Diff for /imach/src/imach.c between versions 1.48 and 1.119

version 1.48, 2002/06/10 13:12:49 version 1.119, 2006/03/15 17:42:26
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.119  2006/03/15 17:42:26  brouard
      (Module): Bug if status = -2, the loglikelihood was
   This program computes Healthy Life Expectancies from    computed as likelihood omitting the logarithm. Version O.98e
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.118  2006/03/14 18:20:07  brouard
   interviewed on their health status or degree of disability (in the    (Module): varevsij Comments added explaining the second
   case of a health survey which is our main interest) -2- at least a    table of variances if popbased=1 .
   second wave of interviews ("longitudinal") which measure each change    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (if any) in individual health status.  Health expectancies are    (Module): Function pstamp added
   computed from the time spent in each health state according to a    (Module): Version 0.98d
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.117  2006/03/14 17:16:22  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): varevsij Comments added explaining the second
   probability to be observed in state j at the second wave    table of variances if popbased=1 .
   conditional to be observed in state i at the first wave. Therefore    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Function pstamp added
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Version 0.98d
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.116  2006/03/06 10:29:27  brouard
   you to do it.  More covariates you add, slower the    (Module): Variance-covariance wrong links and
   convergence.    varian-covariance of ej. is needed (Saito).
   
   The advantage of this computer programme, compared to a simple    Revision 1.115  2006/02/27 12:17:45  brouard
   multinomial logistic model, is clear when the delay between waves is not    (Module): One freematrix added in mlikeli! 0.98c
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.114  2006/02/26 12:57:58  brouard
   account using an interpolation or extrapolation.      (Module): Some improvements in processing parameter
     filename with strsep.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.113  2006/02/24 14:20:24  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): Memory leaks checks with valgrind and:
   states. This elementary transition (by month or quarter trimester,    datafile was not closed, some imatrix were not freed and on matrix
   semester or year) is model as a multinomial logistic.  The hPx    allocation too.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.112  2006/01/30 09:55:26  brouard
   hPijx.    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.111  2006/01/25 20:38:18  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Lots of cleaning and bugs added (Gompertz)
      (Module): Comments can be added in data file. Missing date values
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    can be a simple dot '.'.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.110  2006/01/25 00:51:50  brouard
   from the European Union.    (Module): Lots of cleaning and bugs added (Gompertz)
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.109  2006/01/24 19:37:15  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Comments (lines starting with a #) are allowed in data.
   **********************************************************************/  
      Revision 1.108  2006/01/19 18:05:42  lievre
 #include <math.h>    Gnuplot problem appeared...
 #include <stdio.h>    To be fixed
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.106  2006/01/19 13:24:36  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Some cleaning and links added in html output
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.105  2006/01/05 20:23:19  lievre
 #define windows    *** empty log message ***
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): If the status is missing at the last wave but we know
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 #define NINTERVMAX 8    contributions to the likelihood is 1 - Prob of dying from last
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    the healthy state at last known wave). Version is 0.98
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.103  2005/09/30 15:54:49  lievre
 #define YEARM 12. /* Number of months per year */    (Module): sump fixed, loop imx fixed, and simplifications.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.102  2004/09/15 17:31:30  brouard
 #ifdef windows    Add the possibility to read data file including tab characters.
 #define DIRSEPARATOR '\\'  
 #else    Revision 1.101  2004/09/15 10:38:38  brouard
 #define DIRSEPARATOR '/'    Fix on curr_time
 #endif  
     Revision 1.100  2004/07/12 18:29:06  brouard
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Add version for Mac OS X. Just define UNIX in Makefile
 int erreur; /* Error number */  
 int nvar;    Revision 1.99  2004/06/05 08:57:40  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    *** empty log message ***
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.98  2004/05/16 15:05:56  brouard
 int ndeath=1; /* Number of dead states */    New version 0.97 . First attempt to estimate force of mortality
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    directly from the data i.e. without the need of knowing the health
 int popbased=0;    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 int *wav; /* Number of waves for this individuual 0 is possible */    other analysis, in order to test if the mortality estimated from the
 int maxwav; /* Maxim number of waves */    cross-longitudinal survey is different from the mortality estimated
 int jmin, jmax; /* min, max spacing between 2 waves */    from other sources like vital statistic data.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    The same imach parameter file can be used but the option for mle should be -3.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Agnès, who wrote this part of the code, tried to keep most of the
 double **oldm, **newm, **savm; /* Working pointers to matrices */    former routines in order to include the new code within the former code.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    The output is very simple: only an estimate of the intercept and of
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    the slope with 95% confident intervals.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Current limitations:
 char filerese[FILENAMELENGTH];    A) Even if you enter covariates, i.e. with the
 FILE  *ficresvij;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 char fileresv[FILENAMELENGTH];    B) There is no computation of Life Expectancy nor Life Table.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.97  2004/02/20 13:25:42  lievre
 char title[MAXLINE];    Version 0.96d. Population forecasting command line is (temporarily)
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    suppressed.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.96  2003/07/15 15:38:55  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.95  2003/07/08 07:54:34  brouard
 char popfile[FILENAMELENGTH];    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    matrix (cov(a12,c31) instead of numbers.
   
 #define NR_END 1    Revision 1.94  2003/06/27 13:00:02  brouard
 #define FREE_ARG char*    Just cleaning
 #define FTOL 1.0e-10  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define NRANSI    (Module): On windows (cygwin) function asctime_r doesn't
 #define ITMAX 200    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define TOL 2.0e-4  
     Revision 1.92  2003/06/25 16:30:45  brouard
 #define CGOLD 0.3819660    (Module): On windows (cygwin) function asctime_r doesn't
 #define ZEPS 1.0e-10    exist so I changed back to asctime which exists.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define GOLD 1.618034    * imach.c (Repository): Duplicated warning errors corrected.
 #define GLIMIT 100.0    (Repository): Elapsed time after each iteration is now output. It
 #define TINY 1.0e-20    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 static double maxarg1,maxarg2;    concerning matrix of covariance. It has extension -cov.htm.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.90  2003/06/24 12:34:15  brouard
      (Module): Some bugs corrected for windows. Also, when
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    mle=-1 a template is output in file "or"mypar.txt with the design
 #define rint(a) floor(a+0.5)    of the covariance matrix to be input.
   
 static double sqrarg;    Revision 1.89  2003/06/24 12:30:52  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Some bugs corrected for windows. Also, when
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int imx;  
 int stepm;    Revision 1.88  2003/06/23 17:54:56  brouard
 /* Stepm, step in month: minimum step interpolation*/    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 int estepm;    Revision 1.87  2003/06/18 12:26:01  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Version 0.96
   
 int m,nb;    Revision 1.86  2003/06/17 20:04:08  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Change position of html and gnuplot routines and added
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    routine fileappend.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 double *weight;    current date of interview. It may happen when the death was just
 int **s; /* Status */    prior to the death. In this case, dh was negative and likelihood
 double *agedc, **covar, idx;    was wrong (infinity). We still send an "Error" but patch by
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    assuming that the date of death was just one stepm after the
     interview.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Repository): Because some people have very long ID (first column)
 double ftolhess; /* Tolerance for computing hessian */    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /**************** split *************************/    truncation)
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Repository): No more line truncation errors.
 {  
    char *s;                             /* pointer */    Revision 1.84  2003/06/13 21:44:43  brouard
    int  l1, l2;                         /* length counters */    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
    l1 = strlen( path );                 /* length of path */    many times. Probs is memory consuming and must be used with
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    parcimony.
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.83  2003/06/10 13:39:11  lievre
       extern char       *getwd( );    *** empty log message ***
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.82  2003/06/05 15:57:20  brouard
 #else    Add log in  imach.c and  fullversion number is now printed.
       extern char       *getcwd( );  
   */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /*
 #endif     Interpolated Markov Chain
          return( GLOCK_ERROR_GETCWD );  
       }    Short summary of the programme:
       strcpy( name, path );             /* we've got it */    
    } else {                             /* strip direcotry from path */    This program computes Healthy Life Expectancies from
       s++;                              /* after this, the filename */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       l2 = strlen( s );                 /* length of filename */    first survey ("cross") where individuals from different ages are
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    interviewed on their health status or degree of disability (in the
       strcpy( name, s );                /* save file name */    case of a health survey which is our main interest) -2- at least a
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    second wave of interviews ("longitudinal") which measure each change
       dirc[l1-l2] = 0;                  /* add zero */    (if any) in individual health status.  Health expectancies are
    }    computed from the time spent in each health state according to a
    l1 = strlen( dirc );                 /* length of directory */    model. More health states you consider, more time is necessary to reach the
 #ifdef windows    Maximum Likelihood of the parameters involved in the model.  The
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    simplest model is the multinomial logistic model where pij is the
 #else    probability to be observed in state j at the second wave
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    conditional to be observed in state i at the first wave. Therefore
 #endif    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    s = strrchr( name, '.' );            /* find last / */    'age' is age and 'sex' is a covariate. If you want to have a more
    s++;    complex model than "constant and age", you should modify the program
    strcpy(ext,s);                       /* save extension */    where the markup *Covariates have to be included here again* invites
    l1= strlen( name);    you to do it.  More covariates you add, slower the
    l2= strlen( s)+1;    convergence.
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    The advantage of this computer programme, compared to a simple
    return( 0 );                         /* we're done */    multinomial logistic model, is clear when the delay between waves is not
 }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /******************************************/  
     hPijx is the probability to be observed in state i at age x+h
 void replace(char *s, char*t)    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   int i;    states. This elementary transition (by month, quarter,
   int lg=20;    semester or year) is modelled as a multinomial logistic.  The hPx
   i=0;    matrix is simply the matrix product of nh*stepm elementary matrices
   lg=strlen(t);    and the contribution of each individual to the likelihood is simply
   for(i=0; i<= lg; i++) {    hPijx.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Also this programme outputs the covariance matrix of the parameters but also
   }    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int nbocc(char *s, char occ)             Institut national d'études démographiques, Paris.
 {    This software have been partly granted by Euro-REVES, a concerted action
   int i,j=0;    from the European Union.
   int lg=20;    It is copyrighted identically to a GNU software product, ie programme and
   i=0;    software can be distributed freely for non commercial use. Latest version
   lg=strlen(s);    can be accessed at http://euroreves.ined.fr/imach .
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   return j;    
 }    **********************************************************************/
   /*
 void cutv(char *u,char *v, char*t, char occ)    main
 {    read parameterfile
   int i,lg,j,p=0;    read datafile
   i=0;    concatwav
   for(j=0; j<=strlen(t)-1; j++) {    freqsummary
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    if (mle >= 1)
   }      mlikeli
     print results files
   lg=strlen(t);    if mle==1 
   for(j=0; j<p; j++) {       computes hessian
     (u[j] = t[j]);    read end of parameter file: agemin, agemax, bage, fage, estepm
   }        begin-prev-date,...
      u[p]='\0';    open gnuplot file
     open html file
    for(j=0; j<= lg; j++) {    period (stable) prevalence
     if (j>=(p+1))(v[j-p-1] = t[j]);     for age prevalim()
   }    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 /********************** nrerror ********************/    health expectancies
     Variance-covariance of DFLE
 void nrerror(char error_text[])    prevalence()
 {     movingaverage()
   fprintf(stderr,"ERREUR ...\n");    varevsij() 
   fprintf(stderr,"%s\n",error_text);    if popbased==1 varevsij(,popbased)
   exit(1);    total life expectancies
 }    Variance of period (stable) prevalence
 /*********************** vector *******************/   end
 double *vector(int nl, int nh)  */
 {  
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");   
   return v-nl+NR_END;  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /************************ free vector ******************/  #include <string.h>
 void free_vector(double*v, int nl, int nh)  #include <unistd.h>
 {  
   free((FREE_ARG)(v+nl-NR_END));  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 /************************ivector *******************************/  #include <errno.h>
 int *ivector(long nl,long nh)  extern int errno;
 {  
   int *v;  /* #include <sys/time.h> */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #include <time.h>
   if (!v) nrerror("allocation failure in ivector");  #include "timeval.h"
   return v-nl+NR_END;  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  #define MAXLINE 256
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define GNUPLOTPROGRAM "gnuplot"
 }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   int **m;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    
   /* allocate pointers to rows */  #define NINTERVMAX 8
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m += NR_END;  #define NCOVMAX 8 /* Maximum number of covariates */
   m -= nrl;  #define MAXN 20000
    #define YEARM 12. /* Number of months per year */
    #define AGESUP 130
   /* allocate rows and set pointers to them */  #define AGEBASE 40
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #ifdef UNIX
   m[nrl] += NR_END;  #define DIRSEPARATOR '/'
   m[nrl] -= ncl;  #define CHARSEPARATOR "/"
    #define ODIRSEPARATOR '\\'
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #else
    #define DIRSEPARATOR '\\'
   /* return pointer to array of pointers to rows */  #define CHARSEPARATOR "\\"
   return m;  #define ODIRSEPARATOR '/'
 }  #endif
   
