Diff for /imach/src/imach.c between versions 1.48 and 1.108

version 1.48, 2002/06/10 13:12:49 version 1.108, 2006/01/19 18:05:42
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.108  2006/01/19 18:05:42  lievre
      Gnuplot problem appeared...
   This program computes Healthy Life Expectancies from    To be fixed
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.107  2006/01/19 16:20:37  brouard
   interviewed on their health status or degree of disability (in the    Test existence of gnuplot in imach path
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.106  2006/01/19 13:24:36  brouard
   (if any) in individual health status.  Health expectancies are    Some cleaning and links added in html output
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.105  2006/01/05 20:23:19  lievre
   Maximum Likelihood of the parameters involved in the model.  The    *** empty log message ***
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.104  2005/09/30 16:11:43  lievre
   conditional to be observed in state i at the first wave. Therefore    (Module): sump fixed, loop imx fixed, and simplifications.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): If the status is missing at the last wave but we know
   'age' is age and 'sex' is a covariate. If you want to have a more    that the person is alive, then we can code his/her status as -2
   complex model than "constant and age", you should modify the program    (instead of missing=-1 in earlier versions) and his/her
   where the markup *Covariates have to be included here again* invites    contributions to the likelihood is 1 - Prob of dying from last
   you to do it.  More covariates you add, slower the    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   convergence.    the healthy state at last known wave). Version is 0.98
   
   The advantage of this computer programme, compared to a simple    Revision 1.103  2005/09/30 15:54:49  lievre
   multinomial logistic model, is clear when the delay between waves is not    (Module): sump fixed, loop imx fixed, and simplifications.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.102  2004/09/15 17:31:30  brouard
   account using an interpolation or extrapolation.      Add the possibility to read data file including tab characters.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.101  2004/09/15 10:38:38  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Fix on curr_time
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.100  2004/07/12 18:29:06  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Add version for Mac OS X. Just define UNIX in Makefile
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.99  2004/06/05 08:57:40  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.98  2004/05/16 15:05:56  brouard
   of the life expectancies. It also computes the prevalence limits.    New version 0.97 . First attempt to estimate force of mortality
      directly from the data i.e. without the need of knowing the health
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    state at each age, but using a Gompertz model: log u =a + b*age .
            Institut national d'études démographiques, Paris.    This is the basic analysis of mortality and should be done before any
   This software have been partly granted by Euro-REVES, a concerted action    other analysis, in order to test if the mortality estimated from the
   from the European Union.    cross-longitudinal survey is different from the mortality estimated
   It is copyrighted identically to a GNU software product, ie programme and    from other sources like vital statistic data.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    The same imach parameter file can be used but the option for mle should be -3.
   **********************************************************************/  
      Agnès, who wrote this part of the code, tried to keep most of the
 #include <math.h>    former routines in order to include the new code within the former code.
 #include <stdio.h>  
 #include <stdlib.h>    The output is very simple: only an estimate of the intercept and of
 #include <unistd.h>    the slope with 95% confident intervals.
   
 #define MAXLINE 256    Current limitations:
 #define GNUPLOTPROGRAM "gnuplot"    A) Even if you enter covariates, i.e. with the
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define FILENAMELENGTH 80    B) There is no computation of Life Expectancy nor Life Table.
 /*#define DEBUG*/  
 #define windows    Revision 1.97  2004/02/20 13:25:42  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Version 0.96d. Population forecasting command line is (temporarily)
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    suppressed.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Repository):
 #define NCOVMAX 8 /* Maximum number of covariates */    (Repository): Using imachwizard code to output a more meaningful covariance
 #define MAXN 20000    matrix (cov(a12,c31) instead of numbers.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.94  2003/06/27 13:00:02  brouard
 #define AGEBASE 40    Just cleaning
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.93  2003/06/25 16:33:55  brouard
 #else    (Module): On windows (cygwin) function asctime_r doesn't
 #define DIRSEPARATOR '/'    exist so I changed back to asctime which exists.
 #endif    (Module): Version 0.96b
   
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Revision 1.92  2003/06/25 16:30:45  brouard
 int erreur; /* Error number */    (Module): On windows (cygwin) function asctime_r doesn't
 int nvar;    exist so I changed back to asctime which exists.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.91  2003/06/25 15:30:29  brouard
 int nlstate=2; /* Number of live states */    * imach.c (Repository): Duplicated warning errors corrected.
 int ndeath=1; /* Number of dead states */    (Repository): Elapsed time after each iteration is now output. It
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    helps to forecast when convergence will be reached. Elapsed time
 int popbased=0;    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.90  2003/06/24 12:34:15  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Some bugs corrected for windows. Also, when
 int mle, weightopt;    mle=-1 a template is output in file "or"mypar.txt with the design
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    of the covariance matrix to be input.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.89  2003/06/24 12:30:52  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Some bugs corrected for windows. Also, when
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    of the covariance matrix to be input.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *fichtm; /* Html File */    Revision 1.88  2003/06/23 17:54:56  brouard
 FILE *ficreseij;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.87  2003/06/18 12:26:01  brouard
 char fileresv[FILENAMELENGTH];    Version 0.96
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.86  2003/06/17 20:04:08  brouard
 char title[MAXLINE];    (Module): Change position of html and gnuplot routines and added
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    routine fileappend.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.85  2003/06/17 13:12:43  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 char filerest[FILENAMELENGTH];    prior to the death. In this case, dh was negative and likelihood
 char fileregp[FILENAMELENGTH];    was wrong (infinity). We still send an "Error" but patch by
 char popfile[FILENAMELENGTH];    assuming that the date of death was just one stepm after the
     interview.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 #define NR_END 1    memory allocation. But we also truncated to 8 characters (left
 #define FREE_ARG char*    truncation)
 #define FTOL 1.0e-10    (Repository): No more line truncation errors.
   
 #define NRANSI    Revision 1.84  2003/06/13 21:44:43  brouard
 #define ITMAX 200    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 #define TOL 2.0e-4    many times. Probs is memory consuming and must be used with
     parcimony.
 #define CGOLD 0.3819660    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.82  2003/06/05 15:57:20  brouard
 #define TINY 1.0e-20    Add log in  imach.c and  fullversion number is now printed.
   
 static double maxarg1,maxarg2;  */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  /*
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))     Interpolated Markov Chain
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Short summary of the programme:
 #define rint(a) floor(a+0.5)    
     This program computes Healthy Life Expectancies from
 static double sqrarg;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    first survey ("cross") where individuals from different ages are
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 int imx;    second wave of interviews ("longitudinal") which measure each change
 int stepm;    (if any) in individual health status.  Health expectancies are
 /* Stepm, step in month: minimum step interpolation*/    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 int estepm;    Maximum Likelihood of the parameters involved in the model.  The
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 int m,nb;    conditional to be observed in state i at the first wave. Therefore
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    'age' is age and 'sex' is a covariate. If you want to have a more
 double **pmmij, ***probs, ***mobaverage;    complex model than "constant and age", you should modify the program
 double dateintmean=0;    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 double *weight;    convergence.
 int **s; /* Status */  
 double *agedc, **covar, idx;    The advantage of this computer programme, compared to a simple
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    intermediate interview, the information is lost, but taken into
 double ftolhess; /* Tolerance for computing hessian */    account using an interpolation or extrapolation.  
   
 /**************** split *************************/    hPijx is the probability to be observed in state i at age x+h
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
    char *s;                             /* pointer */    states. This elementary transition (by month, quarter,
    int  l1, l2;                         /* length counters */    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
    l1 = strlen( path );                 /* length of path */    and the contribution of each individual to the likelihood is simply
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    hPijx.
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Also this programme outputs the covariance matrix of the parameters but also
 #if     defined(__bsd__)                /* get current working directory */    of the life expectancies. It also computes the stable prevalence. 
       extern char       *getwd( );    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       if ( getwd( dirc ) == NULL ) {             Institut national d'études démographiques, Paris.
 #else    This software have been partly granted by Euro-REVES, a concerted action
       extern char       *getcwd( );    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    software can be distributed freely for non commercial use. Latest version
 #endif    can be accessed at http://euroreves.ined.fr/imach .
          return( GLOCK_ERROR_GETCWD );  
       }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       strcpy( name, path );             /* we've got it */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    } else {                             /* strip direcotry from path */    
       s++;                              /* after this, the filename */    **********************************************************************/
       l2 = strlen( s );                 /* length of filename */  /*
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    main
       strcpy( name, s );                /* save file name */    read parameterfile
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    read datafile
       dirc[l1-l2] = 0;                  /* add zero */    concatwav
    }    freqsummary
    l1 = strlen( dirc );                 /* length of directory */    if (mle >= 1)
 #ifdef windows      mlikeli
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    print results files
 #else    if mle==1 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }       computes hessian
 #endif    read end of parameter file: agemin, agemax, bage, fage, estepm
    s = strrchr( name, '.' );            /* find last / */        begin-prev-date,...
    s++;    open gnuplot file
    strcpy(ext,s);                       /* save extension */    open html file
    l1= strlen( name);    stable prevalence
    l2= strlen( s)+1;     for age prevalim()
    strncpy( finame, name, l1-l2);    h Pij x
    finame[l1-l2]= 0;    variance of p varprob
    return( 0 );                         /* we're done */    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
     prevalence()
 /******************************************/     movingaverage()
     varevsij() 
 void replace(char *s, char*t)    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   int i;    Variance of stable prevalence
   int lg=20;   end
   i=0;  */
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';   
   }  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 int nbocc(char *s, char occ)  #include <string.h>
 {  #include <unistd.h>
   int i,j=0;  
   int lg=20;  #include <sys/types.h>
   i=0;  #include <sys/stat.h>
   lg=strlen(s);  #include <errno.h>
   for(i=0; i<= lg; i++) {  extern int errno;
   if  (s[i] == occ ) j++;  
   }  /* #include <sys/time.h> */
   return j;  #include <time.h>
 }  #include "timeval.h"
   
 void cutv(char *u,char *v, char*t, char occ)  /* #include <libintl.h> */
 {  /* #define _(String) gettext (String) */
   int i,lg,j,p=0;  
   i=0;  #define MAXLINE 256
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define GNUPLOTPROGRAM "gnuplot"
   }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
   lg=strlen(t);  
   for(j=0; j<p; j++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     (u[j] = t[j]);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   }  
      u[p]='\0';  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define NINTERVMAX 8
   }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /********************** nrerror ********************/  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 void nrerror(char error_text[])  #define AGESUP 130
 {  #define AGEBASE 40
   fprintf(stderr,"ERREUR ...\n");  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   fprintf(stderr,"%s\n",error_text);  #ifdef UNIX
   exit(1);  #define DIRSEPARATOR '/'
 }  #define CHARSEPARATOR "/"
 /*********************** vector *******************/  #define ODIRSEPARATOR '\\'
 double *vector(int nl, int nh)  #else
 {  #define DIRSEPARATOR '\\'
   double *v;  #define CHARSEPARATOR "\\"
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define ODIRSEPARATOR '/'
   if (!v) nrerror("allocation failure in vector");  #endif
   return v-nl+NR_END;  
 }  /* $Id$ */
   /* $State$ */
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
 {  char fullversion[]="$Revision$ $Date$"; 
   free((FREE_ARG)(v+nl-NR_END));  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /************************ivector *******************************/  int npar=NPARMAX;
 int *ivector(long nl,long nh)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   int *v;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int popbased=0;
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 /******************free ivector **************************/  int gipmx, gsw; /* Global variables on the number of contributions 
 void free_ivector(int *v, long nl, long nh)                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle, weightopt;
   free((FREE_ARG)(v+nl-NR_END));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /******************* imatrix *******************************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double jmean; /* Mean space between 2 waves */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   int **m;  FILE *ficlog, *ficrespow;
    int globpr; /* Global variable for printing or not */
   /* allocate pointers to rows */  double fretone; /* Only one call to likelihood */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  long ipmx; /* Number of contributions */
   if (!m) nrerror("allocation failure 1 in matrix()");  double sw; /* Sum of weights */
   m += NR_END;  char filerespow[FILENAMELENGTH];
   m -= nrl;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    FILE *ficresilk;
    FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   /* allocate rows and set pointers to them */  FILE *ficresprobmorprev;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  FILE *fichtm, *fichtmcov; /* Html File */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficreseij;
   m[nrl] += NR_END;  char filerese[FILENAMELENGTH];
   m[nrl] -= ncl;  FILE  *ficresvij;
    char fileresv[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */  char title[MAXLINE];
   return m;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 /****************** free_imatrix *************************/  char command[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  int  outcmd=0;
       int **m;  
       long nch,ncl,nrh,nrl;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char filerest[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 /******************* matrix *******************************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  struct timezone tzp;
   double **m;  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  long time_value;
   if (!m) nrerror("allocation failure 1 in matrix()");  extern long time();
   m += NR_END;  char strcurr[80], strfor[80];
   m -= nrl;  
   #define NR_END 1
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FREE_ARG char*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FTOL 1.0e-10
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NRANSI 
   #define ITMAX 200 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /*************************free matrix ************************/  #define ZEPS 1.0e-10 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GOLD 1.618034 
   free((FREE_ARG)(m+nrl-NR_END));  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /******************* ma3x *******************************/  static double maxarg1,maxarg2;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    
   double ***m;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  static double sqrarg;
   m += NR_END;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m -= nrl;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int imx; 
   m[nrl] += NR_END;  int stepm=1;
   m[nrl] -= ncl;  /* Stepm, step in month: minimum step interpolation*/
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int m,nb;
   m[nrl][ncl] += NR_END;  long *num;
   m[nrl][ncl] -= nll;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for (j=ncl+1; j<=nch; j++)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     m[nrl][j]=m[nrl][j-1]+nlay;  double **pmmij, ***probs;
    double *ageexmed,*agecens;
   for (i=nrl+1; i<=nrh; i++) {  double dateintmean=0;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  double *weight;
       m[i][j]=m[i][j-1]+nlay;  int **s; /* Status */
   }  double *agedc, **covar, idx;
   return m;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  double *lsurv, *lpop, *tpop;
   
 /*************************free ma3x ************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double ftolhess; /* Tolerance for computing hessian */
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /**************** split *************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 /***************** f1dim *************************/    */ 
 extern int ncom;    char  *ss;                            /* pointer */
 extern double *pcom,*xicom;    int   l1, l2;                         /* length counters */
 extern double (*nrfunc)(double []);  
      l1 = strlen(path );                   /* length of path */
 double f1dim(double x)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int j;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double f;      strcpy( name, path );               /* we got the fullname name because no directory */
   double *xt;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
          printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   xt=vector(1,ncom);      /* get current working directory */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      /*    extern  char* getcwd ( char *buf , int len);*/
   f=(*nrfunc)(xt);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   free_vector(xt,1,ncom);        return( GLOCK_ERROR_GETCWD );
   return f;      }
 }      /* got dirc from getcwd*/
       printf(" DIRC = %s \n",dirc);
 /*****************brent *************************/    } else {                              /* strip direcotry from path */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   int iter;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double a,b,d,etemp;      strcpy( name, ss );         /* save file name */
   double fu,fv,fw,fx;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double ftemp;      dirc[l1-l2] = 0;                    /* add zero */
   double p,q,r,tol1,tol2,u,v,w,x,xm;      printf(" DIRC2 = %s \n",dirc);
   double e=0.0;    }
      /* We add a separator at the end of dirc if not exists */
   a=(ax < cx ? ax : cx);    l1 = strlen( dirc );                  /* length of directory */
   b=(ax > cx ? ax : cx);    if( dirc[l1-1] != DIRSEPARATOR ){
   x=w=v=bx;      dirc[l1] =  DIRSEPARATOR;
   fw=fv=fx=(*f)(x);      dirc[l1+1] = 0; 
   for (iter=1;iter<=ITMAX;iter++) {      printf(" DIRC3 = %s \n",dirc);
     xm=0.5*(a+b);    }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    ss = strrchr( name, '.' );            /* find last / */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    if (ss >0){
     printf(".");fflush(stdout);      ss++;
 #ifdef DEBUG      strcpy(ext,ss);                     /* save extension */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      l1= strlen( name);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      l2= strlen(ss)+1;
 #endif      strncpy( finame, name, l1-l2);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      finame[l1-l2]= 0;
       *xmin=x;    }
       return fx;  
     }    return( 0 );                          /* we're done */
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  /******************************************/
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  void replace_back_to_slash(char *s, char*t)
       if (q > 0.0) p = -p;  {
       q=fabs(q);    int i;
       etemp=e;    int lg=0;
       e=d;    i=0;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    lg=strlen(t);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    for(i=0; i<= lg; i++) {
       else {      (s[i] = t[i]);
         d=p/q;      if (t[i]== '\\') s[i]='/';
         u=x+d;    }
         if (u-a < tol2 || b-u < tol2)  }
           d=SIGN(tol1,xm-x);  
       }  int nbocc(char *s, char occ)
     } else {  {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    int i,j=0;
     }    int lg=20;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    i=0;
     fu=(*f)(u);    lg=strlen(s);
     if (fu <= fx) {    for(i=0; i<= lg; i++) {
       if (u >= x) a=x; else b=x;    if  (s[i] == occ ) j++;
       SHFT(v,w,x,u)    }
         SHFT(fv,fw,fx,fu)    return j;
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  void cutv(char *u,char *v, char*t, char occ)
             v=w;  {
             w=u;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
             fv=fw;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
             fw=fu;       gives u="abcedf" and v="ghi2j" */
           } else if (fu <= fv || v == x || v == w) {    int i,lg,j,p=0;
             v=u;    i=0;
             fv=fu;    for(j=0; j<=strlen(t)-1; j++) {
           }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         }    }
   }  
   nrerror("Too many iterations in brent");    lg=strlen(t);
   *xmin=x;    for(j=0; j<p; j++) {
   return fx;      (u[j] = t[j]);
 }    }
        u[p]='\0';
 /****************** mnbrak ***********************/  
      for(j=0; j<= lg; j++) {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      if (j>=(p+1))(v[j-p-1] = t[j]);
             double (*func)(double))    }
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /********************** nrerror ********************/
    
