  FILE  *ficresvpl;
       q=fabs(q);  char fileresvpl[FILENAMELENGTH];
       etemp=e;  char title[MAXLINE];
       e=d;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       else {  char command[FILENAMELENGTH];
         d=p/q;  int  outcmd=0;
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
           d=SIGN(tol1,xm-x);  
       }  char filelog[FILENAMELENGTH]; /* Log file */
     } else {  char filerest[FILENAMELENGTH];
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char fileregp[FILENAMELENGTH];
     }  char popfile[FILENAMELENGTH];
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       SHFT(v,w,x,u)  struct timezone tzp;
         SHFT(fv,fw,fx,fu)  extern int gettimeofday();
         } else {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
           if (u < x) a=u; else b=u;  long time_value;
           if (fu <= fw || w == x) {  extern long time();
             v=w;  char strcurr[80], strfor[80];
             w=u;  
             fv=fw;  char *endptr;
             fw=fu;  long lval;
           } else if (fu <= fv || v == x || v == w) {  double dval;
             v=u;  
             fv=fu;  #define NR_END 1
           }  #define FREE_ARG char*
         }  #define FTOL 1.0e-10
   }  
   nrerror("Too many iterations in brent");  #define NRANSI 
   *xmin=x;  #define ITMAX 200 
   return fx;  
 }  #define TOL 2.0e-4 
   
 /****************** mnbrak ***********************/  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
             double (*func)(double))  
 {  #define GOLD 1.618034 
   double ulim,u,r,q, dum;  #define GLIMIT 100.0 
   double fu;  #define TINY 1.0e-20 
    
   *fa=(*func)(*ax);  static double maxarg1,maxarg2;
   *fb=(*func)(*bx);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   if (*fb > *fa) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     SHFT(dum,*ax,*bx,dum)    
       SHFT(dum,*fb,*fa,dum)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       }  #define rint(a) floor(a+0.5)
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  static double sqrarg;
   while (*fb > *fc) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     r=(*bx-*ax)*(*fb-*fc);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     q=(*bx-*cx)*(*fb-*fa);  int agegomp= AGEGOMP;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  int imx; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int stepm=1;
     if ((*bx-u)*(u-*cx) > 0.0) {  /* Stepm, step in month: minimum step interpolation*/
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int estepm;
       fu=(*func)(u);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int m,nb;
           SHFT(*fb,*fc,fu,(*func)(u))  long *num;
           }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       u=ulim;  double **pmmij, ***probs;
       fu=(*func)(u);  double *ageexmed,*agecens;
     } else {  double dateintmean=0;
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  double *weight;
     }  int **s; /* Status */
     SHFT(*ax,*bx,*cx,u)  double *agedc, **covar, idx;
       SHFT(*fa,*fb,*fc,fu)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       }  double *lsurv, *lpop, *tpop;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /*************** linmin ************************/  double ftolhess; /* Tolerance for computing hessian */
   
 int ncom;  /**************** split *************************/
 double *pcom,*xicom;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 double (*nrfunc)(double []);  {
      /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {    */ 
   double brent(double ax, double bx, double cx,    char  *ss;                            /* pointer */
                double (*f)(double), double tol, double *xmin);    int   l1, l2;                         /* length counters */
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    l1 = strlen(path );                   /* length of path */
               double *fc, double (*func)(double));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   int j;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double xx,xmin,bx,ax;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double fx,fb,fa;      strcpy( name, path );               /* we got the fullname name because no directory */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   ncom=n;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   pcom=vector(1,n);      /* get current working directory */
   xicom=vector(1,n);      /*    extern  char* getcwd ( char *buf , int len);*/
   nrfunc=func;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   for (j=1;j<=n;j++) {        return( GLOCK_ERROR_GETCWD );
     pcom[j]=p[j];      }
     xicom[j]=xi[j];      /* got dirc from getcwd*/
   }      printf(" DIRC = %s \n",dirc);
   ax=0.0;    } else {                              /* strip direcotry from path */
   xx=1.0;      ss++;                               /* after this, the filename */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      l2 = strlen( ss );                  /* length of filename */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 #ifdef DEBUG      strcpy( name, ss );         /* save file name */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 #endif      dirc[l1-l2] = 0;                    /* add zero */
   for (j=1;j<=n;j++) {      printf(" DIRC2 = %s \n",dirc);
     xi[j] *= xmin;    }
     p[j] += xi[j];    /* We add a separator at the end of dirc if not exists */
   }    l1 = strlen( dirc );                  /* length of directory */
   free_vector(xicom,1,n);    if( dirc[l1-1] != DIRSEPARATOR ){
   free_vector(pcom,1,n);      dirc[l1] =  DIRSEPARATOR;
 }      dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
 /*************** powell ************************/    }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    ss = strrchr( name, '.' );            /* find last / */
             double (*func)(double []))    if (ss >0){
 {      ss++;
   void linmin(double p[], double xi[], int n, double *fret,      strcpy(ext,ss);                     /* save extension */
               double (*func)(double []));      l1= strlen( name);
   int i,ibig,j;      l2= strlen(ss)+1;
   double del,t,*pt,*ptt,*xit;      strncpy( finame, name, l1-l2);
   double fp,fptt;      finame[l1-l2]= 0;
   double *xits;    }
   pt=vector(1,n);  
   ptt=vector(1,n);    return( 0 );                          /* we're done */
   xit=vector(1,n);  }
   xits=vector(1,n);  
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /******************************************/
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  void replace_back_to_slash(char *s, char*t)
     ibig=0;  {
     del=0.0;    int i;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    int lg=0;
     for (i=1;i<=n;i++)    i=0;
       printf(" %d %.12f",i, p[i]);    lg=strlen(t);
     printf("\n");    for(i=0; i<= lg; i++) {
     for (i=1;i<=n;i++) {      (s[i] = t[i]);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      if (t[i]== '\\') s[i]='/';
       fptt=(*fret);    }
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
 #endif  int nbocc(char *s, char occ)
       printf("%d",i);fflush(stdout);  {
       linmin(p,xit,n,fret,func);    int i,j=0;
       if (fabs(fptt-(*fret)) > del) {    int lg=20;
         del=fabs(fptt-(*fret));    i=0;
         ibig=i;    lg=strlen(s);
       }    for(i=0; i<= lg; i++) {
 #ifdef DEBUG    if  (s[i] == occ ) j++;
       printf("%d %.12e",i,(*fret));    }
       for (j=1;j<=n;j++) {    return j;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  }
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  void cutv(char *u,char *v, char*t, char occ)
       for(j=1;j<=n;j++)  {
         printf(" p=%.12e",p[j]);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       printf("\n");       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 #endif       gives u="abcedf" and v="ghi2j" */
     }    int i,lg,j,p=0;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    i=0;
 #ifdef DEBUG    for(j=0; j<=strlen(t)-1; j++) {
       int k[2],l;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       k[0]=1;    }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    lg=strlen(t);
       for (j=1;j<=n;j++)    for(j=0; j<p; j++) {
         printf(" %.12e",p[j]);      (u[j] = t[j]);
       printf("\n");    }
       for(l=0;l<=1;l++) {       u[p]='\0';
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];     for(j=0; j<= lg; j++) {
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      if (j>=(p+1))(v[j-p-1] = t[j]);
         }    }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
       }  
 #endif  /********************** nrerror ********************/
   
   void nrerror(char error_text[])
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    fprintf(stderr,"ERREUR ...\n");
       free_vector(ptt,1,n);    fprintf(stderr,"%s\n",error_text);
       free_vector(pt,1,n);    exit(EXIT_FAILURE);
       return;  }
     }  /*********************** vector *******************/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  double *vector(int nl, int nh)
     for (j=1;j<=n;j++) {  {
       ptt[j]=2.0*p[j]-pt[j];    double *v;
       xit[j]=p[j]-pt[j];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       pt[j]=p[j];    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
     fptt=(*func)(ptt);  }
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /************************ free vector ******************/
       if (t < 0.0) {  void free_vector(double*v, int nl, int nh)
         linmin(p,xit,n,fret,func);  {
         for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
           xi[j][ibig]=xi[j][n];  }
           xi[j][n]=xit[j];  
         }  /************************ivector *******************************/
 #ifdef DEBUG  int *ivector(long nl,long nh)
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         for(j=1;j<=n;j++)    int *v;
           printf(" %.12e",xit[j]);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         printf("\n");    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
       }  }
     }  
   }  /******************free ivector **************************/
 }  void free_ivector(int *v, long nl, long nh)
   {
 /**** Prevalence limit ****************/    free((FREE_ARG)(v+nl-NR_END));
   }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /************************lvector *******************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  long *lvector(long nl,long nh)
      matrix by transitions matrix until convergence is reached */  {
     long *v;
   int i, ii,j,k;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double min, max, maxmin, maxmax,sumnew=0.;    if (!v) nrerror("allocation failure in ivector");
   double **matprod2();    return v-nl+NR_END;
   double **out, cov[NCOVMAX], **pmij();  }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
   for (ii=1;ii<=nlstate+ndeath;ii++)  {
     for (j=1;j<=nlstate+ndeath;j++){    free((FREE_ARG)(v+nl-NR_END));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   /******************* imatrix *******************************/
    cov[1]=1.;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     newm=savm;    int **m; 
     /* Covariates have to be included here again */    
      cov[2]=agefin;    /* allocate pointers to rows */ 
      m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       for (k=1; k<=cptcovn;k++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m += NR_END; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m -= nrl; 
       }    
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
       for (k=1; k<=cptcovprod;k++)    /* allocate rows and set pointers to them */ 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    m[nrl] += NR_END; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    m[nrl] -= ncl; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
     savm=oldm;    /* return pointer to array of pointers to rows */ 
     oldm=newm;    return m; 
     maxmax=0.;  } 
     for(j=1;j<=nlstate;j++){  
       min=1.;  /****************** free_imatrix *************************/
       max=0.;  void free_imatrix(m,nrl,nrh,ncl,nch)
       for(i=1; i<=nlstate; i++) {        int **m;
         sumnew=0;        long nch,ncl,nrh,nrl; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];       /* free an int matrix allocated by imatrix() */ 
         prlim[i][j]= newm[i][j]/(1-sumnew);  { 
         max=FMAX(max,prlim[i][j]);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         min=FMIN(min,prlim[i][j]);    free((FREE_ARG) (m+nrl-NR_END)); 
       }  } 
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
     if(maxmax < ftolpl){  {
       return prlim;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     }    double **m;
   }  
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** transition probabilities ***************/    m += NR_END;
     m -= nrl;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double s1, s2;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   /*double t34;*/    m[nrl] += NR_END;
   int i,j,j1, nc, ii, jj;    m[nrl] -= ncl;
   
     for(i=1; i<= nlstate; i++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(j=1; j<i;j++){    return m;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         /*s2 += param[i][j][nc]*cov[nc];*/     */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /*************************free matrix ************************/
       ps[i][j]=s2;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(j=i+1; j<=nlstate+ndeath;j++){    free((FREE_ARG)(m+nrl-NR_END));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       ps[i][j]=s2;  {
     }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   }    double ***m;
     /*ps[3][2]=1;*/  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for(i=1; i<= nlstate; i++){    if (!m) nrerror("allocation failure 1 in matrix()");
      s1=0;    m += NR_END;
     for(j=1; j<i; j++)    m -= nrl;
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       s1+=exp(ps[i][j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     ps[i][i]=1./(s1+1.);    m[nrl] += NR_END;
     for(j=1; j<i; j++)    m[nrl] -= ncl;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   } /* end i */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    m[nrl][ncl] -= nll;
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (j=ncl+1; j<=nch; j++) 
       ps[ii][jj]=0;      m[nrl][j]=m[nrl][j-1]+nlay;
       ps[ii][ii]=1;    
     }    for (i=nrl+1; i<=nrh; i++) {
   }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    }
     for(jj=1; jj<= nlstate+ndeath; jj++){    return m; 
      printf("%lf ",ps[ii][jj]);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
    }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     printf("\n ");    */
     }  }
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /*************************free ma3x ************************/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   goto end;*/  {
     return ps;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /**************** Product of 2 matrices ******************/  }
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*************** function subdirf ***********/
 {  char *subdirf(char fileres[])
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    /* Caution optionfilefiname is hidden */
   /* in, b, out are matrice of pointers which should have been initialized    strcpy(tmpout,optionfilefiname);
      before: only the contents of out is modified. The function returns    strcat(tmpout,"/"); /* Add to the right */
      a pointer to pointers identical to out */    strcat(tmpout,fileres);
   long i, j, k;    return tmpout;
   for(i=nrl; i<= nrh; i++)  }
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  /*************** function subdirf2 ***********/
         out[i][k] +=in[i][j]*b[j][k];  char *subdirf2(char fileres[], char *preop)
   {
   return out;    
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /************* Higher Matrix Product ***************/    strcat(tmpout,preop);
     strcat(tmpout,fileres);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    return tmpout;
 {  }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  /*************** function subdirf3 ***********/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  char *subdirf3(char fileres[], char *preop, char *preop2)
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  {
      (typically every 2 years instead of every month which is too big).    
      Model is determined by parameters x and covariates have to be    /* Caution optionfilefiname is hidden */
      included manually here.    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
      */    strcat(tmpout,preop);
     strcat(tmpout,preop2);
   int i, j, d, h, k;    strcat(tmpout,fileres);
   double **out, cov[NCOVMAX];    return tmpout;
   double **newm;  }
   
