Diff for /imach/src/imach.c between versions 1.38 and 1.127

version 1.38, 2002/04/03 12:19:36 version 1.127, 2006/04/28 18:11:50
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.127  2006/04/28 18:11:50  brouard
      (Module): Yes the sum of survivors was wrong since
   This program computes Healthy Life Expectancies from    imach-114 because nhstepm was no more computed in the age
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    loop. Now we define nhstepma in the age loop.
   first survey ("cross") where individuals from different ages are    (Module): In order to speed up (in case of numerous covariates) we
   interviewed on their health status or degree of disability (in the    compute health expectancies (without variances) in a first step
   case of a health survey which is our main interest) -2- at least a    and then all the health expectancies with variances or standard
   second wave of interviews ("longitudinal") which measure each change    deviation (needs data from the Hessian matrices) which slows the
   (if any) in individual health status.  Health expectancies are    computation.
   computed from the time spent in each health state according to a    In the future we should be able to stop the program is only health
   model. More health states you consider, more time is necessary to reach the    expectancies and graph are needed without standard deviations.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.126  2006/04/28 17:23:28  brouard
   probabibility to be observed in state j at the second wave    (Module): Yes the sum of survivors was wrong since
   conditional to be observed in state i at the first wave. Therefore    imach-114 because nhstepm was no more computed in the age
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    loop. Now we define nhstepma in the age loop.
   'age' is age and 'sex' is a covariate. If you want to have a more    Version 0.98h
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.125  2006/04/04 15:20:31  lievre
   you to do it.  More covariates you add, slower the    Errors in calculation of health expectancies. Age was not initialized.
   convergence.    Forecasting file added.
   
   The advantage of this computer programme, compared to a simple    Revision 1.124  2006/03/22 17:13:53  lievre
   multinomial logistic model, is clear when the delay between waves is not    Parameters are printed with %lf instead of %f (more numbers after the comma).
   identical for each individual. Also, if a individual missed an    The log-likelihood is printed in the log file
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
   hPijx is the probability to be observed in state i at age x+h    name. <head> headers where missing.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Module): Weights can have a decimal point as for
   states. This elementary transition (by month or quarter trimester,    English (a comma might work with a correct LC_NUMERIC environment,
   semester or year) is model as a multinomial logistic.  The hPx    otherwise the weight is truncated).
   matrix is simply the matrix product of nh*stepm elementary matrices    Modification of warning when the covariates values are not 0 or
   and the contribution of each individual to the likelihood is simply    1.
   hPijx.    Version 0.98g
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.122  2006/03/20 09:45:41  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Weights can have a decimal point as for
      English (a comma might work with a correct LC_NUMERIC environment,
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    otherwise the weight is truncated).
            Institut national d'études démographiques, Paris.    Modification of warning when the covariates values are not 0 or
   This software have been partly granted by Euro-REVES, a concerted action    1.
   from the European Union.    Version 0.98g
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.121  2006/03/16 17:45:01  lievre
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Module): Comments concerning covariates added
   **********************************************************************/  
      * imach.c (Module): refinements in the computation of lli if
 #include <math.h>    status=-2 in order to have more reliable computation if stepm is
 #include <stdio.h>    not 1 month. Version 0.98f
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 #define MAXLINE 256    status=-2 in order to have more reliable computation if stepm is
 #define GNUPLOTPROGRAM "wgnuplot"    not 1 month. Version 0.98f
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.119  2006/03/15 17:42:26  brouard
 /*#define DEBUG*/    (Module): Bug if status = -2, the loglikelihood was
 #define windows    computed as likelihood omitting the logarithm. Version O.98e
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    table of variances if popbased=1 .
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 #define NINTERVMAX 8    (Module): Version 0.98d
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.117  2006/03/14 17:16:22  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): varevsij Comments added explaining the second
 #define MAXN 20000    table of variances if popbased=1 .
 #define YEARM 12. /* Number of months per year */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define AGESUP 130    (Module): Function pstamp added
 #define AGEBASE 40    (Module): Version 0.98d
   
     Revision 1.116  2006/03/06 10:29:27  brouard
 int erreur; /* Error number */    (Module): Variance-covariance wrong links and
 int nvar;    varian-covariance of ej. is needed (Saito).
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.115  2006/02/27 12:17:45  brouard
 int nlstate=2; /* Number of live states */    (Module): One freematrix added in mlikeli! 0.98c
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.114  2006/02/26 12:57:58  brouard
 int popbased=0;    (Module): Some improvements in processing parameter
     filename with strsep.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.113  2006/02/24 14:20:24  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Memory leaks checks with valgrind and:
 int mle, weightopt;    datafile was not closed, some imatrix were not freed and on matrix
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    allocation too.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.112  2006/01/30 09:55:26  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.111  2006/01/25 20:38:18  brouard
 FILE *ficgp,*ficresprob,*ficpop;    (Module): Lots of cleaning and bugs added (Gompertz)
 FILE *ficreseij;    (Module): Comments can be added in data file. Missing date values
   char filerese[FILENAMELENGTH];    can be a simple dot '.'.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.110  2006/01/25 00:51:50  brouard
  FILE  *ficresvpl;    (Module): Lots of cleaning and bugs added (Gompertz)
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.109  2006/01/24 19:37:15  brouard
 #define NR_END 1    (Module): Comments (lines starting with a #) are allowed in data.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 #define NRANSI    To be fixed
 #define ITMAX 200  
     Revision 1.107  2006/01/19 16:20:37  brouard
 #define TOL 2.0e-4    Test existence of gnuplot in imach path
   
 #define CGOLD 0.3819660    Revision 1.106  2006/01/19 13:24:36  brouard
 #define ZEPS 1.0e-10    Some cleaning and links added in html output
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.105  2006/01/05 20:23:19  lievre
 #define GOLD 1.618034    *** empty log message ***
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 static double maxarg1,maxarg2;    (Module): If the status is missing at the last wave but we know
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    that the person is alive, then we can code his/her status as -2
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (instead of missing=-1 in earlier versions) and his/her
      contributions to the likelihood is 1 - Prob of dying from last
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define rint(a) floor(a+0.5)    the healthy state at last known wave). Version is 0.98
   
 static double sqrarg;    Revision 1.103  2005/09/30 15:54:49  lievre
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): sump fixed, loop imx fixed, and simplifications.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.102  2004/09/15 17:31:30  brouard
 int imx;    Add the possibility to read data file including tab characters.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.99  2004/06/05 08:57:40  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    *** empty log message ***
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 double *weight;    directly from the data i.e. without the need of knowing the health
 int **s; /* Status */    state at each age, but using a Gompertz model: log u =a + b*age .
 double *agedc, **covar, idx;    This is the basic analysis of mortality and should be done before any
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    from other sources like vital statistic data.
 double ftolhess; /* Tolerance for computing hessian */  
     The same imach parameter file can be used but the option for mle should be -3.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Agnès, who wrote this part of the code, tried to keep most of the
 {    former routines in order to include the new code within the former code.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Current limitations:
 #ifdef windows    A) Even if you enter covariates, i.e. with the
    s = strrchr( path, '\\' );           /* find last / */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #else    B) There is no computation of Life Expectancy nor Life Table.
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.97  2004/02/20 13:25:42  lievre
    if ( s == NULL ) {                   /* no directory, so use current */    Version 0.96d. Population forecasting command line is (temporarily)
 #if     defined(__bsd__)                /* get current working directory */    suppressed.
       extern char       *getwd( );  
     Revision 1.96  2003/07/15 15:38:55  brouard
       if ( getwd( dirc ) == NULL ) {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #else    rewritten within the same printf. Workaround: many printfs.
       extern char       *getcwd( );  
     Revision 1.95  2003/07/08 07:54:34  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    * imach.c (Repository):
 #endif    (Repository): Using imachwizard code to output a more meaningful covariance
          return( GLOCK_ERROR_GETCWD );    matrix (cov(a12,c31) instead of numbers.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.94  2003/06/27 13:00:02  brouard
    } else {                             /* strip direcotry from path */    Just cleaning
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.93  2003/06/25 16:33:55  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): On windows (cygwin) function asctime_r doesn't
       strcpy( name, s );                /* save file name */    exist so I changed back to asctime which exists.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Version 0.96b
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.92  2003/06/25 16:30:45  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): On windows (cygwin) function asctime_r doesn't
 #ifdef windows    exist so I changed back to asctime which exists.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.91  2003/06/25 15:30:29  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    * imach.c (Repository): Duplicated warning errors corrected.
 #endif    (Repository): Elapsed time after each iteration is now output. It
    s = strrchr( name, '.' );            /* find last / */    helps to forecast when convergence will be reached. Elapsed time
    s++;    is stamped in powell.  We created a new html file for the graphs
    strcpy(ext,s);                       /* save extension */    concerning matrix of covariance. It has extension -cov.htm.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.90  2003/06/24 12:34:15  brouard
    strncpy( finame, name, l1-l2);    (Module): Some bugs corrected for windows. Also, when
    finame[l1-l2]= 0;    mle=-1 a template is output in file "or"mypar.txt with the design
    return( 0 );                         /* we're done */    of the covariance matrix to be input.
 }  
     Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 /******************************************/    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 void replace(char *s, char*t)  
 {    Revision 1.88  2003/06/23 17:54:56  brouard
   int i;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   int lg=20;  
   i=0;    Revision 1.87  2003/06/18 12:26:01  brouard
   lg=strlen(t);    Version 0.96
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.86  2003/06/17 20:04:08  brouard
     if (t[i]== '\\') s[i]='/';    (Module): Change position of html and gnuplot routines and added
   }    routine fileappend.
 }  
     Revision 1.85  2003/06/17 13:12:43  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository): Check when date of death was earlier that
 {    current date of interview. It may happen when the death was just
   int i,j=0;    prior to the death. In this case, dh was negative and likelihood
   int lg=20;    was wrong (infinity). We still send an "Error" but patch by
   i=0;    assuming that the date of death was just one stepm after the
   lg=strlen(s);    interview.
   for(i=0; i<= lg; i++) {    (Repository): Because some people have very long ID (first column)
   if  (s[i] == occ ) j++;    we changed int to long in num[] and we added a new lvector for
   }    memory allocation. But we also truncated to 8 characters (left
   return j;    truncation)
 }    (Repository): No more line truncation errors.
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.84  2003/06/13 21:44:43  brouard
 {    * imach.c (Repository): Replace "freqsummary" at a correct
   int i,lg,j,p=0;    place. It differs from routine "prevalence" which may be called
   i=0;    many times. Probs is memory consuming and must be used with
   for(j=0; j<=strlen(t)-1; j++) {    parcimony.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   }  
     Revision 1.83  2003/06/10 13:39:11  lievre
   lg=strlen(t);    *** empty log message ***
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.82  2003/06/05 15:57:20  brouard
   }    Add log in  imach.c and  fullversion number is now printed.
      u[p]='\0';  
   */
    for(j=0; j<= lg; j++) {  /*
     if (j>=(p+1))(v[j-p-1] = t[j]);     Interpolated Markov Chain
   }  
 }    Short summary of the programme:
     
 /********************** nrerror ********************/    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 void nrerror(char error_text[])    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   fprintf(stderr,"ERREUR ...\n");    case of a health survey which is our main interest) -2- at least a
   fprintf(stderr,"%s\n",error_text);    second wave of interviews ("longitudinal") which measure each change
   exit(1);    (if any) in individual health status.  Health expectancies are
 }    computed from the time spent in each health state according to a
 /*********************** vector *******************/    model. More health states you consider, more time is necessary to reach the
 double *vector(int nl, int nh)    Maximum Likelihood of the parameters involved in the model.  The
 {    simplest model is the multinomial logistic model where pij is the
   double *v;    probability to be observed in state j at the second wave
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    conditional to be observed in state i at the first wave. Therefore
   if (!v) nrerror("allocation failure in vector");    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   return v-nl+NR_END;    'age' is age and 'sex' is a covariate. If you want to have a more
 }    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 /************************ free vector ******************/    you to do it.  More covariates you add, slower the
 void free_vector(double*v, int nl, int nh)    convergence.
 {  
   free((FREE_ARG)(v+nl-NR_END));    The advantage of this computer programme, compared to a simple
 }    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /************************ivector *******************************/    intermediate interview, the information is lost, but taken into
 int *ivector(long nl,long nh)    account using an interpolation or extrapolation.  
 {  
   int *v;    hPijx is the probability to be observed in state i at age x+h
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    conditional to the observed state i at age x. The delay 'h' can be
   if (!v) nrerror("allocation failure in ivector");    split into an exact number (nh*stepm) of unobserved intermediate
   return v-nl+NR_END;    states. This elementary transition (by month, quarter,
 }    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 /******************free ivector **************************/    and the contribution of each individual to the likelihood is simply
 void free_ivector(int *v, long nl, long nh)    hPijx.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Also this programme outputs the covariance matrix of the parameters but also
 }    of the life expectancies. It also computes the period (stable) prevalence. 
     
 /******************* imatrix *******************************/    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int **imatrix(long nrl, long nrh, long ncl, long nch)             Institut national d'études démographiques, Paris.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    It is copyrighted identically to a GNU software product, ie programme and
   int **m;    software can be distributed freely for non commercial use. Latest version
      can be accessed at http://euroreves.ined.fr/imach .
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   if (!m) nrerror("allocation failure 1 in matrix()");    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m += NR_END;    
   m -= nrl;    **********************************************************************/
    /*
      main
   /* allocate rows and set pointers to them */    read parameterfile
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    read datafile
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    concatwav
   m[nrl] += NR_END;    freqsummary
   m[nrl] -= ncl;    if (mle >= 1)
        mlikeli
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    print results files
      if mle==1 
   /* return pointer to array of pointers to rows */       computes hessian
   return m;    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
 /****************** free_imatrix *************************/    open html file
 void free_imatrix(m,nrl,nrh,ncl,nch)    period (stable) prevalence
       int **m;     for age prevalim()
       long nch,ncl,nrh,nrl;    h Pij x
      /* free an int matrix allocated by imatrix() */    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    health expectancies
   free((FREE_ARG) (m+nrl-NR_END));    Variance-covariance of DFLE
 }    prevalence()
      movingaverage()
 /******************* matrix *******************************/    varevsij() 
 double **matrix(long nrl, long nrh, long ncl, long nch)    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Variance of period (stable) prevalence
   double **m;   end
   */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  
   m -= nrl;   
   #include <math.h>
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <stdio.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <stdlib.h>
   m[nrl] += NR_END;  #include <string.h>
   m[nrl] -= ncl;  #include <unistd.h>
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <limits.h>
   return m;  #include <sys/types.h>
 }  #include <sys/stat.h>
   #include <errno.h>
 /*************************free matrix ************************/  extern int errno;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  /* #include <sys/time.h> */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <time.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include "timeval.h"
 }  
   /* #include <libintl.h> */
 /******************* ma3x *******************************/  /* #define _(String) gettext (String) */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #define MAXLINE 256
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define FILENAMELENGTH 132
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m -= nrl;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define MAXN 20000
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define YEARM 12. /* Number of months per year */
   m[nrl][ncl] += NR_END;  #define AGESUP 130
   m[nrl][ncl] -= nll;  #define AGEBASE 40
   for (j=ncl+1; j<=nch; j++)  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
     m[nrl][j]=m[nrl][j-1]+nlay;  #ifdef UNIX
    #define DIRSEPARATOR '/'
   for (i=nrl+1; i<=nrh; i++) {  #define CHARSEPARATOR "/"
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define ODIRSEPARATOR '\\'
     for (j=ncl+1; j<=nch; j++)  #else
       m[i][j]=m[i][j-1]+nlay;  #define DIRSEPARATOR '\\'
   }  #define CHARSEPARATOR "\\"
   return m;  #define ODIRSEPARATOR '/'
 }  #endif
   