   *fa=(*func)(*ax);  void nrerror(char error_text[])
   *fb=(*func)(*bx);  {
   if (*fb > *fa) {    fprintf(stderr,"ERREUR ...\n");
     SHFT(dum,*ax,*bx,dum)    fprintf(stderr,"%s\n",error_text);
       SHFT(dum,*fb,*fa,dum)    exit(EXIT_FAILURE);
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  /*********************** vector *******************/
   *fc=(*func)(*cx);  double *vector(int nl, int nh)
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    double *v;
     q=(*bx-*cx)*(*fb-*fa);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!v) nrerror("allocation failure in vector");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    return v-nl+NR_END;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /************************ free vector ******************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  void free_vector(double*v, int nl, int nh)
       fu=(*func)(u);  {
       if (fu < *fc) {    free((FREE_ARG)(v+nl-NR_END));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  }
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /************************ivector *******************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int *ivector(long nl,long nh)
       u=ulim;  {
       fu=(*func)(u);    int *v;
     } else {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       u=(*cx)+GOLD*(*cx-*bx);    if (!v) nrerror("allocation failure in ivector");
       fu=(*func)(u);    return v-nl+NR_END;
     }  }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*************** linmin ************************/  }
   
 int ncom;  /************************lvector *******************************/
 double *pcom,*xicom;  long *lvector(long nl,long nh)
 double (*nrfunc)(double []);  {
      long *v;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 {    if (!v) nrerror("allocation failure in ivector");
   double brent(double ax, double bx, double cx,    return v-nl+NR_END;
                double (*f)(double), double tol, double *xmin);  }
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /******************free lvector **************************/
               double *fc, double (*func)(double));  void free_lvector(long *v, long nl, long nh)
   int j;  {
   double xx,xmin,bx,ax;    free((FREE_ARG)(v+nl-NR_END));
   double fx,fb,fa;  }
    
   ncom=n;  /******************* imatrix *******************************/
   pcom=vector(1,n);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   xicom=vector(1,n);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   nrfunc=func;  { 
   for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     pcom[j]=p[j];    int **m; 
     xicom[j]=xi[j];    
   }    /* allocate pointers to rows */ 
   ax=0.0;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   xx=1.0;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m += NR_END; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m -= nrl; 
 #ifdef DEBUG    
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    
 #endif    /* allocate rows and set pointers to them */ 
   for (j=1;j<=n;j++) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     xi[j] *= xmin;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     p[j] += xi[j];    m[nrl] += NR_END; 
   }    m[nrl] -= ncl; 
   free_vector(xicom,1,n);    
   free_vector(pcom,1,n);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 }    
     /* return pointer to array of pointers to rows */ 
 /*************** powell ************************/    return m; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  } 
             double (*func)(double []))  
 {  /****************** free_imatrix *************************/
   void linmin(double p[], double xi[], int n, double *fret,  void free_imatrix(m,nrl,nrh,ncl,nch)
               double (*func)(double []));        int **m;
   int i,ibig,j;        long nch,ncl,nrh,nrl; 
   double del,t,*pt,*ptt,*xit;       /* free an int matrix allocated by imatrix() */ 
   double fp,fptt;  { 
   double *xits;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   pt=vector(1,n);    free((FREE_ARG) (m+nrl-NR_END)); 
   ptt=vector(1,n);  } 
   xit=vector(1,n);  
   xits=vector(1,n);  /******************* matrix *******************************/
   *fret=(*func)(p);  double **matrix(long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=n;j++) pt[j]=p[j];  {
   for (*iter=1;;++(*iter)) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     fp=(*fret);    double **m;
     ibig=0;  
     del=0.0;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!m) nrerror("allocation failure 1 in matrix()");
     for (i=1;i<=n;i++)    m += NR_END;
       printf(" %d %.12f",i, p[i]);    m -= nrl;
     printf("\n");  
     for (i=1;i<=n;i++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fptt=(*fret);    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
       printf("fret=%lf \n",*fret);  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       printf("%d",i);fflush(stdout);    return m;
       linmin(p,xit,n,fret,func);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       if (fabs(fptt-(*fret)) > del) {     */
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  /*************************free matrix ************************/
 #ifdef DEBUG  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       printf("%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free((FREE_ARG)(m+nrl-NR_END));
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  /******************* ma3x *******************************/
         printf(" p=%.12e",p[j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       printf("\n");  {
 #endif    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       int k[2],l;    if (!m) nrerror("allocation failure 1 in matrix()");
       k[0]=1;    m += NR_END;
       k[1]=-1;    m -= nrl;
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         printf(" %.12e",p[j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       printf("\n");    m[nrl] += NR_END;
       for(l=0;l<=1;l++) {    m[nrl] -= ncl;
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       }    m[nrl][ncl] += NR_END;
 #endif    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
       free_vector(xit,1,n);    
       free_vector(xits,1,n);    for (i=nrl+1; i<=nrh; i++) {
       free_vector(ptt,1,n);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       free_vector(pt,1,n);      for (j=ncl+1; j<=nch; j++) 
       return;        m[i][j]=m[i][j-1]+nlay;
     }    }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    return m; 
     for (j=1;j<=n;j++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       ptt[j]=2.0*p[j]-pt[j];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       xit[j]=p[j]-pt[j];    */
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  /*************************free ma3x ************************/
     if (fptt < fp) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  {
       if (t < 0.0) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         linmin(p,xit,n,fret,func);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
           xi[j][ibig]=xi[j][n];  }
           xi[j][n]=xit[j];  
         }  /*************** function subdirf ***********/
 #ifdef DEBUG  char *subdirf(char fileres[])
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         for(j=1;j<=n;j++)    /* Caution optionfilefiname is hidden */
           printf(" %.12e",xit[j]);    strcpy(tmpout,optionfilefiname);
         printf("\n");    strcat(tmpout,"/"); /* Add to the right */
 #endif    strcat(tmpout,fileres);
       }    return tmpout;
     }  }
   }  
 }  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
 /**** Prevalence limit ****************/  {
     
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    strcat(tmpout,"/");
      matrix by transitions matrix until convergence is reached */    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   int i, ii,j,k;    return tmpout;
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /*************** function subdirf3 ***********/
   double **newm;  char *subdirf3(char fileres[], char *preop, char *preop2)
   double agefin, delaymax=50 ; /* Max number of years to converge */  {
     
   for (ii=1;ii<=nlstate+ndeath;ii++)    /* Caution optionfilefiname is hidden */
     for (j=1;j<=nlstate+ndeath;j++){    strcpy(tmpout,optionfilefiname);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
    cov[1]=1.;    strcat(tmpout,fileres);
      return tmpout;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  /***************** f1dim *************************/
     /* Covariates have to be included here again */  extern int ncom; 
      cov[2]=agefin;  extern double *pcom,*xicom;
    extern double (*nrfunc)(double []); 
       for (k=1; k<=cptcovn;k++) {   
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double f1dim(double x) 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  { 
       }    int j; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double f;
       for (k=1; k<=cptcovprod;k++)    double *xt; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];   
     xt=vector(1,ncom); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    f=(*nrfunc)(xt); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    free_vector(xt,1,ncom); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return f; 
   } 
     savm=oldm;  
     oldm=newm;  /*****************brent *************************/
     maxmax=0.;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     for(j=1;j<=nlstate;j++){  { 
       min=1.;    int iter; 
       max=0.;    double a,b,d,etemp;
       for(i=1; i<=nlstate; i++) {    double fu,fv,fw,fx;
         sumnew=0;    double ftemp;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    double e=0.0; 
         max=FMAX(max,prlim[i][j]);   
         min=FMIN(min,prlim[i][j]);    a=(ax < cx ? ax : cx); 
       }    b=(ax > cx ? ax : cx); 
       maxmin=max-min;    x=w=v=bx; 
       maxmax=FMAX(maxmax,maxmin);    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
     if(maxmax < ftolpl){      xm=0.5*(a+b); 
       return prlim;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   }      printf(".");fflush(stdout);
 }      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 /*************** transition probabilities ***************/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 {  #endif
   double s1, s2;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   /*double t34;*/        *xmin=x; 
   int i,j,j1, nc, ii, jj;        return fx; 
       } 
     for(i=1; i<= nlstate; i++){      ftemp=fu;
     for(j=1; j<i;j++){      if (fabs(e) > tol1) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        r=(x-w)*(fx-fv); 
         /*s2 += param[i][j][nc]*cov[nc];*/        q=(x-v)*(fx-fw); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        p=(x-v)*q-(x-w)*r; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        q=2.0*(q-r); 
       }        if (q > 0.0) p = -p; 
       ps[i][j]=s2;        q=fabs(q); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        etemp=e; 
     }        e=d; 
     for(j=i+1; j<=nlstate+ndeath;j++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        else { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          d=p/q; 
       }          u=x+d; 
       ps[i][j]=s2;          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
   }        } 
     /*ps[3][2]=1;*/      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for(i=1; i<= nlstate; i++){      } 
      s1=0;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for(j=1; j<i; j++)      fu=(*f)(u); 
       s1+=exp(ps[i][j]);      if (fu <= fx) { 
     for(j=i+1; j<=nlstate+ndeath; j++)        if (u >= x) a=x; else b=x; 
       s1+=exp(ps[i][j]);        SHFT(v,w,x,u) 
     ps[i][i]=1./(s1+1.);          SHFT(fv,fw,fx,fu) 
     for(j=1; j<i; j++)          } else { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            if (u < x) a=u; else b=u; 
     for(j=i+1; j<=nlstate+ndeath; j++)            if (fu <= fw || w == x) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];              v=w; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */              w=u; 
   } /* end i */              fv=fw; 
               fw=fu; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){            } else if (fu <= fv || v == x || v == w) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){              v=u; 
       ps[ii][jj]=0;              fv=fu; 
       ps[ii][ii]=1;            } 
     }          } 
   }    } 
     nrerror("Too many iterations in brent"); 
     *xmin=x; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    return fx; 
     for(jj=1; jj<= nlstate+ndeath; jj++){  } 
      printf("%lf ",ps[ii][jj]);  
    }  /****************** mnbrak ***********************/
     printf("\n ");  
     }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     printf("\n ");printf("%lf ",cov[2]);*/              double (*func)(double)) 
 /*  { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double ulim,u,r,q, dum;
   goto end;*/    double fu; 
     return ps;   
 }    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 /**************** Product of 2 matrices ******************/    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        SHFT(dum,*fb,*fa,dum) 
 {        } 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    *cx=(*bx)+GOLD*(*bx-*ax); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    *fc=(*func)(*cx); 
   /* in, b, out are matrice of pointers which should have been initialized    while (*fb > *fc) { 
      before: only the contents of out is modified. The function returns      r=(*bx-*ax)*(*fb-*fc); 
      a pointer to pointers identical to out */      q=(*bx-*cx)*(*fb-*fa); 
   long i, j, k;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for(i=nrl; i<= nrh; i++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for(k=ncolol; k<=ncoloh; k++)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      if ((*bx-u)*(u-*cx) > 0.0) { 
         out[i][k] +=in[i][j]*b[j][k];        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
   return out;        fu=(*func)(u); 
 }        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 /************* Higher Matrix Product ***************/            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        u=ulim; 
 {        fu=(*func)(u); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      } else { 
      duration (i.e. until        u=(*cx)+GOLD*(*cx-*bx); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        fu=(*func)(u); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      } 
      (typically every 2 years instead of every month which is too big).      SHFT(*ax,*bx,*cx,u) 
      Model is determined by parameters x and covariates have to be        SHFT(*fa,*fb,*fc,fu) 
      included manually here.        } 
   } 
      */  
   /*************** linmin ************************/
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  int ncom; 
   double **newm;  double *pcom,*xicom;
   double (*nrfunc)(double []); 
   /* Hstepm could be zero and should return the unit matrix */   
   for (i=1;i<=nlstate+ndeath;i++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for (j=1;j<=nlstate+ndeath;j++){  { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double brent(double ax, double bx, double cx, 
       po[i][j][0]=(i==j ? 1.0 : 0.0);                 double (*f)(double), double tol, double *xmin); 
     }    double f1dim(double x); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for(h=1; h <=nhstepm; h++){                double *fc, double (*func)(double)); 
     for(d=1; d <=hstepm; d++){    int j; 
       newm=savm;    double xx,xmin,bx,ax; 
       /* Covariates have to be included here again */    double fx,fb,fa;
       cov[1]=1.;   
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    ncom=n; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    pcom=vector(1,n); 
       for (k=1; k<=cptcovage;k++)    xicom=vector(1,n); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    nrfunc=func; 
       for (k=1; k<=cptcovprod;k++)    for (j=1;j<=n;j++) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
     } 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    ax=0.0; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    xx=1.0; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       savm=oldm;  #ifdef DEBUG
       oldm=newm;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(i=1; i<=nlstate+ndeath; i++)  #endif
       for(j=1;j<=nlstate+ndeath;j++) {    for (j=1;j<=n;j++) { 
         po[i][j][h]=newm[i][j];      xi[j] *= xmin; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      p[j] += xi[j]; 
          */    } 
       }    free_vector(xicom,1,n); 
   } /* end h */    free_vector(pcom,1,n); 
   return po;  } 
 }  
   char *asc_diff_time(long time_sec, char ascdiff[])
   {
 /*************** log-likelihood *************/    long sec_left, days, hours, minutes;
 double func( double *x)    days = (time_sec) / (60*60*24);
 {    sec_left = (time_sec) % (60*60*24);
   int i, ii, j, k, mi, d, kk;    hours = (sec_left) / (60*60) ;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    sec_left = (sec_left) %(60*60);
   double **out;    minutes = (sec_left) /60;
   double sw; /* Sum of weights */    sec_left = (sec_left) % (60);
   double lli; /* Individual log likelihood */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   long ipmx;    return ascdiff;
   /*extern weight */  }
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*************** powell ************************/
   /*for(i=1;i<imx;i++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     printf(" %d\n",s[4][i]);              double (*func)(double [])) 
   */  { 
   cov[1]=1.;    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    int i,ibig,j; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double del,t,*pt,*ptt,*xit;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double fp,fptt;
     for(mi=1; mi<= wav[i]-1; mi++){    double *xits;
       for (ii=1;ii<=nlstate+ndeath;ii++)    int niterf, itmp;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){    pt=vector(1,n); 
         newm=savm;    ptt=vector(1,n); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    xit=vector(1,n); 
         for (kk=1; kk<=cptcovage;kk++) {    xits=vector(1,n); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    *fret=(*func)(p); 
         }    for (j=1;j<=n;j++) pt[j]=p[j]; 
            for (*iter=1;;++(*iter)) { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      fp=(*fret); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      ibig=0; 
         savm=oldm;      del=0.0; 
         oldm=newm;      last_time=curr_time;
              (void) gettimeofday(&curr_time,&tzp);
              printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       } /* end mult */      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
            fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/     for (i=1;i<=n;i++) {
       ipmx +=1;        printf(" %d %.12f",i, p[i]);
       sw += weight[i];        fprintf(ficlog," %d %.12lf",i, p[i]);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        fprintf(ficrespow," %.12lf", p[i]);
     } /* end of wave */      }
   } /* end of individual */      printf("\n");
       fprintf(ficlog,"\n");
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      fprintf(ficrespow,"\n");fflush(ficrespow);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      if(*iter <=3){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        tm = *localtime(&curr_time.tv_sec);
   return -l;        strcpy(strcurr,asctime(&tm));
 }  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
         itmp = strlen(strcurr);
 /*********** Maximum Likelihood Estimation ***************/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   int i,j, iter;        for(niterf=10;niterf<=30;niterf+=10){
   double **xi,*delti;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double fret;          tmf = *localtime(&forecast_time.tv_sec);
   xi=matrix(1,npar,1,npar);  /*      asctime_r(&tmf,strfor); */
   for (i=1;i<=npar;i++)          strcpy(strfor,asctime(&tmf));
     for (j=1;j<=npar;j++)          itmp = strlen(strfor);
       xi[i][j]=(i==j ? 1.0 : 0.0);          if(strfor[itmp-1]=='\n')
   printf("Powell\n");          strfor[itmp-1]='\0';
   powell(p,xi,npar,ftol,&iter,&fret,func);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      }
       for (i=1;i<=n;i++) { 
 }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
 /**** Computes Hessian and covariance matrix ***/  #ifdef DEBUG
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        printf("fret=%lf \n",*fret);
 {        fprintf(ficlog,"fret=%lf \n",*fret);
   double  **a,**y,*x,pd;  #endif
   double **hess;        printf("%d",i);fflush(stdout);
   int i, j,jk;        fprintf(ficlog,"%d",i);fflush(ficlog);
   int *indx;        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   double hessii(double p[], double delta, int theta, double delti[]);          del=fabs(fptt-(*fret)); 
   double hessij(double p[], double delti[], int i, int j);          ibig=i; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   hess=matrix(1,npar,1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   printf("\nCalculation of the hessian matrix. Wait...\n");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (i=1;i<=npar;i++){          printf(" x(%d)=%.12e",j,xit[j]);
     printf("%d",i);fflush(stdout);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     hess[i][i]=hessii(p,ftolhess,i,delti);        }
     /*printf(" %f ",p[i]);*/        for(j=1;j<=n;j++) {
     /*printf(" %lf ",hess[i][i]);*/          printf(" p=%.12e",p[j]);
   }          fprintf(ficlog," p=%.12e",p[j]);
          }
   for (i=1;i<=npar;i++) {        printf("\n");
     for (j=1;j<=npar;j++)  {        fprintf(ficlog,"\n");
       if (j>i) {  #endif
         printf(".%d%d",i,j);fflush(stdout);      } 
         hess[i][j]=hessij(p,delti,i,j);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         hess[j][i]=hess[i][j];      #ifdef DEBUG
         /*printf(" %lf ",hess[i][j]);*/        int k[2],l;
       }        k[0]=1;
     }        k[1]=-1;
   }        printf("Max: %.12e",(*func)(p));
   printf("\n");        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          printf(" %.12e",p[j]);
            fprintf(ficlog," %.12e",p[j]);
   a=matrix(1,npar,1,npar);        }
   y=matrix(1,npar,1,npar);        printf("\n");
   x=vector(1,npar);        fprintf(ficlog,"\n");
   indx=ivector(1,npar);        for(l=0;l<=1;l++) {
   for (i=1;i<=npar;i++)          for (j=1;j<=n;j++) {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   ludcmp(a,npar,indx,&pd);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (j=1;j<=npar;j++) {          }
     for (i=1;i<=npar;i++) x[i]=0;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     x[j]=1;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){  #endif
       matcov[i][j]=x[i];  
     }  
   }        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
   printf("\n#Hessian matrix#\n");        free_vector(ptt,1,n); 
   for (i=1;i<=npar;i++) {        free_vector(pt,1,n); 
     for (j=1;j<=npar;j++) {        return; 
       printf("%.3e ",hess[i][j]);      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     printf("\n");      for (j=1;j<=n;j++) { 
   }        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   /* Recompute Inverse */        pt[j]=p[j]; 
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      fptt=(*func)(ptt); 
   ludcmp(a,npar,indx,&pd);      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   /*  printf("\n#Hessian matrix recomputed#\n");        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   for (j=1;j<=npar;j++) {          for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++) x[i]=0;            xi[j][ibig]=xi[j][n]; 
     x[j]=1;            xi[j][n]=xit[j]; 
     lubksb(a,npar,indx,x);          }
     for (i=1;i<=npar;i++){  #ifdef DEBUG
       y[i][j]=x[i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       printf("%.3e ",y[i][j]);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
     printf("\n");            printf(" %.12e",xit[j]);
   }            fprintf(ficlog," %.12e",xit[j]);
   */          }
           printf("\n");
   free_matrix(a,1,npar,1,npar);          fprintf(ficlog,"\n");
   free_matrix(y,1,npar,1,npar);  #endif
   free_vector(x,1,npar);        }
   free_ivector(indx,1,npar);      } 
   free_matrix(hess,1,npar,1,npar);    } 
   } 
   