   /* Hstepm could be zero and should return the unit matrix */  /***************** f1dim *************************/
   for (i=1;i<=nlstate+ndeath;i++)  extern int ncom; 
     for (j=1;j<=nlstate+ndeath;j++){  extern double *pcom,*xicom;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  extern double (*nrfunc)(double []); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);   
     }  double f1dim(double x) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  { 
   for(h=1; h <=nhstepm; h++){    int j; 
     for(d=1; d <=hstepm; d++){    double f;
       newm=savm;    double *xt; 
       /* Covariates have to be included here again */   
       cov[1]=1.;    xt=vector(1,ncom); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    f=(*nrfunc)(xt); 
       for (k=1; k<=cptcovage;k++)    free_vector(xt,1,ncom); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return f; 
       for (k=1; k<=cptcovprod;k++)  } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    int iter; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double a,b,d,etemp;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double fu,fv,fw,fx;
       savm=oldm;    double ftemp;
       oldm=newm;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     }    double e=0.0; 
     for(i=1; i<=nlstate+ndeath; i++)   
       for(j=1;j<=nlstate+ndeath;j++) {    a=(ax < cx ? ax : cx); 
         po[i][j][h]=newm[i][j];    b=(ax > cx ? ax : cx); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    x=w=v=bx; 
          */    fw=fv=fx=(*f)(x); 
       }    for (iter=1;iter<=ITMAX;iter++) { 
   } /* end h */      xm=0.5*(a+b); 
   return po;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 /*************** log-likelihood *************/  #ifdef DEBUG
 double func( double *x)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i, ii, j, k, mi, d, kk;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #endif
   double **out;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double sw; /* Sum of weights */        *xmin=x; 
   double lli; /* Individual log likelihood */        return fx; 
   long ipmx;      } 
   /*extern weight */      ftemp=fu;
   /* We are differentiating ll according to initial status */      if (fabs(e) > tol1) { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        r=(x-w)*(fx-fv); 
   /*for(i=1;i<imx;i++)        q=(x-v)*(fx-fw); 
     printf(" %d\n",s[4][i]);        p=(x-v)*q-(x-w)*r; 
   */        q=2.0*(q-r); 
   cov[1]=1.;        if (q > 0.0) p = -p; 
         q=fabs(q); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        etemp=e; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        e=d; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(mi=1; mi<= wav[i]-1; mi++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (ii=1;ii<=nlstate+ndeath;ii++)        else { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          d=p/q; 
       for(d=0; d<dh[mi][i]; d++){          u=x+d; 
         newm=savm;          if (u-a < tol2 || b-u < tol2) 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            d=SIGN(tol1,xm-x); 
         for (kk=1; kk<=cptcovage;kk++) {        } 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      } else { 
         }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
              } 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      fu=(*f)(u); 
         savm=oldm;      if (fu <= fx) { 
         oldm=newm;        if (u >= x) a=x; else b=x; 
                SHFT(v,w,x,u) 
                  SHFT(fv,fw,fx,fu) 
       } /* end mult */          } else { 
                  if (u < x) a=u; else b=u; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);            if (fu <= fw || w == x) { 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/              v=w; 
       ipmx +=1;              w=u; 
       sw += weight[i];              fv=fw; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              fw=fu; 
     } /* end of wave */            } else if (fu <= fv || v == x || v == w) { 
   } /* end of individual */              v=u; 
               fv=fu; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            } 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          } 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    } 
   return -l;    nrerror("Too many iterations in brent"); 
 }    *xmin=x; 
     return fx; 
   } 
 /*********** Maximum Likelihood Estimation ***************/  
   /****************** mnbrak ***********************/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   int i,j, iter;              double (*func)(double)) 
   double **xi,*delti;  { 
   double fret;    double ulim,u,r,q, dum;
   xi=matrix(1,npar,1,npar);    double fu; 
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++)    *fa=(*func)(*ax); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    *fb=(*func)(*bx); 
   printf("Powell\n");    if (*fb > *fa) { 
   powell(p,xi,npar,ftol,&iter,&fret,func);      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        } 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 }    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 /**** Computes Hessian and covariance matrix ***/      q=(*bx-*cx)*(*fb-*fa); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double  **a,**y,*x,pd;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double **hess;      if ((*bx-u)*(u-*cx) > 0.0) { 
   int i, j,jk;        fu=(*func)(u); 
   int *indx;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
   double hessii(double p[], double delta, int theta, double delti[]);        if (fu < *fc) { 
   double hessij(double p[], double delti[], int i, int j);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   void lubksb(double **a, int npar, int *indx, double b[]) ;            SHFT(*fb,*fc,fu,(*func)(u)) 
   void ludcmp(double **a, int npar, int *indx, double *d) ;            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   hess=matrix(1,npar,1,npar);        u=ulim; 
         fu=(*func)(u); 
   printf("\nCalculation of the hessian matrix. Wait...\n");      } else { 
   for (i=1;i<=npar;i++){        u=(*cx)+GOLD*(*cx-*bx); 
     printf("%d",i);fflush(stdout);        fu=(*func)(u); 
     hess[i][i]=hessii(p,ftolhess,i,delti);      } 
     /*printf(" %f ",p[i]);*/      SHFT(*ax,*bx,*cx,u) 
     /*printf(" %lf ",hess[i][i]);*/        SHFT(*fa,*fb,*fc,fu) 
   }        } 
    } 
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  /*************** linmin ************************/
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  int ncom; 
         hess[i][j]=hessij(p,delti,i,j);  double *pcom,*xicom;
         hess[j][i]=hess[i][j];      double (*nrfunc)(double []); 
         /*printf(" %lf ",hess[i][j]);*/   
       }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
   }    double brent(double ax, double bx, double cx, 
   printf("\n");                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                  double *fc, double (*func)(double)); 
   a=matrix(1,npar,1,npar);    int j; 
   y=matrix(1,npar,1,npar);    double xx,xmin,bx,ax; 
   x=vector(1,npar);    double fx,fb,fa;
   indx=ivector(1,npar);   
   for (i=1;i<=npar;i++)    ncom=n; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    pcom=vector(1,n); 
   ludcmp(a,npar,indx,&pd);    xicom=vector(1,n); 
     nrfunc=func; 
   for (j=1;j<=npar;j++) {    for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++) x[i]=0;      pcom[j]=p[j]; 
     x[j]=1;      xicom[j]=xi[j]; 
     lubksb(a,npar,indx,x);    } 
     for (i=1;i<=npar;i++){    ax=0.0; 
       matcov[i][j]=x[i];    xx=1.0; 
     }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   printf("\n#Hessian matrix#\n");    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=npar;i++) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=npar;j++) {  #endif
       printf("%.3e ",hess[i][j]);    for (j=1;j<=n;j++) { 
     }      xi[j] *= xmin; 
     printf("\n");      p[j] += xi[j]; 
   }    } 
     free_vector(xicom,1,n); 
   /* Recompute Inverse */    free_vector(pcom,1,n); 
   for (i=1;i<=npar;i++)  } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   /*  printf("\n#Hessian matrix recomputed#\n");    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   for (j=1;j<=npar;j++) {    sec_left = (time_sec) % (60*60*24);
     for (i=1;i<=npar;i++) x[i]=0;    hours = (sec_left) / (60*60) ;
     x[j]=1;    sec_left = (sec_left) %(60*60);
     lubksb(a,npar,indx,x);    minutes = (sec_left) /60;
     for (i=1;i<=npar;i++){    sec_left = (sec_left) % (60);
       y[i][j]=x[i];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       printf("%.3e ",y[i][j]);    return ascdiff;
     }  }
     printf("\n");  
   }  /*************** powell ************************/
   */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   free_matrix(a,1,npar,1,npar);  { 
   free_matrix(y,1,npar,1,npar);    void linmin(double p[], double xi[], int n, double *fret, 
   free_vector(x,1,npar);                double (*func)(double [])); 
   free_ivector(indx,1,npar);    int i,ibig,j; 
   free_matrix(hess,1,npar,1,npar);    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
     double *xits;
 }    int niterf, itmp;
   
 /*************** hessian matrix ****************/    pt=vector(1,n); 
 double hessii( double x[], double delta, int theta, double delti[])    ptt=vector(1,n); 
 {    xit=vector(1,n); 
   int i;    xits=vector(1,n); 
   int l=1, lmax=20;    *fret=(*func)(p); 
   double k1,k2;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double p2[NPARMAX+1];    for (*iter=1;;++(*iter)) { 
   double res;      fp=(*fret); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      ibig=0; 
   double fx;      del=0.0; 
   int k=0,kmax=10;      last_time=curr_time;
   double l1;      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   fx=func(x);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   for (i=1;i<=npar;i++) p2[i]=x[i];  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   for(l=0 ; l <=lmax; l++){     for (i=1;i<=n;i++) {
     l1=pow(10,l);        printf(" %d %.12f",i, p[i]);
     delts=delt;        fprintf(ficlog," %d %.12lf",i, p[i]);
     for(k=1 ; k <kmax; k=k+1){        fprintf(ficrespow," %.12lf", p[i]);
       delt = delta*(l1*k);      }
       p2[theta]=x[theta] +delt;      printf("\n");
       k1=func(p2)-fx;      fprintf(ficlog,"\n");
       p2[theta]=x[theta]-delt;      fprintf(ficrespow,"\n");fflush(ficrespow);
       k2=func(p2)-fx;      if(*iter <=3){
       /*res= (k1-2.0*fx+k2)/delt/delt; */        tm = *localtime(&curr_time.tv_sec);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        strcpy(strcurr,asctime(&tm));
        /*       asctime_r(&tm,strcurr); */
 #ifdef DEBUG        forecast_time=curr_time; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        itmp = strlen(strcurr);
 #endif        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          strcurr[itmp-1]='\0';
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         k=kmax;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       }        for(niterf=10;niterf<=30;niterf+=10){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         k=kmax; l=lmax*10.;          tmf = *localtime(&forecast_time.tv_sec);
       }  /*      asctime_r(&tmf,strfor); */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          strcpy(strfor,asctime(&tmf));
         delts=delt;          itmp = strlen(strfor);
       }          if(strfor[itmp-1]=='\n')
     }          strfor[itmp-1]='\0';
   }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   delti[theta]=delts;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   return res;        }
        }
 }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 double hessij( double x[], double delti[], int thetai,int thetaj)        fptt=(*fret); 
 {  #ifdef DEBUG
   int i;        printf("fret=%lf \n",*fret);
   int l=1, l1, lmax=20;        fprintf(ficlog,"fret=%lf \n",*fret);
   double k1,k2,k3,k4,res,fx;  #endif
   double p2[NPARMAX+1];        printf("%d",i);fflush(stdout);
   int k;        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
   fx=func(x);        if (fabs(fptt-(*fret)) > del) { 
   for (k=1; k<=2; k++) {          del=fabs(fptt-(*fret)); 
     for (i=1;i<=npar;i++) p2[i]=x[i];          ibig=i; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #ifdef DEBUG
     k1=func(p2)-fx;        printf("%d %.12e",i,(*fret));
          fprintf(ficlog,"%d %.12e",i,(*fret));
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (j=1;j<=n;j++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     k2=func(p2)-fx;          printf(" x(%d)=%.12e",j,xit[j]);
            fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=1;j<=n;j++) {
     k3=func(p2)-fx;          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        printf("\n");
     k4=func(p2)-fx;        fprintf(ficlog,"\n");
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  #endif
 #ifdef DEBUG      } 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 #endif  #ifdef DEBUG
   }        int k[2],l;
   return res;        k[0]=1;
 }        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 /************** Inverse of matrix **************/        fprintf(ficlog,"Max: %.12e",(*func)(p));
 void ludcmp(double **a, int n, int *indx, double *d)        for (j=1;j<=n;j++) {
 {          printf(" %.12e",p[j]);
   int i,imax,j,k;          fprintf(ficlog," %.12e",p[j]);
   double big,dum,sum,temp;        }
   double *vv;        printf("\n");
          fprintf(ficlog,"\n");
   vv=vector(1,n);        for(l=0;l<=1;l++) {
   *d=1.0;          for (j=1;j<=n;j++) {
   for (i=1;i<=n;i++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     big=0.0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (j=1;j<=n;j++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       if ((temp=fabs(a[i][j])) > big) big=temp;          }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     vv[i]=1.0/big;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }        }
   for (j=1;j<=n;j++) {  #endif
     for (i=1;i<j;i++) {  
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        free_vector(xit,1,n); 
       a[i][j]=sum;        free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
     big=0.0;        free_vector(pt,1,n); 
     for (i=j;i<=n;i++) {        return; 
       sum=a[i][j];      } 
       for (k=1;k<j;k++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         sum -= a[i][k]*a[k][j];      for (j=1;j<=n;j++) { 
       a[i][j]=sum;        ptt[j]=2.0*p[j]-pt[j]; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        xit[j]=p[j]-pt[j]; 
         big=dum;        pt[j]=p[j]; 
         imax=i;      } 
       }      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
     if (j != imax) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       for (k=1;k<=n;k++) {        if (t < 0.0) { 
         dum=a[imax][k];          linmin(p,xit,n,fret,func); 
         a[imax][k]=a[j][k];          for (j=1;j<=n;j++) { 
         a[j][k]=dum;            xi[j][ibig]=xi[j][n]; 
       }            xi[j][n]=xit[j]; 
       *d = -(*d);          }
       vv[imax]=vv[j];  #ifdef DEBUG
     }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     indx[j]=imax;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     if (a[j][j] == 0.0) a[j][j]=TINY;          for(j=1;j<=n;j++){
     if (j != n) {            printf(" %.12e",xit[j]);
       dum=1.0/(a[j][j]);            fprintf(ficlog," %.12e",xit[j]);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          }
     }          printf("\n");
   }          fprintf(ficlog,"\n");
   free_vector(vv,1,n);  /* Doesn't work */  #endif
 ;        }
 }      } 
     } 
 void lubksb(double **a, int n, int *indx, double b[])  } 
 {  
   int i,ii=0,ip,j;  /**** Prevalence limit (stable or period prevalence)  ****************/
   double sum;  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for (i=1;i<=n;i++) {  {
     ip=indx[i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     sum=b[ip];       matrix by transitions matrix until convergence is reached */
     b[ip]=b[i];  
     if (ii)    int i, ii,j,k;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double min, max, maxmin, maxmax,sumnew=0.;
     else if (sum) ii=i;    double **matprod2();
     b[i]=sum;    double **out, cov[NCOVMAX], **pmij();
   }    double **newm;
   for (i=n;i>=1;i--) {    double agefin, delaymax=50 ; /* Max number of years to converge */
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    for (ii=1;ii<=nlstate+ndeath;ii++)
     b[i]=sum/a[i][i];      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }      }
   