 /****************** free_imatrix *************************/  /* $Id$ */
 void free_imatrix(m,nrl,nrh,ncl,nch)  /* $State$ */
       int **m;  
       long nch,ncl,nrh,nrl;  char version[]="Imach version 0.98e, March 2006, INED-EUROREVES-Institut de longevite ";
      /* free an int matrix allocated by imatrix() */  char fullversion[]="$Revision$ $Date$"; 
 {  char strstart[80];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /******************* matrix *******************************/  int npar=NPARMAX;
 double **matrix(long nrl, long nrh, long ncl, long nch)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double **m;  int popbased=0;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int *wav; /* Number of waves for this individuual 0 is possible */
   if (!m) nrerror("allocation failure 1 in matrix()");  int maxwav; /* Maxim number of waves */
   m += NR_END;  int jmin, jmax; /* min, max spacing between 2 waves */
   m -= nrl;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   int gipmx, gsw; /* Global variables on the number of contributions 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));                     to the likelihood and the sum of weights (done by funcone)*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int mle, weightopt;
   m[nrl] += NR_END;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m[nrl] -= ncl;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   return m;  double jmean; /* Mean space between 2 waves */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /*************************free matrix ************************/  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  FILE *ficlog, *ficrespow;
 {  int globpr; /* Global variable for printing or not */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double fretone; /* Only one call to likelihood */
   free((FREE_ARG)(m+nrl-NR_END));  long ipmx; /* Number of contributions */
 }  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
 /******************* ma3x *******************************/  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  FILE *ficresprobmorprev;
   double ***m;  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char filerese[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficresstdeij;
   m += NR_END;  char fileresstde[FILENAMELENGTH];
   m -= nrl;  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE  *ficresvij;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fileresv[FILENAMELENGTH];
   m[nrl] += NR_END;  FILE  *ficresvpl;
   m[nrl] -= ncl;  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char command[FILENAMELENGTH];
   m[nrl][ncl] += NR_END;  int  outcmd=0;
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  
    char filelog[FILENAMELENGTH]; /* Log file */
   for (i=nrl+1; i<=nrh; i++) {  char filerest[FILENAMELENGTH];
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char fileregp[FILENAMELENGTH];
     for (j=ncl+1; j<=nch; j++)  char popfile[FILENAMELENGTH];
       m[i][j]=m[i][j-1]+nlay;  
   }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   return m;  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /*************************free ma3x ************************/  extern int gettimeofday();
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  extern long time();
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char strcurr[80], strfor[80];
   free((FREE_ARG)(m+nrl-NR_END));  
 }  char *endptr;
   long lval;
 /***************** f1dim *************************/  
 extern int ncom;  #define NR_END 1
 extern double *pcom,*xicom;  #define FREE_ARG char*
 extern double (*nrfunc)(double []);  #define FTOL 1.0e-10
    
 double f1dim(double x)  #define NRANSI 
 {  #define ITMAX 200 
   int j;  
   double f;  #define TOL 2.0e-4 
   double *xt;  
    #define CGOLD 0.3819660 
   xt=vector(1,ncom);  #define ZEPS 1.0e-10 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  #define GOLD 1.618034 
   return f;  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /*****************brent *************************/  static double maxarg1,maxarg2;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   int iter;    
   double a,b,d,etemp;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double fu,fv,fw,fx;  #define rint(a) floor(a+0.5)
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  static double sqrarg;
   double e=0.0;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
    #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   a=(ax < cx ? ax : cx);  int agegomp= AGEGOMP;
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  int imx; 
   fw=fv=fx=(*f)(x);  int stepm=1;
   for (iter=1;iter<=ITMAX;iter++) {  /* Stepm, step in month: minimum step interpolation*/
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int estepm;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     printf(".");fflush(stdout);  
 #ifdef DEBUG  int m,nb;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  long *num;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 #endif  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double **pmmij, ***probs;
       *xmin=x;  double *ageexmed,*agecens;
       return fx;  double dateintmean=0;
     }  
     ftemp=fu;  double *weight;
     if (fabs(e) > tol1) {  int **s; /* Status */
       r=(x-w)*(fx-fv);  double *agedc, **covar, idx;
       q=(x-v)*(fx-fw);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       p=(x-v)*q-(x-w)*r;  double *lsurv, *lpop, *tpop;
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       q=fabs(q);  double ftolhess; /* Tolerance for computing hessian */
       etemp=e;  
       e=d;  /**************** split *************************/
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
       else {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         d=p/q;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         u=x+d;    */ 
         if (u-a < tol2 || b-u < tol2)    char  *ss;                            /* pointer */
           d=SIGN(tol1,xm-x);    int   l1, l2;                         /* length counters */
       }  
     } else {    l1 = strlen(path );                   /* length of path */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     fu=(*f)(u);      strcpy( name, path );               /* we got the fullname name because no directory */
     if (fu <= fx) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       if (u >= x) a=x; else b=x;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       SHFT(v,w,x,u)      /* get current working directory */
         SHFT(fv,fw,fx,fu)      /*    extern  char* getcwd ( char *buf , int len);*/
         } else {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
           if (u < x) a=u; else b=u;        return( GLOCK_ERROR_GETCWD );
           if (fu <= fw || w == x) {      }
             v=w;      /* got dirc from getcwd*/
             w=u;      printf(" DIRC = %s \n",dirc);
             fv=fw;    } else {                              /* strip direcotry from path */
             fw=fu;      ss++;                               /* after this, the filename */
           } else if (fu <= fv || v == x || v == w) {      l2 = strlen( ss );                  /* length of filename */
             v=u;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
             fv=fu;      strcpy( name, ss );         /* save file name */
           }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         }      dirc[l1-l2] = 0;                    /* add zero */
   }      printf(" DIRC2 = %s \n",dirc);
   nrerror("Too many iterations in brent");    }
   *xmin=x;    /* We add a separator at the end of dirc if not exists */
   return fx;    l1 = strlen( dirc );                  /* length of directory */
 }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 /****************** mnbrak ***********************/      dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    }
             double (*func)(double))    ss = strrchr( name, '.' );            /* find last / */
 {    if (ss >0){
   double ulim,u,r,q, dum;      ss++;
   double fu;      strcpy(ext,ss);                     /* save extension */
        l1= strlen( name);
   *fa=(*func)(*ax);      l2= strlen(ss)+1;
   *fb=(*func)(*bx);      strncpy( finame, name, l1-l2);
   if (*fb > *fa) {      finame[l1-l2]= 0;
     SHFT(dum,*ax,*bx,dum)    }
       SHFT(dum,*fb,*fa,dum)  
       }    return( 0 );                          /* we're done */
   *cx=(*bx)+GOLD*(*bx-*ax);  }
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /******************************************/
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  void replace_back_to_slash(char *s, char*t)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  {
     ulim=(*bx)+GLIMIT*(*cx-*bx);    int i;
     if ((*bx-u)*(u-*cx) > 0.0) {    int lg=0;
       fu=(*func)(u);    i=0;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    lg=strlen(t);
       fu=(*func)(u);    for(i=0; i<= lg; i++) {
       if (fu < *fc) {      (s[i] = t[i]);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      if (t[i]== '\\') s[i]='/';
           SHFT(*fb,*fc,fu,(*func)(u))    }
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  int nbocc(char *s, char occ)
       fu=(*func)(u);  {
     } else {    int i,j=0;
       u=(*cx)+GOLD*(*cx-*bx);    int lg=20;
       fu=(*func)(u);    i=0;
     }    lg=strlen(s);
     SHFT(*ax,*bx,*cx,u)    for(i=0; i<= lg; i++) {
       SHFT(*fa,*fb,*fc,fu)    if  (s[i] == occ ) j++;
       }    }
 }    return j;
   }
 /*************** linmin ************************/  
   void cutv(char *u,char *v, char*t, char occ)
 int ncom;  {
 double *pcom,*xicom;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 double (*nrfunc)(double []);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         gives u="abcedf" and v="ghi2j" */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    int i,lg,j,p=0;
 {    i=0;
   double brent(double ax, double bx, double cx,    for(j=0; j<=strlen(t)-1; j++) {
                double (*f)(double), double tol, double *xmin);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double f1dim(double x);    }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    lg=strlen(t);
   int j;    for(j=0; j<p; j++) {
   double xx,xmin,bx,ax;      (u[j] = t[j]);
   double fx,fb,fa;    }
         u[p]='\0';
   ncom=n;  
   pcom=vector(1,n);     for(j=0; j<= lg; j++) {
   xicom=vector(1,n);      if (j>=(p+1))(v[j-p-1] = t[j]);
   nrfunc=func;    }
   for (j=1;j<=n;j++) {  }
     pcom[j]=p[j];  
     xicom[j]=xi[j];  /********************** nrerror ********************/
   }  
   ax=0.0;  void nrerror(char error_text[])
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    fprintf(stderr,"ERREUR ...\n");
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    fprintf(stderr,"%s\n",error_text);
 #ifdef DEBUG    exit(EXIT_FAILURE);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  /*********************** vector *******************/
   for (j=1;j<=n;j++) {  double *vector(int nl, int nh)
     xi[j] *= xmin;  {
     p[j] += xi[j];    double *v;
   }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   free_vector(xicom,1,n);    if (!v) nrerror("allocation failure in vector");
   free_vector(pcom,1,n);    return v-nl+NR_END;
 }  }
   
 /*************** powell ************************/  /************************ free vector ******************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void free_vector(double*v, int nl, int nh)
             double (*func)(double []))  {
 {    free((FREE_ARG)(v+nl-NR_END));
   void linmin(double p[], double xi[], int n, double *fret,  }
               double (*func)(double []));  
   int i,ibig,j;  /************************ivector *******************************/
   double del,t,*pt,*ptt,*xit;  int *ivector(long nl,long nh)
   double fp,fptt;  {
   double *xits;    int *v;
   pt=vector(1,n);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   ptt=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   xit=vector(1,n);    return v-nl+NR_END;
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /******************free ivector **************************/
   for (*iter=1;;++(*iter)) {  void free_ivector(int *v, long nl, long nh)
     fp=(*fret);  {
     ibig=0;    free((FREE_ARG)(v+nl-NR_END));
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /************************lvector *******************************/
       printf(" %d %.12f",i, p[i]);  long *lvector(long nl,long nh)
     printf("\n");  {
     for (i=1;i<=n;i++) {    long *v;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       fptt=(*fret);    if (!v) nrerror("allocation failure in ivector");
 #ifdef DEBUG    return v-nl+NR_END;
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /******************free lvector **************************/
       linmin(p,xit,n,fret,func);  void free_lvector(long *v, long nl, long nh)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    free((FREE_ARG)(v+nl-NR_END));
         ibig=i;  }
       }  
 #ifdef DEBUG  /******************* imatrix *******************************/
       printf("%d %.12e",i,(*fret));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       for (j=1;j<=n;j++) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  { 
         printf(" x(%d)=%.12e",j,xit[j]);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
       for(j=1;j<=n;j++)    
         printf(" p=%.12e",p[j]);    /* allocate pointers to rows */ 
       printf("\n");    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 #endif    if (!m) nrerror("allocation failure 1 in matrix()"); 
     }    m += NR_END; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m -= nrl; 
 #ifdef DEBUG    
       int k[2],l;    
       k[0]=1;    /* allocate rows and set pointers to them */ 
       k[1]=-1;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       printf("Max: %.12e",(*func)(p));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       for (j=1;j<=n;j++)    m[nrl] += NR_END; 
         printf(" %.12e",p[j]);    m[nrl] -= ncl; 
       printf("\n");    
       for(l=0;l<=1;l++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         for (j=1;j<=n;j++) {    
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    /* return pointer to array of pointers to rows */ 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return m; 
         }  } 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /****************** free_imatrix *************************/
 #endif  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
         long nch,ncl,nrh,nrl; 
       free_vector(xit,1,n);       /* free an int matrix allocated by imatrix() */ 
       free_vector(xits,1,n);  { 
       free_vector(ptt,1,n);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       free_vector(pt,1,n);    free((FREE_ARG) (m+nrl-NR_END)); 
       return;  } 
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /******************* matrix *******************************/
     for (j=1;j<=n;j++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       pt[j]=p[j];    double **m;
     }  
     fptt=(*func)(ptt);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (fptt < fp) {    if (!m) nrerror("allocation failure 1 in matrix()");
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m += NR_END;
       if (t < 0.0) {    m -= nrl;
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           xi[j][ibig]=xi[j][n];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           xi[j][n]=xit[j];    m[nrl] += NR_END;
         }    m[nrl] -= ncl;
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for(j=1;j<=n;j++)    return m;
           printf(" %.12e",xit[j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         printf("\n");     */
 #endif  }
       }  
     }  /*************************free matrix ************************/
   }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /**** Prevalence limit ****************/    free((FREE_ARG)(m+nrl-NR_END));
   }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /******************* ma3x *******************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
      matrix by transitions matrix until convergence is reached */  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   int i, ii,j,k;    double ***m;
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double **out, cov[NCOVMAX], **pmij();    if (!m) nrerror("allocation failure 1 in matrix()");
   double **newm;    m += NR_END;
   double agefin, delaymax=50 ; /* Max number of years to converge */    m -= nrl;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   
    cov[1]=1.;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     newm=savm;    m[nrl][ncl] += NR_END;
     /* Covariates have to be included here again */    m[nrl][ncl] -= nll;
      cov[2]=agefin;    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
       for (k=1; k<=cptcovn;k++) {    
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for (i=nrl+1; i<=nrh; i++) {
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++) 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        m[i][j]=m[i][j-1]+nlay;
       for (k=1; k<=cptcovprod;k++)    }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /*************************free ma3x ************************/
     savm=oldm;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     oldm=newm;  {
     maxmax=0.;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for(j=1;j<=nlstate;j++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       min=1.;    free((FREE_ARG)(m+nrl-NR_END));
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /*************** function subdirf ***********/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char *subdirf(char fileres[])
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    /* Caution optionfilefiname is hidden */
         min=FMIN(min,prlim[i][j]);    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
       maxmin=max-min;    strcat(tmpout,fileres);
       maxmax=FMAX(maxmax,maxmin);    return tmpout;
     }  }
     if(maxmax < ftolpl){  
       return prlim;  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
   }  {
 }    
     /* Caution optionfilefiname is hidden */
 /*************** transition probabilities ***************/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    strcat(tmpout,preop);
 {    strcat(tmpout,fileres);
   double s1, s2;    return tmpout;
   /*double t34;*/  }
   int i,j,j1, nc, ii, jj;  
   /*************** function subdirf3 ***********/
     for(i=1; i<= nlstate; i++){  char *subdirf3(char fileres[], char *preop, char *preop2)
     for(j=1; j<i;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    
         /*s2 += param[i][j][nc]*cov[nc];*/    /* Caution optionfilefiname is hidden */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcpy(tmpout,optionfilefiname);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
       ps[i][j]=s2;    strcat(tmpout,preop2);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,fileres);
     }    return tmpout;
     for(j=i+1; j<=nlstate+ndeath;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /***************** f1dim *************************/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  extern int ncom; 
       }  extern double *pcom,*xicom;
       ps[i][j]=s2;  extern double (*nrfunc)(double []); 
     }   
   }  double f1dim(double x) 
     /*ps[3][2]=1;*/  { 
     int j; 
   for(i=1; i<= nlstate; i++){    double f;
      s1=0;    double *xt; 
     for(j=1; j<i; j++)   
       s1+=exp(ps[i][j]);    xt=vector(1,ncom); 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       s1+=exp(ps[i][j]);    f=(*nrfunc)(xt); 
     ps[i][i]=1./(s1+1.);    free_vector(xt,1,ncom); 
     for(j=1; j<i; j++)    return f; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  } 
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*****************brent *************************/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   } /* end i */  { 
     int iter; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    double a,b,d,etemp;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double fu,fv,fw,fx;
       ps[ii][jj]=0;    double ftemp;
       ps[ii][ii]=1;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     }    double e=0.0; 
   }   
     a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    x=w=v=bx; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    fw=fv=fx=(*f)(x); 
      printf("%lf ",ps[ii][jj]);    for (iter=1;iter<=ITMAX;iter++) { 
    }      xm=0.5*(a+b); 
     printf("\n ");      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     printf("\n ");printf("%lf ",cov[2]);*/      printf(".");fflush(stdout);
 /*      fprintf(ficlog,".");fflush(ficlog);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  #ifdef DEBUG
   goto end;*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     return ps;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
 /**************** Product of 2 matrices ******************/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        return fx; 
 {      } 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      ftemp=fu;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      if (fabs(e) > tol1) { 
   /* in, b, out are matrice of pointers which should have been initialized        r=(x-w)*(fx-fv); 
      before: only the contents of out is modified. The function returns        q=(x-v)*(fx-fw); 
      a pointer to pointers identical to out */        p=(x-v)*q-(x-w)*r; 
   long i, j, k;        q=2.0*(q-r); 
   for(i=nrl; i<= nrh; i++)        if (q > 0.0) p = -p; 
     for(k=ncolol; k<=ncoloh; k++)        q=fabs(q); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        etemp=e; 
         out[i][k] +=in[i][j]*b[j][k];        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   return out;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }        else { 
           d=p/q; 
           u=x+d; 
 /************* Higher Matrix Product ***************/          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        } 
 {      } else { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      duration (i.e. until      } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      fu=(*f)(u); 
      (typically every 2 years instead of every month which is too big).      if (fu <= fx) { 
      Model is determined by parameters x and covariates have to be        if (u >= x) a=x; else b=x; 
      included manually here.        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
      */          } else { 
             if (u < x) a=u; else b=u; 
   int i, j, d, h, k;            if (fu <= fw || w == x) { 
   double **out, cov[NCOVMAX];              v=w; 
   double **newm;              w=u; 
               fv=fw; 
   /* Hstepm could be zero and should return the unit matrix */              fw=fu; 
   for (i=1;i<=nlstate+ndeath;i++)            } else if (fu <= fv || v == x || v == w) { 
     for (j=1;j<=nlstate+ndeath;j++){              v=u; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);              fv=fu; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);            } 
     }          } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    } 
   for(h=1; h <=nhstepm; h++){    nrerror("Too many iterations in brent"); 
     for(d=1; d <=hstepm; d++){    *xmin=x; 
       newm=savm;    return fx; 
       /* Covariates have to be included here again */  } 
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /****************** mnbrak ***********************/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              double (*func)(double)) 
       for (k=1; k<=cptcovprod;k++)  { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double ulim,u,r,q, dum;
     double fu; 
    