 }  /**** Prevalence limit (stable prevalence)  ****************/
   
 /*************** hessian matrix ****************/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 double hessii( double x[], double delta, int theta, double delti[])  {
 {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int i;       matrix by transitions matrix until convergence is reached */
   int l=1, lmax=20;  
   double k1,k2;    int i, ii,j,k;
   double p2[NPARMAX+1];    double min, max, maxmin, maxmax,sumnew=0.;
   double res;    double **matprod2();
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double **out, cov[NCOVMAX], **pmij();
   double fx;    double **newm;
   int k=0,kmax=10;    double agefin, delaymax=50 ; /* Max number of years to converge */
   double l1;  
     for (ii=1;ii<=nlstate+ndeath;ii++)
   fx=func(x);      for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=npar;i++) p2[i]=x[i];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(l=0 ; l <=lmax; l++){      }
     l1=pow(10,l);  
     delts=delt;     cov[1]=1.;
     for(k=1 ; k <kmax; k=k+1){   
       delt = delta*(l1*k);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       p2[theta]=x[theta] +delt;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       k1=func(p2)-fx;      newm=savm;
       p2[theta]=x[theta]-delt;      /* Covariates have to be included here again */
       k2=func(p2)-fx;       cov[2]=agefin;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        for (k=1; k<=cptcovn;k++) {
                cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 #ifdef DEBUG          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        }
 #endif        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for (k=1; k<=cptcovprod;k++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         k=kmax;  
       }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         k=kmax; l=lmax*10.;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;      savm=oldm;
       }      oldm=newm;
     }      maxmax=0.;
   }      for(j=1;j<=nlstate;j++){
   delti[theta]=delts;        min=1.;
   return res;        max=0.;
          for(i=1; i<=nlstate; i++) {
 }          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 double hessij( double x[], double delti[], int thetai,int thetaj)          prlim[i][j]= newm[i][j]/(1-sumnew);
 {          max=FMAX(max,prlim[i][j]);
   int i;          min=FMIN(min,prlim[i][j]);
   int l=1, l1, lmax=20;        }
   double k1,k2,k3,k4,res,fx;        maxmin=max-min;
   double p2[NPARMAX+1];        maxmax=FMAX(maxmax,maxmin);
   int k;      }
       if(maxmax < ftolpl){
   fx=func(x);        return prlim;
   for (k=1; k<=2; k++) {      }
     for (i=1;i<=npar;i++) p2[i]=x[i];    }
     p2[thetai]=x[thetai]+delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;  /*************** transition probabilities ***************/ 
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  {
     k2=func(p2)-fx;    double s1, s2;
      /*double t34;*/
     p2[thetai]=x[thetai]-delti[thetai]/k;    int i,j,j1, nc, ii, jj;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            /*s2 += param[i][j][nc]*cov[nc];*/
     k4=func(p2)-fx;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 #ifdef DEBUG          }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          ps[i][j]=s2;
 #endif  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   }        }
   return res;        for(j=i+1; j<=nlstate+ndeath;j++){
 }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /************** Inverse of matrix **************/  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 void ludcmp(double **a, int n, int *indx, double *d)          }
 {          ps[i][j]=s2;
   int i,imax,j,k;        }
   double big,dum,sum,temp;      }
   double *vv;      /*ps[3][2]=1;*/
        
   vv=vector(1,n);      for(i=1; i<= nlstate; i++){
   *d=1.0;        s1=0;
   for (i=1;i<=n;i++) {        for(j=1; j<i; j++)
     big=0.0;          s1+=exp(ps[i][j]);
     for (j=1;j<=n;j++)        for(j=i+1; j<=nlstate+ndeath; j++)
       if ((temp=fabs(a[i][j])) > big) big=temp;          s1+=exp(ps[i][j]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        ps[i][i]=1./(s1+1.);
     vv[i]=1.0/big;        for(j=1; j<i; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (j=1;j<=n;j++) {        for(j=i+1; j<=nlstate+ndeath; j++)
     for (i=1;i<j;i++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
       sum=a[i][j];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      } /* end i */
       a[i][j]=sum;      
     }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     big=0.0;        for(jj=1; jj<= nlstate+ndeath; jj++){
     for (i=j;i<=n;i++) {          ps[ii][jj]=0;
       sum=a[i][j];          ps[ii][ii]=1;
       for (k=1;k<j;k++)        }
         sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;      
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         imax=i;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       }  /*         printf("ddd %lf ",ps[ii][jj]); */
     }  /*       } */
     if (j != imax) {  /*       printf("\n "); */
       for (k=1;k<=n;k++) {  /*        } */
         dum=a[imax][k];  /*        printf("\n ");printf("%lf ",cov[2]); */
         a[imax][k]=a[j][k];         /*
         a[j][k]=dum;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       }        goto end;*/
       *d = -(*d);      return ps;
       vv[imax]=vv[j];  }
     }  
     indx[j]=imax;  /**************** Product of 2 matrices ******************/
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       dum=1.0/(a[j][j]);  {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
   free_vector(vv,1,n);  /* Doesn't work */       before: only the contents of out is modified. The function returns
 ;       a pointer to pointers identical to out */
 }    long i, j, k;
     for(i=nrl; i<= nrh; i++)
 void lubksb(double **a, int n, int *indx, double b[])      for(k=ncolol; k<=ncoloh; k++)
 {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   int i,ii=0,ip,j;          out[i][k] +=in[i][j]*b[j][k];
   double sum;  
      return out;
   for (i=1;i<=n;i++) {  }
     ip=indx[i];  
     sum=b[ip];  
     b[ip]=b[i];  /************* Higher Matrix Product ***************/
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     else if (sum) ii=i;  {
     b[i]=sum;    /* Computes the transition matrix starting at age 'age' over 
   }       'nhstepm*hstepm*stepm' months (i.e. until
   for (i=n;i>=1;i--) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     sum=b[i];       nhstepm*hstepm matrices. 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     b[i]=sum/a[i][i];       (typically every 2 years instead of every month which is too big 
   }       for the memory).
 }       Model is determined by parameters x and covariates have to be 
        included manually here. 
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)       */
 {  /* Some frequencies */  
      int i, j, d, h, k;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double **out, cov[NCOVMAX];
   double ***freq; /* Frequencies */    double **newm;
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;    /* Hstepm could be zero and should return the unit matrix */
   FILE *ficresp;    for (i=1;i<=nlstate+ndeath;i++)
   char fileresp[FILENAMELENGTH];      for (j=1;j<=nlstate+ndeath;j++){
          oldm[i][j]=(i==j ? 1.0 : 0.0);
   pp=vector(1,nlstate);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   strcpy(fileresp,"p");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   strcat(fileresp,fileres);    for(h=1; h <=nhstepm; h++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {      for(d=1; d <=hstepm; d++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);        newm=savm;
     exit(0);        /* Covariates have to be included here again */
   }        cov[1]=1.;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   j1=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
   j=cptcoveff;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         scanf("%d", i);*/        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for (i=-1; i<=nlstate+ndeath; i++)                       pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (jk=-1; jk<=nlstate+ndeath; jk++)          savm=oldm;
           for(m=agemin; m <= agemax+3; m++)        oldm=newm;
             freq[i][jk][m]=0;      }
            for(i=1; i<=nlstate+ndeath; i++)
       dateintsum=0;        for(j=1;j<=nlstate+ndeath;j++) {
       k2cpt=0;          po[i][j][h]=newm[i][j];
       for (i=1; i<=imx; i++) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         bool=1;           */
         if  (cptcovn>0) {        }
           for (z1=1; z1<=cptcoveff; z1++)    } /* end h */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    return po;
               bool=0;  }
         }  
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){  /*************** log-likelihood *************/
             k2=anint[m][i]+(mint[m][i]/12.);  double func( double *x)
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  {
               if(agev[m][i]==0) agev[m][i]=agemax+1;    int i, ii, j, k, mi, d, kk;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
               if (m<lastpass) {    double **out;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double sw; /* Sum of weights */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double lli; /* Individual log likelihood */
               }    int s1, s2;
                  double bbh, survp;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    long ipmx;
                 dateintsum=dateintsum+k2;    /*extern weight */
                 k2cpt++;    /* We are differentiating ll according to initial status */
               }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             }    /*for(i=1;i<imx;i++) 
           }      printf(" %d\n",s[4][i]);
         }    */
       }    cov[1]=1.;
          
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
       if  (cptcovn>0) {    if(mle==1){
         fprintf(ficresp, "\n#********** Variable ");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficresp, "**********\n#");        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresp, "\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
       for(i=(int)agemin; i <= (int)agemax+3; i++){          for(d=0; d<dh[mi][i]; d++){
         if(i==(int)agemax+3)            newm=savm;
           printf("Total");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else            for (kk=1; kk<=cptcovage;kk++) {
           printf("Age %d", i);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pp[jk] += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=-1, pos=0; m <=0 ; m++)          } /* end mult */
             pos += freq[jk][m][i];        
           if(pp[jk]>=1.e-10)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          /* But now since version 0.9 we anticipate for bias at large stepm.
           else           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * (in months) between two waves is not a multiple of stepm, we rounded to 
         }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for(jk=1; jk <=nlstate ; jk++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * probability in order to take into account the bias as a fraction of the way
             pp[jk] += freq[jk][m][i];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
         for(jk=1,pos=0; jk <=nlstate ; jk++)           * For stepm > 1 the results are less biased than in previous versions. 
           pos += pp[jk];           */
         for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           if(pos>=1.e-5)          s2=s[mw[mi+1][i]][i];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          bbh=(double)bh[mi][i]/(double)stepm; 
           else          /* bias bh is positive if real duration
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * is higher than the multiple of stepm and negative otherwise.
           if( i <= (int) agemax){           */
             if(pos>=1.e-5){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          if( s2 > nlstate){ 
               probs[i][jk][j1]= pp[jk]/pos;            /* i.e. if s2 is a death state and if the date of death is known 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/               then the contribution to the likelihood is the probability to 
             }               die between last step unit time and current  step unit time, 
             else               which is also equal to probability to die before dh 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);               minus probability to die before dh-stepm . 
           }               In version up to 0.92 likelihood was computed
         }          as if date of death was unknown. Death was treated as any other
                  health state: the date of the interview describes the actual state
         for(jk=-1; jk <=nlstate+ndeath; jk++)          and not the date of a change in health state. The former idea was
           for(m=-1; m <=nlstate+ndeath; m++)          to consider that at each interview the state was recorded
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          (healthy, disable or death) and IMaCh was corrected; but when we
         if(i <= (int) agemax)          introduced the exact date of death then we should have modified
           fprintf(ficresp,"\n");          the contribution of an exact death to the likelihood. This new
         printf("\n");          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
   }          interview up to one month before death multiplied by the
   dateintmean=dateintsum/k2cpt;          probability to die within a month. Thanks to Chris
            Jackson for correcting this bug.  Former versions increased
   fclose(ficresp);          mortality artificially. The bad side is that we add another loop
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          which slows down the processing. The difference can be up to 10%
   free_vector(pp,1,nlstate);          lower mortality.
              */
   /* End of Freq */            lli=log(out[s1][s2] - savm[s1][s2]);
 }  
   
 /************ Prevalence ********************/          } else if  (s2==-2) {
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            for (j=1,survp=0. ; j<=nlstate; j++) 
 {  /* Some frequencies */              survp += out[s1][j];
              lli= survp;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          }
   double ***freq; /* Frequencies */          
   double *pp;          else if  (s2==-4) {
   double pos, k2;            for (j=3,survp=0. ; j<=nlstate; j++) 
               survp += out[s1][j];
   pp=vector(1,nlstate);            lli= survp;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
            
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          else if  (s2==-5) {
   j1=0;            for (j=1,survp=0. ; j<=2; j++) 
                survp += out[s1][j];
   j=cptcoveff;            lli= survp;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }
    