 /************ Frequencies ********************/     cov[1]=1.;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)   
 {  /* Some frequencies */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      newm=savm;
   double ***freq; /* Frequencies */      /* Covariates have to be included here again */
   double *pp;       cov[2]=agefin;
   double pos, k2, dateintsum=0,k2cpt=0;    
   FILE *ficresp;        for (k=1; k<=cptcovn;k++) {
   char fileresp[FILENAMELENGTH];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
            /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   pp=vector(1,nlstate);        }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   strcpy(fileresp,"p");        for (k=1; k<=cptcovprod;k++)
   strcat(fileresp,fileres);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     exit(0);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   j1=0;  
        savm=oldm;
   j=cptcoveff;      oldm=newm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      maxmax=0.;
        for(j=1;j<=nlstate;j++){
   for(k1=1; k1<=j;k1++){        min=1.;
     for(i1=1; i1<=ncodemax[k1];i1++){        max=0.;
       j1++;        for(i=1; i<=nlstate; i++) {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          sumnew=0;
         scanf("%d", i);*/          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for (i=-1; i<=nlstate+ndeath; i++)            prlim[i][j]= newm[i][j]/(1-sumnew);
         for (jk=-1; jk<=nlstate+ndeath; jk++)            max=FMAX(max,prlim[i][j]);
           for(m=agemin; m <= agemax+3; m++)          min=FMIN(min,prlim[i][j]);
             freq[i][jk][m]=0;        }
              maxmin=max-min;
       dateintsum=0;        maxmax=FMAX(maxmax,maxmin);
       k2cpt=0;      }
       for (i=1; i<=imx; i++) {      if(maxmax < ftolpl){
         bool=1;        return prlim;
         if  (cptcovn>0) {      }
           for (z1=1; z1<=cptcoveff; z1++)    }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  }
               bool=0;  
         }  /*************** transition probabilities ***************/ 
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
             k2=anint[m][i]+(mint[m][i]/12.);  {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double s1, s2;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /*double t34;*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;    int i,j,j1, nc, ii, jj;
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for(i=1; i<= nlstate; i++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for(j=1; j<i;j++){
               }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                          /*s2 += param[i][j][nc]*cov[nc];*/
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                 dateintsum=dateintsum+k2;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
                 k2cpt++;          }
               }          ps[i][j]=s2;
             }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
           }        }
         }        for(j=i+1; j<=nlstate+ndeath;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                    s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           }
       if  (cptcovn>0) {          ps[i][j]=s2;
         fprintf(ficresp, "\n#********** Variable ");        }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
         fprintf(ficresp, "**********\n#");      /*ps[3][2]=1;*/
       }      
       for(i=1; i<=nlstate;i++)      for(i=1; i<= nlstate; i++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        s1=0;
       fprintf(ficresp, "\n");        for(j=1; j<i; j++)
                s1+=exp(ps[i][j]);
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(j=i+1; j<=nlstate+ndeath; j++)
         if(i==(int)agemax+3)          s1+=exp(ps[i][j]);
           printf("Total");        ps[i][i]=1./(s1+1.);
         else        for(j=1; j<i; j++)
           printf("Age %d", i);          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(jk=1; jk <=nlstate ; jk++){        for(j=i+1; j<=nlstate+ndeath; j++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
             pp[jk] += freq[jk][m][i];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         }      } /* end i */
         for(jk=1; jk <=nlstate ; jk++){      
           for(m=-1, pos=0; m <=0 ; m++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             pos += freq[jk][m][i];        for(jj=1; jj<= nlstate+ndeath; jj++){
           if(pp[jk]>=1.e-10)          ps[ii][jj]=0;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          ps[ii][ii]=1;
           else        }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      }
         }      
   
         for(jk=1; jk <=nlstate ; jk++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
             pp[jk] += freq[jk][m][i];  /*         printf("ddd %lf ",ps[ii][jj]); */
         }  /*       } */
   /*       printf("\n "); */
         for(jk=1,pos=0; jk <=nlstate ; jk++)  /*        } */
           pos += pp[jk];  /*        printf("\n ");printf("%lf ",cov[2]); */
         for(jk=1; jk <=nlstate ; jk++){         /*
           if(pos>=1.e-5)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        goto end;*/
           else      return ps;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  }
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /**************** Product of 2 matrices ******************/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  {
             }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             else       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    /* in, b, out are matrice of pointers which should have been initialized 
           }       before: only the contents of out is modified. The function returns
         }       a pointer to pointers identical to out */
            long i, j, k;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    for(i=nrl; i<= nrh; i++)
           for(m=-1; m <=nlstate+ndeath; m++)      for(k=ncolol; k<=ncoloh; k++)
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         if(i <= (int) agemax)          out[i][k] +=in[i][j]*b[j][k];
           fprintf(ficresp,"\n");  
         printf("\n");    return out;
       }  }
     }  
   }  
   dateintmean=dateintsum/k2cpt;  /************* Higher Matrix Product ***************/
    
   fclose(ficresp);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  {
   free_vector(pp,1,nlstate);    /* Computes the transition matrix starting at age 'age' over 
         'nhstepm*hstepm*stepm' months (i.e. until
   /* End of Freq */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 }       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 /************ Prevalence ********************/       (typically every 2 years instead of every month which is too big 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)       for the memory).
 {  /* Some frequencies */       Model is determined by parameters x and covariates have to be 
         included manually here. 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */       */
   double *pp;  
   double pos, k2;    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
   pp=vector(1,nlstate);    double **newm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
      /* Hstepm could be zero and should return the unit matrix */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    for (i=1;i<=nlstate+ndeath;i++)
   j1=0;      for (j=1;j<=nlstate+ndeath;j++){
          oldm[i][j]=(i==j ? 1.0 : 0.0);
   j=cptcoveff;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  for(k1=1; k1<=j;k1++){    for(h=1; h <=nhstepm; h++){
     for(i1=1; i1<=ncodemax[k1];i1++){      for(d=1; d <=hstepm; d++){
       j1++;        newm=savm;
          /* Covariates have to be included here again */
       for (i=-1; i<=nlstate+ndeath; i++)          cov[1]=1.;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             freq[i][jk][m]=0;        for (k=1; k<=cptcovage;k++)
                cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (i=1; i<=imx; i++) {        for (k=1; k<=cptcovprod;k++)
         bool=1;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               bool=0;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         if (bool==1) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=firstpass; m<=lastpass; m++){        savm=oldm;
             k2=anint[m][i]+(mint[m][i]/12.);        oldm=newm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      }
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for(i=1; i<=nlstate+ndeath; i++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for(j=1;j<=nlstate+ndeath;j++) {
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          po[i][j][h]=newm[i][j];
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
             }        }
           }      /*printf("h=%d ",h);*/
         }    } /* end h */
       }  /*     printf("\n H=%d \n",h); */
         for(i=(int)agemin; i <= (int)agemax+3; i++){    return po;
           for(jk=1; jk <=nlstate ; jk++){  }
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
               pp[jk] += freq[jk][m][i];  
           }  /*************** log-likelihood *************/
           for(jk=1; jk <=nlstate ; jk++){  double func( double *x)
             for(m=-1, pos=0; m <=0 ; m++)  {
             pos += freq[jk][m][i];    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
            double **out;
          for(jk=1; jk <=nlstate ; jk++){    double sw; /* Sum of weights */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double lli; /* Individual log likelihood */
              pp[jk] += freq[jk][m][i];    int s1, s2;
          }    double bbh, survp;
              long ipmx;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    /*extern weight */
     /* We are differentiating ll according to initial status */
          for(jk=1; jk <=nlstate ; jk++){              /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
            if( i <= (int) agemax){    /*for(i=1;i<imx;i++) 
              if(pos>=1.e-5){      printf(" %d\n",s[4][i]);
                probs[i][jk][j1]= pp[jk]/pos;    */
              }    cov[1]=1.;
            }  
          }    for(k=1; k<=nlstate; k++) ll[k]=0.;
            
         }    if(mle==1){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (j=1;j<=nlstate+ndeath;j++){
   free_vector(pp,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }  /* End of Freq */            }
           for(d=0; d<dh[mi][i]; d++){
 /************* Waves Concatenation ***************/            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            }
      Death is a valid wave (if date is known).            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            savm=oldm;
      and mw[mi+1][i]. dh depends on stepm.            oldm=newm;
      */          } /* end mult */
         