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    *fa=(*func)(*ax); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    *fb=(*func)(*bx); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    if (*fb > *fa) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      SHFT(dum,*ax,*bx,dum) 
       savm=oldm;        SHFT(dum,*fb,*fa,dum) 
       oldm=newm;        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(i=1; i<=nlstate+ndeath; i++)    *fc=(*func)(*cx); 
       for(j=1;j<=nlstate+ndeath;j++) {    while (*fb > *fc) { 
         po[i][j][h]=newm[i][j];      r=(*bx-*ax)*(*fb-*fc); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      q=(*bx-*cx)*(*fb-*fa); 
          */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   } /* end h */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   return po;      if ((*bx-u)*(u-*cx) > 0.0) { 
 }        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
 /*************** log-likelihood *************/        if (fu < *fc) { 
 double func( double *x)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 {            SHFT(*fb,*fc,fu,(*func)(u)) 
   int i, ii, j, k, mi, d, kk;            } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double **out;        u=ulim; 
   double sw; /* Sum of weights */        fu=(*func)(u); 
   double lli; /* Individual log likelihood */      } else { 
   long ipmx;        u=(*cx)+GOLD*(*cx-*bx); 
   /*extern weight */        fu=(*func)(u); 
   /* We are differentiating ll according to initial status */      } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      SHFT(*ax,*bx,*cx,u) 
   /*for(i=1;i<imx;i++)        SHFT(*fa,*fb,*fc,fu) 
     printf(" %d\n",s[4][i]);        } 
   */  } 
   cov[1]=1.;  
   /*************** linmin ************************/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  int ncom; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  double *pcom,*xicom;
     for(mi=1; mi<= wav[i]-1; mi++){  double (*nrfunc)(double []); 
       for (ii=1;ii<=nlstate+ndeath;ii++)   
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for(d=0; d<dh[mi][i]; d++){  { 
         newm=savm;    double brent(double ax, double bx, double cx, 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                 double (*f)(double), double tol, double *xmin); 
         for (kk=1; kk<=cptcovage;kk++) {    double f1dim(double x); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         }                double *fc, double (*func)(double)); 
            int j; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double xx,xmin,bx,ax; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double fx,fb,fa;
         savm=oldm;   
         oldm=newm;    ncom=n; 
            pcom=vector(1,n); 
            xicom=vector(1,n); 
       } /* end mult */    nrfunc=func; 
          for (j=1;j<=n;j++) { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      pcom[j]=p[j]; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      xicom[j]=xi[j]; 
       ipmx +=1;    } 
       sw += weight[i];    ax=0.0; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    xx=1.0; 
     } /* end of wave */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   } /* end of individual */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  #endif
   return -l;    for (j=1;j<=n;j++) { 
 }      xi[j] *= xmin; 
       p[j] += xi[j]; 
     } 
 /*********** Maximum Likelihood Estimation ***************/    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  } 
 {  
   int i,j, iter;  char *asc_diff_time(long time_sec, char ascdiff[])
   double **xi,*delti;  {
   double fret;    long sec_left, days, hours, minutes;
   xi=matrix(1,npar,1,npar);    days = (time_sec) / (60*60*24);
   for (i=1;i<=npar;i++)    sec_left = (time_sec) % (60*60*24);
     for (j=1;j<=npar;j++)    hours = (sec_left) / (60*60) ;
       xi[i][j]=(i==j ? 1.0 : 0.0);    sec_left = (sec_left) %(60*60);
   printf("Powell\n");    minutes = (sec_left) /60;
   powell(p,xi,npar,ftol,&iter,&fret,func);    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    return ascdiff;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   
 }  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 /**** Computes Hessian and covariance matrix ***/              double (*func)(double [])) 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  { 
 {    void linmin(double p[], double xi[], int n, double *fret, 
   double  **a,**y,*x,pd;                double (*func)(double [])); 
   double **hess;    int i,ibig,j; 
   int i, j,jk;    double del,t,*pt,*ptt,*xit;
   int *indx;    double fp,fptt;
     double *xits;
   double hessii(double p[], double delta, int theta, double delti[]);    int niterf, itmp;
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;    pt=vector(1,n); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    ptt=vector(1,n); 
     xit=vector(1,n); 
   hess=matrix(1,npar,1,npar);    xits=vector(1,n); 
     *fret=(*func)(p); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (i=1;i<=npar;i++){    for (*iter=1;;++(*iter)) { 
     printf("%d",i);fflush(stdout);      fp=(*fret); 
     hess[i][i]=hessii(p,ftolhess,i,delti);      ibig=0; 
     /*printf(" %f ",p[i]);*/      del=0.0; 
     /*printf(" %lf ",hess[i][i]);*/      last_time=curr_time;
   }      (void) gettimeofday(&curr_time,&tzp);
        printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   for (i=1;i<=npar;i++) {      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     for (j=1;j<=npar;j++)  {      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       if (j>i) {      */
         printf(".%d%d",i,j);fflush(stdout);     for (i=1;i<=n;i++) {
         hess[i][j]=hessij(p,delti,i,j);        printf(" %d %.12f",i, p[i]);
         hess[j][i]=hess[i][j];            fprintf(ficlog," %d %.12lf",i, p[i]);
         /*printf(" %lf ",hess[i][j]);*/        fprintf(ficrespow," %.12lf", p[i]);
       }      }
     }      printf("\n");
   }      fprintf(ficlog,"\n");
   printf("\n");      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        tm = *localtime(&curr_time.tv_sec);
          strcpy(strcurr,asctime(&tm));
   a=matrix(1,npar,1,npar);  /*       asctime_r(&tm,strcurr); */
   y=matrix(1,npar,1,npar);        forecast_time=curr_time; 
   x=vector(1,npar);        itmp = strlen(strcurr);
   indx=ivector(1,npar);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   for (i=1;i<=npar;i++)          strcurr[itmp-1]='\0';
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   ludcmp(a,npar,indx,&pd);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
   for (j=1;j<=npar;j++) {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for (i=1;i<=npar;i++) x[i]=0;          tmf = *localtime(&forecast_time.tv_sec);
     x[j]=1;  /*      asctime_r(&tmf,strfor); */
     lubksb(a,npar,indx,x);          strcpy(strfor,asctime(&tmf));
     for (i=1;i<=npar;i++){          itmp = strlen(strfor);
       matcov[i][j]=x[i];          if(strfor[itmp-1]=='\n')
     }          strfor[itmp-1]='\0';
   }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   printf("\n#Hessian matrix#\n");        }
   for (i=1;i<=npar;i++) {      }
     for (j=1;j<=npar;j++) {      for (i=1;i<=n;i++) { 
       printf("%.3e ",hess[i][j]);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
     printf("\n");  #ifdef DEBUG
   }        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   /* Recompute Inverse */  #endif
   for (i=1;i<=npar;i++)        printf("%d",i);fflush(stdout);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        fprintf(ficlog,"%d",i);fflush(ficlog);
   ludcmp(a,npar,indx,&pd);        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   /*  printf("\n#Hessian matrix recomputed#\n");          del=fabs(fptt-(*fret)); 
           ibig=i; 
   for (j=1;j<=npar;j++) {        } 
     for (i=1;i<=npar;i++) x[i]=0;  #ifdef DEBUG
     x[j]=1;        printf("%d %.12e",i,(*fret));
     lubksb(a,npar,indx,x);        fprintf(ficlog,"%d %.12e",i,(*fret));
     for (i=1;i<=npar;i++){        for (j=1;j<=n;j++) {
       y[i][j]=x[i];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       printf("%.3e ",y[i][j]);          printf(" x(%d)=%.12e",j,xit[j]);
     }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     printf("\n");        }
   }        for(j=1;j<=n;j++) {
   */          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   free_matrix(a,1,npar,1,npar);        }
   free_matrix(y,1,npar,1,npar);        printf("\n");
   free_vector(x,1,npar);        fprintf(ficlog,"\n");
   free_ivector(indx,1,npar);  #endif
   free_matrix(hess,1,npar,1,npar);      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
 }        int k[2],l;
         k[0]=1;
 /*************** hessian matrix ****************/        k[1]=-1;
 double hessii( double x[], double delta, int theta, double delti[])        printf("Max: %.12e",(*func)(p));
 {        fprintf(ficlog,"Max: %.12e",(*func)(p));
   int i;        for (j=1;j<=n;j++) {
   int l=1, lmax=20;          printf(" %.12e",p[j]);
   double k1,k2;          fprintf(ficlog," %.12e",p[j]);
   double p2[NPARMAX+1];        }
   double res;        printf("\n");
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        fprintf(ficlog,"\n");
   double fx;        for(l=0;l<=1;l++) {
   int k=0,kmax=10;          for (j=1;j<=n;j++) {
   double l1;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   fx=func(x);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=1;i<=npar;i++) p2[i]=x[i];          }
   for(l=0 ; l <=lmax; l++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     l1=pow(10,l);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     delts=delt;        }
     for(k=1 ; k <kmax; k=k+1){  #endif
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;        free_vector(xit,1,n); 
       p2[theta]=x[theta]-delt;        free_vector(xits,1,n); 
       k2=func(p2)-fx;        free_vector(ptt,1,n); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        free_vector(pt,1,n); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        return; 
            } 
 #ifdef DEBUG      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for (j=1;j<=n;j++) { 
 #endif        ptt[j]=2.0*p[j]-pt[j]; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        xit[j]=p[j]-pt[j]; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        pt[j]=p[j]; 
         k=kmax;      } 
       }      fptt=(*func)(ptt); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      if (fptt < fp) { 
         k=kmax; l=lmax*10.;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       }        if (t < 0.0) { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          linmin(p,xit,n,fret,func); 
         delts=delt;          for (j=1;j<=n;j++) { 
       }            xi[j][ibig]=xi[j][n]; 
     }            xi[j][n]=xit[j]; 
   }          }
   delti[theta]=delts;  #ifdef DEBUG
   return res;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
 double hessij( double x[], double delti[], int thetai,int thetaj)            fprintf(ficlog," %.12e",xit[j]);
 {          }
   int i;          printf("\n");
   int l=1, l1, lmax=20;          fprintf(ficlog,"\n");
   double k1,k2,k3,k4,res,fx;  #endif
   double p2[NPARMAX+1];        }
   int k;      } 
     } 
   fx=func(x);  } 
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  /**** Prevalence limit (stable or period prevalence)  ****************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     k1=func(p2)-fx;  {
      /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     p2[thetai]=x[thetai]+delti[thetai]/k;       matrix by transitions matrix until convergence is reached */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;    int i, ii,j,k;
      double min, max, maxmin, maxmax,sumnew=0.;
     p2[thetai]=x[thetai]-delti[thetai]/k;    double **matprod2();
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double **out, cov[NCOVMAX], **pmij();
     k3=func(p2)-fx;    double **newm;
      double agefin, delaymax=50 ; /* Max number of years to converge */
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for (ii=1;ii<=nlstate+ndeath;ii++)
     k4=func(p2)-fx;      for (j=1;j<=nlstate+ndeath;j++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #ifdef DEBUG      }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif     cov[1]=1.;
   }   
   return res;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
 /************** Inverse of matrix **************/      /* Covariates have to be included here again */
 void ludcmp(double **a, int n, int *indx, double *d)       cov[2]=agefin;
 {    
   int i,imax,j,k;        for (k=1; k<=cptcovn;k++) {
   double big,dum,sum,temp;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double *vv;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          }
   vv=vector(1,n);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   *d=1.0;        for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=n;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     big=0.0;  
     for (j=1;j<=n;j++)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       if ((temp=fabs(a[i][j])) > big) big=temp;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     vv[i]=1.0/big;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   }  
   for (j=1;j<=n;j++) {      savm=oldm;
     for (i=1;i<j;i++) {      oldm=newm;
       sum=a[i][j];      maxmax=0.;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for(j=1;j<=nlstate;j++){
       a[i][j]=sum;        min=1.;
     }        max=0.;
     big=0.0;        for(i=1; i<=nlstate; i++) {
     for (i=j;i<=n;i++) {          sumnew=0;
       sum=a[i][j];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for (k=1;k<j;k++)          prlim[i][j]= newm[i][j]/(1-sumnew);
         sum -= a[i][k]*a[k][j];          max=FMAX(max,prlim[i][j]);
       a[i][j]=sum;          min=FMIN(min,prlim[i][j]);
       if ( (dum=vv[i]*fabs(sum)) >= big) {        }
         big=dum;        maxmin=max-min;
         imax=i;        maxmax=FMAX(maxmax,maxmin);
       }      }
     }      if(maxmax < ftolpl){
     if (j != imax) {        return prlim;
       for (k=1;k<=n;k++) {      }
         dum=a[imax][k];    }
         a[imax][k]=a[j][k];  }
         a[j][k]=dum;  
       }  /*************** transition probabilities ***************/ 
       *d = -(*d);  
       vv[imax]=vv[j];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     }  {
     indx[j]=imax;    double s1, s2;
     if (a[j][j] == 0.0) a[j][j]=TINY;    /*double t34;*/
     if (j != n) {    int i,j,j1, nc, ii, jj;
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      for(i=1; i<= nlstate; i++){
     }        for(j=1; j<i;j++){
   }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   free_vector(vv,1,n);  /* Doesn't work */            /*s2 += param[i][j][nc]*cov[nc];*/
 ;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
 void lubksb(double **a, int n, int *indx, double b[])          ps[i][j]=s2;
 {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   int i,ii=0,ip,j;        }
   double sum;        for(j=i+1; j<=nlstate+ndeath;j++){
            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=n;i++) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     ip=indx[i];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     sum=b[ip];          }
     b[ip]=b[i];          ps[i][j]=s2;
     if (ii)        }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      }
     else if (sum) ii=i;      /*ps[3][2]=1;*/
     b[i]=sum;      
   }      for(i=1; i<= nlstate; i++){
   for (i=n;i>=1;i--) {        s1=0;
     sum=b[i];        for(j=1; j<i; j++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          s1+=exp(ps[i][j]);
     b[i]=sum/a[i][i];        for(j=i+1; j<=nlstate+ndeath; j++)
   }          s1+=exp(ps[i][j]);
 }        ps[i][i]=1./(s1+1.);
         for(j=1; j<i; j++)
 /************ Frequencies ********************/          ps[i][j]= exp(ps[i][j])*ps[i][i];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for(j=i+1; j<=nlstate+ndeath; j++)
 {  /* Some frequencies */          ps[i][j]= exp(ps[i][j])*ps[i][i];
          /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      } /* end i */
   double ***freq; /* Frequencies */      
   double *pp;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   double pos, k2, dateintsum=0,k2cpt=0;        for(jj=1; jj<= nlstate+ndeath; jj++){
   FILE *ficresp;          ps[ii][jj]=0;
   char fileresp[FILENAMELENGTH];          ps[ii][ii]=1;
          }
   pp=vector(1,nlstate);      }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   if((ficresp=fopen(fileresp,"w"))==NULL) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     printf("Problem with prevalence resultfile: %s\n", fileresp);  /*         printf("ddd %lf ",ps[ii][jj]); */
     exit(0);  /*       } */
   }  /*       printf("\n "); */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*        } */
   j1=0;  /*        printf("\n ");printf("%lf ",cov[2]); */
           /*
   j=cptcoveff;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        goto end;*/
        return ps;
   for(k1=1; k1<=j;k1++){  }
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  /**************** Product of 2 matrices ******************/
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       for (i=-1; i<=nlstate+ndeath; i++)    {
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           for(m=agemin; m <= agemax+3; m++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
             freq[i][jk][m]=0;    /* in, b, out are matrice of pointers which should have been initialized 
             before: only the contents of out is modified. The function returns
       dateintsum=0;       a pointer to pointers identical to out */
       k2cpt=0;    long i, j, k;
       for (i=1; i<=imx; i++) {    for(i=nrl; i<= nrh; i++)
         bool=1;      for(k=ncolol; k<=ncoloh; k++)
         if  (cptcovn>0) {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           for (z1=1; z1<=cptcoveff; z1++)          out[i][k] +=in[i][j]*b[j][k];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;    return out;
         }  }
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  /************* Higher Matrix Product ***************/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
               if(agev[m][i]==1) agev[m][i]=agemax+2;  {
               if (m<lastpass) {    /* Computes the transition matrix starting at age 'age' over 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       'nhstepm*hstepm*stepm' months (i.e. until
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
               }       nhstepm*hstepm matrices. 
                     Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {       (typically every 2 years instead of every month which is too big 
                 dateintsum=dateintsum+k2;       for the memory).
                 k2cpt++;       Model is determined by parameters x and covariates have to be 
               }       included manually here. 
             }  
           }       */
         }  
       }    int i, j, d, h, k;
            double **out, cov[NCOVMAX];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double **newm;
   