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){          else{
       j1++;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for (i=-1; i<=nlstate+ndeath; i++)            } 
         for (jk=-1; jk<=nlstate+ndeath; jk++)            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(m=agemin; m <= agemax+3; m++)          /*if(lli ==000.0)*/
             freq[i][jk][m]=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                ipmx +=1;
       for (i=1; i<=imx; i++) {          sw += weight[i];
         bool=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if  (cptcovn>0) {        } /* end of wave */
           for (z1=1; z1<=cptcoveff; z1++)      } /* end of individual */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    }  else if(mle==2){
               bool=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (bool==1) {        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=firstpass; m<=lastpass; m++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               if (m<lastpass) {          for(d=0; d<=dh[mi][i]; d++){
                 if (calagedate>0)            newm=savm;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 else            for (kk=1; kk<=cptcovage;kk++) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            }
               }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
       }          } /* end mult */
       for(i=(int)agemin; i <= (int)agemax+3; i++){        
         for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          s2=s[mw[mi+1][i]][i];
             pp[jk] += freq[jk][m][i];          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           for(m=-1, pos=0; m <=0 ; m++)          sw += weight[i];
             pos += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
              } /* end of individual */
         for(jk=1; jk <=nlstate ; jk++){    }  else if(mle==3){  /* exponential inter-extrapolation */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if( i <= (int) agemax){            }
             if(pos>=1.e-5){          for(d=0; d<dh[mi][i]; d++){
               probs[i][jk][j1]= pp[jk]/pos;            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                    }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
             oldm=newm;
            } /* end mult */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        
   free_vector(pp,1,nlstate);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
 }  /* End of Freq */          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 /************* Waves Concatenation ***************/          ipmx +=1;
           sw += weight[i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {        } /* end of wave */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      } /* end of individual */
      Death is a valid wave (if date is known).    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      and mw[mi+1][i]. dh depends on stepm.        for(mi=1; mi<= wav[i]-1; mi++){
      */          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   int i, mi, m;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      double sum=0., jmean=0.;*/            }
           for(d=0; d<dh[mi][i]; d++){
   int j, k=0,jk, ju, jl;            newm=savm;
   double sum=0.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   jmin=1e+5;            for (kk=1; kk<=cptcovage;kk++) {
   jmax=-1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmean=0.;            }
   for(i=1; i<=imx; i++){          
     mi=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     m=firstpass;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     while(s[m][i] <= nlstate){            savm=oldm;
       if(s[m][i]>=1)            oldm=newm;
         mw[++mi][i]=m;          } /* end mult */
       if(m >=lastpass)        
         break;          s1=s[mw[mi][i]][i];
       else          s2=s[mw[mi+1][i]][i];
         m++;          if( s2 > nlstate){ 
     }/* end while */            lli=log(out[s1][s2] - savm[s1][s2]);
     if (s[m][i] > nlstate){          }else{
       mi++;     /* Death is another wave */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       /* if(mi==0)  never been interviewed correctly before death */          }
          /* Only death is a correct wave */          ipmx +=1;
       mw[mi][i]=m;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     wav[i]=mi;        } /* end of wave */
     if(mi==0)      } /* end of individual */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=imx; i++){        for(mi=1; mi<= wav[i]-1; mi++){
     for(mi=1; mi<wav[i];mi++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       if (stepm <=0)            for (j=1;j<=nlstate+ndeath;j++){
         dh[mi][i]=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else{              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (s[mw[mi+1][i]][i] > nlstate) {            }
           if (agedc[i] < 2*AGESUP) {          for(d=0; d<dh[mi][i]; d++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            newm=savm;
           if(j==0) j=1;  /* Survives at least one month after exam */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           k=k+1;            for (kk=1; kk<=cptcovage;kk++) {
           if (j >= jmax) jmax=j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (j <= jmin) jmin=j;            }
           sum=sum+j;          
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         else{            oldm=newm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          } /* end mult */
           k=k+1;        
           if (j >= jmax) jmax=j;          s1=s[mw[mi][i]][i];
           else if (j <= jmin)jmin=j;          s2=s[mw[mi+1][i]][i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           sum=sum+j;          ipmx +=1;
         }          sw += weight[i];
         jk= j/stepm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         jl= j -jk*stepm;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         ju= j -(jk+1)*stepm;        } /* end of wave */
         if(jl <= -ju)      } /* end of individual */
           dh[mi][i]=jk;    } /* End of if */
         else    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           dh[mi][i]=jk+1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         if(dh[mi][i]==0)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           dh[mi][i]=1; /* At least one step */    return -l;
       }  }
     }  
   }  /*************** log-likelihood *************/
   jmean=sum/k;  double funcone( double *x)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  {
  }    /* Same as likeli but slower because of a lot of printf and if */
 /*********** Tricode ****************************/    int i, ii, j, k, mi, d, kk;
 void tricode(int *Tvar, int **nbcode, int imx)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 {    double **out;
   int Ndum[20],ij=1, k, j, i;    double lli; /* Individual log likelihood */
   int cptcode=0;    double llt;
   cptcoveff=0;    int s1, s2;
      double bbh, survp;
   for (k=0; k<19; k++) Ndum[k]=0;    /*extern weight */
   for (k=1; k<=7; k++) ncodemax[k]=0;    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /*for(i=1;i<imx;i++) 
     for (i=1; i<=imx; i++) {      printf(" %d\n",s[4][i]);
       ij=(int)(covar[Tvar[j]][i]);    */
       Ndum[ij]++;    cov[1]=1.;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=0; i<=cptcode; i++) {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(Ndum[i]!=0) ncodemax[j]++;      for(mi=1; mi<= wav[i]-1; mi++){
     }        for (ii=1;ii<=nlstate+ndeath;ii++)
     ij=1;          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=ncodemax[j]; i++) {          }
       for (k=0; k<=19; k++) {        for(d=0; d<dh[mi][i]; d++){
         if (Ndum[k] != 0) {          newm=savm;
           nbcode[Tvar[j]][ij]=k;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
           ij++;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }          }
         if (ij > ncodemax[j]) break;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }          savm=oldm;
   }            oldm=newm;
         } /* end mult */
  for (k=0; k<19; k++) Ndum[k]=0;        
         s1=s[mw[mi][i]][i];
  for (i=1; i<=ncovmodel-2; i++) {        s2=s[mw[mi+1][i]][i];
       ij=Tvar[i];        bbh=(double)bh[mi][i]/(double)stepm; 
       Ndum[ij]++;        /* bias is positive if real duration
     }         * is higher than the multiple of stepm and negative otherwise.
          */
  ij=1;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
  for (i=1; i<=10; i++) {          lli=log(out[s1][s2] - savm[s1][s2]);
    if((Ndum[i]!=0) && (i<=ncovcol)){        } else if (mle==1){
      Tvaraff[ij]=i;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      ij++;        } else if(mle==2){
    }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  }        } else if(mle==3){  /* exponential inter-extrapolation */
            lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     cptcoveff=ij-1;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
 }          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 /*********** Health Expectancies ****************/          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        ipmx +=1;
         sw += weight[i];
 {        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Health expectancies */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        if(globpr){
   double age, agelim, hf;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   double ***p3mat,***varhe;   %10.6f %10.6f %10.6f ", \
   double **dnewm,**doldm;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double *xp;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double **gp, **gm;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double ***gradg, ***trgradg;            llt +=ll[k]*gipmx/gsw;
   int theta;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          fprintf(ficresilk," %10.6f\n", -llt);
   xp=vector(1,npar);        }
   dnewm=matrix(1,nlstate*2,1,npar);      } /* end of wave */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    } /* end of individual */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(ficreseij,"# Health expectancies\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficreseij,"# Age");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for(i=1; i<=nlstate;i++)    if(globpr==0){ /* First time we count the contributions and weights */
     for(j=1; j<=nlstate;j++)      gipmx=ipmx;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      gsw=sw;
   fprintf(ficreseij,"\n");    }
     return -l;
   if(estepm < stepm){  }
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  
   else  hstepm=estepm;    /*************** function likelione ***********/
   /* We compute the life expectancy from trapezoids spaced every estepm months  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    * This is mainly to measure the difference between two models: for example  {
    * if stepm=24 months pijx are given only every 2 years and by summing them    /* This routine should help understanding what is done with 
    * we are calculating an estimate of the Life Expectancy assuming a linear       the selection of individuals/waves and
    * progression inbetween and thus overestimating or underestimating according       to check the exact contribution to the likelihood.
    * to the curvature of the survival function. If, for the same date, we       Plotting could be done.
    * estimate the model with stepm=1 month, we can keep estepm to 24 months     */
    * to compare the new estimate of Life expectancy with the same linear    int k;
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
   /* For example we decided to compute the life expectancy with the smallest unit */      strcat(fileresilk,fileres);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      nhstepm is the number of hstepm from age to agelim        printf("Problem with resultfile: %s\n", fileresilk);
      nstepm is the number of stepm from age to agelin.        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      Look at hpijx to understand the reason of that which relies in memory size      }
      and note for a fixed period like estepm months */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      survival function given by stepm (the optimization length). Unfortunately it      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      means that if the survival funtion is printed only each two years of age and if      for(k=1; k<=nlstate; k++) 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      results. So we changed our mind and took the option of the best precision.      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
     *fretone=(*funcone)(p);
   agelim=AGESUP;    if(*globpri !=0){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fclose(ficresilk);
     /* nhstepm age range expressed in number of stepm */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      fflush(fichtm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    } 
     /* if (stepm >= YEARM) hstepm=1;*/    return;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  
     gp=matrix(0,nhstepm,1,nlstate*2);  /*********** Maximum Likelihood Estimation ***************/
     gm=matrix(0,nhstepm,1,nlstate*2);  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    int i,j, iter;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      double **xi;
      double fret;
     double fretone; /* Only one call to likelihood */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
     /* Computing Variances of health expectancies */    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
      for(theta=1; theta <=npar; theta++){        xi[i][j]=(i==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      if((ficrespow=fopen(filerespow,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", filerespow);
       cptj=0;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(j=1; j<= nlstate; j++){    }
         for(i=1; i<=nlstate; i++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           cptj=cptj+1;    for (i=1;i<=nlstate;i++)
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      for(j=1;j<=nlstate+ndeath;j++)
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           }    fprintf(ficrespow,"\n");
         }  
       }    powell(p,xi,npar,ftol,&iter,&fret,func);
        
          fclose(ficrespow);
       for(i=1; i<=npar; i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        
       cptj=0;  }
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){  /**** Computes Hessian and covariance matrix ***/
           cptj=cptj+1;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  {
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double  **a,**y,*x,pd;
           }    double **hess;
         }    int i, j,jk;
       }    int *indx;
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         }    void lubksb(double **a, int npar, int *indx, double b[]) ;
      }    void ludcmp(double **a, int npar, int *indx, double *d) ;
        double gompertz(double p[]);
 /* End theta */    hess=matrix(1,npar,1,npar);
   
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      for(h=0; h<=nhstepm-1; h++)    for (i=1;i<=npar;i++){
       for(j=1; j<=nlstate*2;j++)      printf("%d",i);fflush(stdout);
         for(theta=1; theta <=npar; theta++)      fprintf(ficlog,"%d",i);fflush(ficlog);
           trgradg[h][j][theta]=gradg[h][theta][j];     
             hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
      for(i=1;i<=nlstate*2;i++)      /*  printf(" %f ",p[i]);
       for(j=1;j<=nlstate*2;j++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         varhe[i][j][(int)age] =0.;    }
     
      printf("%d|",(int)age);fflush(stdout);    for (i=1;i<=npar;i++) {
      for(h=0;h<=nhstepm-1;h++){      for (j=1;j<=npar;j++)  {
       for(k=0;k<=nhstepm-1;k++){        if (j>i) { 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          printf(".%d%d",i,j);fflush(stdout);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(i=1;i<=nlstate*2;i++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
           for(j=1;j<=nlstate*2;j++)          
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          hess[j][i]=hess[i][j];    
       }          /*printf(" %lf ",hess[i][j]);*/
     }        }
     /* Computing expectancies */      }
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++)    printf("\n");
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    fprintf(ficlog,"\n");
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
              printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
         }    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     fprintf(ficreseij,"%3.0f",age );    x=vector(1,npar);
     cptj=0;    indx=ivector(1,npar);
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate;j++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         cptj++;    ludcmp(a,npar,indx,&pd);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  
       }    for (j=1;j<=npar;j++) {
     fprintf(ficreseij,"\n");      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
     free_matrix(gm,0,nhstepm,1,nlstate*2);      lubksb(a,npar,indx,x);
     free_matrix(gp,0,nhstepm,1,nlstate*2);      for (i=1;i<=npar;i++){ 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        matcov[i][j]=x[i];
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   }  
   printf("\n");    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
   free_vector(xp,1,npar);    for (i=1;i<=npar;i++) { 
   free_matrix(dnewm,1,nlstate*2,1,npar);      for (j=1;j<=npar;j++) { 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        printf("%.3e ",hess[i][j]);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        fprintf(ficlog,"%.3e ",hess[i][j]);
 }      }
       printf("\n");
 /************ Variance ******************/      fprintf(ficlog,"\n");
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    }
 {  
   /* Variance of health expectancies */    /* Recompute Inverse */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (i=1;i<=npar;i++)
   double **newm;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double **dnewm,**doldm;    ludcmp(a,npar,indx,&pd);
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;    /*  printf("\n#Hessian matrix recomputed#\n");
   double *xp;  
   double **gp, **gm;    for (j=1;j<=npar;j++) {
   double ***gradg, ***trgradg;      for (i=1;i<=npar;i++) x[i]=0;
   double ***p3mat;      x[j]=1;
   double age,agelim, hf;      lubksb(a,npar,indx,x);
   int theta;      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        printf("%.3e ",y[i][j]);
   fprintf(ficresvij,"# Age");        fprintf(ficlog,"%.3e ",y[i][j]);
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=nlstate;j++)      printf("\n");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      fprintf(ficlog,"\n");
   fprintf(ficresvij,"\n");    }
     */
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    free_matrix(a,1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    free_matrix(y,1,npar,1,npar);
      free_vector(x,1,npar);
   if(estepm < stepm){    free_ivector(indx,1,npar);
     printf ("Problem %d lower than %d\n",estepm, stepm);    free_matrix(hess,1,npar,1,npar);
   }  
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */  }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim  /*************** hessian matrix ****************/
      nstepm is the number of stepm from age to agelin.  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      Look at hpijx to understand the reason of that which relies in memory size  {
      and note for a fixed period like k years */    int i;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    int l=1, lmax=20;
      survival function given by stepm (the optimization length). Unfortunately it    double k1,k2;
      means that if the survival funtion is printed only each two years of age and if    double p2[NPARMAX+1];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double res;
      results. So we changed our mind and took the option of the best precision.    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   */    double fx;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int k=0,kmax=10;
   agelim = AGESUP;    double l1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fx=func(x);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for (i=1;i<=npar;i++) p2[i]=x[i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(l=0 ; l <=lmax; l++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      l1=pow(10,l);
     gp=matrix(0,nhstepm,1,nlstate);      delts=delt;
     gm=matrix(0,nhstepm,1,nlstate);      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
     for(theta=1; theta <=npar; theta++){        p2[theta]=x[theta] +delt;
       for(i=1; i<=npar; i++){ /* Computes gradient */        k1=func(p2)-fx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        p2[theta]=x[theta]-delt;
       }        k2=func(p2)-fx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /*res= (k1-2.0*fx+k2)/delt/delt; */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
       if (popbased==1) {  #ifdef DEBUG
         for(i=1; i<=nlstate;i++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(j=1; j<= nlstate; j++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         for(h=0; h<=nhstepm; h++){          k=kmax;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         }          k=kmax; l=lmax*10.;
       }        }
            else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(i=1; i<=npar; i++) /* Computes gradient */          delts=delt;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
      delti[theta]=delts;
       if (popbased==1) {    return res; 
         for(i=1; i<=nlstate;i++)    
           prlim[i][i]=probs[(int)age][i][ij];  }
       }  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       for(j=1; j<= nlstate; j++){  {
         for(h=0; h<=nhstepm; h++){    int i;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    int l=1, l1, lmax=20;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double k1,k2,k3,k4,res,fx;
         }    double p2[NPARMAX+1];
       }    int k;
   