   int i, mi, m;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          /* But now since version 0.9 we anticipate for bias at large stepm.
      double sum=0., jmean=0.;*/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   int j, k=0,jk, ju, jl;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double sum=0.;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   jmin=1e+5;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   jmax=-1;           * probability in order to take into account the bias as a fraction of the way
   jmean=0.;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   for(i=1; i<=imx; i++){           * -stepm/2 to stepm/2 .
     mi=0;           * For stepm=1 the results are the same as for previous versions of Imach.
     m=firstpass;           * For stepm > 1 the results are less biased than in previous versions. 
     while(s[m][i] <= nlstate){           */
       if(s[m][i]>=1)          s1=s[mw[mi][i]][i];
         mw[++mi][i]=m;          s2=s[mw[mi+1][i]][i];
       if(m >=lastpass)          bbh=(double)bh[mi][i]/(double)stepm; 
         break;          /* bias bh is positive if real duration
       else           * is higher than the multiple of stepm and negative otherwise.
         m++;           */
     }/* end while */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     if (s[m][i] > nlstate){          if( s2 > nlstate){ 
       mi++;     /* Death is another wave */            /* i.e. if s2 is a death state and if the date of death is known 
       /* if(mi==0)  never been interviewed correctly before death */               then the contribution to the likelihood is the probability to 
          /* Only death is a correct wave */               die between last step unit time and current  step unit time, 
       mw[mi][i]=m;               which is also equal to probability to die before dh 
     }               minus probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
     wav[i]=mi;          as if date of death was unknown. Death was treated as any other
     if(mi==0)          health state: the date of the interview describes the actual state
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          and not the date of a change in health state. The former idea was
   }          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   for(i=1; i<=imx; i++){          introduced the exact date of death then we should have modified
     for(mi=1; mi<wav[i];mi++){          the contribution of an exact death to the likelihood. This new
       if (stepm <=0)          contribution is smaller and very dependent of the step unit
         dh[mi][i]=1;          stepm. It is no more the probability to die between last interview
       else{          and month of death but the probability to survive from last
         if (s[mw[mi+1][i]][i] > nlstate) {          interview up to one month before death multiplied by the
           if (agedc[i] < 2*AGESUP) {          probability to die within a month. Thanks to Chris
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          Jackson for correcting this bug.  Former versions increased
           if(j==0) j=1;  /* Survives at least one month after exam */          mortality artificially. The bad side is that we add another loop
           k=k+1;          which slows down the processing. The difference can be up to 10%
           if (j >= jmax) jmax=j;          lower mortality.
           if (j <= jmin) jmin=j;            */
           sum=sum+j;            lli=log(out[s1][s2] - savm[s1][s2]);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }  
         }          } else if  (s2==-2) {
         else{            for (j=1,survp=0. ; j<=nlstate; j++) 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           k=k+1;            /*survp += out[s1][j]; */
           if (j >= jmax) jmax=j;            lli= log(survp);
           else if (j <= jmin)jmin=j;          }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          
           sum=sum+j;          else if  (s2==-4) { 
         }            for (j=3,survp=0. ; j<=nlstate; j++)  
         jk= j/stepm;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         jl= j -jk*stepm;            lli= log(survp); 
         ju= j -(jk+1)*stepm;          } 
         if(jl <= -ju)  
           dh[mi][i]=jk;          else if  (s2==-5) { 
         else            for (j=1,survp=0. ; j<=2; j++)  
           dh[mi][i]=jk+1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         if(dh[mi][i]==0)            lli= log(survp); 
           dh[mi][i]=1; /* At least one step */          } 
       }          
     }          else{
   }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   jmean=sum/k;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          } 
  }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 /*********** Tricode ****************************/          /*if(lli ==000.0)*/
 void tricode(int *Tvar, int **nbcode, int imx)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 {          ipmx +=1;
   int Ndum[20],ij=1, k, j, i;          sw += weight[i];
   int cptcode=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   cptcoveff=0;        } /* end of wave */
        } /* end of individual */
   for (k=0; k<19; k++) Ndum[k]=0;    }  else if(mle==2){
   for (k=1; k<=7; k++) ncodemax[k]=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1; i<=imx; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       ij=(int)(covar[Tvar[j]][i]);            for (j=1;j<=nlstate+ndeath;j++){
       Ndum[ij]++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (ij > cptcode) cptcode=ij;            }
     }          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
     for (i=0; i<=cptcode; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(Ndum[i]!=0) ncodemax[j]++;            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     ij=1;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1; i<=ncodemax[j]; i++) {            savm=oldm;
       for (k=0; k<=19; k++) {            oldm=newm;
         if (Ndum[k] != 0) {          } /* end mult */
           nbcode[Tvar[j]][ij]=k;        
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/          s1=s[mw[mi][i]][i];
           ij++;          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
         if (ij > ncodemax[j]) break;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }            ipmx +=1;
     }          sw += weight[i];
   }            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
  for (k=0; k<19; k++) Ndum[k]=0;      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
  for (i=1; i<=ncovmodel-2; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       ij=Tvar[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       Ndum[ij]++;        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
  ij=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=10; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    if((Ndum[i]!=0) && (i<=ncovcol)){            }
      Tvaraff[ij]=i;          for(d=0; d<dh[mi][i]; d++){
      ij++;            newm=savm;
    }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  }            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     cptcoveff=ij-1;            }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*********** Health Expectancies ****************/            savm=oldm;
             oldm=newm;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          } /* end mult */
 {        
   /* Health expectancies */          s1=s[mw[mi][i]][i];
   int i, j, nhstepm, hstepm, h, nstepm, k;          s2=s[mw[mi+1][i]][i];
   double age, agelim, hf;          bbh=(double)bh[mi][i]/(double)stepm; 
   double ***p3mat;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            ipmx +=1;
   fprintf(ficreseij,"# Health expectancies\n");          sw += weight[i];
   fprintf(ficreseij,"# Age");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i<=nlstate;i++)        } /* end of wave */
     for(j=1; j<=nlstate;j++)      } /* end of individual */
       fprintf(ficreseij," %1d-%1d",i,j);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   fprintf(ficreseij,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   k=1;             /* For example stepm=6 months */        for(mi=1; mi<= wav[i]-1; mi++){
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */          for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */            for (j=1;j<=nlstate+ndeath;j++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      nhstepm is the number of hstepm from age to agelim              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      nstepm is the number of stepm from age to agelin.            }
      Look at hpijx to understand the reason of that which relies in memory size          for(d=0; d<dh[mi][i]; d++){
      and note for a fixed period like k years */            newm=savm;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      survival function given by stepm (the optimization length). Unfortunately it            for (kk=1; kk<=cptcovage;kk++) {
      means that if the survival funtion is printed only each two years of age and if              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            }
      results. So we changed our mind and took the option of the best precision.          
   */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   agelim=AGESUP;            oldm=newm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          } /* end mult */
     /* nhstepm age range expressed in number of stepm */        
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          s1=s[mw[mi][i]][i];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          s2=s[mw[mi+1][i]][i];
     /* if (stepm >= YEARM) hstepm=1;*/          if( s2 > nlstate){ 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            lli=log(out[s1][s2] - savm[s1][s2]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            ipmx +=1;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          sw += weight[i];
     for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate;j++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        } /* end of wave */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      } /* end of individual */
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficreseij,"%3.0f",age );        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficreseij,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   }          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /************ Variance ******************/            for (kk=1; kk<=cptcovage;kk++) {
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   /* Variance of health expectancies */          
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **newm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **dnewm,**doldm;            savm=oldm;
   int i, j, nhstepm, hstepm, h, nstepm, kk;            oldm=newm;
   int k, cptcode;          } /* end mult */
   double *xp;        
   double **gp, **gm;          s1=s[mw[mi][i]][i];
   double ***gradg, ***trgradg;          s2=s[mw[mi+1][i]][i];
   double ***p3mat;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double age,agelim, hf;          ipmx +=1;
   int theta;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    fprintf(ficresvij,"# Covariances of life expectancies\n");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   fprintf(ficresvij,"# Age");        } /* end of wave */
   for(i=1; i<=nlstate;i++)      } /* end of individual */
     for(j=1; j<=nlstate;j++)    } /* End of if */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(ficresvij,"\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   xp=vector(1,npar);    return -l;
   dnewm=matrix(1,nlstate,1,npar);  }
   doldm=matrix(1,nlstate,1,nlstate);  
    /*************** log-likelihood *************/
   kk=1;             /* For example stepm=6 months */  double funcone( double *x)
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */  {
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */    /* Same as likeli but slower because of a lot of printf and if */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int i, ii, j, k, mi, d, kk;
      nhstepm is the number of hstepm from age to agelim    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      nstepm is the number of stepm from age to agelin.    double **out;
      Look at hpijx to understand the reason of that which relies in memory size    double lli; /* Individual log likelihood */
      and note for a fixed period like k years */    double llt;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    int s1, s2;
      survival function given by stepm (the optimization length). Unfortunately it    double bbh, survp;
      means that if the survival funtion is printed only each two years of age and if    /*extern weight */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /* We are differentiating ll according to initial status */
      results. So we changed our mind and took the option of the best precision.    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   */    /*for(i=1;i<imx;i++) 
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */      printf(" %d\n",s[4][i]);
   agelim = AGESUP;    */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    cov[1]=1.;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for(k=1; k<=nlstate; k++) ll[k]=0.;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gp=matrix(0,nhstepm,1,nlstate);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gm=matrix(0,nhstepm,1,nlstate);      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
     for(theta=1; theta <=npar; theta++){          for (j=1;j<=nlstate+ndeath;j++){
       for(i=1; i<=npar; i++){ /* Computes gradient */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(d=0; d<dh[mi][i]; d++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (popbased==1) {          for (kk=1; kk<=cptcovage;kk++) {
         for(i=1; i<=nlstate;i++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           prlim[i][i]=probs[(int)age][i][ij];          }
       }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<= nlstate; j++){          savm=oldm;
         for(h=0; h<=nhstepm; h++){          oldm=newm;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        } /* end mult */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        
         }        s1=s[mw[mi][i]][i];
       }        s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=1; i<=npar; i++) /* Computes gradient */        /* bias is positive if real duration
         xp[i] = x[i] - (i==theta ?delti[theta]:0);         * is higher than the multiple of stepm and negative otherwise.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);           */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
            lli=log(out[s1][s2] - savm[s1][s2]);
       if (popbased==1) {        } else if  (s2==-2) {
         for(i=1; i<=nlstate;i++)          for (j=1,survp=0. ; j<=nlstate; j++) 
           prlim[i][i]=probs[(int)age][i][ij];            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }          lli= log(survp);
         }else if (mle==1){
       for(j=1; j<= nlstate; j++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(h=0; h<=nhstepm; h++){        } else if(mle==2){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        } else if(mle==3){  /* exponential inter-extrapolation */
         }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<= nlstate; j++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         for(h=0; h<=nhstepm; h++){          lli=log(out[s1][s2]); /* Original formula */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        } /* End of if */
         }        ipmx +=1;
     } /* End theta */        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
     for(h=0; h<=nhstepm; h++)          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(j=1; j<=nlstate;j++)   %11.6f %11.6f %11.6f ", \
         for(theta=1; theta <=npar; theta++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           trgradg[h][j][theta]=gradg[h][theta][j];                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            llt +=ll[k]*gipmx/gsw;
     for(i=1;i<=nlstate;i++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       for(j=1;j<=nlstate;j++)          }
         vareij[i][j][(int)age] =0.;          fprintf(ficresilk," %10.6f\n", -llt);
         }
     for(h=0;h<=nhstepm;h++){      } /* end of wave */
       for(k=0;k<=nhstepm;k++){    } /* end of individual */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(i=1;i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(j=1;j<=nlstate;j++)    if(globpr==0){ /* First time we count the contributions and weights */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      gipmx=ipmx;
       }      gsw=sw;
     }    }
     return -l;
     fprintf(ficresvij,"%.0f ",age );  }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  /*************** function likelione ***********/
       }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     fprintf(ficresvij,"\n");  {
     free_matrix(gp,0,nhstepm,1,nlstate);    /* This routine should help understanding what is done with 
     free_matrix(gm,0,nhstepm,1,nlstate);       the selection of individuals/waves and
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);       to check the exact contribution to the likelihood.
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);       Plotting could be done.
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     */
   } /* End age */    int k;
    
   free_vector(xp,1,npar);    if(*globpri !=0){ /* Just counts and sums, no printings */
   free_matrix(doldm,1,nlstate,1,npar);      strcpy(fileresilk,"ilk"); 
   free_matrix(dnewm,1,nlstate,1,nlstate);      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 }        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 /************ Variance of prevlim ******************/      }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   /* Variance of prevalence limit */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(k=1; k<=nlstate; k++) 
   double **newm;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double **dnewm,**doldm;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int i, j, nhstepm, hstepm;    }
   int k, cptcode;  
   double *xp;    *fretone=(*funcone)(p);
   double *gp, *gm;    if(*globpri !=0){
   double **gradg, **trgradg;      fclose(ficresilk);
   double age,agelim;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   int theta;      fflush(fichtm); 
        } 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    return;
   fprintf(ficresvpl,"# Age");  }
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");  /*********** Maximum Likelihood Estimation ***************/
   
   xp=vector(1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   dnewm=matrix(1,nlstate,1,npar);  {
   doldm=matrix(1,nlstate,1,nlstate);    int i,j, iter;
      double **xi;
   hstepm=1*YEARM; /* Every year of age */    double fret;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double fretone; /* Only one call to likelihood */
   agelim = AGESUP;    /*  char filerespow[FILENAMELENGTH];*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    xi=matrix(1,npar,1,npar);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (i=1;i<=npar;i++)
     if (stepm >= YEARM) hstepm=1;      for (j=1;j<=npar;j++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        xi[i][j]=(i==j ? 1.0 : 0.0);
     gradg=matrix(1,npar,1,nlstate);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     gp=vector(1,nlstate);    strcpy(filerespow,"pow"); 
     gm=vector(1,nlstate);    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for(theta=1; theta <=npar; theta++){      printf("Problem with resultfile: %s\n", filerespow);
       for(i=1; i<=npar; i++){ /* Computes gradient */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
       }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=nlstate;i++)
       for(i=1;i<=nlstate;i++)      for(j=1;j<=nlstate+ndeath;j++)
         gp[i] = prlim[i][i];        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
        fprintf(ficrespow,"\n");
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    powell(p,xi,npar,ftol,&iter,&fret,func);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    free_matrix(xi,1,npar,1,npar);
         gm[i] = prlim[i][i];    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     } /* End theta */  
   }
     trgradg =matrix(1,nlstate,1,npar);  
   /**** Computes Hessian and covariance matrix ***/
     for(j=1; j<=nlstate;j++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(theta=1; theta <=npar; theta++)  {
         trgradg[j][theta]=gradg[theta][j];    double  **a,**y,*x,pd;
     double **hess;
     for(i=1;i<=nlstate;i++)    int i, j,jk;
       varpl[i][(int)age] =0.;    int *indx;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     for(i=1;i<=nlstate;i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
     fprintf(ficresvpl,"%.0f ",age );    double gompertz(double p[]);
     for(i=1; i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
     free_vector(gp,1,nlstate);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     free_vector(gm,1,nlstate);    for (i=1;i<=npar;i++){
     free_matrix(gradg,1,npar,1,nlstate);      printf("%d",i);fflush(stdout);
     free_matrix(trgradg,1,nlstate,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   } /* End age */     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   free_vector(xp,1,npar);      
   free_matrix(doldm,1,nlstate,1,npar);      /*  printf(" %f ",p[i]);
   free_matrix(dnewm,1,nlstate,1,nlstate);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
 }    
     for (i=1;i<=npar;i++) {
 /************ Variance of one-step probabilities  ******************/      for (j=1;j<=npar;j++)  {
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)        if (j>i) { 
 {          printf(".%d%d",i,j);fflush(stdout);
   int i, j;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int k=0, cptcode;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double **dnewm,**doldm;          
   double *xp;          hess[j][i]=hess[i][j];    
   double *gp, *gm;          /*printf(" %lf ",hess[i][j]);*/
   double **gradg, **trgradg;        }
   double age,agelim, cov[NCOVMAX];      }
   int theta;    }
   char fileresprob[FILENAMELENGTH];    printf("\n");
     fprintf(ficlog,"\n");
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     printf("Problem with resultfile: %s\n", fileresprob);    
   }    a=matrix(1,npar,1,npar);
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    y=matrix(1,npar,1,npar);
      x=vector(1,npar);
     indx=ivector(1,npar);
   xp=vector(1,npar);    for (i=1;i<=npar;i++)
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    ludcmp(a,npar,indx,&pd);
    
   cov[1]=1;    for (j=1;j<=npar;j++) {
   for (age=bage; age<=fage; age ++){      for (i=1;i<=npar;i++) x[i]=0;
     cov[2]=age;      x[j]=1;
     gradg=matrix(1,npar,1,9);      lubksb(a,npar,indx,x);
     trgradg=matrix(1,9,1,npar);      for (i=1;i<=npar;i++){ 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        matcov[i][j]=x[i];
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      }
        }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++)    printf("\n#Hessian matrix#\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n#Hessian matrix#\n");
          for (i=1;i<=npar;i++) { 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (j=1;j<=npar;j++) { 
            printf("%.3e ",hess[i][j]);
       k=0;        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(i=1; i<= (nlstate+ndeath); i++){      }
         for(j=1; j<=(nlstate+ndeath);j++){      printf("\n");
            k=k+1;      fprintf(ficlog,"\n");
           gp[k]=pmmij[i][j];    }
         }  
       }    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
       for(i=1; i<=npar; i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    ludcmp(a,npar,indx,&pd);
      