 /*************************free ma3x ************************/  /* $Id$ */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /* $State$ */
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char version[]="Imach version 0.98h, April 2006, INED-EUROREVES-Institut de longevite ";
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fullversion[]="$Revision$ $Date$"; 
   free((FREE_ARG)(m+nrl-NR_END));  char strstart[80];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 /***************** f1dim *************************/  int nvar;
 extern int ncom;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 extern double *pcom,*xicom;  int npar=NPARMAX;
 extern double (*nrfunc)(double []);  int nlstate=2; /* Number of live states */
    int ndeath=1; /* Number of dead states */
 double f1dim(double x)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   int j;  
   double f;  int *wav; /* Number of waves for this individuual 0 is possible */
   double *xt;  int maxwav; /* Maxim number of waves */
    int jmin, jmax; /* min, max spacing between 2 waves */
   xt=vector(1,ncom);  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int gipmx, gsw; /* Global variables on the number of contributions 
   f=(*nrfunc)(xt);                     to the likelihood and the sum of weights (done by funcone)*/
   free_vector(xt,1,ncom);  int mle, weightopt;
   return f;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /*****************brent *************************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double jmean; /* Mean space between 2 waves */
 {  double **oldm, **newm, **savm; /* Working pointers to matrices */
   int iter;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double a,b,d,etemp;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   double fu,fv,fw,fx;  FILE *ficlog, *ficrespow;
   double ftemp;  int globpr; /* Global variable for printing or not */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  double fretone; /* Only one call to likelihood */
   double e=0.0;  long ipmx; /* Number of contributions */
    double sw; /* Sum of weights */
   a=(ax < cx ? ax : cx);  char filerespow[FILENAMELENGTH];
   b=(ax > cx ? ax : cx);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   x=w=v=bx;  FILE *ficresilk;
   fw=fv=fx=(*f)(x);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   for (iter=1;iter<=ITMAX;iter++) {  FILE *ficresprobmorprev;
     xm=0.5*(a+b);  FILE *fichtm, *fichtmcov; /* Html File */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  FILE *ficreseij;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char filerese[FILENAMELENGTH];
     printf(".");fflush(stdout);  FILE *ficresstdeij;
 #ifdef DEBUG  char fileresstde[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  FILE *ficrescveij;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char filerescve[FILENAMELENGTH];
 #endif  FILE  *ficresvij;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char fileresv[FILENAMELENGTH];
       *xmin=x;  FILE  *ficresvpl;
       return fx;  char fileresvpl[FILENAMELENGTH];
     }  char title[MAXLINE];
     ftemp=fu;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     if (fabs(e) > tol1) {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       r=(x-w)*(fx-fv);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       q=(x-v)*(fx-fw);  char command[FILENAMELENGTH];
       p=(x-v)*q-(x-w)*r;  int  outcmd=0;
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       q=fabs(q);  
       etemp=e;  char filelog[FILENAMELENGTH]; /* Log file */
       e=d;  char filerest[FILENAMELENGTH];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char fileregp[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char popfile[FILENAMELENGTH];
       else {  
         d=p/q;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
           d=SIGN(tol1,xm-x);  struct timezone tzp;
       }  extern int gettimeofday();
     } else {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  long time_value;
     }  extern long time();
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char strcurr[80], strfor[80];
     fu=(*f)(u);  
     if (fu <= fx) {  char *endptr;
       if (u >= x) a=x; else b=x;  long lval;
       SHFT(v,w,x,u)  double dval;
         SHFT(fv,fw,fx,fu)  
         } else {  #define NR_END 1
           if (u < x) a=u; else b=u;  #define FREE_ARG char*
           if (fu <= fw || w == x) {  #define FTOL 1.0e-10
             v=w;  
             w=u;  #define NRANSI 
             fv=fw;  #define ITMAX 200 
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  #define TOL 2.0e-4 
             v=u;  
             fv=fu;  #define CGOLD 0.3819660 
           }  #define ZEPS 1.0e-10 
         }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   }  
   nrerror("Too many iterations in brent");  #define GOLD 1.618034 
   *xmin=x;  #define GLIMIT 100.0 
   return fx;  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
 /****************** mnbrak ***********************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    
             double (*func)(double))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   double ulim,u,r,q, dum;  
   double fu;  static double sqrarg;
    #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   *fa=(*func)(*ax);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   *fb=(*func)(*bx);  int agegomp= AGEGOMP;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  int imx; 
       SHFT(dum,*fb,*fa,dum)  int stepm=1;
       }  /* Stepm, step in month: minimum step interpolation*/
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  int estepm;
   while (*fb > *fc) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  int m,nb;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  long *num;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     if ((*bx-u)*(u-*cx) > 0.0) {  double **pmmij, ***probs;
       fu=(*func)(u);  double *ageexmed,*agecens;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double dateintmean=0;
       fu=(*func)(u);  
       if (fu < *fc) {  double *weight;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int **s; /* Status */
           SHFT(*fb,*fc,fu,(*func)(u))  double *agedc, **covar, idx;
           }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double *lsurv, *lpop, *tpop;
       u=ulim;  
       fu=(*func)(u);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     } else {  double ftolhess; /* Tolerance for computing hessian */
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  /**************** split *************************/
     }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
 /*************** linmin ************************/    int   l1, l2;                         /* length counters */
   
 int ncom;    l1 = strlen(path );                   /* length of path */
 double *pcom,*xicom;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 double (*nrfunc)(double []);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      if ( ss == NULL ) {                   /* no directory, so determine current directory */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      strcpy( name, path );               /* we got the fullname name because no directory */
 {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double brent(double ax, double bx, double cx,        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
                double (*f)(double), double tol, double *xmin);      /* get current working directory */
   double f1dim(double x);      /*    extern  char* getcwd ( char *buf , int len);*/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
               double *fc, double (*func)(double));        return( GLOCK_ERROR_GETCWD );
   int j;      }
   double xx,xmin,bx,ax;      /* got dirc from getcwd*/
   double fx,fb,fa;      printf(" DIRC = %s \n",dirc);
      } else {                              /* strip direcotry from path */
   ncom=n;      ss++;                               /* after this, the filename */
   pcom=vector(1,n);      l2 = strlen( ss );                  /* length of filename */
   xicom=vector(1,n);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   nrfunc=func;      strcpy( name, ss );         /* save file name */
   for (j=1;j<=n;j++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     pcom[j]=p[j];      dirc[l1-l2] = 0;                    /* add zero */
     xicom[j]=xi[j];      printf(" DIRC2 = %s \n",dirc);
   }    }
   ax=0.0;    /* We add a separator at the end of dirc if not exists */
   xx=1.0;    l1 = strlen( dirc );                  /* length of directory */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    if( dirc[l1-1] != DIRSEPARATOR ){
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      dirc[l1] =  DIRSEPARATOR;
 #ifdef DEBUG      dirc[l1+1] = 0; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      printf(" DIRC3 = %s \n",dirc);
 #endif    }
   for (j=1;j<=n;j++) {    ss = strrchr( name, '.' );            /* find last / */
     xi[j] *= xmin;    if (ss >0){
     p[j] += xi[j];      ss++;
   }      strcpy(ext,ss);                     /* save extension */
   free_vector(xicom,1,n);      l1= strlen( name);
   free_vector(pcom,1,n);      l2= strlen(ss)+1;
 }      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 /*************** powell ************************/    }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))    return( 0 );                          /* we're done */
 {  }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  
   int i,ibig,j;  /******************************************/
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  void replace_back_to_slash(char *s, char*t)
   double *xits;  {
   pt=vector(1,n);    int i;
   ptt=vector(1,n);    int lg=0;
   xit=vector(1,n);    i=0;
   xits=vector(1,n);    lg=strlen(t);
   *fret=(*func)(p);    for(i=0; i<= lg; i++) {
   for (j=1;j<=n;j++) pt[j]=p[j];      (s[i] = t[i]);
   for (*iter=1;;++(*iter)) {      if (t[i]== '\\') s[i]='/';
     fp=(*fret);    }
     ibig=0;  }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int nbocc(char *s, char occ)
     for (i=1;i<=n;i++)  {
       printf(" %d %.12f",i, p[i]);    int i,j=0;
     printf("\n");    int lg=20;
     for (i=1;i<=n;i++) {    i=0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    lg=strlen(s);
       fptt=(*fret);    for(i=0; i<= lg; i++) {
 #ifdef DEBUG    if  (s[i] == occ ) j++;
       printf("fret=%lf \n",*fret);    }
 #endif    return j;
       printf("%d",i);fflush(stdout);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  void cutv(char *u,char *v, char*t, char occ)
         del=fabs(fptt-(*fret));  {
         ibig=i;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 #ifdef DEBUG       gives u="abcedf" and v="ghi2j" */
       printf("%d %.12e",i,(*fret));    int i,lg,j,p=0;
       for (j=1;j<=n;j++) {    i=0;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    for(j=0; j<=strlen(t)-1; j++) {
         printf(" x(%d)=%.12e",j,xit[j]);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       }    }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);    lg=strlen(t);
       printf("\n");    for(j=0; j<p; j++) {
 #endif      (u[j] = t[j]);
     }    }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {       u[p]='\0';
 #ifdef DEBUG  
       int k[2],l;     for(j=0; j<= lg; j++) {
       k[0]=1;      if (j>=(p+1))(v[j-p-1] = t[j]);
       k[1]=-1;    }
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /********************** nrerror ********************/
       printf("\n");  
       for(l=0;l<=1;l++) {  void nrerror(char error_text[])
         for (j=1;j<=n;j++) {  {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    fprintf(stderr,"ERREUR ...\n");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    fprintf(stderr,"%s\n",error_text);
         }    exit(EXIT_FAILURE);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
       }  /*********************** vector *******************/
 #endif  double *vector(int nl, int nh)
   {
     double *v;
       free_vector(xit,1,n);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       free_vector(xits,1,n);    if (!v) nrerror("allocation failure in vector");
       free_vector(ptt,1,n);    return v-nl+NR_END;
       free_vector(pt,1,n);  }
       return;  
     }  /************************ free vector ******************/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  void free_vector(double*v, int nl, int nh)
     for (j=1;j<=n;j++) {  {
       ptt[j]=2.0*p[j]-pt[j];    free((FREE_ARG)(v+nl-NR_END));
       xit[j]=p[j]-pt[j];  }
       pt[j]=p[j];  
     }  /************************ivector *******************************/
     fptt=(*func)(ptt);  int *ivector(long nl,long nh)
     if (fptt < fp) {  {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    int *v;
       if (t < 0.0) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         linmin(p,xit,n,fret,func);    if (!v) nrerror("allocation failure in ivector");
         for (j=1;j<=n;j++) {    return v-nl+NR_END;
           xi[j][ibig]=xi[j][n];  }
           xi[j][n]=xit[j];  
         }  /******************free ivector **************************/
 #ifdef DEBUG  void free_ivector(int *v, long nl, long nh)
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         for(j=1;j<=n;j++)    free((FREE_ARG)(v+nl-NR_END));
           printf(" %.12e",xit[j]);  }
         printf("\n");  
 #endif  /************************lvector *******************************/
       }  long *lvector(long nl,long nh)
     }  {
   }    long *v;
 }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
 /**** Prevalence limit ****************/    return v-nl+NR_END;
   }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /******************free lvector **************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  void free_lvector(long *v, long nl, long nh)
      matrix by transitions matrix until convergence is reached */  {
     free((FREE_ARG)(v+nl-NR_END));
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /******************* imatrix *******************************/
   double **out, cov[NCOVMAX], **pmij();  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double **newm;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double agefin, delaymax=50 ; /* Max number of years to converge */  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    int **m; 
     for (j=1;j<=nlstate+ndeath;j++){    
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* allocate pointers to rows */ 
     }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
    cov[1]=1.;    m += NR_END; 
      m -= nrl; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    
     newm=savm;    /* allocate rows and set pointers to them */ 
     /* Covariates have to be included here again */    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
      cov[2]=agefin;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      m[nrl] += NR_END; 
       for (k=1; k<=cptcovn;k++) {    m[nrl] -= ncl; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       }    
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* return pointer to array of pointers to rows */ 
       for (k=1; k<=cptcovprod;k++)    return m; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  } 
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /****************** free_imatrix *************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  void free_imatrix(m,nrl,nrh,ncl,nch)
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        int **m;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
     savm=oldm;  { 
     oldm=newm;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     maxmax=0.;    free((FREE_ARG) (m+nrl-NR_END)); 
     for(j=1;j<=nlstate;j++){  } 
       min=1.;  
       max=0.;  /******************* matrix *******************************/
       for(i=1; i<=nlstate; i++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
         sumnew=0;  {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         prlim[i][j]= newm[i][j]/(1-sumnew);    double **m;
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
       maxmin=max-min;    m += NR_END;
       maxmax=FMAX(maxmax,maxmin);    m -= nrl;
     }  
     if(maxmax < ftolpl){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       return prlim;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /*************** transition probabilities ***************/    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )     */
 {  }
   double s1, s2;  
   /*double t34;*/  /*************************free matrix ************************/
   int i,j,j1, nc, ii, jj;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
     for(i=1; i<= nlstate; i++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(j=1; j<i;j++){    free((FREE_ARG)(m+nrl-NR_END));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /******************* ma3x *******************************/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       }  {
       ps[i][j]=s2;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double ***m;
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (!m) nrerror("allocation failure 1 in matrix()");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m += NR_END;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    m -= nrl;
       }  
       ps[i][j]=s2;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
     /*ps[3][2]=1;*/    m[nrl] -= ncl;
   
   for(i=1; i<= nlstate; i++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      s1=0;  
     for(j=1; j<i; j++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       s1+=exp(ps[i][j]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl][ncl] += NR_END;
       s1+=exp(ps[i][j]);    m[nrl][ncl] -= nll;
     ps[i][i]=1./(s1+1.);    for (j=ncl+1; j<=nch; j++) 
     for(j=1; j<i; j++)      m[nrl][j]=m[nrl][j-1]+nlay;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    
     for(j=i+1; j<=nlstate+ndeath; j++)    for (i=nrl+1; i<=nrh; i++) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      for (j=ncl+1; j<=nch; j++) 
   } /* end i */        m[i][j]=m[i][j-1]+nlay;
     }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    return m; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       ps[ii][jj]=0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       ps[ii][ii]=1;    */
     }  }
   }  
   /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      printf("%lf ",ps[ii][jj]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
    }    free((FREE_ARG)(m+nrl-NR_END));
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /*************** function subdirf ***********/
 /*  char *subdirf(char fileres[])
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    /* Caution optionfilefiname is hidden */
     return ps;    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
 /**************** Product of 2 matrices ******************/    return tmpout;
   }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  /*************** function subdirf2 ***********/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  char *subdirf2(char fileres[], char *preop)
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  {
   /* in, b, out are matrice of pointers which should have been initialized    
      before: only the contents of out is modified. The function returns    /* Caution optionfilefiname is hidden */
      a pointer to pointers identical to out */    strcpy(tmpout,optionfilefiname);
   long i, j, k;    strcat(tmpout,"/");
   for(i=nrl; i<= nrh; i++)    strcat(tmpout,preop);
     for(k=ncolol; k<=ncoloh; k++)    strcat(tmpout,fileres);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    return tmpout;
         out[i][k] +=in[i][j]*b[j][k];  }
   
   return out;  /*************** function subdirf3 ***********/
 }  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
     