       for(j=1; j<= nlstate; j++)    fx=func(x);
         for(h=0; h<=nhstepm; h++){    for (k=1; k<=2; k++) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (i=1;i<=npar;i++) p2[i]=x[i];
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
     } /* End theta */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    
       p2[thetai]=x[thetai]+delti[thetai]/k;
     for(h=0; h<=nhstepm; h++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(j=1; j<=nlstate;j++)      k2=func(p2)-fx;
         for(theta=1; theta <=npar; theta++)    
           trgradg[h][j][theta]=gradg[h][theta][j];      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      k3=func(p2)-fx;
     for(i=1;i<=nlstate;i++)    
       for(j=1;j<=nlstate;j++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         vareij[i][j][(int)age] =0.;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
     for(h=0;h<=nhstepm;h++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(k=0;k<=nhstepm;k++){  #ifdef DEBUG
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(i=1;i<=nlstate;i++)  #endif
           for(j=1;j<=nlstate;j++)    }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    return res;
       }  }
     }  
   /************** Inverse of matrix **************/
     fprintf(ficresvij,"%.0f ",age );  void ludcmp(double **a, int n, int *indx, double *d) 
     for(i=1; i<=nlstate;i++)  { 
       for(j=1; j<=nlstate;j++){    int i,imax,j,k; 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    double big,dum,sum,temp; 
       }    double *vv; 
     fprintf(ficresvij,"\n");   
     free_matrix(gp,0,nhstepm,1,nlstate);    vv=vector(1,n); 
     free_matrix(gm,0,nhstepm,1,nlstate);    *d=1.0; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    for (i=1;i<=n;i++) { 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      big=0.0; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=n;j++) 
   } /* End age */        if ((temp=fabs(a[i][j])) > big) big=temp; 
        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   free_vector(xp,1,npar);      vv[i]=1.0/big; 
   free_matrix(doldm,1,nlstate,1,npar);    } 
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
 }        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 /************ Variance of prevlim ******************/        a[i][j]=sum; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      } 
 {      big=0.0; 
   /* Variance of prevalence limit */      for (i=j;i<=n;i++) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        sum=a[i][j]; 
   double **newm;        for (k=1;k<j;k++) 
   double **dnewm,**doldm;          sum -= a[i][k]*a[k][j]; 
   int i, j, nhstepm, hstepm;        a[i][j]=sum; 
   int k, cptcode;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double *xp;          big=dum; 
   double *gp, *gm;          imax=i; 
   double **gradg, **trgradg;        } 
   double age,agelim;      } 
   int theta;      if (j != imax) { 
            for (k=1;k<=n;k++) { 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          dum=a[imax][k]; 
   fprintf(ficresvpl,"# Age");          a[imax][k]=a[j][k]; 
   for(i=1; i<=nlstate;i++)          a[j][k]=dum; 
       fprintf(ficresvpl," %1d-%1d",i,i);        } 
   fprintf(ficresvpl,"\n");        *d = -(*d); 
         vv[imax]=vv[j]; 
   xp=vector(1,npar);      } 
   dnewm=matrix(1,nlstate,1,npar);      indx[j]=imax; 
   doldm=matrix(1,nlstate,1,nlstate);      if (a[j][j] == 0.0) a[j][j]=TINY; 
        if (j != n) { 
   hstepm=1*YEARM; /* Every year of age */        dum=1.0/(a[j][j]); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   agelim = AGESUP;      } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    } 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_vector(vv,1,n);  /* Doesn't work */
     if (stepm >= YEARM) hstepm=1;  ;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  } 
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);  void lubksb(double **a, int n, int *indx, double b[]) 
     gm=vector(1,nlstate);  { 
     int i,ii=0,ip,j; 
     for(theta=1; theta <=npar; theta++){    double sum; 
       for(i=1; i<=npar; i++){ /* Computes gradient */   
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1;i<=n;i++) { 
       }      ip=indx[i]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      sum=b[ip]; 
       for(i=1;i<=nlstate;i++)      b[ip]=b[i]; 
         gp[i] = prlim[i][i];      if (ii) 
            for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       for(i=1; i<=npar; i++) /* Computes gradient */      else if (sum) ii=i; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      b[i]=sum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    } 
       for(i=1;i<=nlstate;i++)    for (i=n;i>=1;i--) { 
         gm[i] = prlim[i][i];      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(i=1;i<=nlstate;i++)      b[i]=sum/a[i][i]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    } 
     } /* End theta */  } 
   
     trgradg =matrix(1,nlstate,1,npar);  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     for(j=1; j<=nlstate;j++)  {  /* Some frequencies */
       for(theta=1; theta <=npar; theta++)    
         trgradg[j][theta]=gradg[theta][j];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
     for(i=1;i<=nlstate;i++)    double ***freq; /* Frequencies */
       varpl[i][(int)age] =0.;    double *pp, **prop;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    FILE *ficresp;
     for(i=1;i<=nlstate;i++)    char fileresp[FILENAMELENGTH];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    
     pp=vector(1,nlstate);
     fprintf(ficresvpl,"%.0f ",age );    prop=matrix(1,nlstate,iagemin,iagemax+3);
     for(i=1; i<=nlstate;i++)    strcpy(fileresp,"p");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    strcat(fileresp,fileres);
     fprintf(ficresvpl,"\n");    if((ficresp=fopen(fileresp,"w"))==NULL) {
     free_vector(gp,1,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     free_vector(gm,1,nlstate);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     free_matrix(gradg,1,npar,1,nlstate);      exit(0);
     free_matrix(trgradg,1,nlstate,1,npar);    }
   } /* End age */    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   free_vector(xp,1,npar);    
   free_matrix(doldm,1,nlstate,1,npar);    j=cptcoveff;
   free_matrix(dnewm,1,nlstate,1,nlstate);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
 }    first=1;
   
 /************ Variance of one-step probabilities  ******************/    for(k1=1; k1<=j;k1++){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      for(i1=1; i1<=ncodemax[k1];i1++){
 {        j1++;
   int i, j,  i1, k1, l1;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   int k2, l2, j1,  z1;          scanf("%d", i);*/
   int k=0,l, cptcode;        for (i=-5; i<=nlstate+ndeath; i++)  
   int first=1;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;            for(m=iagemin; m <= iagemax+3; m++)
   double **dnewm,**doldm;              freq[i][jk][m]=0;
   double *xp;  
   double *gp, *gm;      for (i=1; i<=nlstate; i++)  
   double **gradg, **trgradg;        for(m=iagemin; m <= iagemax+3; m++)
   double **mu;          prop[i][m]=0;
   double age,agelim, cov[NCOVMAX];        
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        dateintsum=0;
   int theta;        k2cpt=0;
   char fileresprob[FILENAMELENGTH];        for (i=1; i<=imx; i++) {
   char fileresprobcov[FILENAMELENGTH];          bool=1;
   char fileresprobcor[FILENAMELENGTH];          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   double ***varpij;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
   strcpy(fileresprob,"prob");          }
   strcat(fileresprob,fileres);          if (bool==1){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            for(m=firstpass; m<=lastpass; m++){
     printf("Problem with resultfile: %s\n", fileresprob);              k2=anint[m][i]+(mint[m][i]/12.);
   }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   strcpy(fileresprobcov,"probcov");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   strcat(fileresprobcov,fileres);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     printf("Problem with resultfile: %s\n", fileresprobcov);                if (m<lastpass) {
   }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   strcpy(fileresprobcor,"probcor");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   strcat(fileresprobcor,fileres);                }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {                
     printf("Problem with resultfile: %s\n", fileresprobcor);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   }                  dateintsum=dateintsum+k2;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                  k2cpt++;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                /*}*/
              }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          }
   fprintf(ficresprob,"# Age");        }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");         
   fprintf(ficresprobcov,"# Age");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  fprintf(ficresp, "#Local time at start: %s", strstart);
   fprintf(ficresprobcov,"# Age");        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(i=1; i<=nlstate;i++)          fprintf(ficresp, "**********\n#");
     for(j=1; j<=(nlstate+ndeath);j++){        }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        for(i=1; i<=nlstate;i++) 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        fprintf(ficresp, "\n");
     }          
   fprintf(ficresprob,"\n");        for(i=iagemin; i <= iagemax+3; i++){
   fprintf(ficresprobcov,"\n");          if(i==iagemax+3){
   fprintf(ficresprobcor,"\n");            fprintf(ficlog,"Total");
   xp=vector(1,npar);          }else{
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            if(first==1){
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));              first=0;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);              printf("See log file for details...\n");
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);            }
   first=1;            fprintf(ficlog,"Age %d", i);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          for(jk=1; jk <=nlstate ; jk++){
     exit(0);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   }              pp[jk] += freq[jk][m][i]; 
   else{          }
     fprintf(ficgp,"\n# Routine varprob");          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pos=0; m <=0 ; m++)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              pos += freq[jk][m][i];
     printf("Problem with html file: %s\n", optionfilehtm);            if(pp[jk]>=1.e-10){
     exit(0);              if(first==1){
   }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   else{              }
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");            }else{
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   cov[1]=1;            }
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
   j1=0;          for(jk=1; jk <=nlstate ; jk++){
   for(k1=1; k1<=1;k1++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for(i1=1; i1<=ncodemax[k1];i1++){              pp[jk] += freq[jk][m][i];
     j1++;          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     if  (cptcovn>0) {            pos += pp[jk];
       fprintf(ficresprob, "\n#********** Variable ");            posprop += prop[jk][i];
       fprintf(ficresprobcov, "\n#********** Variable ");          }
       fprintf(ficgp, "\n#********** Variable ");          for(jk=1; jk <=nlstate ; jk++){
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");            if(pos>=1.e-5){
       fprintf(ficresprobcor, "\n#********** Variable ");              if(first==1)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficresprob, "**********\n#");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }else{
       fprintf(ficresprobcov, "**********\n#");              if(first==1)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficgp, "**********\n#");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
       fprintf(ficgp, "**********\n#");            if( i <= iagemax){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if(pos>=1.e-5){
       fprintf(fichtm, "**********\n#");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for (age=bage; age<=fage; age ++){              }
         cov[2]=age;              else
         for (k=1; k<=cptcovn;k++) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            }
         }          }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          
         for (k=1; k<=cptcovprod;k++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            for(m=-1; m <=nlstate+ndeath; m++)
                      if(freq[jk][m][i] !=0 ) {
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));              if(first==1)
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         gp=vector(1,(nlstate)*(nlstate+ndeath));                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         gm=vector(1,(nlstate)*(nlstate+ndeath));              }
              if(i <= iagemax)
         for(theta=1; theta <=npar; theta++){            fprintf(ficresp,"\n");
           for(i=1; i<=npar; i++)          if(first==1)
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            printf("Others in log...\n");
                    fprintf(ficlog,"\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
                }
           k=0;    }
           for(i=1; i<= (nlstate); i++){    dateintmean=dateintsum/k2cpt; 
             for(j=1; j<=(nlstate+ndeath);j++){   
               k=k+1;    fclose(ficresp);
               gp[k]=pmmij[i][j];    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
             }    free_vector(pp,1,nlstate);
           }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
              /* End of Freq */
           for(i=1; i<=npar; i++)  }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
      /************ Prevalence ********************/
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           k=0;  {  
           for(i=1; i<=(nlstate); i++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             for(j=1; j<=(nlstate+ndeath);j++){       in each health status at the date of interview (if between dateprev1 and dateprev2).
               k=k+1;       We still use firstpass and lastpass as another selection.
               gm[k]=pmmij[i][j];    */
             }   
           }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
          double ***freq; /* Frequencies */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    double *pp, **prop;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double pos,posprop; 
         }    double  y2; /* in fractional years */
     int iagemin, iagemax;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)    iagemin= (int) agemin;
             trgradg[j][theta]=gradg[theta][j];    iagemax= (int) agemax;
            /*pp=vector(1,nlstate);*/
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
            j1=0;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    
            j=cptcoveff;
         k=0;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(i=1; i<=(nlstate); i++){    
           for(j=1; j<=(nlstate+ndeath);j++){    for(k1=1; k1<=j;k1++){
             k=k+1;      for(i1=1; i1<=ncodemax[k1];i1++){
             mu[k][(int) age]=pmmij[i][j];        j1++;
           }        
         }        for (i=1; i<=nlstate; i++)  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          for(m=iagemin; m <= iagemax+3; m++)
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            prop[i][m]=0.0;
             varpij[i][j][(int)age] = doldm[i][j];       
         for (i=1; i<=imx; i++) { /* Each individual */
         /*printf("\n%d ",(int)age);          bool=1;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          if  (cptcovn>0) {
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            for (z1=1; z1<=cptcoveff; z1++) 
      }*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
         fprintf(ficresprob,"\n%d ",(int)age);          } 
         fprintf(ficresprobcov,"\n%d ",(int)age);          if (bool==1) { 
         fprintf(ficresprobcor,"\n%d ",(int)age);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         i=0;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         for (k=1; k<=(nlstate);k++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
           for (l=1; l<=(nlstate+ndeath);l++){                } 
             i=i++;              }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            } /* end selection of waves */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          }
             for (j=1; j<=i;j++){        }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        for(i=iagemin; i <= iagemax+3; i++){  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          
             }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           }            posprop += prop[jk][i]; 
         }/* end of loop for state */          } 
       } /* end of loop for age */  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          for(jk=1; jk <=nlstate ; jk++){     
       for (k1=1; k1<=(nlstate);k1++){            if( i <=  iagemax){ 
         for (l1=1; l1<=(nlstate+ndeath);l1++){              if(posprop>=1.e-5){ 
           if(l1==k1) continue;                probs[i][jk][j1]= prop[jk][i]/posprop;
           i=(k1-1)*(nlstate+ndeath)+l1;              } 
           for (k2=1; k2<=(nlstate);k2++){            } 
             for (l2=1; l2<=(nlstate+ndeath);l2++){          }/* end jk */ 
               if(l2==k2) continue;        }/* end i */ 
               j=(k2-1)*(nlstate+ndeath)+l2;      } /* end i1 */
               if(j<=i) continue;    } /* end k1 */
               for (age=bage; age<=fage; age ++){    
                 if ((int)age %5==0){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    /*free_vector(pp,1,nlstate);*/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  }  /* End of prevalence */
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;  /************* Waves Concatenation ***************/
                   /* Computing eigen value of matrix of covariance */  
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  {
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   /* Eigen vectors */       Death is a valid wave (if date is known).
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                   v21=sqrt(1.-v11*v11);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   v12=-v21;       and mw[mi+1][i]. dh depends on stepm.
                   v22=v11;       */
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    int i, mi, m;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                   if(first==1){       double sum=0., jmean=0.;*/
                     first=0;    int first;
                     fprintf(ficgp,"\nset parametric;set nolabel");    int j, k=0,jk, ju, jl;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    double sum=0.;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    first=0;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);    jmin=1e+5;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);    jmax=-1;
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);    jmean=0.;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    for(i=1; i<=imx; i++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      mi=0;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      m=firstpass;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      while(s[m][i] <= nlstate){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                   }else{          mw[++mi][i]=m;
                     first=0;        if(m >=lastpass)
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          break;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        else
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          m++;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      }/* end while */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      if (s[m][i] > nlstate){
                   }/* if first */        mi++;     /* Death is another wave */
                 } /* age mod 5 */        /* if(mi==0)  never been interviewed correctly before death */
               } /* end loop age */           /* Only death is a correct wave */
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);        mw[mi][i]=m;
               first=1;      }
             } /*l12 */  
           } /* k12 */      wav[i]=mi;
         } /*l1 */      if(mi==0){
       }/* k1 */        nbwarn++;
     } /* loop covariates */        if(first==0){
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          first=1;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        if(first==1){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }
   }      } /* end mi==0 */
   free_vector(xp,1,npar);    } /* End individuals */
   fclose(ficresprob);  
   fclose(ficresprobcov);    for(i=1; i<=imx; i++){
   fclose(ficresprobcor);      for(mi=1; mi<wav[i];mi++){
   fclose(ficgp);        if (stepm <=0)
   fclose(fichtm);          dh[mi][i]=1;
 }        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
 /******************* Printing html file ***********/              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              if(j==0) j=1;  /* Survives at least one month after exam */
                   int lastpass, int stepm, int weightopt, char model[],\              else if(j<0){
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                nberr++;
                   int popforecast, int estepm ,\                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   double jprev1, double mprev1,double anprev1, \                j=1; /* Temporary Dangerous patch */
                   double jprev2, double mprev2,double anprev2){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   int jj1, k1, i1, cpt;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /*char optionfilehtm[FILENAMELENGTH];*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {              }
     printf("Problem with %s \n",optionfilehtm), exit(0);              k=k+1;
   }              if (j >= jmax) jmax=j;
               if (j <= jmin) jmin=j;
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n              sum=sum+j;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n            }
  - Life expectancies by age and initial health status (estepm=%2d months):          }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          else{
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n  
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n            k=k+1;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            if (j >= jmax) jmax=j;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n            else if (j <= jmin)jmin=j;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            if(j<0){
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  if(popforecast==1) fprintf(fichtm,"\n              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            sum=sum+j;
         <br>",fileres,fileres,fileres,fileres);          }
  else          jk= j/stepm;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          jl= j -jk*stepm;
 fprintf(fichtm," <li>Graphs</li><p>");          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  m=cptcoveff;            if(jl==0){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              dh[mi][i]=jk;
               bh[mi][i]=0;
  jj1=0;            }else{ /* We want a negative bias in order to only have interpolation ie
  for(k1=1; k1<=m;k1++){                    * at the price of an extra matrix product in likelihood */
    for(i1=1; i1<=ncodemax[k1];i1++){              dh[mi][i]=jk+1;
      jj1++;              bh[mi][i]=ju;
      if (cptcovn > 0) {            }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          }else{
        for (cpt=1; cpt<=cptcoveff;cpt++)            if(jl <= -ju){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              dh[mi][i]=jk;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              bh[mi][i]=jl;       /* bias is positive if real duration
      }                                   * is higher than the multiple of stepm and negative otherwise.
      /* Pij */                                   */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>            }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                else{
      /* Quasi-incidences */              dh[mi][i]=jk+1;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              bh[mi][i]=ju;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }
        /* Stable prevalence in each health state */            if(dh[mi][i]==0){
        for(cpt=1; cpt<nlstate;cpt++){              dh[mi][i]=1; /* At least one step */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>              bh[mi][i]=ju; /* At least one step */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
        }            }
     for(cpt=1; cpt<=nlstate;cpt++) {          } /* end if mle */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        }
 interval) in state (%d): v%s%d%d.png <br>      } /* end wave */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
      }    jmean=sum/k;
      for(cpt=1; cpt<=nlstate;cpt++) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);   }
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  /*********** Tricode ****************************/
 health expectancies in states (1) and (2): e%s%d.png<br>  void tricode(int *Tvar, int **nbcode, int imx)
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  {
    }    
  }    int Ndum[20],ij=1, k, j, i, maxncov=19;
 fclose(fichtm);    int cptcode=0;
 }    cptcoveff=0; 
    