     /*  printf("\n#Hessian matrix recomputed#\n");
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  
       k=0;    for (j=1;j<=npar;j++) {
       for(i=1; i<=(nlstate+ndeath); i++){      for (i=1;i<=npar;i++) x[i]=0;
         for(j=1; j<=(nlstate+ndeath);j++){      x[j]=1;
           k=k+1;      lubksb(a,npar,indx,x);
           gm[k]=pmmij[i][j];      for (i=1;i<=npar;i++){ 
         }        y[i][j]=x[i];
       }        printf("%.3e ",y[i][j]);
              fprintf(ficlog,"%.3e ",y[i][j]);
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      }
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        printf("\n");
     }      fprintf(ficlog,"\n");
     }
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    */
       for(theta=1; theta <=npar; theta++)  
       trgradg[j][theta]=gradg[theta][j];    free_matrix(a,1,npar,1,npar);
      free_matrix(y,1,npar,1,npar);
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    free_vector(x,1,npar);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
      pmij(pmmij,cov,ncovmodel,x,nlstate);  
   
      k=0;  }
      for(i=1; i<=(nlstate+ndeath); i++){  
        for(j=1; j<=(nlstate+ndeath);j++){  /*************** hessian matrix ****************/
          k=k+1;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
          gm[k]=pmmij[i][j];  {
         }    int i;
      }    int l=1, lmax=20;
          double k1,k2;
      /*printf("\n%d ",(int)age);    double p2[NPARMAX+1];
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    double res;
            double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    int k=0,kmax=10;
      }*/    double l1;
   
   fprintf(ficresprob,"\n%d ",(int)age);    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    for(l=0 ; l <=lmax; l++){
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      l1=pow(10,l);
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      delts=delt;
   }      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        p2[theta]=x[theta] +delt;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        k1=func(p2)-fx;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        p2[theta]=x[theta]-delt;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        k2=func(p2)-fx;
 }        /*res= (k1-2.0*fx+k2)/delt/delt; */
  free_vector(xp,1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 fclose(ficresprob);        
   #ifdef DEBUG
 }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 /******************* Printing html file ***********/  #endif
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
  int lastpass, int stepm, int weightopt, char model[],\        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          k=kmax;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        }
  char version[], int popforecast ){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   int jj1, k1, i1, cpt;          k=kmax; l=lmax*10.;
   FILE *fichtm;        }
   /*char optionfilehtm[FILENAMELENGTH];*/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
   strcpy(optionfilehtm,optionfile);        }
   strcat(optionfilehtm,".htm");      }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    }
     printf("Problem with %s \n",optionfilehtm), exit(0);    delti[theta]=delts;
   }    return res; 
     
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 Total number of observations=%d <br>\n  {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    int i;
 <hr  size=\"2\" color=\"#EC5E5E\">    int l=1, l1, lmax=20;
  <ul><li>Outputs files<br>\n    double k1,k2,k3,k4,res,fx;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double p2[NPARMAX+1];
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    int k;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    fx=func(x);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    for (k=1; k<=2; k++) {
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
  fprintf(fichtm,"\n      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      k1=func(p2)-fx;
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n    
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      p2[thetai]=x[thetai]+delti[thetai]/k;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
  if(popforecast==1) fprintf(fichtm,"\n    
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      p2[thetai]=x[thetai]-delti[thetai]/k;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         <br>",fileres,fileres,fileres,fileres);      k3=func(p2)-fx;
  else    
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      p2[thetai]=x[thetai]-delti[thetai]/k;
 fprintf(fichtm," <li>Graphs</li><p>");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
  m=cptcoveff;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  jj1=0;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  for(k1=1; k1<=m;k1++){  #endif
    for(i1=1; i1<=ncodemax[k1];i1++){    }
        jj1++;    return res;
        if (cptcovn > 0) {  }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)  /************** Inverse of matrix **************/
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  void ludcmp(double **a, int n, int *indx, double *d) 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  { 
        }    int i,imax,j,k; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    double big,dum,sum,temp; 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        double *vv; 
        for(cpt=1; cpt<nlstate;cpt++){   
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    vv=vector(1,n); 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    *d=1.0; 
        }    for (i=1;i<=n;i++) { 
     for(cpt=1; cpt<=nlstate;cpt++) {      big=0.0; 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      for (j=1;j<=n;j++) 
 interval) in state (%d): v%s%d%d.gif <br>        if ((temp=fabs(a[i][j])) > big) big=temp; 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
      }      vv[i]=1.0/big; 
      for(cpt=1; cpt<=nlstate;cpt++) {    } 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    for (j=1;j<=n;j++) { 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (i=1;i<j;i++) { 
      }        sum=a[i][j]; 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 health expectancies in states (1) and (2): e%s%d.gif<br>        a[i][j]=sum; 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      } 
 fprintf(fichtm,"\n</body>");      big=0.0; 
    }      for (i=j;i<=n;i++) { 
    }        sum=a[i][j]; 
 fclose(fichtm);        for (k=1;k<j;k++) 
 }          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 /******************* Gnuplot file **************/        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          big=dum; 
           imax=i; 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        } 
       } 
   strcpy(optionfilegnuplot,optionfilefiname);      if (j != imax) { 
   strcat(optionfilegnuplot,".gp.txt");        for (k=1;k<=n;k++) { 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          dum=a[imax][k]; 
     printf("Problem with file %s",optionfilegnuplot);          a[imax][k]=a[j][k]; 
   }          a[j][k]=dum; 
         } 
 #ifdef windows        *d = -(*d); 
     fprintf(ficgp,"cd \"%s\" \n",pathc);        vv[imax]=vv[j]; 
 #endif      } 
 m=pow(2,cptcoveff);      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
  /* 1eme*/      if (j != n) { 
   for (cpt=1; cpt<= nlstate ; cpt ++) {        dum=1.0/(a[j][j]); 
    for (k1=1; k1<= m ; k1 ++) {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
 #ifdef windows    } 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    free_vector(vv,1,n);  /* Doesn't work */
 #endif  ;
 #ifdef unix  } 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  
 #endif  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
 for (i=1; i<= nlstate ; i ++) {    int i,ii=0,ip,j; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double sum; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }    for (i=1;i<=n;i++) { 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      ip=indx[i]; 
     for (i=1; i<= nlstate ; i ++) {      sum=b[ip]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      b[ip]=b[i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (ii) 
 }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      else if (sum) ii=i; 
      for (i=1; i<= nlstate ; i ++) {      b[i]=sum; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (i=n;i>=1;i--) { 
 }        sum=b[i]; 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 #ifdef unix      b[i]=sum/a[i][i]; 
 fprintf(ficgp,"\nset ter gif small size 400,300");    } 
 #endif  } 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }  void pstamp(FILE *fichier)
   }  {
   /*2 eme*/    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);  /************ Frequencies ********************/
      void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     for (i=1; i<= nlstate+1 ; i ++) {  {  /* Some frequencies */
       k=2*i;    
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       for (j=1; j<= nlstate+1 ; j ++) {    int first;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double ***freq; /* Frequencies */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *pp, **prop;
 }      double pos,posprop, k2, dateintsum=0,k2cpt=0;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    char fileresp[FILENAMELENGTH];
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    pp=vector(1,nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    strcpy(fileresp,"p");
         else fprintf(ficgp," \%%*lf (\%%*lf)");    strcat(fileresp,fileres);
 }      if((ficresp=fopen(fileresp,"w"))==NULL) {
       fprintf(ficgp,"\" t\"\" w l 0,");      printf("Problem with prevalence resultfile: %s\n", fileresp);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       for (j=1; j<= nlstate+1 ; j ++) {      exit(0);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 }      j1=0;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    
       else fprintf(ficgp,"\" t\"\" w l 0,");    j=cptcoveff;
     }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }    first=1;
    
   /*3eme*/    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   for (k1=1; k1<= m ; k1 ++) {        j1++;
     for (cpt=1; cpt<= nlstate ; cpt ++) {        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       k=2+nlstate*(cpt-1);          scanf("%d", i);*/
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        for (i=-5; i<=nlstate+ndeath; i++)  
       for (i=1; i< nlstate ; i ++) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            for(m=iagemin; m <= iagemax+3; m++)
       }              freq[i][jk][m]=0;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }      for (i=1; i<=nlstate; i++)  
     }        for(m=iagemin; m <= iagemax+3; m++)
            prop[i][m]=0;
   /* CV preval stat */        
     for (k1=1; k1<= m ; k1 ++) {        dateintsum=0;
     for (cpt=1; cpt<nlstate ; cpt ++) {        k2cpt=0;
       k=3;        for (i=1; i<=imx; i++) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          bool=1;
           if  (cptcovn>0) {
       for (i=1; i< nlstate ; i ++)            for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(ficgp,"+$%d",k+i+1);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                bool=0;
                }
       l=3+(nlstate+ndeath)*cpt;          if (bool==1){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            for(m=firstpass; m<=lastpass; m++){
       for (i=1; i< nlstate ; i ++) {              k2=anint[m][i]+(mint[m][i]/12.);
         l=3+(nlstate+ndeath)*cpt;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         fprintf(ficgp,"+$%d",l+i+1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                if (m<lastpass) {
     }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   }                    freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                  }
   /* proba elementaires */                
    for(i=1,jk=1; i <=nlstate; i++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for(k=1; k <=(nlstate+ndeath); k++){                  dateintsum=dateintsum+k2;
       if (k != i) {                  k2cpt++;
         for(j=1; j <=ncovmodel; j++){                }
                        /*}*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            }
           jk++;          }
           fprintf(ficgp,"\n");        }
         }         
       }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     }        pstamp(ficresp);
     }        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
     for(jk=1; jk <=m; jk++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          fprintf(ficresp, "**********\n#");
    i=1;        }
    for(k2=1; k2<=nlstate; k2++) {        for(i=1; i<=nlstate;i++) 
      k3=i;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      for(k=1; k<=(nlstate+ndeath); k++) {        fprintf(ficresp, "\n");
        if (k != k2){        
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(i=iagemin; i <= iagemax+3; i++){
 ij=1;          if(i==iagemax+3){
         for(j=3; j <=ncovmodel; j++) {            fprintf(ficlog,"Total");
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }else{
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            if(first==1){
             ij++;              first=0;
           }              printf("See log file for details...\n");
           else            }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            fprintf(ficlog,"Age %d", i);
         }          }
           fprintf(ficgp,")/(1");          for(jk=1; jk <=nlstate ; jk++){
                    for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for(k1=1; k1 <=nlstate; k1++){                pp[jk] += freq[jk][m][i]; 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          }
 ij=1;          for(jk=1; jk <=nlstate ; jk++){
           for(j=3; j <=ncovmodel; j++){            for(m=-1, pos=0; m <=0 ; m++)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              pos += freq[jk][m][i];
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            if(pp[jk]>=1.e-10){
             ij++;              if(first==1){
           }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           else              }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }            }else{
           fprintf(ficgp,")");              if(first==1)
         }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            }
         i=i+ncovmodel;          }
        }  
      }          for(jk=1; jk <=nlstate ; jk++){
    }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              pp[jk] += freq[jk][m][i];
    }          }       
              for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   fclose(ficgp);            pos += pp[jk];
 }  /* end gnuplot */            posprop += prop[jk][i];
           }
           for(jk=1; jk <=nlstate ; jk++){
 /*************** Moving average **************/            if(pos>=1.e-5){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   int i, cpt, cptcod;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            }else{
       for (i=1; i<=nlstate;i++)              if(first==1)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           mobaverage[(int)agedeb][i][cptcod]=0.;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            if( i <= iagemax){
       for (i=1; i<=nlstate;i++){              if(pos>=1.e-5){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           for (cpt=0;cpt<=4;cpt++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           }              }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              else
         }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       }            }
     }          }
              
 }          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
 /************** Forecasting ******************/              if(first==1)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              }
   int *popage;          if(i <= iagemax)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            fprintf(ficresp,"\n");
   double *popeffectif,*popcount;          if(first==1)
   double ***p3mat;            printf("Others in log...\n");
   char fileresf[FILENAMELENGTH];          fprintf(ficlog,"\n");
         }
  agelim=AGESUP;      }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    }
     dateintmean=dateintsum/k2cpt; 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   
      fclose(ficresp);
      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   strcpy(fileresf,"f");    free_vector(pp,1,nlstate);
   strcat(fileresf,fileres);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    /* End of Freq */
     printf("Problem with forecast resultfile: %s\n", fileresf);  }
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   if (mobilav==1) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       We still use firstpass and lastpass as another selection.
     movingaverage(agedeb, fage, ageminpar, mobaverage);    */
   }   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double ***freq; /* Frequencies */
   if (stepm<=12) stepsize=1;    double *pp, **prop;
      double pos,posprop; 
   agelim=AGESUP;    double  y2; /* in fractional years */
      int iagemin, iagemax;
   hstepm=1;  
   hstepm=hstepm/stepm;    iagemin= (int) agemin;
   yp1=modf(dateintmean,&yp);    iagemax= (int) agemax;
   anprojmean=yp;    /*pp=vector(1,nlstate);*/
   yp2=modf((yp1*12),&yp);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   mprojmean=yp;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   yp1=modf((yp2*30.5),&yp);    j1=0;
   jprojmean=yp;    
   if(jprojmean==0) jprojmean=1;    j=cptcoveff;
   if(mprojmean==0) jprojmean=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   for(cptcov=1;cptcov<=i2;cptcov++){        j1++;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        
       k=k+1;        for (i=1; i<=nlstate; i++)  
       fprintf(ficresf,"\n#******");          for(m=iagemin; m <= iagemax+3; m++)
       for(j=1;j<=cptcoveff;j++) {            prop[i][m]=0.0;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       
       }        for (i=1; i<=imx; i++) { /* Each individual */
       fprintf(ficresf,"******\n");          bool=1;
       fprintf(ficresf,"# StartingAge FinalAge");          if  (cptcovn>0) {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            for (z1=1; z1<=cptcoveff; z1++) 
                    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                      bool=0;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          } 
         fprintf(ficresf,"\n");          if (bool==1) { 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           nhstepm = nhstepm/hstepm;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                          if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           oldm=oldms;savm=savms;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                    prop[s[m][i]][(int)agev[m][i]] += weight[i];
                          prop[s[m][i]][iagemax+3] += weight[i]; 
           for (h=0; h<=nhstepm; h++){                } 
             if (h==(int) (calagedate+YEARM*cpt)) {              }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            } /* end selection of waves */
             }          }
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;        for(i=iagemin; i <= iagemax+3; i++){  
               for(i=1; i<=nlstate;i++) {                        
                 if (mobilav==1)          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            posprop += prop[jk][i]; 
                 else {          } 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }          for(jk=1; jk <=nlstate ; jk++){     
                            if( i <=  iagemax){ 
               }              if(posprop>=1.e-5){ 
               if (h==(int)(calagedate+12*cpt)){                probs[i][jk][j1]= prop[jk][i]/posprop;
                 fprintf(ficresf," %.3f", kk1);              } else
                                        printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
               }            } 
             }          }/* end jk */ 
           }        }/* end i */ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* end i1 */
         }    } /* end k1 */
       }    
     }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   }    /*free_vector(pp,1,nlstate);*/
            free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }  /* End of prevalence */
   