 /************* Higher Matrix Product ***************/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    strcat(tmpout,preop2);
      duration (i.e. until    strcat(tmpout,fileres);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    return tmpout;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  }
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  /***************** f1dim *************************/
      included manually here.  extern int ncom; 
   extern double *pcom,*xicom;
      */  extern double (*nrfunc)(double []); 
    
   int i, j, d, h, k;  double f1dim(double x) 
   double **out, cov[NCOVMAX];  { 
   double **newm;    int j; 
     double f;
   /* Hstepm could be zero and should return the unit matrix */    double *xt; 
   for (i=1;i<=nlstate+ndeath;i++)   
     for (j=1;j<=nlstate+ndeath;j++){    xt=vector(1,ncom); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    f=(*nrfunc)(xt); 
     }    free_vector(xt,1,ncom); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return f; 
   for(h=1; h <=nhstepm; h++){  } 
     for(d=1; d <=hstepm; d++){  
       newm=savm;  /*****************brent *************************/
       /* Covariates have to be included here again */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       cov[1]=1.;  { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    int iter; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double a,b,d,etemp;
       for (k=1; k<=cptcovage;k++)    double fu,fv,fw,fx;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double ftemp;
       for (k=1; k<=cptcovprod;k++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double e=0.0; 
    
     a=(ax < cx ? ax : cx); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    b=(ax > cx ? ax : cx); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    x=w=v=bx; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    fw=fv=fx=(*f)(x); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (iter=1;iter<=ITMAX;iter++) { 
       savm=oldm;      xm=0.5*(a+b); 
       oldm=newm;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for(i=1; i<=nlstate+ndeath; i++)      printf(".");fflush(stdout);
       for(j=1;j<=nlstate+ndeath;j++) {      fprintf(ficlog,".");fflush(ficlog);
         po[i][j][h]=newm[i][j];  #ifdef DEBUG
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
          */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   } /* end h */  #endif
   return po;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 }        *xmin=x; 
         return fx; 
       } 
 /*************** log-likelihood *************/      ftemp=fu;
 double func( double *x)      if (fabs(e) > tol1) { 
 {        r=(x-w)*(fx-fv); 
   int i, ii, j, k, mi, d, kk;        q=(x-v)*(fx-fw); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        p=(x-v)*q-(x-w)*r; 
   double **out;        q=2.0*(q-r); 
   double sw; /* Sum of weights */        if (q > 0.0) p = -p; 
   double lli; /* Individual log likelihood */        q=fabs(q); 
   long ipmx;        etemp=e; 
   /*extern weight */        e=d; 
   /* We are differentiating ll according to initial status */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /*for(i=1;i<imx;i++)        else { 
     printf(" %d\n",s[4][i]);          d=p/q; 
   */          u=x+d; 
   cov[1]=1.;          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      } else { 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(mi=1; mi<= wav[i]-1; mi++){      } 
       for (ii=1;ii<=nlstate+ndeath;ii++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      fu=(*f)(u); 
       for(d=0; d<dh[mi][i]; d++){      if (fu <= fx) { 
         newm=savm;        if (u >= x) a=x; else b=x; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        SHFT(v,w,x,u) 
         for (kk=1; kk<=cptcovage;kk++) {          SHFT(fv,fw,fx,fu) 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          } else { 
         }            if (u < x) a=u; else b=u; 
                    if (fu <= fw || w == x) { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              v=w; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              w=u; 
         savm=oldm;              fv=fw; 
         oldm=newm;              fw=fu; 
                    } else if (fu <= fv || v == x || v == w) { 
                      v=u; 
       } /* end mult */              fv=fu; 
                  } 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    } 
       ipmx +=1;    nrerror("Too many iterations in brent"); 
       sw += weight[i];    *xmin=x; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    return fx; 
     } /* end of wave */  } 
   } /* end of individual */  
   /****************** mnbrak ***********************/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */              double (*func)(double)) 
   return -l;  { 
 }    double ulim,u,r,q, dum;
     double fu; 
    
 /*********** Maximum Likelihood Estimation ***************/    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    if (*fb > *fa) { 
 {      SHFT(dum,*ax,*bx,dum) 
   int i,j, iter;        SHFT(dum,*fb,*fa,dum) 
   double **xi,*delti;        } 
   double fret;    *cx=(*bx)+GOLD*(*bx-*ax); 
   xi=matrix(1,npar,1,npar);    *fc=(*func)(*cx); 
   for (i=1;i<=npar;i++)    while (*fb > *fc) { 
     for (j=1;j<=npar;j++)      r=(*bx-*ax)*(*fb-*fc); 
       xi[i][j]=(i==j ? 1.0 : 0.0);      q=(*bx-*cx)*(*fb-*fa); 
   printf("Powell\n");      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   powell(p,xi,npar,ftol,&iter,&fret,func);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      if ((*bx-u)*(u-*cx) > 0.0) { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 }        fu=(*func)(u); 
         if (fu < *fc) { 
 /**** Computes Hessian and covariance matrix ***/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            SHFT(*fb,*fc,fu,(*func)(u)) 
 {            } 
   double  **a,**y,*x,pd;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double **hess;        u=ulim; 
   int i, j,jk;        fu=(*func)(u); 
   int *indx;      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   double hessii(double p[], double delta, int theta, double delti[]);        fu=(*func)(u); 
   double hessij(double p[], double delti[], int i, int j);      } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      SHFT(*ax,*bx,*cx,u) 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        SHFT(*fa,*fb,*fc,fu) 
         } 
   hess=matrix(1,npar,1,npar);  } 
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*************** linmin ************************/
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  int ncom; 
     hess[i][i]=hessii(p,ftolhess,i,delti);  double *pcom,*xicom;
     /*printf(" %f ",p[i]);*/  double (*nrfunc)(double []); 
     /*printf(" %lf ",hess[i][i]);*/   
   }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
    { 
   for (i=1;i<=npar;i++) {    double brent(double ax, double bx, double cx, 
     for (j=1;j<=npar;j++)  {                 double (*f)(double), double tol, double *xmin); 
       if (j>i) {    double f1dim(double x); 
         printf(".%d%d",i,j);fflush(stdout);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         hess[i][j]=hessij(p,delti,i,j);                double *fc, double (*func)(double)); 
         hess[j][i]=hess[i][j];        int j; 
         /*printf(" %lf ",hess[i][j]);*/    double xx,xmin,bx,ax; 
       }    double fx,fb,fa;
     }   
   }    ncom=n; 
   printf("\n");    pcom=vector(1,n); 
     xicom=vector(1,n); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    nrfunc=func; 
      for (j=1;j<=n;j++) { 
   a=matrix(1,npar,1,npar);      pcom[j]=p[j]; 
   y=matrix(1,npar,1,npar);      xicom[j]=xi[j]; 
   x=vector(1,npar);    } 
   indx=ivector(1,npar);    ax=0.0; 
   for (i=1;i<=npar;i++)    xx=1.0; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   ludcmp(a,npar,indx,&pd);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (i=1;i<=npar;i++) x[i]=0;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     x[j]=1;  #endif
     lubksb(a,npar,indx,x);    for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++){      xi[j] *= xmin; 
       matcov[i][j]=x[i];      p[j] += xi[j]; 
     }    } 
   }    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
   printf("\n#Hessian matrix#\n");  } 
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  char *asc_diff_time(long time_sec, char ascdiff[])
       printf("%.3e ",hess[i][j]);  {
     }    long sec_left, days, hours, minutes;
     printf("\n");    days = (time_sec) / (60*60*24);
   }    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
   /* Recompute Inverse */    sec_left = (sec_left) %(60*60);
   for (i=1;i<=npar;i++)    minutes = (sec_left) /60;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    sec_left = (sec_left) % (60);
   ludcmp(a,npar,indx,&pd);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   /*  printf("\n#Hessian matrix recomputed#\n");  }
   
   for (j=1;j<=npar;j++) {  /*************** powell ************************/
     for (i=1;i<=npar;i++) x[i]=0;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     x[j]=1;              double (*func)(double [])) 
     lubksb(a,npar,indx,x);  { 
     for (i=1;i<=npar;i++){    void linmin(double p[], double xi[], int n, double *fret, 
       y[i][j]=x[i];                double (*func)(double [])); 
       printf("%.3e ",y[i][j]);    int i,ibig,j; 
     }    double del,t,*pt,*ptt,*xit;
     printf("\n");    double fp,fptt;
   }    double *xits;
   */    int niterf, itmp;
   
   free_matrix(a,1,npar,1,npar);    pt=vector(1,n); 
   free_matrix(y,1,npar,1,npar);    ptt=vector(1,n); 
   free_vector(x,1,npar);    xit=vector(1,n); 
   free_ivector(indx,1,npar);    xits=vector(1,n); 
   free_matrix(hess,1,npar,1,npar);    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
 }      fp=(*fret); 
       ibig=0; 
 /*************** hessian matrix ****************/      del=0.0; 
 double hessii( double x[], double delta, int theta, double delti[])      last_time=curr_time;
 {      (void) gettimeofday(&curr_time,&tzp);
   int i;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   int l=1, lmax=20;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   double k1,k2;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   double p2[NPARMAX+1];     for (i=1;i<=n;i++) {
   double res;        printf(" %d %.12f",i, p[i]);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double fx;        fprintf(ficrespow," %.12lf", p[i]);
   int k=0,kmax=10;      }
   double l1;      printf("\n");
       fprintf(ficlog,"\n");
   fx=func(x);      fprintf(ficrespow,"\n");fflush(ficrespow);
   for (i=1;i<=npar;i++) p2[i]=x[i];      if(*iter <=3){
   for(l=0 ; l <=lmax; l++){        tm = *localtime(&curr_time.tv_sec);
     l1=pow(10,l);        strcpy(strcurr,asctime(&tm));
     delts=delt;  /*       asctime_r(&tm,strcurr); */
     for(k=1 ; k <kmax; k=k+1){        forecast_time=curr_time; 
       delt = delta*(l1*k);        itmp = strlen(strcurr);
       p2[theta]=x[theta] +delt;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       k1=func(p2)-fx;          strcurr[itmp-1]='\0';
       p2[theta]=x[theta]-delt;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       k2=func(p2)-fx;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       /*res= (k1-2.0*fx+k2)/delt/delt; */        for(niterf=10;niterf<=30;niterf+=10){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
                tmf = *localtime(&forecast_time.tv_sec);
 #ifdef DEBUG  /*      asctime_r(&tmf,strfor); */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          strcpy(strfor,asctime(&tmf));
 #endif          itmp = strlen(strfor);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          if(strfor[itmp-1]=='\n')
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          strfor[itmp-1]='\0';
         k=kmax;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        }
         k=kmax; l=lmax*10.;      }
       }      for (i=1;i<=n;i++) { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         delts=delt;        fptt=(*fret); 
       }  #ifdef DEBUG
     }        printf("fret=%lf \n",*fret);
   }        fprintf(ficlog,"fret=%lf \n",*fret);
   delti[theta]=delts;  #endif
   return res;        printf("%d",i);fflush(stdout);
          fprintf(ficlog,"%d",i);fflush(ficlog);
 }        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 double hessij( double x[], double delti[], int thetai,int thetaj)          del=fabs(fptt-(*fret)); 
 {          ibig=i; 
   int i;        } 
   int l=1, l1, lmax=20;  #ifdef DEBUG
   double k1,k2,k3,k4,res,fx;        printf("%d %.12e",i,(*fret));
   double p2[NPARMAX+1];        fprintf(ficlog,"%d %.12e",i,(*fret));
   int k;        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   fx=func(x);          printf(" x(%d)=%.12e",j,xit[j]);
   for (k=1; k<=2; k++) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for (i=1;i<=npar;i++) p2[i]=x[i];        }
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=1;j<=n;j++) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          printf(" p=%.12e",p[j]);
     k1=func(p2)-fx;          fprintf(ficlog," p=%.12e",p[j]);
          }
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf("\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        fprintf(ficlog,"\n");
     k2=func(p2)-fx;  #endif
        } 
     p2[thetai]=x[thetai]-delti[thetai]/k;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #ifdef DEBUG
     k3=func(p2)-fx;        int k[2],l;
          k[0]=1;
     p2[thetai]=x[thetai]-delti[thetai]/k;        k[1]=-1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        printf("Max: %.12e",(*func)(p));
     k4=func(p2)-fx;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for (j=1;j<=n;j++) {
 #ifdef DEBUG          printf(" %.12e",p[j]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          fprintf(ficlog," %.12e",p[j]);
 #endif        }
   }        printf("\n");
   return res;        fprintf(ficlog,"\n");
 }        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
 /************** Inverse of matrix **************/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 void ludcmp(double **a, int n, int *indx, double *d)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i,imax,j,k;          }
   double big,dum,sum,temp;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double *vv;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          }
   vv=vector(1,n);  #endif
   *d=1.0;  
   for (i=1;i<=n;i++) {  
     big=0.0;        free_vector(xit,1,n); 
     for (j=1;j<=n;j++)        free_vector(xits,1,n); 
       if ((temp=fabs(a[i][j])) > big) big=temp;        free_vector(ptt,1,n); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        free_vector(pt,1,n); 
     vv[i]=1.0/big;        return; 
   }      } 
   for (j=1;j<=n;j++) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (i=1;i<j;i++) {      for (j=1;j<=n;j++) { 
       sum=a[i][j];        ptt[j]=2.0*p[j]-pt[j]; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        xit[j]=p[j]-pt[j]; 
       a[i][j]=sum;        pt[j]=p[j]; 
     }      } 
     big=0.0;      fptt=(*func)(ptt); 
     for (i=j;i<=n;i++) {      if (fptt < fp) { 
       sum=a[i][j];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       for (k=1;k<j;k++)        if (t < 0.0) { 
         sum -= a[i][k]*a[k][j];          linmin(p,xit,n,fret,func); 
       a[i][j]=sum;          for (j=1;j<=n;j++) { 
       if ( (dum=vv[i]*fabs(sum)) >= big) {            xi[j][ibig]=xi[j][n]; 
         big=dum;            xi[j][n]=xit[j]; 
         imax=i;          }
       }  #ifdef DEBUG
     }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     if (j != imax) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for (k=1;k<=n;k++) {          for(j=1;j<=n;j++){
         dum=a[imax][k];            printf(" %.12e",xit[j]);
         a[imax][k]=a[j][k];            fprintf(ficlog," %.12e",xit[j]);
         a[j][k]=dum;          }
       }          printf("\n");
       *d = -(*d);          fprintf(ficlog,"\n");
       vv[imax]=vv[j];  #endif
     }        }
     indx[j]=imax;      } 
     if (a[j][j] == 0.0) a[j][j]=TINY;    } 
     if (j != n) {  } 
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /**** Prevalence limit (stable or period prevalence)  ****************/
     }  
   }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   free_vector(vv,1,n);  /* Doesn't work */  {
 ;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 }       matrix by transitions matrix until convergence is reached */
   