 /******************* Gnuplot file **************/    for (k=0; k<maxncov; k++) Ndum[k]=0;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    for (k=1; k<=7; k++) ncodemax[k]=0;
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   int ng;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                                 modality*/ 
     printf("Problem with file %s",optionfilegnuplot);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   }        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 #ifdef windows        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     fprintf(ficgp,"cd \"%s\" \n",pathc);                                         Tvar[j]. If V=sex and male is 0 and 
 #endif                                         female is 1, then  cptcode=1.*/
 m=pow(2,cptcoveff);      }
    
  /* 1eme*/      for (i=0; i<=cptcode; i++) {
   for (cpt=1; cpt<= nlstate ; cpt ++) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
    for (k1=1; k1<= m ; k1 ++) {      }
   
 #ifdef windows      ij=1; 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for (i=1; i<=ncodemax[j]; i++) {
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        for (k=0; k<= maxncov; k++) {
 #endif          if (Ndum[k] != 0) {
 #ifdef unix            nbcode[Tvar[j]][ij]=k; 
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            
 #endif            ij++;
           }
 for (i=1; i<= nlstate ; i ++) {          if (ij > ncodemax[j]) break; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } 
 }    }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");   for (i=1; i<=ncovmodel-2; i++) { 
 }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);     ij=Tvar[i];
      for (i=1; i<= nlstate ; i ++) {     Ndum[ij]++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }     ij=1;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));   for (i=1; i<= maxncov; i++) {
 #ifdef unix     if((Ndum[i]!=0) && (i<=ncovcol)){
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");       Tvaraff[ij]=i; /*For printing */
 #endif       ij++;
    }     }
   }   }
   /*2 eme*/   
    cptcoveff=ij-1; /*Number of simple covariates*/
   for (k1=1; k1<= m ; k1 ++) {  }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  /*********** Health Expectancies ****************/
      
     for (i=1; i<= nlstate+1 ; i ++) {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  {
       for (j=1; j<= nlstate+1 ; j ++) {    /* Health expectancies */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double age, agelim, hf;
 }      double ***p3mat,***varhe;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    double **dnewm,**doldm;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double *xp;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    double **gp, **gm;
       for (j=1; j<= nlstate+1 ; j ++) {    double ***gradg, ***trgradg;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int theta;
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       fprintf(ficgp,"\" t\"\" w l 0,");    xp=vector(1,npar);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficreseij,"# Local time at start: %s", strstart);
 }      fprintf(ficreseij,"# Health expectancies\n");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    fprintf(ficreseij,"# Age");
       else fprintf(ficgp,"\" t\"\" w l 0,");    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++)
   }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
      fprintf(ficreseij,"\n");
   /*3eme*/  
     if(estepm < stepm){
   for (k1=1; k1<= m ; k1 ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    }
       k=2+nlstate*(2*cpt-2);    else  hstepm=estepm;   
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);     * This is mainly to measure the difference between two models: for example
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     * if stepm=24 months pijx are given only every 2 years and by summing them
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     * we are calculating an estimate of the Life Expectancy assuming a linear 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     * progression in between and thus overestimating or underestimating according
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     * to the curvature of the survival function. If, for the same date, we 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
 */     * curvature will be obtained if estepm is as small as stepm. */
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
   /* CV preval stat */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for (k1=1; k1<= m ; k1 ++) {       survival function given by stepm (the optimization length). Unfortunately it
     for (cpt=1; cpt<nlstate ; cpt ++) {       means that if the survival funtion is printed only each two years of age and if
       k=3;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       results. So we changed our mind and took the option of the best precision.
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);    agelim=AGESUP;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
            /* nhstepm age range expressed in number of stepm */
       l=3+(nlstate+ndeath)*cpt;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for (i=1; i< nlstate ; i ++) {      /* if (stepm >= YEARM) hstepm=1;*/
         l=3+(nlstate+ndeath)*cpt;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficgp,"+$%d",l+i+1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   }    
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /* proba elementaires */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    for(i=1,jk=1; i <=nlstate; i++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     for(k=1; k <=(nlstate+ndeath); k++){   
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      /* Computing  Variances of health expectancies */
           jk++;  
           fprintf(ficgp,"\n");       for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ 
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
    }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        cptj=0;
      for(jk=1; jk <=m; jk++) {        for(j=1; j<= nlstate; j++){
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          for(i=1; i<=nlstate; i++){
        if (ng==2)            cptj=cptj+1;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
        else              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
          fprintf(ficgp,"\nset title \"Probability\"\n");            }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          }
        i=1;        }
        for(k2=1; k2<=nlstate; k2++) {       
          k3=i;       
          for(k=1; k<=(nlstate+ndeath); k++) {        for(i=1; i<=npar; i++) 
            if (k != k2){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
              if(ng==2)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        
              else        cptj=0;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(j=1; j<= nlstate; j++){
              ij=1;          for(i=1;i<=nlstate;i++){
              for(j=3; j <=ncovmodel; j++) {            cptj=cptj+1;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                }            }
                else          }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
              }        for(j=1; j<= nlstate*nlstate; j++)
              fprintf(ficgp,")/(1");          for(h=0; h<=nhstepm-1; h++){
                          gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
              for(k1=1; k1 <=nlstate; k1++){            }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       } 
                ij=1;     
                for(j=3; j <=ncovmodel; j++){  /* End theta */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                    ij++;  
                  }       for(h=0; h<=nhstepm-1; h++)
                  else        for(j=1; j<=nlstate*nlstate;j++)
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(theta=1; theta <=npar; theta++)
                }            trgradg[h][j][theta]=gradg[h][theta][j];
                fprintf(ficgp,")");       
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);       for(i=1;i<=nlstate*nlstate;i++)
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for(j=1;j<=nlstate*nlstate;j++)
              i=i+ncovmodel;          varhe[i][j][(int)age] =0.;
            }  
          }       printf("%d|",(int)age);fflush(stdout);
        }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      }       for(h=0;h<=nhstepm-1;h++){
    }        for(k=0;k<=nhstepm-1;k++){
    fclose(ficgp);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 }  /* end gnuplot */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
             for(j=1;j<=nlstate*nlstate;j++)
 /*************** Moving average **************/              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        }
       }
   int i, cpt, cptcod;      /* Computing expectancies */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      for(i=1; i<=nlstate;i++)
       for (i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           mobaverage[(int)agedeb][i][cptcod]=0.;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      fprintf(ficreseij,"%3.0f",age );
           }      cptj=0;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
       }          cptj++;
     }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
            }
 }      fprintf(ficreseij,"\n");
      
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 /************** Forecasting ******************/      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int *popage;    }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    printf("\n");
   double *popeffectif,*popcount;    fprintf(ficlog,"\n");
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
  agelim=AGESUP;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
    /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   strcpy(fileresf,"f");  {
   strcat(fileresf,fileres);    /* Variance of health expectancies */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     printf("Problem with forecast resultfile: %s\n", fileresf);    /* double **newm;*/
   }    double **dnewm,**doldm;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    int k, cptcode;
     double *xp;
   if (mobilav==1) {    double **gp, **gm;  /* for var eij */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***gradg, ***trgradg; /*for var eij */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double ***p3mat;
   if (stepm<=12) stepsize=1;    double age,agelim, hf;
      double ***mobaverage;
   agelim=AGESUP;    int theta;
      char digit[4];
   hstepm=1;    char digitp[25];
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);    char fileresprobmorprev[FILENAMELENGTH];
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);    if(popbased==1){
   mprojmean=yp;      if(mobilav!=0)
   yp1=modf((yp2*30.5),&yp);        strcpy(digitp,"-populbased-mobilav-");
   jprojmean=yp;      else strcpy(digitp,"-populbased-nomobil-");
   if(jprojmean==0) jprojmean=1;    }
   if(mprojmean==0) jprojmean=1;    else 
        strcpy(digitp,"-stablbased-");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
      if (mobilav!=0) {
   for(cptcov=1;cptcov<=i2;cptcov++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       k=k+1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficresf,"\n#******");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for(j=1;j<=cptcoveff;j++) {      }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }  
       fprintf(ficresf,"******\n");    strcpy(fileresprobmorprev,"prmorprev"); 
       fprintf(ficresf,"# StartingAge FinalAge");    sprintf(digit,"%-d",ij);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
          strcat(fileresprobmorprev,digit); /* Tvar to be done */
          strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    strcat(fileresprobmorprev,fileres);
         fprintf(ficresf,"\n");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           nhstepm = nhstepm/hstepm;   
              fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
           oldm=oldms;savm=savms;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
            for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for (h=0; h<=nhstepm; h++){      fprintf(ficresprobmorprev," p.%-d SE",j);
             if (h==(int) (calagedate+YEARM*cpt)) {      for(i=1; i<=nlstate;i++)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             }    }  
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficresprobmorprev,"\n");
               kk1=0.;kk2=0;    fprintf(ficgp,"\n# Routine varevsij");
               for(i=1; i<=nlstate;i++) {                  /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
                 if (mobilav==1)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                 else {  /*   } */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 }   fprintf(ficresvij, "#Local time at start: %s", strstart);
                    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
               }    fprintf(ficresvij,"# Age");
               if (h==(int)(calagedate+12*cpt)){    for(i=1; i<=nlstate;i++)
                 fprintf(ficresf," %.3f", kk1);      for(j=1; j<=nlstate;j++)
                                fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
               }    fprintf(ficresvij,"\n");
             }  
           }    xp=vector(1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    dnewm=matrix(1,nlstate,1,npar);
         }    doldm=matrix(1,nlstate,1,nlstate);
       }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
            gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   fclose(ficresf);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 }    
 /************** Forecasting ******************/    if(estepm < stepm){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    else  hstepm=estepm;   
   int *popage;    /* For example we decided to compute the life expectancy with the smallest unit */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double *popeffectif,*popcount;       nhstepm is the number of hstepm from age to agelim 
   double ***p3mat,***tabpop,***tabpopprev;       nstepm is the number of stepm from age to agelin. 
   char filerespop[FILENAMELENGTH];       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       survival function given by stepm (the optimization length). Unfortunately it
   agelim=AGESUP;       means that if the survival funtion is printed every two years of age and if
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
   strcpy(filerespop,"pop");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   strcat(filerespop,fileres);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     printf("Problem with forecast resultfile: %s\n", filerespop);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   printf("Computing forecasting: result on file '%s' \n", filerespop);      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   
   if (mobilav==1) {      for(theta=1; theta <=npar; theta++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   stepsize=(int) (stepm+YEARM-1)/YEARM;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (stepm<=12) stepsize=1;  
          if (popbased==1) {
   agelim=AGESUP;          if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
   hstepm=1;              prlim[i][i]=probs[(int)age][i][ij];
   hstepm=hstepm/stepm;          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   if (popforecast==1) {              prlim[i][i]=mobaverage[(int)age][i][ij];
     if((ficpop=fopen(popfile,"r"))==NULL) {          }
       printf("Problem with population file : %s\n",popfile);exit(0);        }
     }    
     popage=ivector(0,AGESUP);        for(j=1; j<= nlstate; j++){
     popeffectif=vector(0,AGESUP);          for(h=0; h<=nhstepm; h++){
     popcount=vector(0,AGESUP);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                  gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     i=1;            }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        }
            /* This for computing probability of death (h=1 means
     imx=i;           computed over hstepm matrices product = hstepm*stepm months) 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];           as a weighted average of prlim.
   }        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   for(cptcov=1;cptcov<=i2;cptcov++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       k=k+1;        }    
       fprintf(ficrespop,"\n#******");        /* end probability of death */
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficrespop,"******\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficrespop,"# Age");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);   
       if (popforecast==1)  fprintf(ficrespop," [Population]");        if (popbased==1) {
                if(mobilav ==0){
       for (cpt=0; cpt<=0;cpt++) {            for(i=1; i<=nlstate;i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                prlim[i][i]=probs[(int)age][i][ij];
                  }else{ /* mobilav */ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            for(i=1; i<=nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              prlim[i][i]=mobaverage[(int)age][i][ij];
           nhstepm = nhstepm/hstepm;          }
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;        for(j=1; j<= nlstate; j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(h=0; h<=nhstepm; h++){
                    for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }        /* This for computing probability of death (h=1 means
             for(j=1; j<=nlstate+ndeath;j++) {           computed over hstepm matrices product = hstepm*stepm months) 
               kk1=0.;kk2=0;           as a weighted average of prlim.
               for(i=1; i<=nlstate;i++) {                      */
                 if (mobilav==1)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                 else {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        }    
                 }        /* end probability of death */
               }  
               if (h==(int)(calagedate+12*cpt)){        for(j=1; j<= nlstate; j++) /* vareij */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          for(h=0; h<=nhstepm; h++){
                   /*fprintf(ficrespop," %.3f", kk1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          }
               }  
             }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             for(i=1; i<=nlstate;i++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
               kk1=0.;        }
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      } /* End theta */
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             }  
       for(h=0; h<=nhstepm; h++) /* veij */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        for(j=1; j<=nlstate;j++)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          for(theta=1; theta <=npar; theta++)
           }            trgradg[h][j][theta]=gradg[h][theta][j];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       }        for(theta=1; theta <=npar; theta++)
            trgradgp[j][theta]=gradgp[theta][j];
   /******/    
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(i=1;i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(j=1;j<=nlstate;j++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          vareij[i][j][(int)age] =0.;
           nhstepm = nhstepm/hstepm;  
                for(h=0;h<=nhstepm;h++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(k=0;k<=nhstepm;k++){
           oldm=oldms;savm=savms;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for (h=0; h<=nhstepm; h++){          for(i=1;i<=nlstate;i++)
             if (h==(int) (calagedate+YEARM*cpt)) {            for(j=1;j<=nlstate;j++)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {      }
               kk1=0.;kk2=0;    
               for(i=1; i<=nlstate;i++) {                    /* pptj */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
               }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
             }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           }          varppt[j][i]=doldmp[j][i];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* end ppptj */
         }      /*  x centered again */
       }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
    }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   }   
        if (popbased==1) {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
   if (popforecast==1) {            prlim[i][i]=probs[(int)age][i][ij];
     free_ivector(popage,0,AGESUP);        }else{ /* mobilav */ 
     free_vector(popeffectif,0,AGESUP);          for(i=1; i<=nlstate;i++)
     free_vector(popcount,0,AGESUP);            prlim[i][i]=mobaverage[(int)age][i][ij];
   }        }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);               
   fclose(ficrespop);      /* This for computing probability of death (h=1 means
 }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
 /***********************************************/      */
 /**************** Main Program *****************/      for(j=nlstate+1;j<=nlstate+ndeath;j++){
 /***********************************************/        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 int main(int argc, char *argv[])      }    
 {      /* end probability of death */
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   double agedeb, agefin,hf;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
   double fret;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   double **xi,tmp,delta;        }
       } 
   double dum; /* Dummy variable */      fprintf(ficresprobmorprev,"\n");
   double ***p3mat;  
   int *indx;      fprintf(ficresvij,"%.0f ",age );
   char line[MAXLINE], linepar[MAXLINE];      for(i=1; i<=nlstate;i++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(j=1; j<=nlstate;j++){
   int firstobs=1, lastobs=10;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   int sdeb, sfin; /* Status at beginning and end */        }
   int c,  h , cpt,l;      fprintf(ficresvij,"\n");
   int ju,jl, mi;      free_matrix(gp,0,nhstepm,1,nlstate);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      free_matrix(gm,0,nhstepm,1,nlstate);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   int mobilav=0,popforecast=0;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   int hstepm, nhstepm;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
   double bage, fage, age, agelim, agebase;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   double ftolpl=FTOL;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   double **prlim;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double *severity;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   double ***param; /* Matrix of parameters */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   double  *p;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   double **matcov; /* Matrix of covariance */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   double ***delti3; /* Scale */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   double *delti; /* Scale */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   double ***eij, ***vareij;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   double **varpl; /* Variances of prevalence limits by age */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   double *epj, vepp;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   double kk1, kk2;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   char *alph[]={"a","a","b","c","d","e"}, str[4];  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
   char z[1]="c", occ;    free_vector(xp,1,npar);
 #include <sys/time.h>    free_matrix(doldm,1,nlstate,1,nlstate);
 #include <time.h>    free_matrix(dnewm,1,nlstate,1,npar);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   /* long total_usecs;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   struct timeval start_time, end_time;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fclose(ficresprobmorprev);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fflush(ficgp);
   getcwd(pathcd, size);    fflush(fichtm); 
   }  /* end varevsij */
   printf("\n%s",version);  
   if(argc <=1){  /************ Variance of prevlim ******************/
     printf("\nEnter the parameter file name: ");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     scanf("%s",pathtot);  {
   }    /* Variance of prevalence limit */
   else{    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     strcpy(pathtot,argv[1]);    double **newm;
   }    double **dnewm,**doldm;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    int i, j, nhstepm, hstepm;
   /*cygwin_split_path(pathtot,path,optionfile);    int k, cptcode;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double *xp;
   /* cutv(path,optionfile,pathtot,'\\');*/    double *gp, *gm;
     double **gradg, **trgradg;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double age,agelim;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int theta;
   chdir(path);    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
   replace(pathc,path);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
 /*-------- arguments in the command line --------*/    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   strcpy(fileres,"r");    fprintf(ficresvpl,"\n");
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   /*---------arguments file --------*/    doldm=matrix(1,nlstate,1,nlstate);
     