   fclose(ficresf);  /************* Waves Concatenation ***************/
 }  
 /************** Forecasting ******************/  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  {
      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       Death is a valid wave (if date is known).
   int *popage;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   double *popeffectif,*popcount;       and mw[mi+1][i]. dh depends on stepm.
   double ***p3mat,***tabpop,***tabpopprev;       */
   char filerespop[FILENAMELENGTH];  
     int i, mi, m;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       double sum=0., jmean=0.;*/
   agelim=AGESUP;    int first;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    int j, k=0,jk, ju, jl;
      double sum=0.;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    first=0;
      jmin=1e+5;
      jmax=-1;
   strcpy(filerespop,"pop");    jmean=0.;
   strcat(filerespop,fileres);    for(i=1; i<=imx; i++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      mi=0;
     printf("Problem with forecast resultfile: %s\n", filerespop);      m=firstpass;
   }      while(s[m][i] <= nlstate){
   printf("Computing forecasting: result on file '%s' \n", filerespop);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        if(m >=lastpass)
           break;
   if (mobilav==1) {        else
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          m++;
     movingaverage(agedeb, fage, ageminpar, mobaverage);      }/* end while */
   }      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
   stepsize=(int) (stepm+YEARM-1)/YEARM;        /* if(mi==0)  never been interviewed correctly before death */
   if (stepm<=12) stepsize=1;           /* Only death is a correct wave */
          mw[mi][i]=m;
   agelim=AGESUP;      }
    
   hstepm=1;      wav[i]=mi;
   hstepm=hstepm/stepm;      if(mi==0){
          nbwarn++;
   if (popforecast==1) {        if(first==0){
     if((ficpop=fopen(popfile,"r"))==NULL) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       printf("Problem with population file : %s\n",popfile);exit(0);          first=1;
     }        }
     popage=ivector(0,AGESUP);        if(first==1){
     popeffectif=vector(0,AGESUP);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     popcount=vector(0,AGESUP);        }
          } /* end mi==0 */
     i=1;      } /* End individuals */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
        for(i=1; i<=imx; i++){
     imx=i;      for(mi=1; mi<wav[i];mi++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        if (stepm <=0)
   }          dh[mi][i]=1;
         else{
   for(cptcov=1;cptcov<=i2;cptcov++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            if (agedc[i] < 2*AGESUP) {
       k=k+1;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       fprintf(ficrespop,"\n#******");              if(j==0) j=1;  /* Survives at least one month after exam */
       for(j=1;j<=cptcoveff;j++) {              else if(j<0){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                nberr++;
       }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficrespop,"******\n");                j=1; /* Temporary Dangerous patch */
       fprintf(ficrespop,"# Age");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       if (popforecast==1)  fprintf(ficrespop," [Population]");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                    }
       for (cpt=0; cpt<=0;cpt++) {              k=k+1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                if (j >= jmax){
                        jmax=j;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                ijmax=i;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              }
           nhstepm = nhstepm/hstepm;              if (j <= jmin){
                          jmin=j;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                ijmin=i;
           oldm=oldms;savm=savms;              }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                sum=sum+j;
                      /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           for (h=0; h<=nhstepm; h++){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             if (h==(int) (calagedate+YEARM*cpt)) {            }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          }
             }          else{
             for(j=1; j<=nlstate+ndeath;j++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
               kk1=0.;kk2=0;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)            k=k+1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            if (j >= jmax) {
                 else {              jmax=j;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              ijmax=i;
                 }            }
               }            else if (j <= jmin){
               if (h==(int)(calagedate+12*cpt)){              jmin=j;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              ijmin=i;
                   /*fprintf(ficrespop," %.3f", kk1);            }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
               }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             }            if(j<0){
             for(i=1; i<=nlstate;i++){              nberr++;
               kk1=0.;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 for(j=1; j<=nlstate;j++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            }
                 }            sum=sum+j;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          }
             }          jk= j/stepm;
           jl= j -jk*stepm;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          ju= j -(jk+1)*stepm;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           }            if(jl==0){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              dh[mi][i]=jk;
         }              bh[mi][i]=0;
       }            }else{ /* We want a negative bias in order to only have interpolation ie
                      * at the price of an extra matrix product in likelihood */
   /******/              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }else{
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            if(jl <= -ju){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              dh[mi][i]=jk;
           nhstepm = nhstepm/hstepm;              bh[mi][i]=jl;       /* bias is positive if real duration
                                             * is higher than the multiple of stepm and negative otherwise.
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                                   */
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              else{
           for (h=0; h<=nhstepm; h++){              dh[mi][i]=jk+1;
             if (h==(int) (calagedate+YEARM*cpt)) {              bh[mi][i]=ju;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            }
             }            if(dh[mi][i]==0){
             for(j=1; j<=nlstate+ndeath;j++) {              dh[mi][i]=1; /* At least one step */
               kk1=0.;kk2=0;              bh[mi][i]=ju; /* At least one step */
               for(i=1; i<=nlstate;i++) {                            /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                }
               }          } /* end if mle */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }
             }      } /* end wave */
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    jmean=sum/k;
         }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }   }
   }  
    /*********** Tricode ****************************/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void tricode(int *Tvar, int **nbcode, int imx)
   {
   if (popforecast==1) {    
     free_ivector(popage,0,AGESUP);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     free_vector(popeffectif,0,AGESUP);    int cptcode=0;
     free_vector(popcount,0,AGESUP);    cptcoveff=0; 
   }   
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k=1; k<=7; k++) ncodemax[k]=0;
   fclose(ficrespop);  
 }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 /***********************************************/                                 modality*/ 
 /**************** Main Program *****************/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 /***********************************************/        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 int main(int argc, char *argv[])        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 {                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      }
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   double fret;      }
   double **xi,tmp,delta;  
       ij=1; 
   double dum; /* Dummy variable */      for (i=1; i<=ncodemax[j]; i++) {
   double ***p3mat;        for (k=0; k<= maxncov; k++) {
   int *indx;          if (Ndum[k] != 0) {
   char line[MAXLINE], linepar[MAXLINE];            nbcode[Tvar[j]][ij]=k; 
   char title[MAXLINE];            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];            
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            ij++;
            }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          if (ij > ncodemax[j]) break; 
         }  
   char filerest[FILENAMELENGTH];      } 
   char fileregp[FILENAMELENGTH];    }  
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];   for (k=0; k< maxncov; k++) Ndum[k]=0;
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */   for (i=1; i<=ncovmodel-2; i++) { 
   int c,  h , cpt,l;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   int ju,jl, mi;     ij=Tvar[i];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;     Ndum[ij]++;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;   }
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;   ij=1;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
   double bage, fage, age, agelim, agebase;       Tvaraff[ij]=i; /*For printing */
   double ftolpl=FTOL;       ij++;
   double **prlim;     }
   double *severity;   }
   double ***param; /* Matrix of parameters */   
   double  *p;   cptcoveff=ij-1; /*Number of simple covariates*/
   double **matcov; /* Matrix of covariance */  }
   double ***delti3; /* Scale */  
   double *delti; /* Scale */  /*********** Health Expectancies ****************/
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double *epj, vepp;  
   double kk1, kk2;  {
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    /* Health expectancies, no variances */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";    double age, agelim, hf;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double ***p3mat;
     double eip;
   
   char z[1]="c", occ;    pstamp(ficreseij);
 #include <sys/time.h>    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 #include <time.h>    fprintf(ficreseij,"# Age");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++){
   /* long total_usecs;        fprintf(ficreseij," e%1d%1d ",i,j);
   struct timeval start_time, end_time;      }
        fprintf(ficreseij," e%1d. ",i);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    }
   getcwd(pathcd, size);    fprintf(ficreseij,"\n");
   