 void lubksb(double **a, int n, int *indx, double b[])    int i, ii,j,k;
 {    double min, max, maxmin, maxmax,sumnew=0.;
   int i,ii=0,ip,j;    double **matprod2();
   double sum;    double **out, cov[NCOVMAX], **pmij();
      double **newm;
   for (i=1;i<=n;i++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
     ip=indx[i];  
     sum=b[ip];    for (ii=1;ii<=nlstate+ndeath;ii++)
     b[ip]=b[i];      for (j=1;j<=nlstate+ndeath;j++){
     if (ii)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      }
     else if (sum) ii=i;  
     b[i]=sum;     cov[1]=1.;
   }   
   for (i=n;i>=1;i--) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     sum=b[i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      newm=savm;
     b[i]=sum/a[i][i];      /* Covariates have to be included here again */
   }       cov[2]=agefin;
 }    
         for (k=1; k<=cptcovn;k++) {
 /************ Frequencies ********************/          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 {  /* Some frequencies */        }
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for (k=1; k<=cptcovprod;k++)
   double ***freq; /* Frequencies */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   FILE *ficresp;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   char fileresp[FILENAMELENGTH];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      savm=oldm;
   strcpy(fileresp,"p");      oldm=newm;
   strcat(fileresp,fileres);      maxmax=0.;
   if((ficresp=fopen(fileresp,"w"))==NULL) {      for(j=1;j<=nlstate;j++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);        min=1.;
     exit(0);        max=0.;
   }        for(i=1; i<=nlstate; i++) {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          sumnew=0;
   j1=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            prlim[i][j]= newm[i][j]/(1-sumnew);
   j=cptcoveff;          max=FMAX(max,prlim[i][j]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          min=FMIN(min,prlim[i][j]);
          }
   for(k1=1; k1<=j;k1++){        maxmin=max-min;
     for(i1=1; i1<=ncodemax[k1];i1++){        maxmax=FMAX(maxmax,maxmin);
       j1++;      }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      if(maxmax < ftolpl){
         scanf("%d", i);*/        return prlim;
       for (i=-1; i<=nlstate+ndeath; i++)        }
         for (jk=-1; jk<=nlstate+ndeath; jk++)      }
           for(m=agemin; m <= agemax+3; m++)  }
             freq[i][jk][m]=0;  
        /*************** transition probabilities ***************/ 
       dateintsum=0;  
       k2cpt=0;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for (i=1; i<=imx; i++) {  {
         bool=1;    double s1, s2;
         if  (cptcovn>0) {    /*double t34;*/
           for (z1=1; z1<=cptcoveff; z1++)    int i,j,j1, nc, ii, jj;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;      for(i=1; i<= nlstate; i++){
         }        for(j=1; j<i;j++){
         if (bool==1) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           for(m=firstpass; m<=lastpass; m++){            /*s2 += param[i][j][nc]*cov[nc];*/
             k2=anint[m][i]+(mint[m][i]/12.);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          }
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ps[i][j]=s2;
               if (m<lastpass) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for(j=i+1; j<=nlstate+ndeath;j++){
               }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
                 dateintsum=dateintsum+k2;          }
                 k2cpt++;          ps[i][j]=s2;
               }        }
             }      }
           }      /*ps[3][2]=1;*/
         }      
       }      for(i=1; i<= nlstate; i++){
                s1=0;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(j=1; j<i; j++)
           s1+=exp(ps[i][j]);
       if  (cptcovn>0) {        for(j=i+1; j<=nlstate+ndeath; j++)
         fprintf(ficresp, "\n#********** Variable ");          s1+=exp(ps[i][j]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        ps[i][i]=1./(s1+1.);
         fprintf(ficresp, "**********\n#");        for(j=1; j<i; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(i=1; i<=nlstate;i++)        for(j=i+1; j<=nlstate+ndeath; j++)
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       fprintf(ficresp, "\n");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
            } /* end i */
       for(i=(int)agemin; i <= (int)agemax+3; i++){      
         if(i==(int)agemax+3)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           printf("Total");        for(jj=1; jj<= nlstate+ndeath; jj++){
         else          ps[ii][jj]=0;
           printf("Age %d", i);          ps[ii][ii]=1;
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      }
             pp[jk] += freq[jk][m][i];      
         }  
         for(jk=1; jk <=nlstate ; jk++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           for(m=-1, pos=0; m <=0 ; m++)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
             pos += freq[jk][m][i];  /*         printf("ddd %lf ",ps[ii][jj]); */
           if(pp[jk]>=1.e-10)  /*       } */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*       printf("\n "); */
           else  /*        } */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*        printf("\n ");printf("%lf ",cov[2]); */
         }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
         for(jk=1; jk <=nlstate ; jk++){        goto end;*/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      return ps;
             pp[jk] += freq[jk][m][i];  }
         }  
   /**************** Product of 2 matrices ******************/
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         for(jk=1; jk <=nlstate ; jk++){  {
           if(pos>=1.e-5)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           else    /* in, b, out are matrice of pointers which should have been initialized 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);       before: only the contents of out is modified. The function returns
           if( i <= (int) agemax){       a pointer to pointers identical to out */
             if(pos>=1.e-5){    long i, j, k;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    for(i=nrl; i<= nrh; i++)
               probs[i][jk][j1]= pp[jk]/pos;      for(k=ncolol; k<=ncoloh; k++)
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
             }          out[i][k] +=in[i][j]*b[j][k];
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    return out;
           }  }
         }  
          
         for(jk=-1; jk <=nlstate+ndeath; jk++)  /************* Higher Matrix Product ***************/
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         if(i <= (int) agemax)  {
           fprintf(ficresp,"\n");    /* Computes the transition matrix starting at age 'age' over 
         printf("\n");       'nhstepm*hstepm*stepm' months (i.e. until
       }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
   }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   dateintmean=dateintsum/k2cpt;       (typically every 2 years instead of every month which is too big 
         for the memory).
   fclose(ficresp);       Model is determined by parameters x and covariates have to be 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       included manually here. 
   free_vector(pp,1,nlstate);  
         */
   /* End of Freq */  
 }    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
 /************ Prevalence ********************/    double **newm;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      for (j=1;j<=nlstate+ndeath;j++){
   double ***freq; /* Frequencies */        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double *pp;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double pos, k2;      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   pp=vector(1,nlstate);    for(h=1; h <=nhstepm; h++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(d=1; d <=hstepm; d++){
          newm=savm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        /* Covariates have to be included here again */
   j1=0;        cov[1]=1.;
          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   j=cptcoveff;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovage;k++)
            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovprod;k++)
     for(i1=1; i1<=ncodemax[k1];i1++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       j1++;  
    
       for (i=-1; i<=nlstate+ndeath; i++)          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         for (jk=-1; jk<=nlstate+ndeath; jk++)          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           for(m=agemin; m <= agemax+3; m++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
             freq[i][jk][m]=0;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
       for (i=1; i<=imx; i++) {        oldm=newm;
         bool=1;      }
         if  (cptcovn>0) {      for(i=1; i<=nlstate+ndeath; i++)
           for (z1=1; z1<=cptcoveff; z1++)        for(j=1;j<=nlstate+ndeath;j++) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          po[i][j][h]=newm[i][j];
               bool=0;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         }           */
         if (bool==1) {        }
           for(m=firstpass; m<=lastpass; m++){    } /* end h */
             k2=anint[m][i]+(mint[m][i]/12.);    return po;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  }
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  /*************** log-likelihood *************/
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */  double func( double *x)
             }  {
           }    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       }    double **out;
         for(i=(int)agemin; i <= (int)agemax+3; i++){    double sw; /* Sum of weights */
           for(jk=1; jk <=nlstate ; jk++){    double lli; /* Individual log likelihood */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    int s1, s2;
               pp[jk] += freq[jk][m][i];    double bbh, survp;
           }    long ipmx;
           for(jk=1; jk <=nlstate ; jk++){    /*extern weight */
             for(m=-1, pos=0; m <=0 ; m++)    /* We are differentiating ll according to initial status */
             pos += freq[jk][m][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
              printf(" %d\n",s[4][i]);
          for(jk=1; jk <=nlstate ; jk++){    */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    cov[1]=1.;
              pp[jk] += freq[jk][m][i];  
          }    for(k=1; k<=nlstate; k++) ll[k]=0.;
            
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for(jk=1; jk <=nlstate ; jk++){                  for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            if( i <= (int) agemax){        for(mi=1; mi<= wav[i]-1; mi++){
              if(pos>=1.e-5){          for (ii=1;ii<=nlstate+ndeath;ii++)
                probs[i][jk][j1]= pp[jk]/pos;            for (j=1;j<=nlstate+ndeath;j++){
              }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          }            }
                    for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(pp,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
 }  /* End of Freq */            oldm=newm;
           } /* end mult */
 /************* Waves Concatenation ***************/        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          /* But now since version 0.9 we anticipate for bias at large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           * (in months) between two waves is not a multiple of stepm, we rounded to 
      Death is a valid wave (if date is known).           * the nearest (and in case of equal distance, to the lowest) interval but now
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i           * we keep into memory the bias bh[mi][i] and also the previous matrix product
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
      and mw[mi+1][i]. dh depends on stepm.           * probability in order to take into account the bias as a fraction of the way
      */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
   int i, mi, m;           * For stepm=1 the results are the same as for previous versions of Imach.
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           * For stepm > 1 the results are less biased than in previous versions. 
      double sum=0., jmean=0.;*/           */
           s1=s[mw[mi][i]][i];
   int j, k=0,jk, ju, jl;          s2=s[mw[mi+1][i]][i];
   double sum=0.;          bbh=(double)bh[mi][i]/(double)stepm; 
   jmin=1e+5;          /* bias bh is positive if real duration
   jmax=-1;           * is higher than the multiple of stepm and negative otherwise.
   jmean=0.;           */
   for(i=1; i<=imx; i++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     mi=0;          if( s2 > nlstate){ 
     m=firstpass;            /* i.e. if s2 is a death state and if the date of death is known 
     while(s[m][i] <= nlstate){               then the contribution to the likelihood is the probability to 
       if(s[m][i]>=1)               die between last step unit time and current  step unit time, 
         mw[++mi][i]=m;               which is also equal to probability to die before dh 
       if(m >=lastpass)               minus probability to die before dh-stepm . 
         break;               In version up to 0.92 likelihood was computed
       else          as if date of death was unknown. Death was treated as any other
         m++;          health state: the date of the interview describes the actual state
     }/* end while */          and not the date of a change in health state. The former idea was
     if (s[m][i] > nlstate){          to consider that at each interview the state was recorded
       mi++;     /* Death is another wave */          (healthy, disable or death) and IMaCh was corrected; but when we
       /* if(mi==0)  never been interviewed correctly before death */          introduced the exact date of death then we should have modified
          /* Only death is a correct wave */          the contribution of an exact death to the likelihood. This new
       mw[mi][i]=m;          contribution is smaller and very dependent of the step unit
     }          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
     wav[i]=mi;          interview up to one month before death multiplied by the
     if(mi==0)          probability to die within a month. Thanks to Chris
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          Jackson for correcting this bug.  Former versions increased
   }          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
   for(i=1; i<=imx; i++){          lower mortality.
     for(mi=1; mi<wav[i];mi++){            */
       if (stepm <=0)            lli=log(out[s1][s2] - savm[s1][s2]);
         dh[mi][i]=1;  
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {          } else if  (s2==-2) {
           if (agedc[i] < 2*AGESUP) {            for (j=1,survp=0. ; j<=nlstate; j++) 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           if(j==0) j=1;  /* Survives at least one month after exam */            /*survp += out[s1][j]; */
           k=k+1;            lli= log(survp);
           if (j >= jmax) jmax=j;          }
           if (j <= jmin) jmin=j;          
           sum=sum+j;          else if  (s2==-4) { 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            for (j=3,survp=0. ; j<=nlstate; j++)  
           }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
         else{          } 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;          else if  (s2==-5) { 
           if (j >= jmax) jmax=j;            for (j=1,survp=0. ; j<=2; j++)  
           else if (j <= jmin)jmin=j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            lli= log(survp); 
           sum=sum+j;          } 
         }          
         jk= j/stepm;          else{
         jl= j -jk*stepm;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         ju= j -(jk+1)*stepm;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         if(jl <= -ju)          } 
           dh[mi][i]=jk;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         else          /*if(lli ==000.0)*/
           dh[mi][i]=jk+1;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if(dh[mi][i]==0)          ipmx +=1;
           dh[mi][i]=1; /* At least one step */          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
   }      } /* end of individual */
   jmean=sum/k;    }  else if(mle==2){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*********** Tricode ****************************/        for(mi=1; mi<= wav[i]-1; mi++){
 void tricode(int *Tvar, int **nbcode, int imx)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int Ndum[20],ij=1, k, j, i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int cptcode=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   cptcoveff=0;            }
            for(d=0; d<=dh[mi][i]; d++){
   for (k=0; k<19; k++) Ndum[k]=0;            newm=savm;
   for (k=1; k<=7; k++) ncodemax[k]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1; i<=imx; i++) {            }
       ij=(int)(covar[Tvar[j]][i]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       Ndum[ij]++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            savm=oldm;
       if (ij > cptcode) cptcode=ij;            oldm=newm;
     }          } /* end mult */
         
     for (i=0; i<=cptcode; i++) {          s1=s[mw[mi][i]][i];
       if(Ndum[i]!=0) ncodemax[j]++;          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     ij=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
           sw += weight[i];
     for (i=1; i<=ncodemax[j]; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=0; k<=19; k++) {        } /* end of wave */
         if (Ndum[k] != 0) {      } /* end of individual */
           nbcode[Tvar[j]][ij]=k;    }  else if(mle==3){  /* exponential inter-extrapolation */
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           ij++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         if (ij > ncodemax[j]) break;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }              for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }                savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  for (k=0; k<19; k++) Ndum[k]=0;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
  for (i=1; i<=ncovmodel-2; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ij=Tvar[i];            for (kk=1; kk<=cptcovage;kk++) {
       Ndum[ij]++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  ij=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (i=1; i<=10; i++) {            savm=oldm;
    if((Ndum[i]!=0) && (i<=ncovcol)){            oldm=newm;
      Tvaraff[ij]=i;          } /* end mult */
      ij++;        
    }          s1=s[mw[mi][i]][i];
  }          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
     cptcoveff=ij-1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 }          ipmx +=1;
           sw += weight[i];
 /*********** Health Expectancies ****************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)      } /* end of individual */
 {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   /* Health expectancies */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i, j, nhstepm, hstepm, h, nstepm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double age, agelim, hf;        for(mi=1; mi<= wav[i]-1; mi++){
   double ***p3mat;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficreseij,"# Health expectancies\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Age");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=nlstate;i++)            }
     for(j=1; j<=nlstate;j++)          for(d=0; d<dh[mi][i]; d++){
       fprintf(ficreseij," %1d-%1d",i,j);            newm=savm;
   fprintf(ficreseij,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   if(estepm < stepm){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf ("Problem %d lower than %d\n",estepm, stepm);            }
   }          
   else  hstepm=estepm;              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* We compute the life expectancy from trapezoids spaced every estepm months                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * This is mainly to measure the difference between two models: for example            savm=oldm;
    * if stepm=24 months pijx are given only every 2 years and by summing them            oldm=newm;
    * we are calculating an estimate of the Life Expectancy assuming a linear          } /* end mult */
    * progression inbetween and thus overestimating or underestimating according        
    * to the curvature of the survival function. If, for the same date, we          s1=s[mw[mi][i]][i];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          s2=s[mw[mi+1][i]][i];
    * to compare the new estimate of Life expectancy with the same linear          if( s2 > nlstate){ 
    * hypothesis. A more precise result, taking into account a more precise            lli=log(out[s1][s2] - savm[s1][s2]);
    * curvature will be obtained if estepm is as small as stepm. */          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /* For example we decided to compute the life expectancy with the smallest unit */          }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          ipmx +=1;
      nhstepm is the number of hstepm from age to agelim          sw += weight[i];
      nstepm is the number of stepm from age to agelin.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      Look at hpijx to understand the reason of that which relies in memory size  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      and note for a fixed period like estepm months */        } /* end of wave */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      } /* end of individual */
      survival function given by stepm (the optimization length). Unfortunately it    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
      means that if the survival funtion is printed only each two years of age and if      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      results. So we changed our mind and took the option of the best precision.        for(mi=1; mi<= wav[i]-1; mi++){
   */          for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   agelim=AGESUP;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     /* nhstepm age range expressed in number of stepm */          for(d=0; d<dh[mi][i]; d++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            newm=savm;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* if (stepm >= YEARM) hstepm=1;*/            for (kk=1; kk<=cptcovage;kk++) {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            savm=oldm;
     for(i=1; i<=nlstate;i++)            oldm=newm;
       for(j=1; j<=nlstate;j++)          } /* end mult */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          s1=s[mw[mi][i]][i];
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          s2=s[mw[mi+1][i]][i];
         }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     fprintf(ficreseij,"%3.0f",age );          ipmx +=1;
     for(i=1; i<=nlstate;i++)          sw += weight[i];
       for(j=1; j<=nlstate;j++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       }        } /* end of wave */
     fprintf(ficreseij,"\n");      } /* end of individual */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* End of if */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /************ Variance ******************/    return -l;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  }
 {  
   /* Variance of health expectancies */  /*************** log-likelihood *************/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  double funcone( double *x)
   double **newm;  {
   double **dnewm,**doldm;    /* Same as likeli but slower because of a lot of printf and if */
   int i, j, nhstepm, hstepm, h, nstepm ;    int i, ii, j, k, mi, d, kk;
   int k, cptcode;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double *xp;    double **out;
   double **gp, **gm;    double lli; /* Individual log likelihood */
   double ***gradg, ***trgradg;    double llt;
   double ***p3mat;    int s1, s2;
   double age,agelim, hf;    double bbh, survp;
   int theta;    /*extern weight */
     /* We are differentiating ll according to initial status */
    fprintf(ficresvij,"# Covariances of life expectancies\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   fprintf(ficresvij,"# Age");    /*for(i=1;i<imx;i++) 
   for(i=1; i<=nlstate;i++)      printf(" %d\n",s[4][i]);
     for(j=1; j<=nlstate;j++)    */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    cov[1]=1.;
   fprintf(ficresvij,"\n");  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   doldm=matrix(1,nlstate,1,nlstate);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
   if(estepm < stepm){        for (ii=1;ii<=nlstate+ndeath;ii++)
     printf ("Problem %d lower than %d\n",estepm, stepm);          for (j=1;j<=nlstate+ndeath;j++){
   }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   else  hstepm=estepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* For example we decided to compute the life expectancy with the smallest unit */          }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for(d=0; d<dh[mi][i]; d++){
      nhstepm is the number of hstepm from age to agelim          newm=savm;
      nstepm is the number of stepm from age to agelin.          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      Look at hpijx to understand the reason of that which relies in memory size          for (kk=1; kk<=cptcovage;kk++) {
      and note for a fixed period like k years */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          }
      survival function given by stepm (the optimization length). Unfortunately it          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      means that if the survival funtion is printed only each two years of age and if                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          savm=oldm;
      results. So we changed our mind and took the option of the best precision.          oldm=newm;
   */        } /* end mult */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        
   agelim = AGESUP;        s1=s[mw[mi][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        s2=s[mw[mi+1][i]][i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        bbh=(double)bh[mi][i]/(double)stepm; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        /* bias is positive if real duration
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         * is higher than the multiple of stepm and negative otherwise.
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);         */
     gp=matrix(0,nhstepm,1,nlstate);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     gm=matrix(0,nhstepm,1,nlstate);          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
     for(theta=1; theta <=npar; theta++){          for (j=1,survp=0. ; j<=nlstate; j++) 
       for(i=1; i<=npar; i++){ /* Computes gradient */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          lli= log(survp);
       }        }else if (mle==1){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       if (popbased==1) {        } else if(mle==3){  /* exponential inter-extrapolation */
         for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           prlim[i][i]=probs[(int)age][i][ij];        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       }          lli=log(out[s1][s2]); /* Original formula */
          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       for(j=1; j<= nlstate; j++){          lli=log(out[s1][s2]); /* Original formula */
         for(h=0; h<=nhstepm; h++){        } /* End of if */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        ipmx +=1;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        sw += weight[i];
         }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            if(globpr){
       for(i=1; i<=npar; i++) /* Computes gradient */          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   %11.6f %11.6f %11.6f ", \
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                    num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       if (popbased==1) {            llt +=ll[k]*gipmx/gsw;
         for(i=1; i<=nlstate;i++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           prlim[i][i]=probs[(int)age][i][ij];          }
       }          fprintf(ficresilk," %10.6f\n", -llt);
         }
       for(j=1; j<= nlstate; j++){      } /* end of wave */
         for(h=0; h<=nhstepm; h++){    } /* end of individual */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
       for(j=1; j<= nlstate; j++)      gsw=sw;
         for(h=0; h<=nhstepm; h++){    }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    return -l;
         }  }
     } /* End theta */  
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for(h=0; h<=nhstepm; h++)  {
       for(j=1; j<=nlstate;j++)    /* This routine should help understanding what is done with 
         for(theta=1; theta <=npar; theta++)       the selection of individuals/waves and
           trgradg[h][j][theta]=gradg[h][theta][j];       to check the exact contribution to the likelihood.
        Plotting could be done.
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */     */
     for(i=1;i<=nlstate;i++)    int k;
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
     for(h=0;h<=nhstepm;h++){      strcat(fileresilk,fileres);
       for(k=0;k<=nhstepm;k++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        printf("Problem with resultfile: %s\n", fileresilk);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         for(i=1;i<=nlstate;i++)      }
           for(j=1;j<=nlstate;j++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     }      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     fprintf(ficresvij,"%.0f ",age );      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    *fretone=(*funcone)(p);
       }    if(*globpri !=0){
     fprintf(ficresvij,"\n");      fclose(ficresilk);
     free_matrix(gp,0,nhstepm,1,nlstate);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     free_matrix(gm,0,nhstepm,1,nlstate);      fflush(fichtm); 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    } 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    return;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
   } /* End age */  
    