       if  (cptcovn>0) {    /* Hstepm could be zero and should return the unit matrix */
         fprintf(ficresp, "\n#********** Variable ");    for (i=1;i<=nlstate+ndeath;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficresp, "**********\n#");        oldm[i][j]=(i==j ? 1.0 : 0.0);
       }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       for(i=1; i<=nlstate;i++)      }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       fprintf(ficresp, "\n");    for(h=1; h <=nhstepm; h++){
            for(d=1; d <=hstepm; d++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){        newm=savm;
         if(i==(int)agemax+3)        /* Covariates have to be included here again */
           printf("Total");        cov[1]=1.;
         else        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           printf("Age %d", i);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovage;k++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovprod;k++)
         }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           if(pp[jk]>=1.e-10)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           else                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        savm=oldm;
         }        oldm=newm;
       }
         for(jk=1; jk <=nlstate ; jk++){      for(i=1; i<=nlstate+ndeath; i++)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(j=1;j<=nlstate+ndeath;j++) {
             pp[jk] += freq[jk][m][i];          po[i][j][h]=newm[i][j];
         }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            */
         for(jk=1,pos=0; jk <=nlstate ; jk++)        }
           pos += pp[jk];    } /* end h */
         for(jk=1; jk <=nlstate ; jk++){    return po;
           if(pos>=1.e-5)  }
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           else  
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*************** log-likelihood *************/
           if( i <= (int) agemax){  double func( double *x)
             if(pos>=1.e-5){  {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    int i, ii, j, k, mi, d, kk;
               probs[i][jk][j1]= pp[jk]/pos;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    double **out;
             }    double sw; /* Sum of weights */
             else    double lli; /* Individual log likelihood */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    int s1, s2;
           }    double bbh, survp;
         }    long ipmx;
            /*extern weight */
         for(jk=-1; jk <=nlstate+ndeath; jk++)    /* We are differentiating ll according to initial status */
           for(m=-1; m <=nlstate+ndeath; m++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /*for(i=1;i<imx;i++) 
         if(i <= (int) agemax)      printf(" %d\n",s[4][i]);
           fprintf(ficresp,"\n");    */
         printf("\n");    cov[1]=1.;
       }  
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
   dateintmean=dateintsum/k2cpt;    if(mle==1){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fclose(ficresp);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for(mi=1; mi<= wav[i]-1; mi++){
   free_vector(pp,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   /* End of Freq */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 /************ Prevalence ********************/          for(d=0; d<dh[mi][i]; d++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            newm=savm;
 {  /* Some frequencies */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***freq; /* Frequencies */            }
   double *pp;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double pos, k2;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   pp=vector(1,nlstate);            oldm=newm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          } /* end mult */
          
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   j1=0;          /* But now since version 0.9 we anticipate for bias at large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
   j=cptcoveff;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for(k1=1; k1<=j;k1++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     for(i1=1; i1<=ncodemax[k1];i1++){           * probability in order to take into account the bias as a fraction of the way
       j1++;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                 * -stepm/2 to stepm/2 .
       for (i=-1; i<=nlstate+ndeath; i++)             * For stepm=1 the results are the same as for previous versions of Imach.
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * For stepm > 1 the results are less biased than in previous versions. 
           for(m=agemin; m <= agemax+3; m++)           */
             freq[i][jk][m]=0;          s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       for (i=1; i<=imx; i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
         bool=1;          /* bias bh is positive if real duration
         if  (cptcovn>0) {           * is higher than the multiple of stepm and negative otherwise.
           for (z1=1; z1<=cptcoveff; z1++)           */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
               bool=0;          if( s2 > nlstate){ 
         }            /* i.e. if s2 is a death state and if the date of death is known 
         if (bool==1) {               then the contribution to the likelihood is the probability to 
           for(m=firstpass; m<=lastpass; m++){               die between last step unit time and current  step unit time, 
             k2=anint[m][i]+(mint[m][i]/12.);               which is also equal to probability to die before dh 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {               minus probability to die before dh-stepm . 
               if(agev[m][i]==0) agev[m][i]=agemax+1;               In version up to 0.92 likelihood was computed
               if(agev[m][i]==1) agev[m][i]=agemax+2;          as if date of death was unknown. Death was treated as any other
               if (m<lastpass) {          health state: the date of the interview describes the actual state
                 if (calagedate>0)          and not the date of a change in health state. The former idea was
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          to consider that at each interview the state was recorded
                 else          (healthy, disable or death) and IMaCh was corrected; but when we
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          introduced the exact date of death then we should have modified
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          the contribution of an exact death to the likelihood. This new
               }          contribution is smaller and very dependent of the step unit
             }          stepm. It is no more the probability to die between last interview
           }          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
       }          probability to die within a month. Thanks to Chris
       for(i=(int)agemin; i <= (int)agemax+3; i++){          Jackson for correcting this bug.  Former versions increased
         for(jk=1; jk <=nlstate ; jk++){          mortality artificially. The bad side is that we add another loop
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          which slows down the processing. The difference can be up to 10%
             pp[jk] += freq[jk][m][i];          lower mortality.
         }            */
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  
         }          } else if  (s2==-2) {
                    for (j=1,survp=0. ; j<=nlstate; j++) 
         for(jk=1; jk <=nlstate ; jk++){              survp += out[s1][j];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            lli= log(survp);
             pp[jk] += freq[jk][m][i];          }
         }          
          /*      else if  (s2==-4) { */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  /*        for (j=3,survp=0. ; j<=nlstate; j++)  */
          /*          survp += out[s1][j]; */
         for(jk=1; jk <=nlstate ; jk++){      /*        lli= survp; */
           if( i <= (int) agemax){  /*      } */
             if(pos>=1.e-5){          
               probs[i][jk][j1]= pp[jk]/pos;  /*      else if  (s2==-5) { */
             }  /*        for (j=1,survp=0. ; j<=2; j++)  */
           }  /*          survp += out[s1][j]; */
         }  /*        lli= survp; */
          /*      } */
       }  
     }  
   }          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } 
   free_vector(pp,1,nlstate);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
 }  /* End of Freq */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
 /************* Waves Concatenation ***************/          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        } /* end of wave */
 {      } /* end of individual */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    }  else if(mle==2){
      Death is a valid wave (if date is known).      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for(mi=1; mi<= wav[i]-1; mi++){
      and mw[mi+1][i]. dh depends on stepm.          for (ii=1;ii<=nlstate+ndeath;ii++)
      */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, mi, m;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            }
      double sum=0., jmean=0.;*/          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
   int j, k=0,jk, ju, jl;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double sum=0.;            for (kk=1; kk<=cptcovage;kk++) {
   jmin=1e+5;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmax=-1;            }
   jmean=0.;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=imx; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     mi=0;            savm=oldm;
     m=firstpass;            oldm=newm;
     while(s[m][i] <= nlstate){          } /* end mult */
       if(s[m][i]>=1)        
         mw[++mi][i]=m;          s1=s[mw[mi][i]][i];
       if(m >=lastpass)          s2=s[mw[mi+1][i]][i];
         break;          bbh=(double)bh[mi][i]/(double)stepm; 
       else          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         m++;          ipmx +=1;
     }/* end while */          sw += weight[i];
     if (s[m][i] > nlstate){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       mi++;     /* Death is another wave */        } /* end of wave */
       /* if(mi==0)  never been interviewed correctly before death */      } /* end of individual */
          /* Only death is a correct wave */    }  else if(mle==3){  /* exponential inter-extrapolation */
       mw[mi][i]=m;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     wav[i]=mi;          for (ii=1;ii<=nlstate+ndeath;ii++)
     if(mi==0)            for (j=1;j<=nlstate+ndeath;j++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for(i=1; i<=imx; i++){          for(d=0; d<dh[mi][i]; d++){
     for(mi=1; mi<wav[i];mi++){            newm=savm;
       if (stepm <=0)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         dh[mi][i]=1;            for (kk=1; kk<=cptcovage;kk++) {
       else{              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (s[mw[mi+1][i]][i] > nlstate) {            }
           if (agedc[i] < 2*AGESUP) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if(j==0) j=1;  /* Survives at least one month after exam */            savm=oldm;
           k=k+1;            oldm=newm;
           if (j >= jmax) jmax=j;          } /* end mult */
           if (j <= jmin) jmin=j;        
           sum=sum+j;          s1=s[mw[mi][i]][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          s2=s[mw[mi+1][i]][i];
           }          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         else{          ipmx +=1;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          sw += weight[i];
           k=k+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (j >= jmax) jmax=j;        } /* end of wave */
           else if (j <= jmin)jmin=j;      } /* end of individual */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           sum=sum+j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         jk= j/stepm;        for(mi=1; mi<= wav[i]-1; mi++){
         jl= j -jk*stepm;          for (ii=1;ii<=nlstate+ndeath;ii++)
         ju= j -(jk+1)*stepm;            for (j=1;j<=nlstate+ndeath;j++){
         if(jl <= -ju)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=jk;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         else            }
           dh[mi][i]=jk+1;          for(d=0; d<dh[mi][i]; d++){
         if(dh[mi][i]==0)            newm=savm;
           dh[mi][i]=1; /* At least one step */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   jmean=sum/k;          
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*********** Tricode ****************************/            savm=oldm;
 void tricode(int *Tvar, int **nbcode, int imx)            oldm=newm;
 {          } /* end mult */
   int Ndum[20],ij=1, k, j, i;        
   int cptcode=0;          s1=s[mw[mi][i]][i];
   cptcoveff=0;          s2=s[mw[mi+1][i]][i];
            if( s2 > nlstate){ 
   for (k=0; k<19; k++) Ndum[k]=0;            lli=log(out[s1][s2] - savm[s1][s2]);
   for (k=1; k<=7; k++) ncodemax[k]=0;          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          }
     for (i=1; i<=imx; i++) {          ipmx +=1;
       ij=(int)(covar[Tvar[j]][i]);          sw += weight[i];
       Ndum[ij]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if (ij > cptcode) cptcode=ij;        } /* end of wave */
     }      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     for (i=0; i<=cptcode; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(Ndum[i]!=0) ncodemax[j]++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     ij=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=ncodemax[j]; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=0; k<=19; k++) {            }
         if (Ndum[k] != 0) {          for(d=0; d<dh[mi][i]; d++){
           nbcode[Tvar[j]][ij]=k;            newm=savm;
                      cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           ij++;            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (ij > ncodemax[j]) break;            }
       }            
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
  for (k=0; k<19; k++) Ndum[k]=0;            oldm=newm;
           } /* end mult */
  for (i=1; i<=ncovmodel-2; i++) {        
       ij=Tvar[i];          s1=s[mw[mi][i]][i];
       Ndum[ij]++;          s2=s[mw[mi+1][i]][i];
     }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
  ij=1;          sw += weight[i];
  for (i=1; i<=10; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    if((Ndum[i]!=0) && (i<=ncovcol)){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      Tvaraff[ij]=i;        } /* end of wave */
      ij++;      } /* end of individual */
    }    } /* End of if */
  }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     cptcoveff=ij-1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 }    return -l;
   }
 /*********** Health Expectancies ****************/  
   /*************** log-likelihood *************/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  double funcone( double *x)
   {
 {    /* Same as likeli but slower because of a lot of printf and if */
   /* Health expectancies */    int i, ii, j, k, mi, d, kk;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double age, agelim, hf;    double **out;
   double ***p3mat,***varhe;    double lli; /* Individual log likelihood */
   double **dnewm,**doldm;    double llt;
   double *xp;    int s1, s2;
   double **gp, **gm;    double bbh, survp;
   double ***gradg, ***trgradg;    /*extern weight */
   int theta;    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    /*for(i=1;i<imx;i++) 
   xp=vector(1,npar);      printf(" %d\n",s[4][i]);
   dnewm=matrix(1,nlstate*2,1,npar);    */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    cov[1]=1.;
    
   fprintf(ficreseij,"# Health expectancies\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(j=1; j<=nlstate;j++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficreseij,"\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
   if(estepm < stepm){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf ("Problem %d lower than %d\n",estepm, stepm);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }          }
   else  hstepm=estepm;          for(d=0; d<dh[mi][i]; d++){
   /* We compute the life expectancy from trapezoids spaced every estepm months          newm=savm;
    * This is mainly to measure the difference between two models: for example          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * if stepm=24 months pijx are given only every 2 years and by summing them          for (kk=1; kk<=cptcovage;kk++) {
    * we are calculating an estimate of the Life Expectancy assuming a linear            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * progression inbetween and thus overestimating or underestimating according          }
    * to the curvature of the survival function. If, for the same date, we          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    * estimate the model with stepm=1 month, we can keep estepm to 24 months                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * to compare the new estimate of Life expectancy with the same linear          savm=oldm;
    * hypothesis. A more precise result, taking into account a more precise          oldm=newm;
    * curvature will be obtained if estepm is as small as stepm. */        } /* end mult */
         