   printf("\n%s",version);    
   if(argc <=1){    if(estepm < stepm){
     printf("\nEnter the parameter file name: ");      printf ("Problem %d lower than %d\n",estepm, stepm);
     scanf("%s",pathtot);    }
   }    else  hstepm=estepm;   
   else{    /* We compute the life expectancy from trapezoids spaced every estepm months
     strcpy(pathtot,argv[1]);     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
   /*cygwin_split_path(pathtot,path,optionfile);     * progression in between and thus overestimating or underestimating according
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/     * to the curvature of the survival function. If, for the same date, we 
   /* cutv(path,optionfile,pathtot,'\\');*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);     * hypothesis. A more precise result, taking into account a more precise
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     * curvature will be obtained if estepm is as small as stepm. */
   chdir(path);  
   replace(pathc,path);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 /*-------- arguments in the command line --------*/       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   strcpy(fileres,"r");       Look at hpijx to understand the reason of that which relies in memory size
   strcat(fileres, optionfilefiname);       and note for a fixed period like estepm months */
   strcat(fileres,".txt");    /* Other files have txt extension */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   /*---------arguments file --------*/       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       results. So we changed our mind and took the option of the best precision.
     printf("Problem with optionfile %s\n",optionfile);    */
     goto end;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
     agelim=AGESUP;
   strcpy(filereso,"o");    /* If stepm=6 months */
   strcat(filereso,fileres);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   if((ficparo=fopen(filereso,"w"))==NULL) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      
   }  /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /* Reads comments: lines beginning with '#' */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   while((c=getc(ficpar))=='#' && c!= EOF){    /* if (stepm >= YEARM) hstepm=1;*/
     ungetc(c,ficpar);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fgets(line, MAXLINE, ficpar);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     puts(line);  
     fputs(line,ficparo);    for (age=bage; age<=fage; age ++){ 
   }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   ungetc(c,ficpar);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      /* If stepm=6 months */
 while((c=getc(ficpar))=='#' && c!= EOF){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     ungetc(c,ficpar);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     fgets(line, MAXLINE, ficpar);      
     puts(line);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     fputs(line,ficparo);      
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   ungetc(c,ficpar);      
        printf("%d|",(int)age);fflush(stdout);
          fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   covar=matrix(0,NCOVMAX,1,n);      
   cptcovn=0;      /* Computing expectancies */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   ncovmodel=2+cptcovn;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
   /* Read guess parameters */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficreseij,"%3.0f",age );
     puts(line);      for(i=1; i<=nlstate;i++){
     fputs(line,ficparo);        eip=0;
   }        for(j=1; j<=nlstate;j++){
   ungetc(c,ficpar);          eip +=eij[i][j][(int)age];
            fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
     for(i=1; i <=nlstate; i++)        fprintf(ficreseij,"%9.4f", eip );
     for(j=1; j <=nlstate+ndeath-1; j++){      }
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficreseij,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);      
       printf("%1d%1d",i,j);    }
       for(k=1; k<=ncovmodel;k++){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fscanf(ficpar," %lf",&param[i][j][k]);    printf("\n");
         printf(" %lf",param[i][j][k]);    fprintf(ficlog,"\n");
         fprintf(ficparo," %lf",param[i][j][k]);    
       }  }
       fscanf(ficpar,"\n");  
       printf("\n");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       fprintf(ficparo,"\n");  
     }  {
      /* Covariances of health expectancies eij and of total life expectancies according
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;     to initial status i, ei. .
     */
   p=param[1][1];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
      int nhstepma, nstepma; /* Decreasing with age */
   /* Reads comments: lines beginning with '#' */    double age, agelim, hf;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***p3matp, ***p3matm, ***varhe;
     ungetc(c,ficpar);    double **dnewm,**doldm;
     fgets(line, MAXLINE, ficpar);    double *xp, *xm;
     puts(line);    double **gp, **gm;
     fputs(line,ficparo);    double ***gradg, ***trgradg;
   }    int theta;
   ungetc(c,ficpar);  
     double eip, vip;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   for(i=1; i <=nlstate; i++){    xp=vector(1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    xm=vector(1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       printf("%1d%1d",i,j);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficparo,"%1d%1d",i1,j1);    
       for(k=1; k<=ncovmodel;k++){    pstamp(ficresstdeij);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         printf(" %le",delti3[i][j][k]);    fprintf(ficresstdeij,"# Age");
         fprintf(ficparo," %le",delti3[i][j][k]);    for(i=1; i<=nlstate;i++){
       }      for(j=1; j<=nlstate;j++)
       fscanf(ficpar,"\n");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       printf("\n");      fprintf(ficresstdeij," e%1d. ",i);
       fprintf(ficparo,"\n");    }
     }    fprintf(ficresstdeij,"\n");
   }  
   delti=delti3[1][1];    pstamp(ficrescveij);
      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficrescveij,"# Age");
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);      for(j=1; j<=nlstate;j++){
     fgets(line, MAXLINE, ficpar);        cptj= (j-1)*nlstate+i;
     puts(line);        for(i2=1; i2<=nlstate;i2++)
     fputs(line,ficparo);          for(j2=1; j2<=nlstate;j2++){
   }            cptj2= (j2-1)*nlstate+i2;
   ungetc(c,ficpar);            if(cptj2 <= cptj)
                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   matcov=matrix(1,npar,1,npar);          }
   for(i=1; i <=npar; i++){      }
     fscanf(ficpar,"%s",&str);    fprintf(ficrescveij,"\n");
     printf("%s",str);    
     fprintf(ficparo,"%s",str);    if(estepm < stepm){
     for(j=1; j <=i; j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       fscanf(ficpar," %le",&matcov[i][j]);    }
       printf(" %.5le",matcov[i][j]);    else  hstepm=estepm;   
       fprintf(ficparo," %.5le",matcov[i][j]);    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
     fscanf(ficpar,"\n");     * if stepm=24 months pijx are given only every 2 years and by summing them
     printf("\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
     fprintf(ficparo,"\n");     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we 
   for(i=1; i <=npar; i++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     for(j=i+1;j<=npar;j++)     * to compare the new estimate of Life expectancy with the same linear 
       matcov[i][j]=matcov[j][i];     * hypothesis. A more precise result, taking into account a more precise
         * curvature will be obtained if estepm is as small as stepm. */
   printf("\n");  
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     /*-------- Rewriting paramater file ----------*/       nhstepm is the number of hstepm from age to agelim 
      strcpy(rfileres,"r");    /* "Rparameterfile */       nstepm is the number of stepm from age to agelin. 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/       Look at hpijx to understand the reason of that which relies in memory size
      strcat(rfileres,".");    /* */       and note for a fixed period like estepm months */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     if((ficres =fopen(rfileres,"w"))==NULL) {       survival function given by stepm (the optimization length). Unfortunately it
       printf("Problem writing new parameter file: %s\n", fileres);goto end;       means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(ficres,"#%s\n",version);       results. So we changed our mind and took the option of the best precision.
        */
     /*-------- data file ----------*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;    /* If stepm=6 months */
     }    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     n= lastobs;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     severity = vector(1,maxwav);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     outcome=imatrix(1,maxwav+1,1,n);    /* if (stepm >= YEARM) hstepm=1;*/
     num=ivector(1,n);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     moisnais=vector(1,n);    
     annais=vector(1,n);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     moisdc=vector(1,n);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     andc=vector(1,n);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     agedc=vector(1,n);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     cod=ivector(1,n);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     weight=vector(1,n);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);    for (age=bage; age<=fage; age ++){ 
     anint=matrix(1,maxwav,1,n);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     s=imatrix(1,maxwav+1,1,n);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     adl=imatrix(1,maxwav+1,1,n);          /* if (stepm >= YEARM) hstepm=1;*/
     tab=ivector(1,NCOVMAX);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     ncodemax=ivector(1,8);  
       /* If stepm=6 months */
     i=1;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     while (fgets(line, MAXLINE, fic) != NULL)    {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       if ((i >= firstobs) && (i <=lastobs)) {      
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      /* Computing  Variances of health expectancies */
           strcpy(line,stra);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         decrease memory allocation */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ 
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    
         for(j=1; j<= nlstate; j++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1; i<=nlstate; i++){
         for (j=ncovcol;j>=1;j--){            for(h=0; h<=nhstepm-1; h++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         num[i]=atol(stra);            }
                  }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       
         for(ij=1; ij<= nlstate*nlstate; ij++)
         i=i+1;          for(h=0; h<=nhstepm-1; h++){
       }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     }          }
     /* printf("ii=%d", ij);      }/* End theta */
        scanf("%d",i);*/      
   imx=i-1; /* Number of individuals */      
       for(h=0; h<=nhstepm-1; h++)
   /* for (i=1; i<=imx; i++){        for(j=1; j<=nlstate*nlstate;j++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          for(theta=1; theta <=npar; theta++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            trgradg[h][j][theta]=gradg[h][theta][j];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      
     }*/  
         for(ij=1;ij<=nlstate*nlstate;ij++)
   /* for (i=1; i<=imx; i++){        for(ji=1;ji<=nlstate*nlstate;ji++)
      if (s[4][i]==9)  s[4][i]=-1;          varhe[ij][ji][(int)age] =0.;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}  
   */       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /* Calculation of the number of parameter from char model*/       for(h=0;h<=nhstepm-1;h++){
   Tvar=ivector(1,15);        for(k=0;k<=nhstepm-1;k++){
   Tprod=ivector(1,15);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   Tvaraff=ivector(1,15);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   Tvard=imatrix(1,15,1,2);          for(ij=1;ij<=nlstate*nlstate;ij++)
   Tage=ivector(1,15);                  for(ji=1;ji<=nlstate*nlstate;ji++)
                  varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   if (strlen(model) >1){        }
     j=0, j1=0, k1=1, k2=1;      }
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');      /* Computing expectancies */
     cptcovn=j+1;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     cptcovprod=j1;      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++)
     strcpy(modelsav,model);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       printf("Error. Non available option model=%s ",model);            
       goto end;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
              }
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+');      fprintf(ficresstdeij,"%3.0f",age );
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      for(i=1; i<=nlstate;i++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        eip=0.;
       /*scanf("%d",i);*/        vip=0.;
       if (strchr(strb,'*')) {        for(j=1; j<=nlstate;j++){
         cutv(strd,strc,strb,'*');          eip += eij[i][j][(int)age];
         if (strcmp(strc,"age")==0) {          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           cptcovprod--;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           cutv(strb,stre,strd,'V');          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           Tvar[i]=atoi(stre);        }
           cptcovage++;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
             Tage[cptcovage]=i;      }
             /*printf("stre=%s ", stre);*/      fprintf(ficresstdeij,"\n");
         }  
         else if (strcmp(strd,"age")==0) {      fprintf(ficrescveij,"%3.0f",age );
           cptcovprod--;      for(i=1; i<=nlstate;i++)
           cutv(strb,stre,strc,'V');        for(j=1; j<=nlstate;j++){
           Tvar[i]=atoi(stre);          cptj= (j-1)*nlstate+i;
           cptcovage++;          for(i2=1; i2<=nlstate;i2++)
           Tage[cptcovage]=i;            for(j2=1; j2<=nlstate;j2++){
         }              cptj2= (j2-1)*nlstate+i2;
         else {              if(cptj2 <= cptj)
           cutv(strb,stre,strc,'V');                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
           Tvar[i]=ncovcol+k1;            }
           cutv(strb,strc,strd,'V');        }
           Tprod[k1]=i;      fprintf(ficrescveij,"\n");
           Tvard[k1][1]=atoi(strc);     
           Tvard[k1][2]=atoi(stre);    }
           Tvar[cptcovn+k2]=Tvard[k1][1];    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           for (k=1; k<=lastobs;k++)    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           k1++;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           k2=k2+2;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    printf("\n");
       }    fprintf(ficlog,"\n");
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    free_vector(xm,1,npar);
        /*  scanf("%d",i);*/    free_vector(xp,1,npar);
       cutv(strd,strc,strb,'V');    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       Tvar[i]=atoi(strc);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       strcpy(modelsav,stra);    }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/  /************ Variance ******************/
     }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 }  {
      /* Variance of health expectancies */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   printf("cptcovprod=%d ", cptcovprod);    /* double **newm;*/
   scanf("%d ",i);*/    double **dnewm,**doldm;
     fclose(fic);    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     /*  if(mle==1){*/    int k, cptcode;
     if (weightopt != 1) { /* Maximisation without weights*/    double *xp;
       for(i=1;i<=n;i++) weight[i]=1.0;    double **gp, **gm;  /* for var eij */
     }    double ***gradg, ***trgradg; /*for var eij */
     /*-calculation of age at interview from date of interview and age at death -*/    double **gradgp, **trgradgp; /* for var p point j */
     agev=matrix(1,maxwav,1,imx);    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     for (i=1; i<=imx; i++) {    double ***p3mat;
       for(m=2; (m<= maxwav); m++) {    double age,agelim, hf;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    double ***mobaverage;
          anint[m][i]=9999;    int theta;
          s[m][i]=-1;    char digit[4];
        }    char digitp[25];
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }    char fileresprobmorprev[FILENAMELENGTH];
     }  
     if(popbased==1){
     for (i=1; i<=imx; i++)  {      if(mobilav!=0)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        strcpy(digitp,"-populbased-mobilav-");
       for(m=1; (m<= maxwav); m++){      else strcpy(digitp,"-populbased-nomobil-");
         if(s[m][i] >0){    }
           if (s[m][i] >= nlstate+1) {    else 
             if(agedc[i]>0)      strcpy(digitp,"-stablbased-");
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];    if (mobilav!=0) {
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            else {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
               if (andc[i]!=9999){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               agev[m][i]=-1;      }
               }    }
             }  
           }    strcpy(fileresprobmorprev,"prmorprev"); 
           else if(s[m][i] !=9){ /* Should no more exist */    sprintf(digit,"%-d",ij);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
             if(mint[m][i]==99 || anint[m][i]==9999)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
               agev[m][i]=1;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             else if(agev[m][i] <agemin){    strcat(fileresprobmorprev,fileres);
               agemin=agev[m][i];    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
             }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             else if(agev[m][i] >agemax){    }
               agemax=agev[m][i];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   
             }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             /*agev[m][i]=anint[m][i]-annais[i];*/    pstamp(ficresprobmorprev);
             /*   agev[m][i] = age[i]+2*m;*/    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           else { /* =9 */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             agev[m][i]=1;      fprintf(ficresprobmorprev," p.%-d SE",j);
             s[m][i]=-1;      for(i=1; i<=nlstate;i++)
           }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         }    }  
         else /*= 0 Unknown */    fprintf(ficresprobmorprev,"\n");
           agev[m][i]=1;    fprintf(ficgp,"\n# Routine varevsij");
       }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
        fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     for (i=1; i<=imx; i++)  {  /*   } */
       for(m=1; (m<= maxwav); m++){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         if (s[m][i] > (nlstate+ndeath)) {    pstamp(ficresvij);
           printf("Error: Wrong value in nlstate or ndeath\n");      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           goto end;    if(popbased==1)
         }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
       }    else
     }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
     free_vector(severity,1,maxwav);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     free_imatrix(outcome,1,maxwav+1,1,n);    fprintf(ficresvij,"\n");
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);    xp=vector(1,npar);
     /* free_matrix(mint,1,maxwav,1,n);    dnewm=matrix(1,nlstate,1,npar);
        free_matrix(anint,1,maxwav,1,n);*/    doldm=matrix(1,nlstate,1,nlstate);
     free_vector(moisdc,1,n);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     free_vector(andc,1,n);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
        gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     wav=ivector(1,imx);    gpp=vector(nlstate+1,nlstate+ndeath);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    gmp=vector(nlstate+1,nlstate+ndeath);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        
     /* Concatenates waves */    if(estepm < stepm){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
       Tcode=ivector(1,100);    /* For example we decided to compute the life expectancy with the smallest unit */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       ncodemax[1]=1;       nhstepm is the number of hstepm from age to agelim 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);       nstepm is the number of stepm from age to agelin. 
             Look at function hpijx to understand why (it is linked to memory size questions) */
    codtab=imatrix(1,100,1,10);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    h=0;       survival function given by stepm (the optimization length). Unfortunately it
    m=pow(2,cptcoveff);       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    for(k=1;k<=cptcoveff; k++){       results. So we changed our mind and took the option of the best precision.
      for(i=1; i <=(m/pow(2,k));i++){    */
        for(j=1; j <= ncodemax[k]; j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    agelim = AGESUP;
            h++;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      }      gp=matrix(0,nhstepm,1,nlstate);
    }      gm=matrix(0,nhstepm,1,nlstate);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){      for(theta=1; theta <=npar; theta++){
       for(k=1; k <=cptcovn; k++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       printf("\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       scanf("%d",i);*/  
            if (popbased==1) {
    /* Calculates basic frequencies. Computes observed prevalence at single age          if(mobilav ==0){
        and prints on file fileres'p'. */            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
                for(i=1; i<=nlstate;i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              prlim[i][i]=mobaverage[(int)age][i][ij];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(j=1; j<= nlstate; j++){
                for(h=0; h<=nhstepm; h++){
     /* For Powell, parameters are in a vector p[] starting at p[1]            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          }
         }
     if(mle==1){        /* This for computing probability of death (h=1 means
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);           computed over hstepm matrices product = hstepm*stepm months) 
     }           as a weighted average of prlim.
            */
     /*--------- results files --------------*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
    jk=1;        /* end probability of death */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
    for(i=1,jk=1; i <=nlstate; i++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      for(k=1; k <=(nlstate+ndeath); k++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        if (k != i)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          {   
            printf("%d%d ",i,k);        if (popbased==1) {
            fprintf(ficres,"%1d%1d ",i,k);          if(mobilav ==0){
            for(j=1; j <=ncovmodel; j++){            for(i=1; i<=nlstate;i++)
              printf("%f ",p[jk]);              prlim[i][i]=probs[(int)age][i][ij];
              fprintf(ficres,"%f ",p[jk]);          }else{ /* mobilav */ 
              jk++;            for(i=1; i<=nlstate;i++)
            }              prlim[i][i]=mobaverage[(int)age][i][ij];
            printf("\n");          }
            fprintf(ficres,"\n");        }
          }  
      }        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
    }          for(h=0; h<=nhstepm; h++){
  if(mle==1){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     /* Computing hessian and covariance matrix */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     ftolhess=ftol; /* Usually correct */          }
     hesscov(matcov, p, npar, delti, ftolhess, func);        }
  }        /* This for computing probability of death (h=1 means
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");           computed over hstepm matrices product = hstepm*stepm months) 
     printf("# Scales (for hessian or gradient estimation)\n");           as a weighted average of prlim.
      for(i=1,jk=1; i <=nlstate; i++){        */
       for(j=1; j <=nlstate+ndeath; j++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         if (j!=i) {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           fprintf(ficres,"%1d%1d",i,j);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           printf("%1d%1d",i,j);        }    
           for(k=1; k<=ncovmodel;k++){        /* end probability of death */
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);        for(j=1; j<= nlstate; j++) /* vareij */
             jk++;          for(h=0; h<=nhstepm; h++){
           }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           printf("\n");          }
           fprintf(ficres,"\n");  
         }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
      }        }
      