   free_vector(xp,1,npar);  /*********** Maximum Likelihood Estimation ***************/
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
 }    int i,j, iter;
     double **xi;
 /************ Variance of prevlim ******************/    double fret;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double fretone; /* Only one call to likelihood */
 {    /*  char filerespow[FILENAMELENGTH];*/
   /* Variance of prevalence limit */    xi=matrix(1,npar,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (i=1;i<=npar;i++)
   double **newm;      for (j=1;j<=npar;j++)
   double **dnewm,**doldm;        xi[i][j]=(i==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   int k, cptcode;    strcpy(filerespow,"pow"); 
   double *xp;    strcat(filerespow,fileres);
   double *gp, *gm;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   double **gradg, **trgradg;      printf("Problem with resultfile: %s\n", filerespow);
   double age,agelim;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   int theta;    }
        fprintf(ficrespow,"# Powell\n# iter -2*LL");
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    for (i=1;i<=nlstate;i++)
   fprintf(ficresvpl,"# Age");      for(j=1;j<=nlstate+ndeath;j++)
   for(i=1; i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       fprintf(ficresvpl," %1d-%1d",i,i);    fprintf(ficrespow,"\n");
   fprintf(ficresvpl,"\n");  
     powell(p,xi,npar,ftol,&iter,&fret,func);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    free_matrix(xi,1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    fclose(ficrespow);
      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   hstepm=1*YEARM; /* Every year of age */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /**** Computes Hessian and covariance matrix ***/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     gradg=matrix(1,npar,1,nlstate);  {
     gp=vector(1,nlstate);    double  **a,**y,*x,pd;
     gm=vector(1,nlstate);    double **hess;
     int i, j,jk;
     for(theta=1; theta <=npar; theta++){    int *indx;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(i=1;i<=nlstate;i++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
         gp[i] = prlim[i][i];    double gompertz(double p[]);
        hess=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("\nCalculation of the hessian matrix. Wait...\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++){
         gm[i] = prlim[i][i];      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
       for(i=1;i<=nlstate;i++)     
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     } /* End theta */      
       /*  printf(" %f ",p[i]);
     trgradg =matrix(1,nlstate,1,npar);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
     for(j=1; j<=nlstate;j++)    
       for(theta=1; theta <=npar; theta++)    for (i=1;i<=npar;i++) {
         trgradg[j][theta]=gradg[theta][j];      for (j=1;j<=npar;j++)  {
         if (j>i) { 
     for(i=1;i<=nlstate;i++)          printf(".%d%d",i,j);fflush(stdout);
       varpl[i][(int)age] =0.;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          
     for(i=1;i<=nlstate;i++)          hess[j][i]=hess[i][j];    
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          /*printf(" %lf ",hess[i][j]);*/
         }
     fprintf(ficresvpl,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)    }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    printf("\n");
     fprintf(ficresvpl,"\n");    fprintf(ficlog,"\n");
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_matrix(gradg,1,npar,1,nlstate);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_matrix(trgradg,1,nlstate,1,npar);    
   } /* End age */    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   free_vector(xp,1,npar);    x=vector(1,npar);
   free_matrix(doldm,1,nlstate,1,npar);    indx=ivector(1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 }    ludcmp(a,npar,indx,&pd);
   
 /************ Variance of one-step probabilities  ******************/    for (j=1;j<=npar;j++) {
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      for (i=1;i<=npar;i++) x[i]=0;
 {      x[j]=1;
   int i, j;      lubksb(a,npar,indx,x);
   int k=0, cptcode;      for (i=1;i<=npar;i++){ 
   double **dnewm,**doldm;        matcov[i][j]=x[i];
   double *xp;      }
   double *gp, *gm;    }
   double **gradg, **trgradg;  
   double age,agelim, cov[NCOVMAX];    printf("\n#Hessian matrix#\n");
   int theta;    fprintf(ficlog,"\n#Hessian matrix#\n");
   char fileresprob[FILENAMELENGTH];    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   strcpy(fileresprob,"prob");        printf("%.3e ",hess[i][j]);
   strcat(fileresprob,fileres);        fprintf(ficlog,"%.3e ",hess[i][j]);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      }
     printf("Problem with resultfile: %s\n", fileresprob);      printf("\n");
   }      fprintf(ficlog,"\n");
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    }
    
     /* Recompute Inverse */
   xp=vector(1,npar);    for (i=1;i<=npar;i++)
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    ludcmp(a,npar,indx,&pd);
    
   cov[1]=1;    /*  printf("\n#Hessian matrix recomputed#\n");
   for (age=bage; age<=fage; age ++){  
     cov[2]=age;    for (j=1;j<=npar;j++) {
     gradg=matrix(1,npar,1,9);      for (i=1;i<=npar;i++) x[i]=0;
     trgradg=matrix(1,9,1,npar);      x[j]=1;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      lubksb(a,npar,indx,x);
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<=npar;i++){ 
            y[i][j]=x[i];
     for(theta=1; theta <=npar; theta++){        printf("%.3e ",y[i][j]);
       for(i=1; i<=npar; i++)        fprintf(ficlog,"%.3e ",y[i][j]);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      }
            printf("\n");
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      fprintf(ficlog,"\n");
        }
       k=0;    */
       for(i=1; i<= (nlstate+ndeath); i++){  
         for(j=1; j<=(nlstate+ndeath);j++){    free_matrix(a,1,npar,1,npar);
            k=k+1;    free_matrix(y,1,npar,1,npar);
           gp[k]=pmmij[i][j];    free_vector(x,1,npar);
         }    free_ivector(indx,1,npar);
       }    free_matrix(hess,1,npar,1,npar);
   
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  }
      
   /*************** hessian matrix ****************/
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       k=0;  {
       for(i=1; i<=(nlstate+ndeath); i++){    int i;
         for(j=1; j<=(nlstate+ndeath);j++){    int l=1, lmax=20;
           k=k+1;    double k1,k2;
           gm[k]=pmmij[i][j];    double p2[NPARMAX+1];
         }    double res;
       }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
          double fx;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    int k=0,kmax=10;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double l1;
     }  
     fx=func(x);
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(theta=1; theta <=npar; theta++)    for(l=0 ; l <=lmax; l++){
       trgradg[j][theta]=gradg[theta][j];      l1=pow(10,l);
        delts=delt;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      for(k=1 ; k <kmax; k=k+1){
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
      pmij(pmmij,cov,ncovmodel,x,nlstate);        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
      k=0;        k2=func(p2)-fx;
      for(i=1; i<=(nlstate+ndeath); i++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
        for(j=1; j<=(nlstate+ndeath);j++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          k=k+1;        
          gm[k]=pmmij[i][j];  #ifdef DEBUG
         }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        #endif
      /*printf("\n%d ",(int)age);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                  k=kmax;
         }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
      }*/          k=kmax; l=lmax*10.;
         }
   fprintf(ficresprob,"\n%d ",(int)age);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        }
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      }
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    }
   }    delti[theta]=delts;
     return res; 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 }  {
  free_vector(xp,1,npar);    int i;
 fclose(ficresprob);    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 }    double p2[NPARMAX+1];
     int k;
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    fx=func(x);
  int lastpass, int stepm, int weightopt, char model[],\    for (k=1; k<=2; k++) {
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \      for (i=1;i<=npar;i++) p2[i]=x[i];
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\      p2[thetai]=x[thetai]+delti[thetai]/k;
  char version[], int popforecast, int estepm ){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int jj1, k1, i1, cpt;      k1=func(p2)-fx;
   FILE *fichtm;    
   /*char optionfilehtm[FILENAMELENGTH];*/      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcpy(optionfilehtm,optionfile);      k2=func(p2)-fx;
   strcat(optionfilehtm,".htm");    
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      p2[thetai]=x[thetai]-delti[thetai]/k;
     printf("Problem with %s \n",optionfilehtm), exit(0);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k3=func(p2)-fx;
     
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      p2[thetai]=x[thetai]-delti[thetai]/k;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 \n      k4=func(p2)-fx;
 Total number of observations=%d <br>\n      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  #ifdef DEBUG
 <hr  size=\"2\" color=\"#EC5E5E\">      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  <ul><li>Outputs files<br>\n      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  #endif
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    }
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    return res;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  }
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
  fprintf(fichtm,"\n  { 
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    int i,imax,j,k; 
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    double big,dum,sum,temp; 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    double *vv; 
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);   
     vv=vector(1,n); 
  if(popforecast==1) fprintf(fichtm,"\n    *d=1.0; 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    for (i=1;i<=n;i++) { 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      big=0.0; 
         <br>",fileres,fileres,fileres,fileres);      for (j=1;j<=n;j++) 
  else        if ((temp=fabs(a[i][j])) > big) big=temp; 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 fprintf(fichtm," <li>Graphs</li><p>");      vv[i]=1.0/big; 
     } 
  m=cptcoveff;    for (j=1;j<=n;j++) { 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
  jj1=0;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
  for(k1=1; k1<=m;k1++){        a[i][j]=sum; 
    for(i1=1; i1<=ncodemax[k1];i1++){      } 
        jj1++;      big=0.0; 
        if (cptcovn > 0) {      for (i=j;i<=n;i++) { 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        sum=a[i][j]; 
          for (cpt=1; cpt<=cptcoveff;cpt++)        for (k=1;k<j;k++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          sum -= a[i][k]*a[k][j]; 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        a[i][j]=sum; 
        }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          big=dum; 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              imax=i; 
        for(cpt=1; cpt<nlstate;cpt++){        } 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      } 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      if (j != imax) { 
        }        for (k=1;k<=n;k++) { 
     for(cpt=1; cpt<=nlstate;cpt++) {          dum=a[imax][k]; 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          a[imax][k]=a[j][k]; 
 interval) in state (%d): v%s%d%d.gif <br>          a[j][k]=dum; 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          } 
      }        *d = -(*d); 
      for(cpt=1; cpt<=nlstate;cpt++) {        vv[imax]=vv[j]; 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      } 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      indx[j]=imax; 
      }      if (a[j][j] == 0.0) a[j][j]=TINY; 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      if (j != n) { 
 health expectancies in states (1) and (2): e%s%d.gif<br>        dum=1.0/(a[j][j]); 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 fprintf(fichtm,"\n</body>");      } 
    }    } 
    }    free_vector(vv,1,n);  /* Doesn't work */
 fclose(fichtm);  ;
 }  } 
   