   /* For example we decided to compute the life expectancy with the smallest unit */        s1=s[mw[mi][i]][i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        s2=s[mw[mi+1][i]][i];
      nhstepm is the number of hstepm from age to agelim        bbh=(double)bh[mi][i]/(double)stepm; 
      nstepm is the number of stepm from age to agelin.        /* bias is positive if real duration
      Look at hpijx to understand the reason of that which relies in memory size         * is higher than the multiple of stepm and negative otherwise.
      and note for a fixed period like estepm months */         */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        if( s2 > nlstate && (mle <5) ){  /* Jackson */
      survival function given by stepm (the optimization length). Unfortunately it          lli=log(out[s1][s2] - savm[s1][s2]);
      means that if the survival funtion is printed only each two years of age and if        } else if  (s2==-2) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          for (j=1,survp=0. ; j<=nlstate; j++) 
      results. So we changed our mind and took the option of the best precision.            survp += out[s1][j];
   */          lli= log(survp);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   agelim=AGESUP;        } else if(mle==2){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     /* nhstepm age range expressed in number of stepm */        } else if(mle==3){  /* exponential inter-extrapolation */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     /* if (stepm >= YEARM) hstepm=1;*/          lli=log(out[s1][s2]); /* Original formula */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli=log(out[s1][s2]); /* Original formula */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        } /* End of if */
     gp=matrix(0,nhstepm,1,nlstate*2);        ipmx +=1;
     gm=matrix(0,nhstepm,1,nlstate*2);        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        if(globpr){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     /* Computing Variances of health expectancies */            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
      for(theta=1; theta <=npar; theta++){          }
       for(i=1; i<=npar; i++){          fprintf(ficresilk," %10.6f\n", -llt);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
       }      } /* end of wave */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      } /* end of individual */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       cptj=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=1; j<= nlstate; j++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(i=1; i<=nlstate; i++){    if(globpr==0){ /* First time we count the contributions and weights */
           cptj=cptj+1;      gipmx=ipmx;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      gsw=sw;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    }
           }    return -l;
         }  }
       }  
        
        /*************** function likelione ***********/
       for(i=1; i<=npar; i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* This routine should help understanding what is done with 
             the selection of individuals/waves and
       cptj=0;       to check the exact contribution to the likelihood.
       for(j=1; j<= nlstate; j++){       Plotting could be done.
         for(i=1;i<=nlstate;i++){     */
           cptj=cptj+1;    int k;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    if(*globpri !=0){ /* Just counts and sums, no printings */
           }      strcpy(fileresilk,"ilk"); 
         }      strcat(fileresilk,fileres);
       }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(j=1; j<= nlstate*2; j++)        printf("Problem with resultfile: %s\n", fileresilk);
         for(h=0; h<=nhstepm-1; h++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
          /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 /* End theta */      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*2;j++)    *fretone=(*funcone)(p);
         for(theta=1; theta <=npar; theta++)    if(*globpri !=0){
           trgradg[h][j][theta]=gradg[h][theta][j];      fclose(ficresilk);
            fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
      for(i=1;i<=nlstate*2;i++)    } 
       for(j=1;j<=nlstate*2;j++)    return;
         varhe[i][j][(int)age] =0.;  }
   
      printf("%d|",(int)age);fflush(stdout);  
      for(h=0;h<=nhstepm-1;h++){  /*********** Maximum Likelihood Estimation ***************/
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  {
         for(i=1;i<=nlstate*2;i++)    int i,j, iter;
           for(j=1;j<=nlstate*2;j++)    double **xi;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double fret;
       }    double fretone; /* Only one call to likelihood */
     }    /*  char filerespow[FILENAMELENGTH];*/
     /* Computing expectancies */    xi=matrix(1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate;j++)      for (j=1;j<=npar;j++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        xi[i][j]=(i==j ? 1.0 : 0.0);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
              strcpy(filerespow,"pow"); 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     fprintf(ficreseij,"%3.0f",age );    }
     cptj=0;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(i=1; i<=nlstate;i++)    for (i=1;i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){      for(j=1;j<=nlstate+ndeath;j++)
         cptj++;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    fprintf(ficrespow,"\n");
       }  
     fprintf(ficreseij,"\n");    powell(p,xi,npar,ftol,&iter,&fret,func);
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);    free_matrix(xi,1,npar,1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    fclose(ficrespow);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   }  
   printf("\n");  }
   
   free_vector(xp,1,npar);  /**** Computes Hessian and covariance matrix ***/
   free_matrix(dnewm,1,nlstate*2,1,npar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    double  **a,**y,*x,pd;
 }    double **hess;
     int i, j,jk;
 /************ Variance ******************/    int *indx;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  
 {    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   /* Variance of health expectancies */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double **newm;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double **dnewm,**doldm;    double gompertz(double p[]);
   int i, j, nhstepm, hstepm, h, nstepm ;    hess=matrix(1,npar,1,npar);
   int k, cptcode;  
   double *xp;    printf("\nCalculation of the hessian matrix. Wait...\n");
   double **gp, **gm;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double ***gradg, ***trgradg;    for (i=1;i<=npar;i++){
   double ***p3mat;      printf("%d",i);fflush(stdout);
   double age,agelim, hf;      fprintf(ficlog,"%d",i);fflush(ficlog);
   int theta;     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      
   fprintf(ficresvij,"# Age");      /*  printf(" %f ",p[i]);
   for(i=1; i<=nlstate;i++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     for(j=1; j<=nlstate;j++)    }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    
   fprintf(ficresvij,"\n");    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
   xp=vector(1,npar);        if (j>i) { 
   dnewm=matrix(1,nlstate,1,npar);          printf(".%d%d",i,j);fflush(stdout);
   doldm=matrix(1,nlstate,1,nlstate);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            hess[i][j]=hessij(p,delti,i,j,func,npar);
   if(estepm < stepm){          
     printf ("Problem %d lower than %d\n",estepm, stepm);          hess[j][i]=hess[i][j];    
   }          /*printf(" %lf ",hess[i][j]);*/
   else  hstepm=estepm;          }
   /* For example we decided to compute the life expectancy with the smallest unit */      }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    }
      nhstepm is the number of hstepm from age to agelim    printf("\n");
      nstepm is the number of stepm from age to agelin.    fprintf(ficlog,"\n");
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      survival function given by stepm (the optimization length). Unfortunately it    
      means that if the survival funtion is printed only each two years of age and if    a=matrix(1,npar,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    y=matrix(1,npar,1,npar);
      results. So we changed our mind and took the option of the best precision.    x=vector(1,npar);
   */    indx=ivector(1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1;i<=npar;i++)
   agelim = AGESUP;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    ludcmp(a,npar,indx,&pd);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for (j=1;j<=npar;j++) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1;i<=npar;i++) x[i]=0;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      x[j]=1;
     gp=matrix(0,nhstepm,1,nlstate);      lubksb(a,npar,indx,x);
     gm=matrix(0,nhstepm,1,nlstate);      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient */    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    printf("\n#Hessian matrix#\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficlog,"\n#Hessian matrix#\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
       if (popbased==1) {        printf("%.3e ",hess[i][j]);
         for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%.3e ",hess[i][j]);
           prlim[i][i]=probs[(int)age][i][ij];      }
       }      printf("\n");
        fprintf(ficlog,"\n");
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    /* Recompute Inverse */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       }    ludcmp(a,npar,indx,&pd);
      
       for(i=1; i<=npar; i++) /* Computes gradient */    /*  printf("\n#Hessian matrix recomputed#\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (j=1;j<=npar;j++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
       if (popbased==1) {      lubksb(a,npar,indx,x);
         for(i=1; i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
           prlim[i][i]=probs[(int)age][i][ij];        y[i][j]=x[i];
       }        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
       for(j=1; j<= nlstate; j++){      }
         for(h=0; h<=nhstepm; h++){      printf("\n");
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      fprintf(ficlog,"\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    }
         }    */
       }  
     free_matrix(a,1,npar,1,npar);
       for(j=1; j<= nlstate; j++)    free_matrix(y,1,npar,1,npar);
         for(h=0; h<=nhstepm; h++){    free_vector(x,1,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    free_ivector(indx,1,npar);
         }    free_matrix(hess,1,npar,1,npar);
     } /* End theta */  
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  }
   
     for(h=0; h<=nhstepm; h++)  /*************** hessian matrix ****************/
       for(j=1; j<=nlstate;j++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         for(theta=1; theta <=npar; theta++)  {
           trgradg[h][j][theta]=gradg[h][theta][j];    int i;
     int l=1, lmax=20;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double k1,k2;
     for(i=1;i<=nlstate;i++)    double p2[NPARMAX+1];
       for(j=1;j<=nlstate;j++)    double res;
         vareij[i][j][(int)age] =0.;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     for(h=0;h<=nhstepm;h++){    int k=0,kmax=10;
       for(k=0;k<=nhstepm;k++){    double l1;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    fx=func(x);
         for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
           for(j=1;j<=nlstate;j++)    for(l=0 ; l <=lmax; l++){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      l1=pow(10,l);
       }      delts=delt;
     }      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
     fprintf(ficresvij,"%.0f ",age );        p2[theta]=x[theta] +delt;
     for(i=1; i<=nlstate;i++)        k1=func(p2)-fx;
       for(j=1; j<=nlstate;j++){        p2[theta]=x[theta]-delt;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        k2=func(p2)-fx;
       }        /*res= (k1-2.0*fx+k2)/delt/delt; */
     fprintf(ficresvij,"\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     free_matrix(gp,0,nhstepm,1,nlstate);        
     free_matrix(gm,0,nhstepm,1,nlstate);  #ifdef DEBUG
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #endif
   } /* End age */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   free_vector(xp,1,npar);          k=kmax;
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
 }        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 /************ Variance of prevlim ******************/          delts=delt;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        }
 {      }
   /* Variance of prevalence limit */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    delti[theta]=delts;
   double **newm;    return res; 
   double **dnewm,**doldm;    
   int i, j, nhstepm, hstepm;  }
   int k, cptcode;  
   double *xp;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double *gp, *gm;  {
   double **gradg, **trgradg;    int i;
   double age,agelim;    int l=1, l1, lmax=20;
   int theta;    double k1,k2,k3,k4,res,fx;
        double p2[NPARMAX+1];
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    int k;
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    fx=func(x);
       fprintf(ficresvpl," %1d-%1d",i,i);    for (k=1; k<=2; k++) {
   fprintf(ficresvpl,"\n");      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   xp=vector(1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   dnewm=matrix(1,nlstate,1,npar);      k1=func(p2)-fx;
   doldm=matrix(1,nlstate,1,nlstate);    
        p2[thetai]=x[thetai]+delti[thetai]/k;
   hstepm=1*YEARM; /* Every year of age */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      k2=func(p2)-fx;
   agelim = AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      p2[thetai]=x[thetai]-delti[thetai]/k;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     if (stepm >= YEARM) hstepm=1;      k3=func(p2)-fx;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    
     gradg=matrix(1,npar,1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
     gp=vector(1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     gm=vector(1,nlstate);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(theta=1; theta <=npar; theta++){  #ifdef DEBUG
       for(i=1; i<=npar; i++){ /* Computes gradient */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }  #endif
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(i=1;i<=nlstate;i++)    return res;
         gp[i] = prlim[i][i];  }
      