     k=1;      } /* End theta */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;      for(h=0; h<=nhstepm; h++) /* veij */
       i1=(i-1)/(ncovmodel*nlstate)+1;        for(j=1; j<=nlstate;j++)
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          for(theta=1; theta <=npar; theta++)
       printf("%s%d%d",alph[k],i1,tab[i]);*/            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       for(j=1; j<=i;j++){        for(theta=1; theta <=npar; theta++)
         fprintf(ficres," %.5e",matcov[i][j]);          trgradgp[j][theta]=gradgp[theta][j];
         printf(" %.5e",matcov[i][j]);    
       }  
       fprintf(ficres,"\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       printf("\n");      for(i=1;i<=nlstate;i++)
       k++;        for(j=1;j<=nlstate;j++)
     }          vareij[i][j][(int)age] =0.;
      
     while((c=getc(ficpar))=='#' && c!= EOF){      for(h=0;h<=nhstepm;h++){
       ungetc(c,ficpar);        for(k=0;k<=nhstepm;k++){
       fgets(line, MAXLINE, ficpar);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       puts(line);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       fputs(line,ficparo);          for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
     ungetc(c,ficpar);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);      }
        
     if (fage <= 2) {      /* pptj */
       bage = ageminpar;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       fage = agemaxpar;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
            for(i=nlstate+1;i<=nlstate+ndeath;i++)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          varppt[j][i]=doldmp[j][i];
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);      /* end ppptj */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);      /*  x centered again */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     while((c=getc(ficpar))=='#' && c!= EOF){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);      if (popbased==1) {
     puts(line);        if(mobilav ==0){
     fputs(line,ficparo);          for(i=1; i<=nlstate;i++)
   }            prlim[i][i]=probs[(int)age][i][ij];
   ungetc(c,ficpar);        }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      }
                     
   while((c=getc(ficpar))=='#' && c!= EOF){      /* This for computing probability of death (h=1 means
     ungetc(c,ficpar);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     fgets(line, MAXLINE, ficpar);         as a weighted average of prlim.
     puts(line);      */
     fputs(line,ficparo);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   ungetc(c,ficpar);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
       /* end probability of death */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   fprintf(ficparo,"pop_based=%d\n",popbased);          for(i=1; i<=nlstate;i++){
   fprintf(ficres,"pop_based=%d\n",popbased);            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
   while((c=getc(ficpar))=='#' && c!= EOF){      } 
     ungetc(c,ficpar);      fprintf(ficresprobmorprev,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficresvij,"%.0f ",age );
     fputs(line,ficparo);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   ungetc(c,ficpar);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      fprintf(ficresvij,"\n");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      free_matrix(gp,0,nhstepm,1,nlstate);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 while((c=getc(ficpar))=='#' && c!= EOF){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ungetc(c,ficpar);    } /* End age */
     fgets(line, MAXLINE, ficpar);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     puts(line);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   ungetc(c,ficpar);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 /*------------ gnuplot -------------*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 /*------------ free_vector  -------------*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
  chdir(path);  */
    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
  free_ivector(wav,1,imx);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      free_vector(xp,1,npar);
  free_ivector(num,1,n);    free_matrix(doldm,1,nlstate,1,nlstate);
  free_vector(agedc,1,n);    free_matrix(dnewm,1,nlstate,1,npar);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  fclose(ficparo);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
  fclose(ficres);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*--------- index.htm --------*/    fclose(ficresprobmorprev);
     fflush(ficgp);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);    fflush(fichtm); 
   }  /* end varevsij */
    
   /*--------------- Prevalence limit --------------*/  /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   strcpy(filerespl,"pl");  {
   strcat(filerespl,fileres);    /* Variance of prevalence limit */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    double **newm;
   }    double **dnewm,**doldm;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    int i, j, nhstepm, hstepm;
   fprintf(ficrespl,"#Prevalence limit\n");    int k, cptcode;
   fprintf(ficrespl,"#Age ");    double *xp;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    double *gp, *gm;
   fprintf(ficrespl,"\n");    double **gradg, **trgradg;
      double age,agelim;
   prlim=matrix(1,nlstate,1,nlstate);    int theta;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    pstamp(ficresvpl);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresvpl,"# Age");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for(i=1; i<=nlstate;i++)
   k=0;        fprintf(ficresvpl," %1d-%1d",i,i);
   agebase=ageminpar;    fprintf(ficresvpl,"\n");
   agelim=agemaxpar;  
   ftolpl=1.e-10;    xp=vector(1,npar);
   i1=cptcoveff;    dnewm=matrix(1,nlstate,1,npar);
   if (cptcovn < 1){i1=1;}    doldm=matrix(1,nlstate,1,nlstate);
     
   for(cptcov=1;cptcov<=i1;cptcov++){    hstepm=1*YEARM; /* Every year of age */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         k=k+1;    agelim = AGESUP;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficrespl,"\n#******");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         for(j=1;j<=cptcoveff;j++)      if (stepm >= YEARM) hstepm=1;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         fprintf(ficrespl,"******\n");      gradg=matrix(1,npar,1,nlstate);
              gp=vector(1,nlstate);
         for (age=agebase; age<=agelim; age++){      gm=vector(1,nlstate);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );      for(theta=1; theta <=npar; theta++){
           for(i=1; i<=nlstate;i++)        for(i=1; i<=npar; i++){ /* Computes gradient */
           fprintf(ficrespl," %.5f", prlim[i][i]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           fprintf(ficrespl,"\n");        }
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
     }          gp[i] = prlim[i][i];
   fclose(ficrespl);      
         for(i=1; i<=npar; i++) /* Computes gradient */
   /*------------- h Pij x at various ages ------------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        for(i=1;i<=nlstate;i++)
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          gm[i] = prlim[i][i];
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }        for(i=1;i<=nlstate;i++)
   printf("Computing pij: result on file '%s' \n", filerespij);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        } /* End theta */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/      trgradg =matrix(1,nlstate,1,npar);
   
   agelim=AGESUP;      for(j=1; j<=nlstate;j++)
   hstepm=stepsize*YEARM; /* Every year of age */        for(theta=1; theta <=npar; theta++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          trgradg[j][theta]=gradg[theta][j];
    
   k=0;      for(i=1;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){        varpl[i][(int)age] =0.;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       k=k+1;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         fprintf(ficrespij,"\n#****** ");      for(i=1;i<=nlstate;i++)
         for(j=1;j<=cptcoveff;j++)        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");      fprintf(ficresvpl,"%.0f ",age );
              for(i=1; i<=nlstate;i++)
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficresvpl,"\n");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      free_vector(gp,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_vector(gm,1,nlstate);
           oldm=oldms;savm=savms;      free_matrix(gradg,1,npar,1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        free_matrix(trgradg,1,nlstate,1,npar);
           fprintf(ficrespij,"# Age");    } /* End age */
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)    free_vector(xp,1,npar);
               fprintf(ficrespij," %1d-%1d",i,j);    free_matrix(doldm,1,nlstate,1,npar);
           fprintf(ficrespij,"\n");    free_matrix(dnewm,1,nlstate,1,nlstate);
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  }
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)  /************ Variance of one-step probabilities  ******************/
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
             fprintf(ficrespij,"\n");  {
           }    int i, j=0,  i1, k1, l1, t, tj;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k2, l2, j1,  z1;
           fprintf(ficrespij,"\n");    int k=0,l, cptcode;
         }    int first=1, first1;
     }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
     double *xp;
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    double *gp, *gm;
     double **gradg, **trgradg;
   fclose(ficrespij);    double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   /*---------- Forecasting ------------------*/    int theta;
   if((stepm == 1) && (strcmp(model,".")==0)){    char fileresprob[FILENAMELENGTH];
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    char fileresprobcov[FILENAMELENGTH];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    char fileresprobcor[FILENAMELENGTH];
     free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    double ***varpij;
     free_vector(weight,1,n);}  
   else{    strcpy(fileresprob,"prob"); 
     erreur=108;    strcat(fileresprob,fileres);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprob);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   /*---------- Health expectancies and variances ------------*/    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
   strcpy(filerest,"t");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   strcat(filerest,fileres);      printf("Problem with resultfile: %s\n", fileresprobcov);
   if((ficrest=fopen(filerest,"w"))==NULL) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    }
   }    strcpy(fileresprobcor,"probcor"); 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
   strcpy(filerese,"e");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   strcat(filerese,fileres);    }
   if((ficreseij=fopen(filerese,"w"))==NULL) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  strcpy(fileresv,"v");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   strcat(fileresv,fileres);    pstamp(ficresprob);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    fprintf(ficresprob,"# Age");
   }    pstamp(ficresprobcov);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
   k=0;    pstamp(ficresprobcor);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresprobcor,"# Age");
       k=k+1;  
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    for(i=1; i<=nlstate;i++)
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficrest,"******\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficreseij,"\n#****** ");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       for(j=1;j<=cptcoveff;j++)      }  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   /* fprintf(ficresprob,"\n");
       fprintf(ficreseij,"******\n");    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
       fprintf(ficresvij,"\n#****** ");   */
       for(j=1;j<=cptcoveff;j++)   xp=vector(1,npar);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficresvij,"******\n");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       oldm=oldms;savm=savms;    first=1;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      fprintf(ficgp,"\n# Routine varprob");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       oldm=oldms;savm=savms;    fprintf(fichtm,"\n");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
        fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
      file %s<br>\n",optionfilehtmcov);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  and drawn. It helps understanding how is the covariance between two incidences.\
       fprintf(ficrest,"\n");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       epj=vector(1,nlstate+1);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       for(age=bage; age <=fage ;age++){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  standard deviations wide on each axis. <br>\
         if (popbased==1) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           for(i=1; i<=nlstate;i++)   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             prlim[i][i]=probs[(int)age][i][k];  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         }  
            cov[1]=1;
         fprintf(ficrest," %4.0f",age);    tj=cptcoveff;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    j1=0;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    for(t=1; t<=tj;t++){
           }      for(i1=1; i1<=ncodemax[t];i1++){ 
           epj[nlstate+1] +=epj[j];        j1++;
         }        if  (cptcovn>0) {
         for(i=1, vepp=0.;i <=nlstate;i++)          fprintf(ficresprob, "\n#********** Variable "); 
           for(j=1;j <=nlstate;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             vepp += vareij[i][j][(int)age];          fprintf(ficresprob, "**********\n#\n");
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));          fprintf(ficresprobcov, "\n#********** Variable "); 
         for(j=1;j <=nlstate;j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));          fprintf(ficresprobcov, "**********\n#\n");
         }          
         fprintf(ficrest,"\n");          fprintf(ficgp, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficgp, "**********\n#\n");
   }          
           
   fclose(ficreseij);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   fclose(ficresvij);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficrest);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   fclose(ficpar);          
   free_vector(epj,1,nlstate+1);          fprintf(ficresprobcor, "\n#********** Variable ");    
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*------- Variance limit prevalence------*/            fprintf(ficresprobcor, "**********\n#");    
         }
   strcpy(fileresvpl,"vpl");        
   strcat(fileresvpl,fileres);        for (age=bage; age<=fage; age ++){ 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          cov[2]=age;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          for (k=1; k<=cptcovn;k++) {
     exit(0);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   }          }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
   k=0;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for(cptcov=1;cptcov<=i1;cptcov++){          
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       k=k+1;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficresvpl,"\n#****** ");          gp=vector(1,(nlstate)*(nlstate+ndeath));
       for(j=1;j<=cptcoveff;j++)          gm=vector(1,(nlstate)*(nlstate+ndeath));
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       fprintf(ficresvpl,"******\n");          for(theta=1; theta <=npar; theta++){
                  for(i=1; i<=npar; i++)
       varpl=matrix(1,nlstate,(int) bage, (int) fage);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       oldm=oldms;savm=savms;            
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     }            
  }            k=0;
             for(i=1; i<= (nlstate); i++){
   fclose(ficresvpl);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   /*---------- End : free ----------------*/                gp[k]=pmmij[i][j];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              }
              }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for(i=1; i<=npar; i++)
                xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
        
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            k=0;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            for(i=1; i<=(nlstate); i++){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);              for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
   free_matrix(matcov,1,npar,1,npar);                gm[k]=pmmij[i][j];
   free_vector(delti,1,npar);              }
   free_matrix(agev,1,maxwav,1,imx);            }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   if(erreur >0)              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     printf("End of Imach with error or warning %d\n",erreur);          }
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
              for(theta=1; theta <=npar; theta++)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/              trgradg[j][theta]=gradg[theta][j];
   /*printf("Total time was %d uSec.\n", total_usecs);*/          
   /*------ End -----------*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
  end:          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 #ifdef windows          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /* chdir(pathcd);*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 #endif  
  /*system("wgnuplot graph.plt");*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
  /*system("../gp37mgw/wgnuplot graph.plt");*/          
  /*system("cd ../gp37mgw");*/          k=0;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          for(i=1; i<=(nlstate); i++){
  strcpy(plotcmd,GNUPLOTPROGRAM);            for(j=1; j<=(nlstate+ndeath);j++){
  strcat(plotcmd," ");              k=k+1;
  strcat(plotcmd,optionfilegnuplot);              mu[k][(int) age]=pmmij[i][j];
  system(plotcmd);            }
           }
 #ifdef windows          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   while (z[0] != 'q') {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     /* chdir(path); */              varpij[i][j][(int)age] = doldm[i][j];
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);          /*printf("\n%d ",(int)age);
     if (z[0] == 'c') system("./imach");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     else if (z[0] == 'e') system(optionfilehtm);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     else if (z[0] == 'g') system(plotcmd);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     else if (z[0] == 'q') exit(0);            }*/
   }  
 #endif          fprintf(ficresprob,"\n%d ",(int)age);
 }          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.129


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>