 /******************* Gnuplot file **************/  void lubksb(double **a, int n, int *indx, double b[]) 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  { 
     int i,ii=0,ip,j; 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double sum; 
    
   strcpy(optionfilegnuplot,optionfilefiname);    for (i=1;i<=n;i++) { 
   strcat(optionfilegnuplot,".gp.txt");      ip=indx[i]; 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      sum=b[ip]; 
     printf("Problem with file %s",optionfilegnuplot);      b[ip]=b[i]; 
   }      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 #ifdef windows      else if (sum) ii=i; 
     fprintf(ficgp,"cd \"%s\" \n",pathc);      b[i]=sum; 
 #endif    } 
 m=pow(2,cptcoveff);    for (i=n;i>=1;i--) { 
        sum=b[i]; 
  /* 1eme*/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {      b[i]=sum/a[i][i]; 
    for (k1=1; k1<= m ; k1 ++) {    } 
   } 
 #ifdef windows  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  void pstamp(FILE *fichier)
 #endif  {
 #ifdef unix    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  }
 #endif  
   /************ Frequencies ********************/
 for (i=1; i<= nlstate ; i ++) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {  /* Some frequencies */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    int first;
     for (i=1; i<= nlstate ; i ++) {    double ***freq; /* Frequencies */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double *pp, **prop;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
 }    char fileresp[FILENAMELENGTH];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    
      for (i=1; i<= nlstate ; i ++) {    pp=vector(1,nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    prop=matrix(1,nlstate,iagemin,iagemax+3);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(fileresp,"p");
 }      strcat(fileresp,fileres);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    if((ficresp=fopen(fileresp,"w"))==NULL) {
 #ifdef unix      printf("Problem with prevalence resultfile: %s\n", fileresp);
 fprintf(ficgp,"\nset ter gif small size 400,300");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 #endif      exit(0);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    }
    }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   }    j1=0;
   /*2 eme*/    
     j=cptcoveff;
   for (k1=1; k1<= m ; k1 ++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);  
        first=1;
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;    for(k1=1; k1<=j;k1++){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      for(i1=1; i1<=ncodemax[k1];i1++){
       for (j=1; j<= nlstate+1 ; j ++) {        j1++;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          scanf("%d", i);*/
 }          for (i=-5; i<=nlstate+ndeath; i++)  
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              freq[i][jk][m]=0;
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1; i<=nlstate; i++)  
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(m=iagemin; m <= iagemax+3; m++)
 }            prop[i][m]=0;
       fprintf(ficgp,"\" t\"\" w l 0,");        
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        dateintsum=0;
       for (j=1; j<= nlstate+1 ; j ++) {        k2cpt=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for (i=1; i<=imx; i++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");          bool=1;
 }            if  (cptcovn>0) {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            for (z1=1; z1<=cptcoveff; z1++) 
       else fprintf(ficgp,"\" t\"\" w l 0,");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     }                bool=0;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          }
   }          if (bool==1){
              for(m=firstpass; m<=lastpass; m++){
   /*3eme*/              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   for (k1=1; k1<= m ; k1 ++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for (cpt=1; cpt<= nlstate ; cpt ++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       k=2+nlstate*(cpt-1);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                if (m<lastpass) {
       for (i=1; i< nlstate ; i ++) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }                }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                
     }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     }                  dateintsum=dateintsum+k2;
                    k2cpt++;
   /* CV preval stat */                }
     for (k1=1; k1<= m ; k1 ++) {                /*}*/
     for (cpt=1; cpt<nlstate ; cpt ++) {            }
       k=3;          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }
          
       for (i=1; i< nlstate ; i ++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         fprintf(ficgp,"+$%d",k+i+1);        pstamp(ficresp);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        if  (cptcovn>0) {
                fprintf(ficresp, "\n#********** Variable "); 
       l=3+(nlstate+ndeath)*cpt;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          fprintf(ficresp, "**********\n#");
       for (i=1; i< nlstate ; i ++) {        }
         l=3+(nlstate+ndeath)*cpt;        for(i=1; i<=nlstate;i++) 
         fprintf(ficgp,"+$%d",l+i+1);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       }        fprintf(ficresp, "\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for(i=iagemin; i <= iagemax+3; i++){
     }          if(i==iagemax+3){
   }              fprintf(ficlog,"Total");
            }else{
   /* proba elementaires */            if(first==1){
    for(i=1,jk=1; i <=nlstate; i++){              first=0;
     for(k=1; k <=(nlstate+ndeath); k++){              printf("See log file for details...\n");
       if (k != i) {            }
         for(j=1; j <=ncovmodel; j++){            fprintf(ficlog,"Age %d", i);
                  }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for(jk=1; jk <=nlstate ; jk++){
           jk++;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           fprintf(ficgp,"\n");              pp[jk] += freq[jk][m][i]; 
         }          }
       }          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=-1, pos=0; m <=0 ; m++)
     }              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
     for(jk=1; jk <=m; jk++) {              if(first==1){
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    i=1;              }
    for(k2=1; k2<=nlstate; k2++) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      k3=i;            }else{
      for(k=1; k<=(nlstate+ndeath); k++) {              if(first==1)
        if (k != k2){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 ij=1;            }
         for(j=3; j <=ncovmodel; j++) {          }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(jk=1; jk <=nlstate ; jk++){
             ij++;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           }              pp[jk] += freq[jk][m][i];
           else          }       
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         }            pos += pp[jk];
           fprintf(ficgp,")/(1");            posprop += prop[jk][i];
                  }
         for(k1=1; k1 <=nlstate; k1++){            for(jk=1; jk <=nlstate ; jk++){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            if(pos>=1.e-5){
 ij=1;              if(first==1)
           for(j=3; j <=ncovmodel; j++){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }else{
             ij++;              if(first==1)
           }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           else              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            }
           }            if( i <= iagemax){
           fprintf(ficgp,")");              if(pos>=1.e-5){
         }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);                /*probs[i][jk][j1]= pp[jk]/pos;*/
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         i=i+ncovmodel;              }
        }              else
      }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
    }            }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          }
    }          
              for(jk=-1; jk <=nlstate+ndeath; jk++)
   fclose(ficgp);            for(m=-1; m <=nlstate+ndeath; m++)
 }  /* end gnuplot */              if(freq[jk][m][i] !=0 ) {
               if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 /*************** Moving average **************/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              }
           if(i <= iagemax)
   int i, cpt, cptcod;            fprintf(ficresp,"\n");
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          if(first==1)
       for (i=1; i<=nlstate;i++)            printf("Others in log...\n");
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          fprintf(ficlog,"\n");
           mobaverage[(int)agedeb][i][cptcod]=0.;        }
          }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    }
       for (i=1; i<=nlstate;i++){    dateintmean=dateintsum/k2cpt; 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   
           for (cpt=0;cpt<=4;cpt++){    fclose(ficresp);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           }    free_vector(pp,1,nlstate);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         }    /* End of Freq */
       }  }
     }  
      /************ Prevalence ********************/
 }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 /************** Forecasting ******************/       in each health status at the date of interview (if between dateprev1 and dateprev2).
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){       We still use firstpass and lastpass as another selection.
      */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;   
   int *popage;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double ***freq; /* Frequencies */
   double *popeffectif,*popcount;    double *pp, **prop;
   double ***p3mat;    double pos,posprop; 
   char fileresf[FILENAMELENGTH];    double  y2; /* in fractional years */
     int iagemin, iagemax;
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    iagemin= (int) agemin;
     iagemax= (int) agemax;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   strcpy(fileresf,"f");    j1=0;
   strcat(fileresf,fileres);    
   if((ficresf=fopen(fileresf,"w"))==NULL) {    j=cptcoveff;
     printf("Problem with forecast resultfile: %s\n", fileresf);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }    
   printf("Computing forecasting: result on file '%s' \n", fileresf);    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        j1++;
         
   if (mobilav==1) {        for (i=1; i<=nlstate; i++)  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(m=iagemin; m <= iagemax+3; m++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);            prop[i][m]=0.0;
   }       
         for (i=1; i<=imx; i++) { /* Each individual */
   stepsize=(int) (stepm+YEARM-1)/YEARM;          bool=1;
   if (stepm<=12) stepsize=1;          if  (cptcovn>0) {
              for (z1=1; z1<=cptcoveff; z1++) 
   agelim=AGESUP;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   hstepm=1;          } 
   hstepm=hstepm/stepm;          if (bool==1) { 
   yp1=modf(dateintmean,&yp);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   anprojmean=yp;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   yp2=modf((yp1*12),&yp);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   mprojmean=yp;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   yp1=modf((yp2*30.5),&yp);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   jprojmean=yp;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   if(jprojmean==0) jprojmean=1;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   if(mprojmean==0) jprojmean=1;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                    prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                  } 
   for(cptcov=1;cptcov<=i2;cptcov++){              }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            } /* end selection of waves */
       k=k+1;          }
       fprintf(ficresf,"\n#******");        }
       for(j=1;j<=cptcoveff;j++) {        for(i=iagemin; i <= iagemax+3; i++){  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       fprintf(ficresf,"******\n");            posprop += prop[jk][i]; 
       fprintf(ficresf,"# StartingAge FinalAge");          } 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
                for(jk=1; jk <=nlstate ; jk++){     
                  if( i <=  iagemax){ 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              if(posprop>=1.e-5){ 
         fprintf(ficresf,"\n");                probs[i][jk][j1]= prop[jk][i]/posprop;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                } 
             } 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          }/* end jk */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }/* end i */ 
           nhstepm = nhstepm/hstepm;      } /* end i1 */
              } /* end k1 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /*free_vector(pp,1,nlstate);*/
            free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           for (h=0; h<=nhstepm; h++){  }  /* End of prevalence */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  /************* Waves Concatenation ***************/
             }  
             for(j=1; j<=nlstate+ndeath;j++) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
               kk1=0.;kk2=0;  {
               for(i=1; i<=nlstate;i++) {                  /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                 if (mobilav==1)       Death is a valid wave (if date is known).
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                 else {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       and mw[mi+1][i]. dh depends on stepm.
                 }       */
                  
               }    int i, mi, m;
               if (h==(int)(calagedate+12*cpt)){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                 fprintf(ficresf," %.3f", kk1);       double sum=0., jmean=0.;*/
                            int first;
               }    int j, k=0,jk, ju, jl;
             }    double sum=0.;
           }    first=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    jmin=1e+5;
         }    jmax=-1;
       }    jmean=0.;
     }    for(i=1; i<=imx; i++){
   }      mi=0;
              m=firstpass;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   fclose(ficresf);          mw[++mi][i]=m;
 }        if(m >=lastpass)
 /************** Forecasting ******************/          break;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        else
            m++;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      }/* end while */
   int *popage;      if (s[m][i] > nlstate){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        mi++;     /* Death is another wave */
   double *popeffectif,*popcount;        /* if(mi==0)  never been interviewed correctly before death */
   double ***p3mat,***tabpop,***tabpopprev;           /* Only death is a correct wave */
   char filerespop[FILENAMELENGTH];        mw[mi][i]=m;
       }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      wav[i]=mi;
   agelim=AGESUP;      if(mi==0){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        nbwarn++;
          if(first==0){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
            first=1;
          }
   strcpy(filerespop,"pop");        if(first==1){
   strcat(filerespop,fileres);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", filerespop);      } /* end mi==0 */
   }    } /* End individuals */
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
     for(i=1; i<=imx; i++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
   if (mobilav==1) {          dh[mi][i]=1;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        else{
     movingaverage(agedeb, fage, ageminpar, mobaverage);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   }            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   stepsize=(int) (stepm+YEARM-1)/YEARM;              if(j==0) j=1;  /* Survives at least one month after exam */
   if (stepm<=12) stepsize=1;              else if(j<0){
                  nberr++;
   agelim=AGESUP;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  j=1; /* Temporary Dangerous patch */
   hstepm=1;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   hstepm=hstepm/stepm;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   if (popforecast==1) {              }
     if((ficpop=fopen(popfile,"r"))==NULL) {              k=k+1;
       printf("Problem with population file : %s\n",popfile);exit(0);              if (j >= jmax){
     }                jmax=j;
     popage=ivector(0,AGESUP);                ijmax=i;
     popeffectif=vector(0,AGESUP);              }
     popcount=vector(0,AGESUP);              if (j <= jmin){
                    jmin=j;
     i=1;                  ijmin=i;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              }
                  sum=sum+j;
     imx=i;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   }            }
           }
   for(cptcov=1;cptcov<=i2;cptcov++){          else{
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       k=k+1;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {            k=k+1;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if (j >= jmax) {
       }              jmax=j;
       fprintf(ficrespop,"******\n");              ijmax=i;
       fprintf(ficrespop,"# Age");            }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            else if (j <= jmin){
       if (popforecast==1)  fprintf(ficrespop," [Population]");              jmin=j;
                    ijmin=i;
       for (cpt=0; cpt<=0;cpt++) {            }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                    /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            if(j<0){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              nberr++;
           nhstepm = nhstepm/hstepm;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                        fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;            sum=sum+j;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
                  jk= j/stepm;
           for (h=0; h<=nhstepm; h++){          jl= j -jk*stepm;
             if (h==(int) (calagedate+YEARM*cpt)) {          ju= j -(jk+1)*stepm;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             }            if(jl==0){
             for(j=1; j<=nlstate+ndeath;j++) {              dh[mi][i]=jk;
               kk1=0.;kk2=0;              bh[mi][i]=0;
               for(i=1; i<=nlstate;i++) {                          }else{ /* We want a negative bias in order to only have interpolation ie
                 if (mobilav==1)                    * at the price of an extra matrix product in likelihood */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              dh[mi][i]=jk+1;
                 else {              bh[mi][i]=ju;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            }
                 }          }else{
               }            if(jl <= -ju){
               if (h==(int)(calagedate+12*cpt)){              dh[mi][i]=jk;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              bh[mi][i]=jl;       /* bias is positive if real duration
                   /*fprintf(ficrespop," %.3f", kk1);                                   * is higher than the multiple of stepm and negative otherwise.
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                                   */
               }            }
             }            else{
             for(i=1; i<=nlstate;i++){              dh[mi][i]=jk+1;
               kk1=0.;              bh[mi][i]=ju;
                 for(j=1; j<=nlstate;j++){            }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            if(dh[mi][i]==0){
                 }              dh[mi][i]=1; /* At least one step */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              bh[mi][i]=ju; /* At least one step */
             }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          } /* end if mle */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        }
           }      } /* end wave */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }    jmean=sum/k;
       }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
      fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   /******/   }
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  /*********** Tricode ****************************/
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    void tricode(int *Tvar, int **nbcode, int imx)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;    int Ndum[20],ij=1, k, j, i, maxncov=19;
              int cptcode=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    cptcoveff=0; 
           oldm=oldms;savm=savms;   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for (k=0; k<maxncov; k++) Ndum[k]=0;
           for (h=0; h<=nhstepm; h++){    for (k=1; k<=7; k++) ncodemax[k]=0;
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
             for(j=1; j<=nlstate+ndeath;j++) {                                 modality*/ 
               kk1=0.;kk2=0;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
               for(i=1; i<=nlstate;i++) {                      Ndum[ij]++; /*store the modality */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
               }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                                         Tvar[j]. If V=sex and male is 0 and 
             }                                         female is 1, then  cptcode=1.*/
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      for (i=0; i<=cptcode; i++) {
       }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
    }      }
   }  
        ij=1; 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
   if (popforecast==1) {          if (Ndum[k] != 0) {
     free_ivector(popage,0,AGESUP);            nbcode[Tvar[j]][ij]=k; 
     free_vector(popeffectif,0,AGESUP);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     free_vector(popcount,0,AGESUP);            
   }            ij++;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (ij > ncodemax[j]) break; 
   fclose(ficrespop);        }  
 }      } 
     }  
 /***********************************************/  
 /**************** Main Program *****************/   for (k=0; k< maxncov; k++) Ndum[k]=0;
 /***********************************************/  
    for (i=1; i<=ncovmodel-2; i++) { 
 int main(int argc, char *argv[])     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 {     ij=Tvar[i];
      Ndum[ij]++;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;   }
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;   ij=1;
    for (i=1; i<= maxncov; i++) {
   double fret;     if((Ndum[i]!=0) && (i<=ncovcol)){
   double **xi,tmp,delta;       Tvaraff[ij]=i; /*For printing */
        ij++;
   double dum; /* Dummy variable */     }
   double ***p3mat;   }
   int *indx;   
   char line[MAXLINE], linepar[MAXLINE];   cptcoveff=ij-1; /*Number of simple covariates*/
   char title[MAXLINE];  }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  /*********** Health Expectancies ****************/
    