       for(i=1; i<=npar; i++) /* Computes gradient */  /************** Inverse of matrix **************/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  void ludcmp(double **a, int n, int *indx, double *d) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  { 
       for(i=1;i<=nlstate;i++)    int i,imax,j,k; 
         gm[i] = prlim[i][i];    double big,dum,sum,temp; 
     double *vv; 
       for(i=1;i<=nlstate;i++)   
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    vv=vector(1,n); 
     } /* End theta */    *d=1.0; 
     for (i=1;i<=n;i++) { 
     trgradg =matrix(1,nlstate,1,npar);      big=0.0; 
       for (j=1;j<=n;j++) 
     for(j=1; j<=nlstate;j++)        if ((temp=fabs(a[i][j])) > big) big=temp; 
       for(theta=1; theta <=npar; theta++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         trgradg[j][theta]=gradg[theta][j];      vv[i]=1.0/big; 
     } 
     for(i=1;i<=nlstate;i++)    for (j=1;j<=n;j++) { 
       varpl[i][(int)age] =0.;      for (i=1;i<j;i++) { 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        sum=a[i][j]; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for(i=1;i<=nlstate;i++)        a[i][j]=sum; 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      } 
       big=0.0; 
     fprintf(ficresvpl,"%.0f ",age );      for (i=j;i<=n;i++) { 
     for(i=1; i<=nlstate;i++)        sum=a[i][j]; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        for (k=1;k<j;k++) 
     fprintf(ficresvpl,"\n");          sum -= a[i][k]*a[k][j]; 
     free_vector(gp,1,nlstate);        a[i][j]=sum; 
     free_vector(gm,1,nlstate);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     free_matrix(gradg,1,npar,1,nlstate);          big=dum; 
     free_matrix(trgradg,1,nlstate,1,npar);          imax=i; 
   } /* End age */        } 
       } 
   free_vector(xp,1,npar);      if (j != imax) { 
   free_matrix(doldm,1,nlstate,1,npar);        for (k=1;k<=n;k++) { 
   free_matrix(dnewm,1,nlstate,1,nlstate);          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
 }          a[j][k]=dum; 
         } 
 /************ Variance of one-step probabilities  ******************/        *d = -(*d); 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        vv[imax]=vv[j]; 
 {      } 
   int i, j,  i1, k1, l1;      indx[j]=imax; 
   int k2, l2, j1,  z1;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   int k=0,l, cptcode;      if (j != n) { 
   int first=1;        dum=1.0/(a[j][j]); 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double **dnewm,**doldm;      } 
   double *xp;    } 
   double *gp, *gm;    free_vector(vv,1,n);  /* Doesn't work */
   double **gradg, **trgradg;  ;
   double **mu;  } 
   double age,agelim, cov[NCOVMAX];  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  void lubksb(double **a, int n, int *indx, double b[]) 
   int theta;  { 
   char fileresprob[FILENAMELENGTH];    int i,ii=0,ip,j; 
   char fileresprobcov[FILENAMELENGTH];    double sum; 
   char fileresprobcor[FILENAMELENGTH];   
     for (i=1;i<=n;i++) { 
   double ***varpij;      ip=indx[i]; 
       sum=b[ip]; 
   strcpy(fileresprob,"prob");      b[ip]=b[i]; 
   strcat(fileresprob,fileres);      if (ii) 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     printf("Problem with resultfile: %s\n", fileresprob);      else if (sum) ii=i; 
   }      b[i]=sum; 
   strcpy(fileresprobcov,"probcov");    } 
   strcat(fileresprobcov,fileres);    for (i=n;i>=1;i--) { 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      sum=b[i]; 
     printf("Problem with resultfile: %s\n", fileresprobcov);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
   strcpy(fileresprobcor,"probcor");    } 
   strcat(fileresprobcor,fileres);  } 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcor);  void pstamp(FILE *fichier)
   }  {
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
    /************ Frequencies ********************/
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   fprintf(ficresprob,"# Age");  {  /* Some frequencies */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    
   fprintf(ficresprobcov,"# Age");    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    int first;
   fprintf(ficresprobcov,"# Age");    double ***freq; /* Frequencies */
     double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
   for(i=1; i<=nlstate;i++)    char fileresp[FILENAMELENGTH];
     for(j=1; j<=(nlstate+ndeath);j++){    
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    pp=vector(1,nlstate);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    prop=matrix(1,nlstate,iagemin,iagemax+3);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    strcpy(fileresp,"p");
     }      strcat(fileresp,fileres);
   fprintf(ficresprob,"\n");    if((ficresp=fopen(fileresp,"w"))==NULL) {
   fprintf(ficresprobcov,"\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficresprobcor,"\n");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   xp=vector(1,npar);      exit(0);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    j1=0;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    
   first=1;    j=cptcoveff;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     exit(0);    first=1;
   }  
   else{    for(k1=1; k1<=j;k1++){
     fprintf(ficgp,"\n# Routine varprob");      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     printf("Problem with html file: %s\n", optionfilehtm);          scanf("%d", i);*/
     exit(0);        for (i=-5; i<=nlstate+ndeath; i++)  
   }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   else{            for(m=iagemin; m <= iagemax+3; m++)
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");              freq[i][jk][m]=0;
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
   }          prop[i][m]=0;
   cov[1]=1;        
   j=cptcoveff;        dateintsum=0;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        k2cpt=0;
   j1=0;        for (i=1; i<=imx; i++) {
   for(k1=1; k1<=1;k1++){          bool=1;
     for(i1=1; i1<=ncodemax[k1];i1++){          if  (cptcovn>0) {
     j1++;            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     if  (cptcovn>0) {                bool=0;
       fprintf(ficresprob, "\n#********** Variable ");          }
       fprintf(ficresprobcov, "\n#********** Variable ");          if (bool==1){
       fprintf(ficgp, "\n#********** Variable ");            for(m=firstpass; m<=lastpass; m++){
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");              k2=anint[m][i]+(mint[m][i]/12.);
       fprintf(ficresprobcor, "\n#********** Variable ");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fprintf(ficresprob, "**********\n#");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficresprobcov, "**********\n#");                if (m<lastpass) {
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp, "**********\n#");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                }
       fprintf(ficgp, "**********\n#");                
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fprintf(fichtm, "**********\n#");                  dateintsum=dateintsum+k2;
     }                  k2cpt++;
                    }
       for (age=bage; age<=fage; age ++){                /*}*/
         cov[2]=age;            }
         for (k=1; k<=cptcovn;k++) {          }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        }
         }         
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for (k=1; k<=cptcovprod;k++)        pstamp(ficresp);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if  (cptcovn>0) {
                  fprintf(ficresp, "\n#********** Variable "); 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          fprintf(ficresp, "**********\n#");
         gp=vector(1,(nlstate)*(nlstate+ndeath));        }
         gm=vector(1,(nlstate)*(nlstate+ndeath));        for(i=1; i<=nlstate;i++) 
              fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for(theta=1; theta <=npar; theta++){        fprintf(ficresp, "\n");
           for(i=1; i<=npar; i++)        
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(i=iagemin; i <= iagemax+3; i++){
                    if(i==iagemax+3){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            fprintf(ficlog,"Total");
                    }else{
           k=0;            if(first==1){
           for(i=1; i<= (nlstate); i++){              first=0;
             for(j=1; j<=(nlstate+ndeath);j++){              printf("See log file for details...\n");
               k=k+1;            }
               gp[k]=pmmij[i][j];            fprintf(ficlog,"Age %d", i);
             }          }
           }          for(jk=1; jk <=nlstate ; jk++){
                      for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           for(i=1; i<=npar; i++)              pp[jk] += freq[jk][m][i]; 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
              for(jk=1; jk <=nlstate ; jk++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
           k=0;              pos += freq[jk][m][i];
           for(i=1; i<=(nlstate); i++){            if(pp[jk]>=1.e-10){
             for(j=1; j<=(nlstate+ndeath);j++){              if(first==1){
               k=k+1;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               gm[k]=pmmij[i][j];              }
             }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }            }else{
                    if(first==1)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
           }
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)          for(jk=1; jk <=nlstate ; jk++){
             trgradg[j][theta]=gradg[theta][j];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                      pp[jk] += freq[jk][m][i];
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          }       
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                    pos += pp[jk];
         pmij(pmmij,cov,ncovmodel,x,nlstate);            posprop += prop[jk][i];
                  }
         k=0;          for(jk=1; jk <=nlstate ; jk++){
         for(i=1; i<=(nlstate); i++){            if(pos>=1.e-5){
           for(j=1; j<=(nlstate+ndeath);j++){              if(first==1)
             k=k+1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             mu[k][(int) age]=pmmij[i][j];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }            }else{
         }              if(first==1)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             varpij[i][j][(int)age] = doldm[i][j];            }
             if( i <= iagemax){
         /*printf("\n%d ",(int)age);              if(pos>=1.e-5){
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                /*probs[i][jk][j1]= pp[jk]/pos;*/
      }*/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
         fprintf(ficresprob,"\n%d ",(int)age);              else
         fprintf(ficresprobcov,"\n%d ",(int)age);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         fprintf(ficresprobcor,"\n%d ",(int)age);            }
           }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          for(jk=-1; jk <=nlstate+ndeath; jk++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            for(m=-1; m <=nlstate+ndeath; m++)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);              if(freq[jk][m][i] !=0 ) {
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              if(first==1)
         }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         i=0;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         for (k=1; k<=(nlstate);k++){              }
           for (l=1; l<=(nlstate+ndeath);l++){          if(i <= iagemax)
             i=i++;            fprintf(ficresp,"\n");
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          if(first==1)
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            printf("Others in log...\n");
             for (j=1; j<=i;j++){          fprintf(ficlog,"\n");
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      }
             }    }
           }    dateintmean=dateintsum/k2cpt; 
         }/* end of loop for state */   
       } /* end of loop for age */    fclose(ficresp);
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       for (k1=1; k1<=(nlstate);k1++){    free_vector(pp,1,nlstate);
         for (l1=1; l1<=(nlstate+ndeath);l1++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           if(l1==k1) continue;    /* End of Freq */
           i=(k1-1)*(nlstate+ndeath)+l1;  }
           for (k2=1; k2<=(nlstate);k2++){  
             for (l2=1; l2<=(nlstate+ndeath);l2++){  /************ Prevalence ********************/
               if(l2==k2) continue;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
               j=(k2-1)*(nlstate+ndeath)+l2;  {  
               if(j<=i) continue;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
               for (age=bage; age<=fage; age ++){       in each health status at the date of interview (if between dateprev1 and dateprev2).
                 if ((int)age %5==0){       We still use firstpass and lastpass as another selection.
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;   
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    double ***freq; /* Frequencies */
                   mu2=mu[j][(int) age]/stepm*YEARM;    double *pp, **prop;
                   /* Computing eigen value of matrix of covariance */    double pos,posprop; 
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    double  y2; /* in fractional years */
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    int iagemin, iagemax;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);  
                   /* Eigen vectors */    iagemin= (int) agemin;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    iagemax= (int) agemax;
                   v21=sqrt(1.-v11*v11);    /*pp=vector(1,nlstate);*/
                   v12=-v21;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
                   v22=v11;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                   /*printf(fignu*/    j1=0;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    j=cptcoveff;
                   if(first==1){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
                     first=0;    
                     fprintf(ficgp,"\nset parametric;set nolabel");    for(k1=1; k1<=j;k1++){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      for(i1=1; i1<=ncodemax[k1];i1++){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        j1++;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);        
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);        for (i=1; i<=nlstate; i++)  
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);          for(m=iagemin; m <= iagemax+3; m++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            prop[i][m]=0.0;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);       
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        for (i=1; i<=imx; i++) { /* Each individual */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          bool=1;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          if  (cptcovn>0) {
                   }else{            for (z1=1; z1<=cptcoveff; z1++) 
                     first=0;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                bool=0;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          } 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          if (bool==1) { 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   }/* if first */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 } /* age mod 5 */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               } /* end loop age */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
               first=1;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             } /*l12 */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           } /* k12 */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         } /*l1 */                  prop[s[m][i]][iagemax+3] += weight[i]; 
       }/* k1 */                } 
     } /* loop covariates */              }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);            } /* end selection of waves */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        for(i=iagemin; i <= iagemax+3; i++){  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   }            posprop += prop[jk][i]; 
   free_vector(xp,1,npar);          } 
   fclose(ficresprob);  
   fclose(ficresprobcov);          for(jk=1; jk <=nlstate ; jk++){     
   fclose(ficresprobcor);            if( i <=  iagemax){ 
   fclose(ficgp);              if(posprop>=1.e-5){ 
   fclose(fichtm);                probs[i][jk][j1]= prop[jk][i]/posprop;
 }              } 
             } 
           }/* end jk */ 
 /******************* Printing html file ***********/        }/* end i */ 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      } /* end i1 */
                   int lastpass, int stepm, int weightopt, char model[],\    } /* end k1 */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    
                   int popforecast, int estepm ,\    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   double jprev1, double mprev1,double anprev1, \    /*free_vector(pp,1,nlstate);*/
                   double jprev2, double mprev2,double anprev2){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   int jj1, k1, i1, cpt;  }  /* End of prevalence */
   /*char optionfilehtm[FILENAMELENGTH];*/  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  /************* Waves Concatenation ***************/
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       Death is a valid wave (if date is known).
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  - Life expectancies by age and initial health status (estepm=%2d months):       and mw[mi+1][i]. dh depends on stepm.
    <a href=\"e%s\">e%s</a> <br>\n</li>", \       */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
     int i, mi, m;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n       double sum=0., jmean=0.;*/
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    int first;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    int j, k=0,jk, ju, jl;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    double sum=0.;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    first=0;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    jmin=1e+5;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    jmax=-1;
     jmean=0.;
  if(popforecast==1) fprintf(fichtm,"\n    for(i=1; i<=imx; i++){
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      mi=0;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      m=firstpass;
         <br>",fileres,fileres,fileres,fileres);      while(s[m][i] <= nlstate){
  else        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          mw[++mi][i]=m;
 fprintf(fichtm," <li>Graphs</li><p>");        if(m >=lastpass)
           break;
  m=cptcoveff;        else
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          m++;
       }/* end while */
  jj1=0;      if (s[m][i] > nlstate){
  for(k1=1; k1<=m;k1++){        mi++;     /* Death is another wave */
    for(i1=1; i1<=ncodemax[k1];i1++){        /* if(mi==0)  never been interviewed correctly before death */
      jj1++;           /* Only death is a correct wave */
      if (cptcovn > 0) {        mw[mi][i]=m;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      }
        for (cpt=1; cpt<=cptcoveff;cpt++)  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      wav[i]=mi;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      if(mi==0){
      }        nbwarn++;
      /* Pij */        if(first==0){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              first=1;
      /* Quasi-incidences */        }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        if(first==1){
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
        /* Stable prevalence in each health state */        }
        for(cpt=1; cpt<nlstate;cpt++){      } /* end mi==0 */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    } /* End individuals */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }    for(i=1; i<=imx; i++){
     for(cpt=1; cpt<=nlstate;cpt++) {      for(mi=1; mi<wav[i];mi++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        if (stepm <=0)
 interval) in state (%d): v%s%d%d.png <br>          dh[mi][i]=1;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          else{
      }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
      for(cpt=1; cpt<=nlstate;cpt++) {            if (agedc[i] < 2*AGESUP) {
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if(j==0) j=1;  /* Survives at least one month after exam */
      }              else if(j<0){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                nberr++;
 health expectancies in states (1) and (2): e%s%d.png<br>                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                j=1; /* Temporary Dangerous patch */
    }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fclose(fichtm);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 }              }
               k=k+1;
 /******************* Gnuplot file **************/              if (j >= jmax){
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                jmax=j;
                 ijmax=i;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              }
   int ng;              if (j <= jmin){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                jmin=j;
     printf("Problem with file %s",optionfilegnuplot);                ijmin=i;
   }              }
               sum=sum+j;
 #ifdef windows              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fprintf(ficgp,"cd \"%s\" \n",pathc);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 #endif            }
 m=pow(2,cptcoveff);          }
            else{
  /* 1eme*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   for (cpt=1; cpt<= nlstate ; cpt ++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    for (k1=1; k1<= m ; k1 ++) {  
             k=k+1;
 #ifdef windows            if (j >= jmax) {
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              jmax=j;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              ijmax=i;
 #endif            }
 #ifdef unix            else if (j <= jmin){
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              jmin=j;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              ijmin=i;
 #endif            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 for (i=1; i<= nlstate ; i ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if(j<0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              nberr++;
 }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            sum=sum+j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          jk= j/stepm;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          jl= j -jk*stepm;
      for (i=1; i<= nlstate ; i ++) {          ju= j -(jk+1)*stepm;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(jl==0){
 }                dh[mi][i]=jk;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              bh[mi][i]=0;
 #ifdef unix            }else{ /* We want a negative bias in order to only have interpolation ie
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");                    * at the price of an extra matrix product in likelihood */
 #endif              dh[mi][i]=jk+1;
    }              bh[mi][i]=ju;
   }            }
   /*2 eme*/          }else{
             if(jl <= -ju){
   for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);              bh[mi][i]=jl;       /* bias is positive if real duration
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                                   * is higher than the multiple of stepm and negative otherwise.
                                       */
     for (i=1; i<= nlstate+1 ; i ++) {            }
       k=2*i;            else{
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              dh[mi][i]=jk+1;
       for (j=1; j<= nlstate+1 ; j ++) {              bh[mi][i]=ju;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(dh[mi][i]==0){
 }                dh[mi][i]=1; /* At least one step */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              bh[mi][i]=ju; /* At least one step */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          } /* end if mle */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");      } /* end wave */
 }      }
       fprintf(ficgp,"\" t\"\" w l 0,");    jmean=sum/k;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    /*********** Tricode ****************************/
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  void tricode(int *Tvar, int **nbcode, int imx)
       else fprintf(ficgp,"\" t\"\" w l 0,");  {
     }    
   }    int Ndum[20],ij=1, k, j, i, maxncov=19;
      int cptcode=0;
   /*3eme*/    cptcoveff=0; 
    