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    hstepm=1*YEARM; /* Every year of age */
     printf("Problem with optionfile %s\n",optionfile);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     goto end;    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   strcpy(filereso,"o");      if (stepm >= YEARM) hstepm=1;
   strcat(filereso,fileres);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   if((ficparo=fopen(filereso,"w"))==NULL) {      gradg=matrix(1,npar,1,nlstate);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      gp=vector(1,nlstate);
   }      gm=vector(1,nlstate);
   
   /* Reads comments: lines beginning with '#' */      for(theta=1; theta <=npar; theta++){
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=npar; i++){ /* Computes gradient */
     ungetc(c,ficpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fputs(line,ficparo);        for(i=1;i<=nlstate;i++)
   }          gp[i] = prlim[i][i];
   ungetc(c,ficpar);      
         for(i=1; i<=npar; i++) /* Computes gradient */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        for(i=1;i<=nlstate;i++)
 while((c=getc(ficpar))=='#' && c!= EOF){          gm[i] = prlim[i][i];
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for(i=1;i<=nlstate;i++)
     puts(line);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     fputs(line,ficparo);      } /* End theta */
   }  
   ungetc(c,ficpar);      trgradg =matrix(1,nlstate,1,npar);
    
          for(j=1; j<=nlstate;j++)
   covar=matrix(0,NCOVMAX,1,n);        for(theta=1; theta <=npar; theta++)
   cptcovn=0;          trgradg[j][theta]=gradg[theta][j];
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
       for(i=1;i<=nlstate;i++)
   ncovmodel=2+cptcovn;        varpl[i][(int)age] =0.;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   /* Read guess parameters */      for(i=1;i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      fprintf(ficresvpl,"%.0f ",age );
     fgets(line, MAXLINE, ficpar);      for(i=1; i<=nlstate;i++)
     puts(line);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     fputs(line,ficparo);      fprintf(ficresvpl,"\n");
   }      free_vector(gp,1,nlstate);
   ungetc(c,ficpar);      free_vector(gm,1,nlstate);
        free_matrix(gradg,1,npar,1,nlstate);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      free_matrix(trgradg,1,nlstate,1,npar);
     for(i=1; i <=nlstate; i++)    } /* End age */
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_vector(xp,1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    free_matrix(doldm,1,nlstate,1,npar);
       printf("%1d%1d",i,j);    free_matrix(dnewm,1,nlstate,1,nlstate);
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);  }
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);  /************ Variance of one-step probabilities  ******************/
       }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       fscanf(ficpar,"\n");  {
       printf("\n");    int i, j=0,  i1, k1, l1, t, tj;
       fprintf(ficparo,"\n");    int k2, l2, j1,  z1;
     }    int k=0,l, cptcode;
      int first=1, first1;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
   p=param[1][1];    double *xp;
      double *gp, *gm;
   /* Reads comments: lines beginning with '#' */    double **gradg, **trgradg;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **mu;
     ungetc(c,ficpar);    double age,agelim, cov[NCOVMAX];
     fgets(line, MAXLINE, ficpar);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     puts(line);    int theta;
     fputs(line,ficparo);    char fileresprob[FILENAMELENGTH];
   }    char fileresprobcov[FILENAMELENGTH];
   ungetc(c,ficpar);    char fileresprobcor[FILENAMELENGTH];
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double ***varpij;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    strcpy(fileresprob,"prob"); 
     for(j=1; j <=nlstate+ndeath-1; j++){    strcat(fileresprob,fileres);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("%1d%1d",i,j);      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar,"%le",&delti3[i][j][k]);    strcpy(fileresprobcov,"probcov"); 
         printf(" %le",delti3[i][j][k]);    strcat(fileresprobcov,fileres);
         fprintf(ficparo," %le",delti3[i][j][k]);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprobcov);
       fscanf(ficpar,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       printf("\n");    }
       fprintf(ficparo,"\n");    strcpy(fileresprobcor,"probcor"); 
     }    strcat(fileresprobcor,fileres);
   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   delti=delti3[1][1];      printf("Problem with resultfile: %s\n", fileresprobcor);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     ungetc(c,ficpar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fgets(line, MAXLINE, ficpar);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     puts(line);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fputs(line,ficparo);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   ungetc(c,ficpar);    fprintf(ficresprob, "#Local time at start: %s", strstart);
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   matcov=matrix(1,npar,1,npar);    fprintf(ficresprob,"# Age");
   for(i=1; i <=npar; i++){    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fscanf(ficpar,"%s",&str);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     printf("%s",str);    fprintf(ficresprobcov,"# Age");
     fprintf(ficparo,"%s",str);    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     for(j=1; j <=i; j++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       fscanf(ficpar," %le",&matcov[i][j]);    fprintf(ficresprobcov,"# Age");
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }    for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"\n");      for(j=1; j<=(nlstate+ndeath);j++){
     printf("\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     fprintf(ficparo,"\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   for(i=1; i <=npar; i++)      }  
     for(j=i+1;j<=npar;j++)   /* fprintf(ficresprob,"\n");
       matcov[i][j]=matcov[j][i];    fprintf(ficresprobcov,"\n");
        fprintf(ficresprobcor,"\n");
   printf("\n");   */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     /*-------- Rewriting paramater file ----------*/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      strcpy(rfileres,"r");    /* "Rparameterfile */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      strcat(rfileres,".");    /* */    first=1;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficgp,"\n# Routine varprob");
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(fichtm,"\n");
     }  
     fprintf(ficres,"#%s\n",version);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
        fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     /*-------- data file ----------*/    file %s<br>\n",optionfilehtmcov);
     if((fic=fopen(datafile,"r"))==NULL)    {    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       printf("Problem with datafile: %s\n", datafile);goto end;  and drawn. It helps understanding how is the covariance between two incidences.\
     }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     n= lastobs;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     severity = vector(1,maxwav);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     outcome=imatrix(1,maxwav+1,1,n);  standard deviations wide on each axis. <br>\
     num=ivector(1,n);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     moisnais=vector(1,n);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     annais=vector(1,n);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     moisdc=vector(1,n);  
     andc=vector(1,n);    cov[1]=1;
     agedc=vector(1,n);    tj=cptcoveff;
     cod=ivector(1,n);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     weight=vector(1,n);    j1=0;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    for(t=1; t<=tj;t++){
     mint=matrix(1,maxwav,1,n);      for(i1=1; i1<=ncodemax[t];i1++){ 
     anint=matrix(1,maxwav,1,n);        j1++;
     s=imatrix(1,maxwav+1,1,n);        if  (cptcovn>0) {
     adl=imatrix(1,maxwav+1,1,n);              fprintf(ficresprob, "\n#********** Variable "); 
     tab=ivector(1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ncodemax=ivector(1,8);          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
     i=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     while (fgets(line, MAXLINE, fic) != NULL)    {          fprintf(ficresprobcov, "**********\n#\n");
       if ((i >= firstobs) && (i <=lastobs)) {          
                  fprintf(ficgp, "\n#********** Variable "); 
         for (j=maxwav;j>=1;j--){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          fprintf(ficgp, "**********\n#\n");
           strcpy(line,stra);          
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcor, "**********\n#");    
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for (age=bage; age<=fage; age ++){ 
         for (j=ncovcol;j>=1;j--){          cov[2]=age;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (k=1; k<=cptcovn;k++) {
         }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         num[i]=atol(stra);          }
                  for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          for (k=1; k<=cptcovprod;k++)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
         i=i+1;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }          gp=vector(1,(nlstate)*(nlstate+ndeath));
     /* printf("ii=%d", ij);          gm=vector(1,(nlstate)*(nlstate+ndeath));
        scanf("%d",i);*/      
   imx=i-1; /* Number of individuals */          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
   /* for (i=1; i<=imx; i++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            
     }*/            k=0;
    /*  for (i=1; i<=imx; i++){            for(i=1; i<= (nlstate); i++){
      if (s[4][i]==9)  s[4][i]=-1;              for(j=1; j<=(nlstate+ndeath);j++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                k=k+1;
                  gp[k]=pmmij[i][j];
                }
   /* Calculation of the number of parameter from char model*/            }
   Tvar=ivector(1,15);            
   Tprod=ivector(1,15);            for(i=1; i<=npar; i++)
   Tvaraff=ivector(1,15);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   Tvard=imatrix(1,15,1,2);      
   Tage=ivector(1,15);                  pmij(pmmij,cov,ncovmodel,xp,nlstate);
                k=0;
   if (strlen(model) >1){            for(i=1; i<=(nlstate); i++){
     j=0, j1=0, k1=1, k2=1;              for(j=1; j<=(nlstate+ndeath);j++){
     j=nbocc(model,'+');                k=k+1;
     j1=nbocc(model,'*');                gm[k]=pmmij[i][j];
     cptcovn=j+1;              }
     cptcovprod=j1;            }
           
     strcpy(modelsav,model);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       printf("Error. Non available option model=%s ",model);          }
       goto end;  
     }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                for(theta=1; theta <=npar; theta++)
     for(i=(j+1); i>=1;i--){              trgradg[j][theta]=gradg[theta][j];
       cutv(stra,strb,modelsav,'+');          
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       /*scanf("%d",i);*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       if (strchr(strb,'*')) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         cutv(strd,strc,strb,'*');          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         if (strcmp(strc,"age")==0) {          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           cptcovprod--;  
           cutv(strb,stre,strd,'V');          pmij(pmmij,cov,ncovmodel,x,nlstate);
           Tvar[i]=atoi(stre);          
           cptcovage++;          k=0;
             Tage[cptcovage]=i;          for(i=1; i<=(nlstate); i++){
             /*printf("stre=%s ", stre);*/            for(j=1; j<=(nlstate+ndeath);j++){
         }              k=k+1;
         else if (strcmp(strd,"age")==0) {              mu[k][(int) age]=pmmij[i][j];
           cptcovprod--;            }
           cutv(strb,stre,strc,'V');          }
           Tvar[i]=atoi(stre);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           cptcovage++;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           Tage[cptcovage]=i;              varpij[i][j][(int)age] = doldm[i][j];
         }  
         else {          /*printf("\n%d ",(int)age);
           cutv(strb,stre,strc,'V');            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           Tvar[i]=ncovcol+k1;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           cutv(strb,strc,strd,'V');            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           Tprod[k1]=i;            }*/
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);          fprintf(ficresprob,"\n%d ",(int)age);
           Tvar[cptcovn+k2]=Tvard[k1][1];          fprintf(ficresprobcov,"\n%d ",(int)age);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          fprintf(ficresprobcor,"\n%d ",(int)age);
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           k1++;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           k2=k2+2;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       else {          }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          i=0;
        /*  scanf("%d",i);*/          for (k=1; k<=(nlstate);k++){
       cutv(strd,strc,strb,'V');            for (l=1; l<=(nlstate+ndeath);l++){ 
       Tvar[i]=atoi(strc);              i=i++;
       }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       strcpy(modelsav,stra);                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              for (j=1; j<=i;j++){
         scanf("%d",i);*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 }              }
              }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          }/* end of loop for state */
   printf("cptcovprod=%d ", cptcovprod);        } /* end of loop for age */
   scanf("%d ",i);*/  
     fclose(fic);        /* Confidence intervalle of pij  */
         /*
     /*  if(mle==1){*/          fprintf(ficgp,"\nset noparametric;unset label");
     if (weightopt != 1) { /* Maximisation without weights*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       for(i=1;i<=n;i++) weight[i]=1.0;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     /*-calculation of age at interview from date of interview and age at death -*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     agev=matrix(1,maxwav,1,imx);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     for (i=1; i<=imx; i++) {        */
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
          anint[m][i]=9999;        first1=1;
          s[m][i]=-1;        for (k2=1; k2<=(nlstate);k2++){
        }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            if(l2==k2) continue;
       }            j=(k2-1)*(nlstate+ndeath)+l2;
     }            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     for (i=1; i<=imx; i++)  {                if(l1==k1) continue;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                i=(k1-1)*(nlstate+ndeath)+l1;
       for(m=1; (m<= maxwav); m++){                if(i<=j) continue;
         if(s[m][i] >0){                for (age=bage; age<=fage; age ++){ 
           if (s[m][i] >= nlstate+1) {                  if ((int)age %5==0){
             if(agedc[i]>0)                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
               if(moisdc[i]!=99 && andc[i]!=9999)                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                 agev[m][i]=agedc[i];                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
            else {                    mu2=mu[j][(int) age]/stepm*YEARM;
               if (andc[i]!=9999){                    c12=cv12/sqrt(v1*v2);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                    /* Computing eigen value of matrix of covariance */
               agev[m][i]=-1;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
               }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             }                    /* Eigen vectors */
           }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           else if(s[m][i] !=9){ /* Should no more exist */                    /*v21=sqrt(1.-v11*v11); *//* error */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                    v21=(lc1-v1)/cv12*v11;
             if(mint[m][i]==99 || anint[m][i]==9999)                    v12=-v21;
               agev[m][i]=1;                    v22=v11;
             else if(agev[m][i] <agemin){                    tnalp=v21/v11;
               agemin=agev[m][i];                    if(first1==1){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                      first1=0;
             }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             else if(agev[m][i] >agemax){                    }
               agemax=agev[m][i];                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                    /*printf(fignu*/
             }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
             /*agev[m][i]=anint[m][i]-annais[i];*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
             /*   agev[m][i] = age[i]+2*m;*/                    if(first==1){
           }                      first=0;
           else { /* =9 */                      fprintf(ficgp,"\nset parametric;unset label");
             agev[m][i]=1;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             s[m][i]=-1;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         else /*= 0 Unknown */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           agev[m][i]=1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                          fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     for (i=1; i<=imx; i++)  {                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for(m=1; (m<= maxwav); m++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         if (s[m][i] > (nlstate+ndeath)) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           printf("Error: Wrong value in nlstate or ndeath\n");                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           goto end;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }else{
     }                      first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     free_vector(severity,1,maxwav);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     free_imatrix(outcome,1,maxwav+1,1,n);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     free_vector(moisnais,1,n);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     free_vector(annais,1,n);                    }/* if first */
     /* free_matrix(mint,1,maxwav,1,n);                  } /* age mod 5 */
        free_matrix(anint,1,maxwav,1,n);*/                } /* end loop age */
     free_vector(moisdc,1,n);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_vector(andc,1,n);                first=1;
               } /*l12 */
                } /* k12 */
     wav=ivector(1,imx);          } /*l1 */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        }/* k1 */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      } /* loop covariates */
        }
     /* Concatenates waves */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
       Tcode=ivector(1,100);    fclose(ficresprobcov);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    fclose(ficresprobcor);
       ncodemax[1]=1;    fflush(ficgp);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    fflush(fichtmcov);
        }
    codtab=imatrix(1,100,1,10);  
    h=0;  
    m=pow(2,cptcoveff);  /******************* Printing html file ***********/
    void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
    for(k=1;k<=cptcoveff; k++){                    int lastpass, int stepm, int weightopt, char model[],\
      for(i=1; i <=(m/pow(2,k));i++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
        for(j=1; j <= ncodemax[k]; j++){                    int popforecast, int estepm ,\
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                    double jprev1, double mprev1,double anprev1, \
            h++;                    double jprev2, double mprev2,double anprev2){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    int jj1, k1, i1, cpt;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
        }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
      }  </ul>");
    }     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       codtab[1][2]=1;codtab[2][2]=2; */             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
    /* for(i=1; i <=m ;i++){     fprintf(fichtm,"\
       for(k=1; k <=cptcovn; k++){   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       }     fprintf(fichtm,"\
       printf("\n");   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       scanf("%d",i);*/     fprintf(fichtm,"\
       - Life expectancies by age and initial health status (estepm=%2d months): \
    /* Calculates basic frequencies. Computes observed prevalence at single age     <a href=\"%s\">%s</a> <br>\n</li>",
        and prints on file fileres'p'. */             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
      fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   m=cptcoveff;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   jj1=0;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   for(k1=1; k1<=m;k1++){
           for(i1=1; i1<=ncodemax[k1];i1++){
     /* For Powell, parameters are in a vector p[] starting at p[1]       jj1++;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       if (cptcovn > 0) {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
     if(mle==1){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     }       }
           /* Pij */
     /*--------- results files --------------*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    jk=1;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         /* Stable prevalence in each health state */
    for(i=1,jk=1; i <=nlstate; i++){         for(cpt=1; cpt<nlstate;cpt++){
      for(k=1; k <=(nlstate+ndeath); k++){           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
        if (k != i)  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          {         }
            printf("%d%d ",i,k);       for(cpt=1; cpt<=nlstate;cpt++) {
            fprintf(ficres,"%1d%1d ",i,k);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
            for(j=1; j <=ncovmodel; j++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
              printf("%f ",p[jk]);       }
              fprintf(ficres,"%f ",p[jk]);     } /* end i1 */
              jk++;   }/* End k1 */
            }   fprintf(fichtm,"</ul>");
            printf("\n");  
            fprintf(ficres,"\n");  
          }   fprintf(fichtm,"\
      }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
  if(mle==1){  
     /* Computing hessian and covariance matrix */   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     ftolhess=ftol; /* Usually correct */           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     hesscov(matcov, p, npar, delti, ftolhess, func);   fprintf(fichtm,"\
  }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){   fprintf(fichtm,"\
       for(j=1; j <=nlstate+ndeath; j++){   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         if (j!=i) {           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
           fprintf(ficres,"%1d%1d",i,j);   fprintf(fichtm,"\
           printf("%1d%1d",i,j);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
           for(k=1; k<=ncovmodel;k++){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
             printf(" %.5e",delti[jk]);   fprintf(fichtm,"\
             fprintf(ficres," %.5e",delti[jk]);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
             jk++;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
           }   fprintf(fichtm,"\
           printf("\n");   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
           fprintf(ficres,"\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         }  
       }  /*  if(popforecast==1) fprintf(fichtm,"\n */
      }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
      /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     k=1;  /*      <br>",fileres,fileres,fileres,fileres); */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  /*  else  */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     for(i=1;i<=npar;i++){   fflush(fichtm);
       /*  if (k>nlstate) k=1;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   m=cptcoveff;
       printf("%s%d%d",alph[k],i1,tab[i]);*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);   jj1=0;
       for(j=1; j<=i;j++){   for(k1=1; k1<=m;k1++){
         fprintf(ficres," %.5e",matcov[i][j]);     for(i1=1; i1<=ncodemax[k1];i1++){
         printf(" %.5e",matcov[i][j]);       jj1++;
       }       if (cptcovn > 0) {
       fprintf(ficres,"\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       printf("\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
       k++;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           }
     while((c=getc(ficpar))=='#' && c!= EOF){       for(cpt=1; cpt<=nlstate;cpt++) {
       ungetc(c,ficpar);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       fgets(line, MAXLINE, ficpar);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       puts(line);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       fputs(line,ficparo);       }
     }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     ungetc(c,ficpar);  health expectancies in states (1) and (2): %s%d.png<br>\
     estepm=0;  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     } /* end i1 */
     if (estepm==0 || estepm < stepm) estepm=stepm;   }/* End k1 */
     if (fage <= 2) {   fprintf(fichtm,"</ul>");
       bage = ageminpar;   fflush(fichtm);
       fage = agemaxpar;  }
     }  
      /******************* Gnuplot file **************/
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    char dirfileres[132],optfileres[132];
      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     while((c=getc(ficpar))=='#' && c!= EOF){    int ng;
     ungetc(c,ficpar);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     fgets(line, MAXLINE, ficpar);  /*     printf("Problem with file %s",optionfilegnuplot); */
     puts(line);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     fputs(line,ficparo);  /*   } */
   }  
   ungetc(c,ficpar);    /*#ifdef windows */
      fprintf(ficgp,"cd \"%s\" \n",pathc);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      /*#endif */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    m=pow(2,cptcoveff);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
          strcpy(dirfileres,optionfilefiname);
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(optfileres,"vpl");
     ungetc(c,ficpar);   /* 1eme*/
     fgets(line, MAXLINE, ficpar);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     puts(line);     for (k1=1; k1<= m ; k1 ++) {
     fputs(line,ficparo);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   ungetc(c,ficpar);       fprintf(ficgp,"set xlabel \"Age\" \n\
    set ylabel \"Probability\" \n\
   set ter png small\n\
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  set size 0.65,0.65\n\
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);       for (i=1; i<= nlstate ; i ++) {
   fprintf(ficparo,"pop_based=%d\n",popbased);           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fprintf(ficres,"pop_based=%d\n",popbased);           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     ungetc(c,ficpar);       for (i=1; i<= nlstate ; i ++) {
     fgets(line, MAXLINE, ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     puts(line);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fputs(line,ficparo);       } 
   }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   ungetc(c,ficpar);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);         else fprintf(ficgp," \%%*lf (\%%*lf)");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       }  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
 while((c=getc(ficpar))=='#' && c!= EOF){    /*2 eme*/
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    for (k1=1; k1<= m ; k1 ++) { 
     puts(line);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     fputs(line,ficparo);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   }      
   ungetc(c,ficpar);      for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 /*------------ gnuplot -------------*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   strcpy(optionfilegnuplot,optionfilefiname);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   strcat(optionfilegnuplot,".gp");        for (j=1; j<= nlstate+1 ; j ++) {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with file %s",optionfilegnuplot);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }   
   fclose(ficgp);        fprintf(ficgp,"\" t\"\" w l 0,");
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 /*--------- index.htm --------*/        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(optionfilehtm,optionfile);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(optionfilehtm,".htm");        }   
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     printf("Problem with %s \n",optionfilehtm), exit(0);        else fprintf(ficgp,"\" t\"\" w l 0,");
   }      }
     }
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    /*3eme*/
 \n    
 Total number of observations=%d <br>\n    for (k1=1; k1<= m ; k1 ++) { 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      for (cpt=1; cpt<= nlstate ; cpt ++) {
 <hr  size=\"2\" color=\"#EC5E5E\">        k=2+nlstate*(2*cpt-2);
  <ul><li>Parameter files<br>\n        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        fprintf(ficgp,"set ter png small\n\
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);  set size 0.65,0.65\n\
   fclose(fichtm);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 /*------------ free_vector  -------------*/          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
  chdir(path);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
  free_ivector(wav,1,imx);          
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          for (i=1; i< nlstate ; i ++) {
  free_ivector(num,1,n);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
  free_vector(agedc,1,n);          
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        } 
  fclose(ficparo);      }
  fclose(ficres);    }
     