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   char filerest[FILENAMELENGTH];  {
   char fileregp[FILENAMELENGTH];    /* Health expectancies, no variances */
   char popfile[FILENAMELENGTH];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    int nhstepma, nstepma; /* Decreasing with age */
   int firstobs=1, lastobs=10;    double age, agelim, hf;
   int sdeb, sfin; /* Status at beginning and end */    double ***p3mat;
   int c,  h , cpt,l;    double eip;
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    pstamp(ficreseij);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   int mobilav=0,popforecast=0;    fprintf(ficreseij,"# Age");
   int hstepm, nhstepm;    for(i=1; i<=nlstate;i++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
   double bage, fage, age, agelim, agebase;      }
   double ftolpl=FTOL;      fprintf(ficreseij," e%1d. ",i);
   double **prlim;    }
   double *severity;    fprintf(ficreseij,"\n");
   double ***param; /* Matrix of parameters */  
   double  *p;    
   double **matcov; /* Matrix of covariance */    if(estepm < stepm){
   double ***delti3; /* Scale */      printf ("Problem %d lower than %d\n",estepm, stepm);
   double *delti; /* Scale */    }
   double ***eij, ***vareij;    else  hstepm=estepm;   
   double **varpl; /* Variances of prevalence limits by age */    /* We compute the life expectancy from trapezoids spaced every estepm months
   double *epj, vepp;     * This is mainly to measure the difference between two models: for example
   double kk1, kk2;     * if stepm=24 months pijx are given only every 2 years and by summing them
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   char version[80]="Imach version 0.8b, March 2002, INED-EUROREVES ";     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   char *alph[]={"a","a","b","c","d","e"}, str[4];     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   char z[1]="c", occ;  
 #include <sys/time.h>    /* For example we decided to compute the life expectancy with the smallest unit */
 #include <time.h>    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   /* long total_usecs;       Look at hpijx to understand the reason of that which relies in memory size
   struct timeval start_time, end_time;       and note for a fixed period like estepm months */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */       survival function given by stepm (the optimization length). Unfortunately it
   getcwd(pathcd, size);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   printf("\n%s",version);       results. So we changed our mind and took the option of the best precision.
   if(argc <=1){    */
     printf("\nEnter the parameter file name: ");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     scanf("%s",pathtot);  
   }    agelim=AGESUP;
   else{    /* If stepm=6 months */
     strcpy(pathtot,argv[1]);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      
   /*cygwin_split_path(pathtot,path,optionfile);  /* nhstepm age range expressed in number of stepm */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /* cutv(path,optionfile,pathtot,'\\');*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   chdir(path);  
   replace(pathc,path);    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 /*-------- arguments in the command line --------*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   strcpy(fileres,"r");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
   /*---------arguments file --------*/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     printf("Problem with optionfile %s\n",optionfile);      
     goto end;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      
       printf("%d|",(int)age);fflush(stdout);
   strcpy(filereso,"o");      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   strcat(filereso,fileres);      
   if((ficparo=fopen(filereso,"w"))==NULL) {      /* Computing expectancies */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* Reads comments: lines beginning with '#' */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   while((c=getc(ficpar))=='#' && c!= EOF){            
     ungetc(c,ficpar);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fgets(line, MAXLINE, ficpar);  
     puts(line);          }
     fputs(line,ficparo);  
   }      fprintf(ficreseij,"%3.0f",age );
   ungetc(c,ficpar);      for(i=1; i<=nlstate;i++){
         eip=0;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for(j=1; j<=nlstate;j++){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          eip +=eij[i][j][(int)age];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        fprintf(ficreseij,"%9.4f", eip );
     fgets(line, MAXLINE, ficpar);      }
     puts(line);      fprintf(ficreseij,"\n");
     fputs(line,ficparo);      
   }    }
   ungetc(c,ficpar);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
        fprintf(ficlog,"\n");
   covar=matrix(0,NCOVMAX,1,n);    
   cptcovn=0;  }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  {
      /* Covariances of health expectancies eij and of total life expectancies according
   /* Read guess parameters */     to initial status i, ei. .
   /* Reads comments: lines beginning with '#' */    */
   while((c=getc(ficpar))=='#' && c!= EOF){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     ungetc(c,ficpar);    int nhstepma, nstepma; /* Decreasing with age */
     fgets(line, MAXLINE, ficpar);    double age, agelim, hf;
     puts(line);    double ***p3matp, ***p3matm, ***varhe;
     fputs(line,ficparo);    double **dnewm,**doldm;
   }    double *xp, *xm;
   ungetc(c,ficpar);    double **gp, **gm;
      double ***gradg, ***trgradg;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int theta;
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    double eip, vip;
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       printf("%1d%1d",i,j);    xp=vector(1,npar);
       for(k=1; k<=ncovmodel;k++){    xm=vector(1,npar);
         fscanf(ficpar," %lf",&param[i][j][k]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
         printf(" %lf",param[i][j][k]);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficparo," %lf",param[i][j][k]);    
       }    pstamp(ficresstdeij);
       fscanf(ficpar,"\n");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       printf("\n");    fprintf(ficresstdeij,"# Age");
       fprintf(ficparo,"\n");    for(i=1; i<=nlstate;i++){
     }      for(j=1; j<=nlstate;j++)
          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficresstdeij," e%1d. ",i);
     }
   p=param[1][1];    fprintf(ficresstdeij,"\n");
    
   /* Reads comments: lines beginning with '#' */    pstamp(ficrescveij);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     ungetc(c,ficpar);    fprintf(ficrescveij,"# Age");
     fgets(line, MAXLINE, ficpar);    for(i=1; i<=nlstate;i++)
     puts(line);      for(j=1; j<=nlstate;j++){
     fputs(line,ficparo);        cptj= (j-1)*nlstate+i;
   }        for(i2=1; i2<=nlstate;i2++)
   ungetc(c,ficpar);          for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            if(cptj2 <= cptj)
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   for(i=1; i <=nlstate; i++){          }
     for(j=1; j <=nlstate+ndeath-1; j++){      }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficrescveij,"\n");
       printf("%1d%1d",i,j);    
       fprintf(ficparo,"%1d%1d",i1,j1);    if(estepm < stepm){
       for(k=1; k<=ncovmodel;k++){      printf ("Problem %d lower than %d\n",estepm, stepm);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    }
         printf(" %le",delti3[i][j][k]);    else  hstepm=estepm;   
         fprintf(ficparo," %le",delti3[i][j][k]);    /* We compute the life expectancy from trapezoids spaced every estepm months
       }     * This is mainly to measure the difference between two models: for example
       fscanf(ficpar,"\n");     * if stepm=24 months pijx are given only every 2 years and by summing them
       printf("\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficparo,"\n");     * progression in between and thus overestimating or underestimating according
     }     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   delti=delti3[1][1];     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   /* Reads comments: lines beginning with '#' */     * curvature will be obtained if estepm is as small as stepm. */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
     fgets(line, MAXLINE, ficpar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     puts(line);       nhstepm is the number of hstepm from age to agelim 
     fputs(line,ficparo);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   ungetc(c,ficpar);       and note for a fixed period like estepm months */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   matcov=matrix(1,npar,1,npar);       survival function given by stepm (the optimization length). Unfortunately it
   for(i=1; i <=npar; i++){       means that if the survival funtion is printed only each two years of age and if
     fscanf(ficpar,"%s",&str);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     printf("%s",str);       results. So we changed our mind and took the option of the best precision.
     fprintf(ficparo,"%s",str);    */
     for(j=1; j <=i; j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);    /* If stepm=6 months */
       fprintf(ficparo," %.5le",matcov[i][j]);    /* nhstepm age range expressed in number of stepm */
     }    agelim=AGESUP;
     fscanf(ficpar,"\n");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     printf("\n");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficparo,"\n");    /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   for(i=1; i <=npar; i++)    
     for(j=i+1;j<=npar;j++)    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       matcov[i][j]=matcov[j][i];    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   printf("\n");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */    for (age=bage; age<=fage; age ++){ 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
      strcat(rfileres,".");    /* */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      /* if (stepm >= YEARM) hstepm=1;*/
     if((ficres =fopen(rfileres,"w"))==NULL) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     }      /* If stepm=6 months */
     fprintf(ficres,"#%s\n",version);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     /*-------- data file ----------*/      
     if((fic=fopen(datafile,"r"))==NULL)    {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     n= lastobs;         decrease memory allocation */
     severity = vector(1,maxwav);      for(theta=1; theta <=npar; theta++){
     outcome=imatrix(1,maxwav+1,1,n);        for(i=1; i<=npar; i++){ 
     num=ivector(1,n);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     moisnais=vector(1,n);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     annais=vector(1,n);        }
     moisdc=vector(1,n);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     andc=vector(1,n);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     agedc=vector(1,n);    
     cod=ivector(1,n);        for(j=1; j<= nlstate; j++){
     weight=vector(1,n);          for(i=1; i<=nlstate; i++){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            for(h=0; h<=nhstepm-1; h++){
     mint=matrix(1,maxwav,1,n);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     anint=matrix(1,maxwav,1,n);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     s=imatrix(1,maxwav+1,1,n);            }
     adl=imatrix(1,maxwav+1,1,n);              }
     tab=ivector(1,NCOVMAX);        }
     ncodemax=ivector(1,8);       
         for(ij=1; ij<= nlstate*nlstate; ij++)
     i=1;          for(h=0; h<=nhstepm-1; h++){
     while (fgets(line, MAXLINE, fic) != NULL)    {            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       if ((i >= firstobs) && (i <=lastobs)) {          }
              }/* End theta */
         for (j=maxwav;j>=1;j--){      
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      
           strcpy(line,stra);      for(h=0; h<=nhstepm-1; h++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<=nlstate*nlstate;j++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(theta=1; theta <=npar; theta++)
         }            trgradg[h][j][theta]=gradg[h][theta][j];
              
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          varhe[ij][ji][(int)age] =0.;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
        printf("%d|",(int)age);fflush(stdout);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for (j=ncovcol;j>=1;j--){       for(h=0;h<=nhstepm-1;h++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(k=0;k<=nhstepm-1;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         num[i]=atol(stra);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                  for(ij=1;ij<=nlstate*nlstate;ij++)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            for(ji=1;ji<=nlstate*nlstate;ji++)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
         i=i+1;      }
       }  
     }      /* Computing expectancies */
     /* printf("ii=%d", ij);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        scanf("%d",i);*/      for(i=1; i<=nlstate;i++)
   imx=i-1; /* Number of individuals */        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* for (i=1; i<=imx; i++){            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/          }
    
   /* for (i=1; i<=imx; i++){      fprintf(ficresstdeij,"%3.0f",age );
      if (s[4][i]==9)  s[4][i]=-1;      for(i=1; i<=nlstate;i++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}        eip=0.;
   */        vip=0.;
          for(j=1; j<=nlstate;j++){
   /* Calculation of the number of parameter from char model*/          eip += eij[i][j][(int)age];
   Tvar=ivector(1,15);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   Tprod=ivector(1,15);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   Tvaraff=ivector(1,15);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   Tvard=imatrix(1,15,1,2);        }
   Tage=ivector(1,15);              fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
          }
   if (strlen(model) >1){      fprintf(ficresstdeij,"\n");
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');      fprintf(ficrescveij,"%3.0f",age );
     j1=nbocc(model,'*');      for(i=1; i<=nlstate;i++)
     cptcovn=j+1;        for(j=1; j<=nlstate;j++){
     cptcovprod=j1;          cptj= (j-1)*nlstate+i;
              for(i2=1; i2<=nlstate;i2++)
     strcpy(modelsav,model);            for(j2=1; j2<=nlstate;j2++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              cptj2= (j2-1)*nlstate+i2;
       printf("Error. Non available option model=%s ",model);              if(cptj2 <= cptj)
       goto end;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     }            }
            }
     for(i=(j+1); i>=1;i--){      fprintf(ficrescveij,"\n");
       cutv(stra,strb,modelsav,'+');     
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       /*scanf("%d",i);*/    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       if (strchr(strb,'*')) {    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         cutv(strd,strc,strb,'*');    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         if (strcmp(strc,"age")==0) {    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cptcovprod--;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cutv(strb,stre,strd,'V');    printf("\n");
           Tvar[i]=atoi(stre);    fprintf(ficlog,"\n");
           cptcovage++;  
             Tage[cptcovage]=i;    free_vector(xm,1,npar);
             /*printf("stre=%s ", stre);*/    free_vector(xp,1,npar);
         }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         else if (strcmp(strd,"age")==0) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           cptcovprod--;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           cutv(strb,stre,strc,'V');  }
           Tvar[i]=atoi(stre);  
           cptcovage++;  /************ Variance ******************/
           Tage[cptcovage]=i;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         }  {
         else {    /* Variance of health expectancies */
           cutv(strb,stre,strc,'V');    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           Tvar[i]=ncovcol+k1;    /* double **newm;*/
           cutv(strb,strc,strd,'V');    double **dnewm,**doldm;
           Tprod[k1]=i;    double **dnewmp,**doldmp;
           Tvard[k1][1]=atoi(strc);    int i, j, nhstepm, hstepm, h, nstepm ;
           Tvard[k1][2]=atoi(stre);    int k, cptcode;
           Tvar[cptcovn+k2]=Tvard[k1][1];    double *xp;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    double **gp, **gm;  /* for var eij */
           for (k=1; k<=lastobs;k++)    double ***gradg, ***trgradg; /*for var eij */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double **gradgp, **trgradgp; /* for var p point j */
           k1++;    double *gpp, *gmp; /* for var p point j */
           k2=k2+2;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         }    double ***p3mat;
       }    double age,agelim, hf;
       else {    double ***mobaverage;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    int theta;
        /*  scanf("%d",i);*/    char digit[4];
       cutv(strd,strc,strb,'V');    char digitp[25];
       Tvar[i]=atoi(strc);  
       }    char fileresprobmorprev[FILENAMELENGTH];
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    if(popbased==1){
         scanf("%d",i);*/      if(mobilav!=0)
     }        strcpy(digitp,"-populbased-mobilav-");
 }      else strcpy(digitp,"-populbased-nomobil-");
      }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    else 
   printf("cptcovprod=%d ", cptcovprod);      strcpy(digitp,"-stablbased-");
   scanf("%d ",i);*/  
     fclose(fic);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     /*  if(mle==1){*/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     if (weightopt != 1) { /* Maximisation without weights*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       for(i=1;i<=n;i++) weight[i]=1.0;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     }      }
     /*-calculation of age at interview from date of interview and age at death -*/    }
     agev=matrix(1,maxwav,1,imx);  
     strcpy(fileresprobmorprev,"prmorprev"); 
     for (i=1; i<=imx; i++) {    sprintf(digit,"%-d",ij);
       for(m=2; (m<= maxwav); m++) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
          anint[m][i]=9999;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
          s[m][i]=-1;    strcat(fileresprobmorprev,fileres);
        }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for (i=1; i<=imx; i++)  {   
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(m=1; (m<= maxwav); m++){    pstamp(ficresprobmorprev);
         if(s[m][i] >0){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           if (s[m][i] >= nlstate+1) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             if(agedc[i]>0)    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               if(moisdc[i]!=99 && andc[i]!=9999)      fprintf(ficresprobmorprev," p.%-d SE",j);
                 agev[m][i]=agedc[i];      for(i=1; i<=nlstate;i++)
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
            else {    }  
               if (andc[i]!=9999){    fprintf(ficresprobmorprev,"\n");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    fprintf(ficgp,"\n# Routine varevsij");
               agev[m][i]=-1;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
               }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           }  /*   } */
           else if(s[m][i] !=9){ /* Should no more exist */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    pstamp(ficresvij);
             if(mint[m][i]==99 || anint[m][i]==9999)    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
               agev[m][i]=1;    if(popbased==1)
             else if(agev[m][i] <agemin){      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
               agemin=agev[m][i];    else
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
             }    fprintf(ficresvij,"# Age");
             else if(agev[m][i] >agemax){    for(i=1; i<=nlstate;i++)
               agemax=agev[m][i];      for(j=1; j<=nlstate;j++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
             }    fprintf(ficresvij,"\n");
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/    xp=vector(1,npar);
           }    dnewm=matrix(1,nlstate,1,npar);
           else { /* =9 */    doldm=matrix(1,nlstate,1,nlstate);
             agev[m][i]=1;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             s[m][i]=-1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }  
         }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         else /*= 0 Unknown */    gpp=vector(nlstate+1,nlstate+ndeath);
           agev[m][i]=1;    gmp=vector(nlstate+1,nlstate+ndeath);
       }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        
     }    if(estepm < stepm){
     for (i=1; i<=imx; i++)  {      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(m=1; (m<= maxwav); m++){    }
         if (s[m][i] > (nlstate+ndeath)) {    else  hstepm=estepm;   
           printf("Error: Wrong value in nlstate or ndeath\n");      /* For example we decided to compute the life expectancy with the smallest unit */
           goto end;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         }       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
     free_vector(severity,1,maxwav);       means that if the survival funtion is printed every two years of age and if
     free_imatrix(outcome,1,maxwav+1,1,n);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     free_vector(moisnais,1,n);       results. So we changed our mind and took the option of the best precision.
     free_vector(annais,1,n);    */
     /* free_matrix(mint,1,maxwav,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        free_matrix(anint,1,maxwav,1,n);*/    agelim = AGESUP;
     free_vector(moisdc,1,n);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     free_vector(andc,1,n);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     wav=ivector(1,imx);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      gp=matrix(0,nhstepm,1,nlstate);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      gm=matrix(0,nhstepm,1,nlstate);
      