   for (k1=1; k1<= m ; k1 ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                                 modality*/ 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        Ndum[ij]++; /*store the modality */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
 */      }
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }      }
     }  
   }      ij=1; 
        for (i=1; i<=ncodemax[j]; i++) {
   /* CV preval stat */        for (k=0; k<= maxncov; k++) {
     for (k1=1; k1<= m ; k1 ++) {          if (Ndum[k] != 0) {
     for (cpt=1; cpt<nlstate ; cpt ++) {            nbcode[Tvar[j]][ij]=k; 
       k=3;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            ij++;
           }
       for (i=1; i< nlstate ; i ++)          if (ij > ncodemax[j]) break; 
         fprintf(ficgp,"+$%d",k+i+1);        }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      } 
          }  
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;   for (i=1; i<=ncovmodel-2; i++) { 
         fprintf(ficgp,"+$%d",l+i+1);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       }     ij=Tvar[i];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       Ndum[ij]++;
     }   }
   }    
     ij=1;
   /* proba elementaires */   for (i=1; i<= maxncov; i++) {
    for(i=1,jk=1; i <=nlstate; i++){     if((Ndum[i]!=0) && (i<=ncovcol)){
     for(k=1; k <=(nlstate+ndeath); k++){       Tvaraff[ij]=i; /*For printing */
       if (k != i) {       ij++;
         for(j=1; j <=ncovmodel; j++){     }
           }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);   
           jk++;   cptcoveff=ij-1; /*Number of simple covariates*/
           fprintf(ficgp,"\n");  }
         }  
       }  /*********** Health Expectancies ****************/
     }  
    }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  {
      for(jk=1; jk <=m; jk++) {    /* Health expectancies, no variances */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
        if (ng==2)    double age, agelim, hf;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    double ***p3mat;
        else    double eip;
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    pstamp(ficreseij);
        i=1;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
        for(k2=1; k2<=nlstate; k2++) {    fprintf(ficreseij,"# Age");
          k3=i;    for(i=1; i<=nlstate;i++){
          for(k=1; k<=(nlstate+ndeath); k++) {      for(j=1; j<=nlstate;j++){
            if (k != k2){        fprintf(ficreseij," e%1d%1d ",i,j);
              if(ng==2)      }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      fprintf(ficreseij," e%1d. ",i);
              else    }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    fprintf(ficreseij,"\n");
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {    
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    if(estepm < stepm){
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      printf ("Problem %d lower than %d\n",estepm, stepm);
                  ij++;    }
                }    else  hstepm=estepm;   
                else    /* We compute the life expectancy from trapezoids spaced every estepm months
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     * This is mainly to measure the difference between two models: for example
              }     * if stepm=24 months pijx are given only every 2 years and by summing them
              fprintf(ficgp,")/(1");     * we are calculating an estimate of the Life Expectancy assuming a linear 
                   * progression in between and thus overestimating or underestimating according
              for(k1=1; k1 <=nlstate; k1++){       * to the curvature of the survival function. If, for the same date, we 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                ij=1;     * to compare the new estimate of Life expectancy with the same linear 
                for(j=3; j <=ncovmodel; j++){     * hypothesis. A more precise result, taking into account a more precise
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     * curvature will be obtained if estepm is as small as stepm. */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;    /* For example we decided to compute the life expectancy with the smallest unit */
                  }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                  else       nhstepm is the number of hstepm from age to agelim 
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       nstepm is the number of stepm from age to agelin. 
                }       Look at hpijx to understand the reason of that which relies in memory size
                fprintf(ficgp,")");       and note for a fixed period like estepm months */
              }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);       survival function given by stepm (the optimization length). Unfortunately it
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       means that if the survival funtion is printed only each two years of age and if
              i=i+ncovmodel;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
            }       results. So we changed our mind and took the option of the best precision.
          }    */
        }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      }  
    }    agelim=AGESUP;
    fclose(ficgp);    /* nhstepm age range expressed in number of stepm */
 }  /* end gnuplot */    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
 /*************** Moving average **************/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   int i, cpt, cptcod;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for (i=1; i<=nlstate;i++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      
           mobaverage[(int)agedeb][i][cptcod]=0.;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
          
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for (i=1; i<=nlstate;i++){      
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf("%d|",(int)age);fflush(stdout);
           for (cpt=0;cpt<=4;cpt++){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      
           }      /* Computing expectancies */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++)
       }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                
 }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      fprintf(ficreseij,"%3.0f",age );
        for(i=1; i<=nlstate;i++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        eip=0;
   int *popage;        for(j=1; j<=nlstate;j++){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          eip +=eij[i][j][(int)age];
   double *popeffectif,*popcount;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   double ***p3mat;        }
   char fileresf[FILENAMELENGTH];        fprintf(ficreseij,"%9.4f", eip );
       }
  agelim=AGESUP;      fprintf(ficreseij,"\n");
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      
     }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
      fprintf(ficlog,"\n");
   strcpy(fileresf,"f");    
   strcat(fileresf,fileres);  }
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);  {
     /* Covariances of health expectancies eij and of total life expectancies according
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     to initial status i, ei. .
     */
   if (mobilav==1) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double age, agelim, hf;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double ***p3matp, ***p3matm, ***varhe;
   }    double **dnewm,**doldm;
     double *xp, *xm;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double **gp, **gm;
   if (stepm<=12) stepsize=1;    double ***gradg, ***trgradg;
      int theta;
   agelim=AGESUP;  
      double eip, vip;
   hstepm=1;  
   hstepm=hstepm/stepm;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   yp1=modf(dateintmean,&yp);    xp=vector(1,npar);
   anprojmean=yp;    xm=vector(1,npar);
   yp2=modf((yp1*12),&yp);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   mprojmean=yp;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   yp1=modf((yp2*30.5),&yp);    
   jprojmean=yp;    pstamp(ficresstdeij);
   if(jprojmean==0) jprojmean=1;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   if(mprojmean==0) jprojmean=1;    fprintf(ficresstdeij,"# Age");
      for(i=1; i<=nlstate;i++){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      for(j=1; j<=nlstate;j++)
          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   for(cptcov=1;cptcov<=i2;cptcov++){      fprintf(ficresstdeij," e%1d. ",i);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;    fprintf(ficresstdeij,"\n");
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {    pstamp(ficrescveij);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       }    fprintf(ficrescveij,"# Age");
       fprintf(ficresf,"******\n");    for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"# StartingAge FinalAge");      for(j=1; j<=nlstate;j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        cptj= (j-1)*nlstate+i;
              for(i2=1; i2<=nlstate;i2++)
                for(j2=1; j2<=nlstate;j2++){
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {            cptj2= (j2-1)*nlstate+i2;
         fprintf(ficresf,"\n");            if(cptj2 <= cptj)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficrescveij,"\n");
           nhstepm = nhstepm/hstepm;    
              if(estepm < stepm){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      else  hstepm=estepm;   
            /* We compute the life expectancy from trapezoids spaced every estepm months
           for (h=0; h<=nhstepm; h++){     * This is mainly to measure the difference between two models: for example
             if (h==(int) (calagedate+YEARM*cpt)) {     * if stepm=24 months pijx are given only every 2 years and by summing them
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
             }     * progression in between and thus overestimating or underestimating according
             for(j=1; j<=nlstate+ndeath;j++) {     * to the curvature of the survival function. If, for the same date, we 
               kk1=0.;kk2=0;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               for(i=1; i<=nlstate;i++) {                   * to compare the new estimate of Life expectancy with the same linear 
                 if (mobilav==1)     * hypothesis. A more precise result, taking into account a more precise
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     * curvature will be obtained if estepm is as small as stepm. */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* For example we decided to compute the life expectancy with the smallest unit */
                 }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                       nhstepm is the number of hstepm from age to agelim 
               }       nstepm is the number of stepm from age to agelin. 
               if (h==(int)(calagedate+12*cpt)){       Look at hpijx to understand the reason of that which relies in memory size
                 fprintf(ficresf," %.3f", kk1);       and note for a fixed period like estepm months */
                            /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               }       survival function given by stepm (the optimization length). Unfortunately it
             }       means that if the survival funtion is printed only each two years of age and if
           }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
         }    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }  
   }    /* If stepm=6 months */
            /* nhstepm age range expressed in number of stepm */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    agelim=AGESUP;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   fclose(ficresf);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 }    /* if (stepm >= YEARM) hstepm=1;*/
 /************** Forecasting ******************/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    
      p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int *popage;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   double *popeffectif,*popcount;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   double ***p3mat,***tabpop,***tabpopprev;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   char filerespop[FILENAMELENGTH];  
     for (age=bage; age<=fage; age ++){ 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   agelim=AGESUP;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;   
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        /* Computing  Variances of health expectancies */
        /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   strcpy(filerespop,"pop");         decrease memory allocation */
   strcat(filerespop,fileres);      for(theta=1; theta <=npar; theta++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for(i=1; i<=npar; i++){ 
     printf("Problem with forecast resultfile: %s\n", filerespop);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
   if (mobilav==1) {        for(j=1; j<= nlstate; j++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1; i<=nlstate; i++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);            for(h=0; h<=nhstepm-1; h++){
   }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=12) stepsize=1;          }
          }
   agelim=AGESUP;       
          for(ij=1; ij<= nlstate*nlstate; ij++)
   hstepm=1;          for(h=0; h<=nhstepm-1; h++){
   hstepm=hstepm/stepm;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
            }
   if (popforecast==1) {      }/* End theta */
     if((ficpop=fopen(popfile,"r"))==NULL) {      
       printf("Problem with population file : %s\n",popfile);exit(0);      
     }      for(h=0; h<=nhstepm-1; h++)
     popage=ivector(0,AGESUP);        for(j=1; j<=nlstate*nlstate;j++)
     popeffectif=vector(0,AGESUP);          for(theta=1; theta <=npar; theta++)
     popcount=vector(0,AGESUP);            trgradg[h][j][theta]=gradg[h][theta][j];
          
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;       for(ij=1;ij<=nlstate*nlstate;ij++)
            for(ji=1;ji<=nlstate*nlstate;ji++)
     imx=i;          varhe[ij][ji][(int)age] =0.;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   for(cptcov=1;cptcov<=i2;cptcov++){       for(h=0;h<=nhstepm-1;h++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(k=0;k<=nhstepm-1;k++){
       k=k+1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficrespop,"\n#******");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       for(j=1;j<=cptcoveff;j++) {          for(ij=1;ij<=nlstate*nlstate;ij++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(ji=1;ji<=nlstate*nlstate;ji++)
       }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       fprintf(ficrespop,"******\n");        }
       fprintf(ficrespop,"# Age");      }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      /* Computing expectancies */
       if (popforecast==1)  fprintf(ficrespop," [Population]");      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
            for(i=1; i<=nlstate;i++)
       for (cpt=0; cpt<=0;cpt++) {        for(j=1; j<=nlstate;j++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                    eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           nhstepm = nhstepm/hstepm;  
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      fprintf(ficresstdeij,"%3.0f",age );
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1; i<=nlstate;i++){
                eip=0.;
           for (h=0; h<=nhstepm; h++){        vip=0.;
             if (h==(int) (calagedate+YEARM*cpt)) {        for(j=1; j<=nlstate;j++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          eip += eij[i][j][(int)age];
             }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             for(j=1; j<=nlstate+ndeath;j++) {            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
               kk1=0.;kk2=0;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
               for(i=1; i<=nlstate;i++) {                      }
                 if (mobilav==1)        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      }
                 else {      fprintf(ficresstdeij,"\n");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }      fprintf(ficrescveij,"%3.0f",age );
               }      for(i=1; i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){        for(j=1; j<=nlstate;j++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          cptj= (j-1)*nlstate+i;
                   /*fprintf(ficrespop," %.3f", kk1);          for(i2=1; i2<=nlstate;i2++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            for(j2=1; j2<=nlstate;j2++){
               }              cptj2= (j2-1)*nlstate+i2;
             }              if(cptj2 <= cptj)
             for(i=1; i<=nlstate;i++){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
               kk1=0.;            }
                 for(j=1; j<=nlstate;j++){        }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      fprintf(ficrescveij,"\n");
                 }     
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    }
             }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    printf("\n");
       }    fprintf(ficlog,"\n");
    