     /* CV preval stable (period) */
   /*--------------- Prevalence limit --------------*/    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<=nlstate ; cpt ++) {
   strcpy(filerespl,"pl");        k=3;
   strcat(filerespl,fileres);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  set ter png small\nset size 0.65,0.65\n\
   }  unset log y\n\
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   fprintf(ficrespl,"#Prevalence limit\n");        
   fprintf(ficrespl,"#Age ");        for (i=1; i< nlstate ; i ++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          fprintf(ficgp,"+$%d",k+i+1);
   fprintf(ficrespl,"\n");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
          
   prlim=matrix(1,nlstate,1,nlstate);        l=3+(nlstate+ndeath)*cpt;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i< nlstate ; i ++) {
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          l=3+(nlstate+ndeath)*cpt;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"+$%d",l+i+1);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        }
   k=0;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   agebase=ageminpar;      } 
   agelim=agemaxpar;    }  
   ftolpl=1.e-10;    
   i1=cptcoveff;    /* proba elementaires */
   if (cptcovn < 1){i1=1;}    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
   for(cptcov=1;cptcov<=i1;cptcov++){        if (k != i) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(j=1; j <=ncovmodel; j++){
         k=k+1;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            jk++; 
         fprintf(ficrespl,"\n#******");            fprintf(ficgp,"\n");
         for(j=1;j<=cptcoveff;j++)          }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
         fprintf(ficrespl,"******\n");      }
             }
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           fprintf(ficrespl,"%.0f",age );       for(jk=1; jk <=m; jk++) {
           for(i=1; i<=nlstate;i++)         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           fprintf(ficrespl," %.5f", prlim[i][i]);         if (ng==2)
           fprintf(ficrespl,"\n");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
         }         else
       }           fprintf(ficgp,"\nset title \"Probability\"\n");
     }         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   fclose(ficrespl);         i=1;
          for(k2=1; k2<=nlstate; k2++) {
   /*------------- h Pij x at various ages ------------*/           k3=i;
             for(k=1; k<=(nlstate+ndeath); k++) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);             if (k != k2){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {               if(ng==2)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   }               else
   printf("Computing pij: result on file '%s' \n", filerespij);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 ij=1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;               for(j=3; j <=ncovmodel; j++) {
   /*if (stepm<=24) stepsize=2;*/                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   agelim=AGESUP;                   ij++;
   hstepm=stepsize*YEARM; /* Every year of age */                 }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                 else
                     fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   k=0;               }
   for(cptcov=1;cptcov<=i1;cptcov++){               fprintf(ficgp,")/(1");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){               
       k=k+1;               for(k1=1; k1 <=nlstate; k1++){   
         fprintf(ficrespij,"\n#****** ");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         for(j=1;j<=cptcoveff;j++)                 ij=1;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 for(j=3; j <=ncovmodel; j++){
         fprintf(ficrespij,"******\n");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                     ij++;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                   }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                   else
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           oldm=oldms;savm=savms;                 }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                   fprintf(ficgp,")");
           fprintf(ficrespij,"# Age");               }
           for(i=1; i<=nlstate;i++)               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
             for(j=1; j<=nlstate+ndeath;j++)               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
               fprintf(ficrespij," %1d-%1d",i,j);               i=i+ncovmodel;
           fprintf(ficrespij,"\n");             }
            for (h=0; h<=nhstepm; h++){           } /* end k */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );         } /* end k2 */
             for(i=1; i<=nlstate;i++)       } /* end jk */
               for(j=1; j<=nlstate+ndeath;j++)     } /* end ng */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);     fflush(ficgp); 
             fprintf(ficrespij,"\n");  }  /* end gnuplot */
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");  /*************** Moving average **************/
         }  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     }  
   }    int i, cpt, cptcod;
     int modcovmax =1;
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    int mobilavrange, mob;
     double age;
   fclose(ficrespij);  
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
   /*---------- Forecasting ------------------*/    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      if(mobilav==1) mobilavrange=5; /* default */
   }      else mobilavrange=mobilav;
   else{      for (age=bage; age<=fage; age++)
     erreur=108;        for (i=1; i<=nlstate;i++)
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
        /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   /*---------- Health expectancies and variances ------------*/         we use a 5 terms etc. until the borders are no more concerned. 
       */ 
   strcpy(filerest,"t");      for (mob=3;mob <=mobilavrange;mob=mob+2){
   strcat(filerest,fileres);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   if((ficrest=fopen(filerest,"w"))==NULL) {          for (i=1; i<=nlstate;i++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   strcpy(filerese,"e");                }
   strcat(filerese,fileres);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   if((ficreseij=fopen(filerese,"w"))==NULL) {            }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          }
   }        }/* end age */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      }/* end mob */
     }else return -1;
  strcpy(fileresv,"v");    return 0;
   strcat(fileresv,fileres);  }/* End movingaverage */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }  /************** Forecasting ******************/
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   calagedate=-1;    /* proj1, year, month, day of starting projection 
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
   k=0;       anproj2 year of en of projection (same day and month as proj1).
   for(cptcov=1;cptcov<=i1;cptcov++){    */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       k=k+1;    int *popage;
       fprintf(ficrest,"\n#****** ");    double agec; /* generic age */
       for(j=1;j<=cptcoveff;j++)    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *popeffectif,*popcount;
       fprintf(ficrest,"******\n");    double ***p3mat;
     double ***mobaverage;
       fprintf(ficreseij,"\n#****** ");    char fileresf[FILENAMELENGTH];
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim=AGESUP;
       fprintf(ficreseij,"******\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
       fprintf(ficresvij,"\n#****** ");    strcpy(fileresf,"f"); 
       for(j=1;j<=cptcoveff;j++)    strcat(fileresf,fileres);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((ficresf=fopen(fileresf,"w"))==NULL) {
       fprintf(ficresvij,"******\n");      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;    printf("Computing forecasting: result on file '%s' \n", fileresf);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       oldm=oldms;savm=savms;  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    if (mobilav!=0) {
          mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      }
       fprintf(ficrest,"\n");    }
   
       epj=vector(1,nlstate+1);    stepsize=(int) (stepm+YEARM-1)/YEARM;
       for(age=bage; age <=fage ;age++){    if (stepm<=12) stepsize=1;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if(estepm < stepm){
         if (popbased==1) {      printf ("Problem %d lower than %d\n",estepm, stepm);
           for(i=1; i<=nlstate;i++)    }
             prlim[i][i]=probs[(int)age][i][k];    else  hstepm=estepm;   
         }  
            hstepm=hstepm/stepm; 
         fprintf(ficrest," %4.0f",age);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                                 fractional in yp1 */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    anprojmean=yp;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    yp2=modf((yp1*12),&yp);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    mprojmean=yp;
           }    yp1=modf((yp2*30.5),&yp);
           epj[nlstate+1] +=epj[j];    jprojmean=yp;
         }    if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    i1=cptcoveff;
             vepp += vareij[i][j][(int)age];    if (cptcovn < 1){i1=1;}
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    
         for(j=1;j <=nlstate;j++){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    
         }    fprintf(ficresf,"#****** Routine prevforecast **\n");
         fprintf(ficrest,"\n");  
       }  /*            if (h==(int)(YEARM*yearp)){ */
     }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 free_matrix(mint,1,maxwav,1,n);        k=k+1;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        fprintf(ficresf,"\n#******");
     free_vector(weight,1,n);        for(j=1;j<=cptcoveff;j++) {
   fclose(ficreseij);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fclose(ficresvij);        }
   fclose(ficrest);        fprintf(ficresf,"******\n");
   fclose(ficpar);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   free_vector(epj,1,nlstate+1);        for(j=1; j<=nlstate+ndeath;j++){ 
            for(i=1; i<=nlstate;i++)              
   /*------- Variance limit prevalence------*/              fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
   strcpy(fileresvpl,"vpl");        }
   strcat(fileresvpl,fileres);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          fprintf(ficresf,"\n");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     exit(0);  
   }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
   k=0;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(cptcov=1;cptcov<=i1;cptcov++){            oldm=oldms;savm=savms;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       k=k+1;          
       fprintf(ficresvpl,"\n#****** ");            for (h=0; h<=nhstepm; h++){
       for(j=1;j<=cptcoveff;j++)              if (h*hstepm/YEARM*stepm ==yearp) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficresf,"\n");
       fprintf(ficresvpl,"******\n");                for(j=1;j<=cptcoveff;j++) 
                        fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       oldm=oldms;savm=savms;              } 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              for(j=1; j<=nlstate+ndeath;j++) {
     }                ppij=0.;
  }                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
   fclose(ficresvpl);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
   /*---------- End : free ----------------*/                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                  }
                    if (h*hstepm/YEARM*stepm== yearp) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                  }
                  } /* end i */
                  if (h*hstepm/YEARM*stepm==yearp) {
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                  fprintf(ficresf," %.3f", ppij);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);              }/* end j */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            } /* end h */
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(matcov,1,npar,1,npar);          } /* end agec */
   free_vector(delti,1,npar);        } /* end yearp */
   free_matrix(agev,1,maxwav,1,imx);      } /* end cptcod */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    } /* end  cptcov */
          
   fprintf(fichtm,"\n</body>");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(fichtm);  
   fclose(ficgp);    fclose(ficresf);
    }
   
   if(erreur >0)  /************** Forecasting *****not tested NB*************/
     printf("End of Imach with error or warning %d\n",erreur);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   else   printf("End of Imach\n");    
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
      int *popage;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    double calagedatem, agelim, kk1, kk2;
   /*printf("Total time was %d uSec.\n", total_usecs);*/    double *popeffectif,*popcount;
   /*------ End -----------*/    double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
  end:  
 #ifdef windows    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* chdir(pathcd);*/    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 #endif    agelim=AGESUP;
  /*system("wgnuplot graph.plt");*/    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
  /*system("../gp37mgw/wgnuplot graph.plt");*/    
  /*system("cd ../gp37mgw");*/    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    
  strcpy(plotcmd,GNUPLOTPROGRAM);    
  strcat(plotcmd," ");    strcpy(filerespop,"pop"); 
  strcat(plotcmd,optionfilegnuplot);    strcat(filerespop,fileres);
  system(plotcmd);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
 #ifdef windows      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   while (z[0] != 'q') {    }
     /* chdir(path); */    printf("Computing forecasting: result on file '%s' \n", filerespop);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    if (mobilav!=0) {
     else if (z[0] == 'q') exit(0);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 #endif        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.108


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>