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
       Tcode=ivector(1,100);        }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       ncodemax[1]=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
              if (popbased==1) {
    codtab=imatrix(1,100,1,10);          if(mobilav ==0){
    h=0;            for(i=1; i<=nlstate;i++)
    m=pow(2,cptcoveff);              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
    for(k=1;k<=cptcoveff; k++){            for(i=1; i<=nlstate;i++)
      for(i=1; i <=(m/pow(2,k));i++){              prlim[i][i]=mobaverage[(int)age][i][ij];
        for(j=1; j <= ncodemax[k]; j++){          }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        }
            h++;    
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        for(j=1; j<= nlstate; j++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          for(h=0; h<=nhstepm; h++){
          }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
        }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
      }          }
    }        }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        /* This for computing probability of death (h=1 means
       codtab[1][2]=1;codtab[2][2]=2; */           computed over hstepm matrices product = hstepm*stepm months) 
    /* for(i=1; i <=m ;i++){           as a weighted average of prlim.
       for(k=1; k <=cptcovn; k++){        */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       printf("\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
       scanf("%d",i);*/        /* end probability of death */
      
    /* Calculates basic frequencies. Computes observed prevalence at single age        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
        and prints on file fileres'p'. */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (popbased==1) {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if(mobilav ==0){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(i=1; i<=nlstate;i++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              prlim[i][i]=probs[(int)age][i][ij];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          }else{ /* mobilav */ 
                  for(i=1; i<=nlstate;i++)
     /* For Powell, parameters are in a vector p[] starting at p[1]              prlim[i][i]=mobaverage[(int)age][i][ij];
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        }
   
     if(mle==1){        for(j=1; j<= nlstate; j++){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                  gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     /*--------- results files --------------*/          }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        }
          /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
    jk=1;           as a weighted average of prlim.
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    for(i=1,jk=1; i <=nlstate; i++){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
      for(k=1; k <=(nlstate+ndeath); k++){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
        if (k != i)        }    
          {        /* end probability of death */
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);        for(j=1; j<= nlstate; j++) /* vareij */
            for(j=1; j <=ncovmodel; j++){          for(h=0; h<=nhstepm; h++){
              printf("%f ",p[jk]);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
              fprintf(ficres,"%f ",p[jk]);          }
              jk++;  
            }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            printf("\n");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
            fprintf(ficres,"\n");        }
          }  
      }      } /* End theta */
    }  
  if(mle==1){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */      for(h=0; h<=nhstepm; h++) /* veij */
     hesscov(matcov, p, npar, delti, ftolhess, func);        for(j=1; j<=nlstate;j++)
  }          for(theta=1; theta <=npar; theta++)
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            trgradg[h][j][theta]=gradg[h][theta][j];
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       for(j=1; j <=nlstate+ndeath; j++){        for(theta=1; theta <=npar; theta++)
         if (j!=i) {          trgradgp[j][theta]=gradgp[theta][j];
           fprintf(ficres,"%1d%1d",i,j);    
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             printf(" %.5e",delti[jk]);      for(i=1;i<=nlstate;i++)
             fprintf(ficres," %.5e",delti[jk]);        for(j=1;j<=nlstate;j++)
             jk++;          vareij[i][j][(int)age] =0.;
           }  
           printf("\n");      for(h=0;h<=nhstepm;h++){
           fprintf(ficres,"\n");        for(k=0;k<=nhstepm;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
      }          for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
     k=1;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      }
     for(i=1;i<=npar;i++){    
       /*  if (k>nlstate) k=1;      /* pptj */
       i1=(i-1)/(ncovmodel*nlstate)+1;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       printf("%s%d%d",alph[k],i1,tab[i]);*/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fprintf(ficres,"%3d",i);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       printf("%3d",i);          varppt[j][i]=doldmp[j][i];
       for(j=1; j<=i;j++){      /* end ppptj */
         fprintf(ficres," %.5e",matcov[i][j]);      /*  x centered again */
         printf(" %.5e",matcov[i][j]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       fprintf(ficres,"\n");   
       printf("\n");      if (popbased==1) {
       k++;        if(mobilav ==0){
     }          for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
     while((c=getc(ficpar))=='#' && c!= EOF){        }else{ /* mobilav */ 
       ungetc(c,ficpar);          for(i=1; i<=nlstate;i++)
       fgets(line, MAXLINE, ficpar);            prlim[i][i]=mobaverage[(int)age][i][ij];
       puts(line);        }
       fputs(line,ficparo);      }
     }               
     ungetc(c,ficpar);      /* This for computing probability of death (h=1 means
     estepm=0;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);         as a weighted average of prlim.
     if (estepm==0 || estepm < stepm) estepm=stepm;      */
     if (fage <= 2) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       bage = ageminpar;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       fage = agemaxpar;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
          /* end probability of death */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=nlstate;i++){
     ungetc(c,ficpar);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      } 
     fputs(line,ficparo);      fprintf(ficresprobmorprev,"\n");
   }  
   ungetc(c,ficpar);      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        for(j=1; j<=nlstate;j++){
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
            fprintf(ficresvij,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){      free_matrix(gp,0,nhstepm,1,nlstate);
     ungetc(c,ficpar);      free_matrix(gm,0,nhstepm,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     puts(line);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     fputs(line,ficparo);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    } /* End age */
   ungetc(c,ficpar);    free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   fprintf(ficparo,"pop_based=%d\n",popbased);    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficres,"pop_based=%d\n",popbased);    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     ungetc(c,ficpar);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     puts(line);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fputs(line,ficparo);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   ungetc(c,ficpar);  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
 while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     fgets(line, MAXLINE, ficpar);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     puts(line);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fputs(line,ficparo);    fclose(ficresprobmorprev);
   }    fflush(ficgp);
   ungetc(c,ficpar);    fflush(fichtm); 
   }  /* end varevsij */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /************ Variance of prevlim ******************/
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 /*------------ gnuplot -------------*/    double **newm;
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
 /*------------ free_vector  -------------*/    int k, cptcode;
  chdir(path);    double *xp;
      double *gp, *gm;
  free_ivector(wav,1,imx);    double **gradg, **trgradg;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double age,agelim;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      int theta;
  free_ivector(num,1,n);    
  free_vector(agedc,1,n);    pstamp(ficresvpl);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
  fclose(ficparo);    fprintf(ficresvpl,"# Age");
  fclose(ficres);    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
 /*--------- index.htm --------*/    fprintf(ficresvpl,"\n");
   
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   /*--------------- Prevalence limit --------------*/    
      hstepm=1*YEARM; /* Every year of age */
   strcpy(filerespl,"pl");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   strcat(filerespl,fileres);    agelim = AGESUP;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   }      if (stepm >= YEARM) hstepm=1;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   fprintf(ficrespl,"#Prevalence limit\n");      gradg=matrix(1,npar,1,nlstate);
   fprintf(ficrespl,"#Age ");      gp=vector(1,nlstate);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      gm=vector(1,nlstate);
   fprintf(ficrespl,"\n");  
        for(theta=1; theta <=npar; theta++){
   prlim=matrix(1,nlstate,1,nlstate);        for(i=1; i<=npar; i++){ /* Computes gradient */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1;i<=nlstate;i++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          gp[i] = prlim[i][i];
   k=0;      
   agebase=ageminpar;        for(i=1; i<=npar; i++) /* Computes gradient */
   agelim=agemaxpar;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   ftolpl=1.e-10;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   i1=cptcoveff;        for(i=1;i<=nlstate;i++)
   if (cptcovn < 1){i1=1;}          gm[i] = prlim[i][i];
   
   for(cptcov=1;cptcov<=i1;cptcov++){        for(i=1;i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         k=k+1;      } /* End theta */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");      trgradg =matrix(1,nlstate,1,npar);
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=1; j<=nlstate;j++)
         fprintf(ficrespl,"******\n");        for(theta=1; theta <=npar; theta++)
                  trgradg[j][theta]=gradg[theta][j];
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(i=1;i<=nlstate;i++)
           fprintf(ficrespl,"%.0f",age );        varpl[i][(int)age] =0.;
           for(i=1; i<=nlstate;i++)      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           fprintf(ficrespl," %.5f", prlim[i][i]);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           fprintf(ficrespl,"\n");      for(i=1;i<=nlstate;i++)
         }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       }  
     }      fprintf(ficresvpl,"%.0f ",age );
   fclose(ficrespl);      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   /*------------- h Pij x at various ages ------------*/      fprintf(ficresvpl,"\n");
        free_vector(gp,1,nlstate);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      free_vector(gm,1,nlstate);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      free_matrix(gradg,1,npar,1,nlstate);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      free_matrix(trgradg,1,nlstate,1,npar);
   }    } /* End age */
   printf("Computing pij: result on file '%s' \n", filerespij);  
      free_vector(xp,1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_matrix(doldm,1,nlstate,1,npar);
   /*if (stepm<=24) stepsize=2;*/    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   agelim=AGESUP;  }
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  /************ Variance of one-step probabilities  ******************/
    void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   k=0;  {
   for(cptcov=1;cptcov<=i1;cptcov++){    int i, j=0,  i1, k1, l1, t, tj;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int k2, l2, j1,  z1;
       k=k+1;    int k=0,l, cptcode;
         fprintf(ficrespij,"\n#****** ");    int first=1, first1;
         for(j=1;j<=cptcoveff;j++)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **dnewm,**doldm;
         fprintf(ficrespij,"******\n");    double *xp;
            double *gp, *gm;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    double **gradg, **trgradg;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double **mu;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double age,agelim, cov[NCOVMAX];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           oldm=oldms;savm=savms;    int theta;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      char fileresprob[FILENAMELENGTH];
           fprintf(ficrespij,"# Age");    char fileresprobcov[FILENAMELENGTH];
           for(i=1; i<=nlstate;i++)    char fileresprobcor[FILENAMELENGTH];
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    double ***varpij;
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){    strcpy(fileresprob,"prob"); 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    strcat(fileresprob,fileres);
             for(i=1; i<=nlstate;i++)    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
               for(j=1; j<=nlstate+ndeath;j++)      printf("Problem with resultfile: %s\n", fileresprob);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
             fprintf(ficrespij,"\n");    }
           }    strcpy(fileresprobcov,"probcov"); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprobcov,fileres);
           fprintf(ficrespij,"\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", fileresprobcov);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }    }
     strcpy(fileresprobcor,"probcor"); 
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   fclose(ficrespij);      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   /*---------- Forecasting ------------------*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   if((stepm == 1) && (strcmp(model,".")==0)){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     free_matrix(mint,1,maxwav,1,n);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     free_vector(weight,1,n);}    pstamp(ficresprob);
   else{    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     erreur=108;    fprintf(ficresprob,"# Age");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    pstamp(ficresprobcov);
   }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
   /*---------- Health expectancies and variances ------------*/    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   strcpy(filerest,"t");  
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    for(i=1; i<=nlstate;i++)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for(j=1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
   strcpy(filerese,"e");   /* fprintf(ficresprob,"\n");
   strcat(filerese,fileres);    fprintf(ficresprobcov,"\n");
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fprintf(ficresprobcor,"\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   */
   }   xp=vector(1,npar);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  strcpy(fileresv,"v");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   strcat(fileresv,fileres);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    first=1;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    fprintf(ficgp,"\n# Routine varprob");
   }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(fichtm,"\n");
   
   k=0;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    file %s<br>\n",optionfilehtmcov);
       k=k+1;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       fprintf(ficrest,"\n#****** ");  and drawn. It helps understanding how is the covariance between two incidences.\
       for(j=1;j<=cptcoveff;j++)   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fprintf(ficrest,"******\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       fprintf(ficreseij,"\n#****** ");  standard deviations wide on each axis. <br>\
       for(j=1;j<=cptcoveff;j++)   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       fprintf(ficreseij,"******\n");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
       fprintf(ficresvij,"\n#****** ");    cov[1]=1;
       for(j=1;j<=cptcoveff;j++)    tj=cptcoveff;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       fprintf(ficresvij,"******\n");    j1=0;
     for(t=1; t<=tj;t++){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(i1=1; i1<=ncodemax[t];i1++){ 
       oldm=oldms;savm=savms;        j1++;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);          if  (cptcovn>0) {
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficresprob, "\n#********** Variable "); 
       oldm=oldms;savm=savms;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          fprintf(ficresprob, "**********\n#\n");
              fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcov, "**********\n#\n");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          fprintf(ficgp, "\n#********** Variable "); 
       fprintf(ficrest,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
       epj=vector(1,nlstate+1);          
       for(age=bage; age <=fage ;age++){          
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         if (popbased==1) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(i=1; i<=nlstate;i++)          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
             prlim[i][i]=probs[(int)age][i][k];          
         }          fprintf(ficresprobcor, "\n#********** Variable ");    
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrest," %4.0f",age);          fprintf(ficresprobcor, "**********\n#");    
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        for (age=bage; age<=fage; age ++){ 
           }          cov[2]=age;
           epj[nlstate+1] +=epj[j];          for (k=1; k<=cptcovn;k++) {
         }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         for(i=1, vepp=0.;i <=nlstate;i++)          }
           for(j=1;j <=nlstate;j++)          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             vepp += vareij[i][j][(int)age];          for (k=1; k<=cptcovprod;k++)
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(j=1;j <=nlstate;j++){          
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         fprintf(ficrest,"\n");          gp=vector(1,(nlstate)*(nlstate+ndeath));
       }          gm=vector(1,(nlstate)*(nlstate+ndeath));
     }      
   }          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
   fclose(ficreseij);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   fclose(ficresvij);            
   fclose(ficrest);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fclose(ficpar);            
   free_vector(epj,1,nlstate+1);            k=0;
              for(i=1; i<= (nlstate); i++){
   /*------- Variance limit prevalence------*/                for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   strcpy(fileresvpl,"vpl");                gp[k]=pmmij[i][j];
   strcat(fileresvpl,fileres);              }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            
     exit(0);            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   k=0;            k=0;
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=(nlstate); i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              for(j=1; j<=(nlstate+ndeath);j++){
       k=k+1;                k=k+1;
       fprintf(ficresvpl,"\n#****** ");                gm[k]=pmmij[i][j];
       for(j=1;j<=cptcoveff;j++)              }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficresvpl,"******\n");       
                  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       varpl=matrix(1,nlstate,(int) bage, (int) fage);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       oldm=oldms;savm=savms;          }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
  }            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
   fclose(ficresvpl);          
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   /*---------- End : free ----------------*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    
            pmij(pmmij,cov,ncovmodel,x,nlstate);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          k=0;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          for(i=1; i<=(nlstate); i++){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
   free_matrix(matcov,1,npar,1,npar);              mu[k][(int) age]=pmmij[i][j];
   free_vector(delti,1,npar);            }
   free_matrix(agev,1,maxwav,1,imx);          }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   if(erreur >0)              varpij[i][j][(int)age] = doldm[i][j];
     printf("End of Imach with error or warning %d\n",erreur);  
   else   printf("End of Imach\n");          /*printf("\n%d ",(int)age);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   /*printf("Total time was %d uSec.\n", total_usecs);*/            }*/
   /*------ End -----------*/  
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
  end:          fprintf(ficresprobcor,"\n%d ",(int)age);
 #ifdef windows  
   /* chdir(pathcd);*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 #endif            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
  /*system("wgnuplot graph.plt");*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  /*system("../gp37mgw/wgnuplot graph.plt");*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
  /*system("cd ../gp37mgw");*/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          }
  strcpy(plotcmd,GNUPLOTPROGRAM);          i=0;
  strcat(plotcmd," ");          for (k=1; k<=(nlstate);k++){
  strcat(plotcmd,optionfilegnuplot);            for (l=1; l<=(nlstate+ndeath);l++){ 
  system(plotcmd);              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 #ifdef windows              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   while (z[0] != 'q') {              for (j=1; j<=i;j++){
     /* chdir(path); */                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     scanf("%s",z);              }
     if (z[0] == 'c') system("./imach");            }
     else if (z[0] == 'e') system(optionfilehtm);          }/* end of loop for state */
     else if (z[0] == 'g') system(plotcmd);        } /* end of loop for age */
     else if (z[0] == 'q') exit(0);  
   }        /* Confidence intervalle of pij  */
 #endif        /*
 }          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.38  
changed lines
  Added in v.1.127


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>