   /******/    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  }
           nhstepm = nhstepm/hstepm;  
            /************ Variance ******************/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           oldm=oldms;savm=savms;  {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* Variance of health expectancies */
           for (h=0; h<=nhstepm; h++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
             if (h==(int) (calagedate+YEARM*cpt)) {    /* double **newm;*/
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double **dnewm,**doldm;
             }    double **dnewmp,**doldmp;
             for(j=1; j<=nlstate+ndeath;j++) {    int i, j, nhstepm, hstepm, h, nstepm ;
               kk1=0.;kk2=0;    int k, cptcode;
               for(i=1; i<=nlstate;i++) {                  double *xp;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        double **gp, **gm;  /* for var eij */
               }    double ***gradg, ***trgradg; /*for var eij */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    double **gradgp, **trgradgp; /* for var p point j */
             }    double *gpp, *gmp; /* for var p point j */
           }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***p3mat;
         }    double age,agelim, hf;
       }    double ***mobaverage;
    }    int theta;
   }    char digit[4];
      char digitp[25];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     char fileresprobmorprev[FILENAMELENGTH];
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);    if(popbased==1){
     free_vector(popeffectif,0,AGESUP);      if(mobilav!=0)
     free_vector(popcount,0,AGESUP);        strcpy(digitp,"-populbased-mobilav-");
   }      else strcpy(digitp,"-populbased-nomobil-");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else 
   fclose(ficrespop);      strcpy(digitp,"-stablbased-");
 }  
     if (mobilav!=0) {
 /***********************************************/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /**************** Main Program *****************/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 /***********************************************/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
 int main(int argc, char *argv[])      }
 {    }
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    strcpy(fileresprobmorprev,"prmorprev"); 
   double agedeb, agefin,hf;    sprintf(digit,"%-d",ij);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   double fret;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   double **xi,tmp,delta;    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   double dum; /* Dummy variable */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   double ***p3mat;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   int *indx;    }
   char line[MAXLINE], linepar[MAXLINE];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];   
   int firstobs=1, lastobs=10;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   int sdeb, sfin; /* Status at beginning and end */    pstamp(ficresprobmorprev);
   int c,  h , cpt,l;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   int ju,jl, mi;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      fprintf(ficresprobmorprev," p.%-d SE",j);
   int mobilav=0,popforecast=0;      for(i=1; i<=nlstate;i++)
   int hstepm, nhstepm;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    }  
     fprintf(ficresprobmorprev,"\n");
   double bage, fage, age, agelim, agebase;    fprintf(ficgp,"\n# Routine varevsij");
   double ftolpl=FTOL;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   double **prlim;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   double *severity;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double ***param; /* Matrix of parameters */  /*   } */
   double  *p;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double **matcov; /* Matrix of covariance */    pstamp(ficresvij);
   double ***delti3; /* Scale */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   double *delti; /* Scale */    if(popbased==1)
   double ***eij, ***vareij;      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   double **varpl; /* Variances of prevalence limits by age */    else
   double *epj, vepp;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   double kk1, kk2;    fprintf(ficresvij,"# Age");
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
   char z[1]="c", occ;    dnewm=matrix(1,nlstate,1,npar);
 #include <sys/time.h>    doldm=matrix(1,nlstate,1,nlstate);
 #include <time.h>    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   /* long total_usecs;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   struct timeval start_time, end_time;    gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   getcwd(pathcd, size);    
     if(estepm < stepm){
   printf("\n%s",version);      printf ("Problem %d lower than %d\n",estepm, stepm);
   if(argc <=1){    }
     printf("\nEnter the parameter file name: ");    else  hstepm=estepm;   
     scanf("%s",pathtot);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   else{       nhstepm is the number of hstepm from age to agelim 
     strcpy(pathtot,argv[1]);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       and note for a fixed period like k years */
   /*cygwin_split_path(pathtot,path,optionfile);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/       survival function given by stepm (the optimization length). Unfortunately it
   /* cutv(path,optionfile,pathtot,'\\');*/       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       results. So we changed our mind and took the option of the best precision.
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    */
   chdir(path);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   replace(pathc,path);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 /*-------- arguments in the command line --------*/      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcpy(fileres,"r");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileres, optionfilefiname);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   strcat(fileres,".txt");    /* Other files have txt extension */      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   /*---------arguments file --------*/  
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      for(theta=1; theta <=npar; theta++){
     printf("Problem with optionfile %s\n",optionfile);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     goto end;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcpy(filereso,"o");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {        if (popbased==1) {
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   /* Reads comments: lines beginning with '#' */          }else{ /* mobilav */ 
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);          }
     puts(line);        }
     fputs(line,ficparo);    
   }        for(j=1; j<= nlstate; j++){
   ungetc(c,ficpar);          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        }
 while((c=getc(ficpar))=='#' && c!= EOF){        /* This for computing probability of death (h=1 means
     ungetc(c,ficpar);           computed over hstepm matrices product = hstepm*stepm months) 
     fgets(line, MAXLINE, ficpar);           as a weighted average of prlim.
     puts(line);        */
     fputs(line,ficparo);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   ungetc(c,ficpar);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
            /* end probability of death */
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   ncovmodel=2+cptcovn;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   
          if (popbased==1) {
   /* Read guess parameters */          if(mobilav ==0){
   /* Reads comments: lines beginning with '#' */            for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){              prlim[i][i]=probs[(int)age][i][ij];
     ungetc(c,ficpar);          }else{ /* mobilav */ 
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=nlstate;i++)
     puts(line);              prlim[i][i]=mobaverage[(int)age][i][ij];
     fputs(line,ficparo);          }
   }        }
   ungetc(c,ficpar);  
          for(j=1; j<= nlstate; j++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for(h=0; h<=nhstepm; h++){
     for(i=1; i <=nlstate; i++)            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }
       fprintf(ficparo,"%1d%1d",i1,j1);        }
       printf("%1d%1d",i,j);        /* This for computing probability of death (h=1 means
       for(k=1; k<=ncovmodel;k++){           computed over hstepm matrices product = hstepm*stepm months) 
         fscanf(ficpar," %lf",&param[i][j][k]);           as a weighted average of prlim.
         printf(" %lf",param[i][j][k]);        */
         fprintf(ficparo," %lf",param[i][j][k]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       fscanf(ficpar,"\n");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       printf("\n");        }    
       fprintf(ficparo,"\n");        /* end probability of death */
     }  
          for(j=1; j<= nlstate; j++) /* vareij */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   p=param[1][1];          }
    
   /* Reads comments: lines beginning with '#' */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   while((c=getc(ficpar))=='#' && c!= EOF){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      } /* End theta */
     fputs(line,ficparo);  
   }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   ungetc(c,ficpar);  
       for(h=0; h<=nhstepm; h++) /* veij */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(j=1; j<=nlstate;j++)
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          for(theta=1; theta <=npar; theta++)
   for(i=1; i <=nlstate; i++){            trgradg[h][j][theta]=gradg[h][theta][j];
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       printf("%1d%1d",i,j);        for(theta=1; theta <=npar; theta++)
       fprintf(ficparo,"%1d%1d",i1,j1);          trgradgp[j][theta]=gradgp[theta][j];
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficparo," %le",delti3[i][j][k]);      for(i=1;i<=nlstate;i++)
       }        for(j=1;j<=nlstate;j++)
       fscanf(ficpar,"\n");          vareij[i][j][(int)age] =0.;
       printf("\n");  
       fprintf(ficparo,"\n");      for(h=0;h<=nhstepm;h++){
     }        for(k=0;k<=nhstepm;k++){
   }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   delti=delti3[1][1];          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */            for(j=1;j<=nlstate;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    
     fputs(line,ficparo);      /* pptj */
   }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   ungetc(c,ficpar);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
   matcov=matrix(1,npar,1,npar);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   for(i=1; i <=npar; i++){          varppt[j][i]=doldmp[j][i];
     fscanf(ficpar,"%s",&str);      /* end ppptj */
     printf("%s",str);      /*  x centered again */
     fprintf(ficparo,"%s",str);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     for(j=1; j <=i; j++){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       fscanf(ficpar," %le",&matcov[i][j]);   
       printf(" %.5le",matcov[i][j]);      if (popbased==1) {
       fprintf(ficparo," %.5le",matcov[i][j]);        if(mobilav ==0){
     }          for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"\n");            prlim[i][i]=probs[(int)age][i][ij];
     printf("\n");        }else{ /* mobilav */ 
     fprintf(ficparo,"\n");          for(i=1; i<=nlstate;i++)
   }            prlim[i][i]=mobaverage[(int)age][i][ij];
   for(i=1; i <=npar; i++)        }
     for(j=i+1;j<=npar;j++)      }
       matcov[i][j]=matcov[j][i];               
          /* This for computing probability of death (h=1 means
   printf("\n");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
     /*-------- Rewriting paramater file ----------*/      for(j=nlstate+1;j<=nlstate+ndeath;j++){
      strcpy(rfileres,"r");    /* "Rparameterfile */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
      strcat(rfileres,".");    /* */      }    
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      /* end probability of death */
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficres,"#%s\n",version);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
            for(i=1; i<=nlstate;i++){
     /*-------- data file ----------*/          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     if((fic=fopen(datafile,"r"))==NULL)    {        }
       printf("Problem with datafile: %s\n", datafile);goto end;      } 
     }      fprintf(ficresprobmorprev,"\n");
   
     n= lastobs;      fprintf(ficresvij,"%.0f ",age );
     severity = vector(1,maxwav);      for(i=1; i<=nlstate;i++)
     outcome=imatrix(1,maxwav+1,1,n);        for(j=1; j<=nlstate;j++){
     num=ivector(1,n);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     moisnais=vector(1,n);        }
     annais=vector(1,n);      fprintf(ficresvij,"\n");
     moisdc=vector(1,n);      free_matrix(gp,0,nhstepm,1,nlstate);
     andc=vector(1,n);      free_matrix(gm,0,nhstepm,1,nlstate);
     agedc=vector(1,n);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     cod=ivector(1,n);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     weight=vector(1,n);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    } /* End age */
     mint=matrix(1,maxwav,1,n);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     anint=matrix(1,maxwav,1,n);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     s=imatrix(1,maxwav+1,1,n);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     adl=imatrix(1,maxwav+1,1,n);        free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     tab=ivector(1,NCOVMAX);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     ncodemax=ivector(1,8);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     i=1;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     while (fgets(line, MAXLINE, fic) != NULL)    {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       if ((i >= firstobs) && (i <=lastobs)) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
            fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         for (j=maxwav;j>=1;j--){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           strcpy(line,stra);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         }  */
          /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     free_vector(xp,1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(doldm,1,nlstate,1,nlstate);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         for (j=ncovcol;j>=1;j--){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }    fclose(ficresprobmorprev);
         num[i]=atol(stra);    fflush(ficgp);
            fflush(fichtm); 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  }  /* end varevsij */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
   /************ Variance of prevlim ******************/
         i=i+1;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       }  {
     }    /* Variance of prevalence limit */
     /* printf("ii=%d", ij);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
        scanf("%d",i);*/    double **newm;
   imx=i-1; /* Number of individuals */    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
   /* for (i=1; i<=imx; i++){    int k, cptcode;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    double *xp;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    double *gp, *gm;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    double **gradg, **trgradg;
     }*/    double age,agelim;
    /*  for (i=1; i<=imx; i++){    int theta;
      if (s[4][i]==9)  s[4][i]=-1;    
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    pstamp(ficresvpl);
      fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
      fprintf(ficresvpl,"# Age");
   /* Calculation of the number of parameter from char model*/    for(i=1; i<=nlstate;i++)
   Tvar=ivector(1,15);        fprintf(ficresvpl," %1d-%1d",i,i);
   Tprod=ivector(1,15);    fprintf(ficresvpl,"\n");
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);    xp=vector(1,npar);
   Tage=ivector(1,15);          dnewm=matrix(1,nlstate,1,npar);
        doldm=matrix(1,nlstate,1,nlstate);
   if (strlen(model) >1){    
     j=0, j1=0, k1=1, k2=1;    hstepm=1*YEARM; /* Every year of age */
     j=nbocc(model,'+');    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     j1=nbocc(model,'*');    agelim = AGESUP;
     cptcovn=j+1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     cptcovprod=j1;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          if (stepm >= YEARM) hstepm=1;
     strcpy(modelsav,model);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      gradg=matrix(1,npar,1,nlstate);
       printf("Error. Non available option model=%s ",model);      gp=vector(1,nlstate);
       goto end;      gm=vector(1,nlstate);
     }  
          for(theta=1; theta <=npar; theta++){
     for(i=(j+1); i>=1;i--){        for(i=1; i<=npar; i++){ /* Computes gradient */
       cutv(stra,strb,modelsav,'+');          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       /*scanf("%d",i);*/        for(i=1;i<=nlstate;i++)
       if (strchr(strb,'*')) {          gp[i] = prlim[i][i];
         cutv(strd,strc,strb,'*');      
         if (strcmp(strc,"age")==0) {        for(i=1; i<=npar; i++) /* Computes gradient */
           cptcovprod--;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           cutv(strb,stre,strd,'V');        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           Tvar[i]=atoi(stre);        for(i=1;i<=nlstate;i++)
           cptcovage++;          gm[i] = prlim[i][i];
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/        for(i=1;i<=nlstate;i++)
         }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         else if (strcmp(strd,"age")==0) {      } /* End theta */
           cptcovprod--;  
           cutv(strb,stre,strc,'V');      trgradg =matrix(1,nlstate,1,npar);
           Tvar[i]=atoi(stre);  
           cptcovage++;      for(j=1; j<=nlstate;j++)
           Tage[cptcovage]=i;        for(theta=1; theta <=npar; theta++)
         }          trgradg[j][theta]=gradg[theta][j];
         else {  
           cutv(strb,stre,strc,'V');      for(i=1;i<=nlstate;i++)
           Tvar[i]=ncovcol+k1;        varpl[i][(int)age] =0.;
           cutv(strb,strc,strd,'V');      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           Tprod[k1]=i;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           Tvard[k1][1]=atoi(strc);      for(i=1;i<=nlstate;i++)
           Tvard[k1][2]=atoi(stre);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      fprintf(ficresvpl,"%.0f ",age );
           for (k=1; k<=lastobs;k++)      for(i=1; i<=nlstate;i++)
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           k1++;      fprintf(ficresvpl,"\n");
           k2=k2+2;      free_vector(gp,1,nlstate);
         }      free_vector(gm,1,nlstate);
       }      free_matrix(gradg,1,npar,1,nlstate);
       else {      free_matrix(trgradg,1,nlstate,1,npar);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    } /* End age */
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');    free_vector(xp,1,npar);
       Tvar[i]=atoi(strc);    free_matrix(doldm,1,nlstate,1,npar);
       }    free_matrix(dnewm,1,nlstate,1,nlstate);
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  }
         scanf("%d",i);*/  
     }  /************ Variance of one-step probabilities  ******************/
 }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
    {
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    int i, j=0,  i1, k1, l1, t, tj;
   printf("cptcovprod=%d ", cptcovprod);    int k2, l2, j1,  z1;
   scanf("%d ",i);*/    int k=0,l, cptcode;
     fclose(fic);    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     /*  if(mle==1){*/    double **dnewm,**doldm;
     if (weightopt != 1) { /* Maximisation without weights*/    double *xp;
       for(i=1;i<=n;i++) weight[i]=1.0;    double *gp, *gm;
     }    double **gradg, **trgradg;
     /*-calculation of age at interview from date of interview and age at death -*/    double **mu;
     agev=matrix(1,maxwav,1,imx);    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     for (i=1; i<=imx; i++) {    int theta;
       for(m=2; (m<= maxwav); m++) {    char fileresprob[FILENAMELENGTH];
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    char fileresprobcov[FILENAMELENGTH];
          anint[m][i]=9999;    char fileresprobcor[FILENAMELENGTH];
          s[m][i]=-1;  
        }    double ***varpij;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }    strcpy(fileresprob,"prob"); 
     }    strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     for (i=1; i<=imx; i++)  {      printf("Problem with resultfile: %s\n", fileresprob);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       for(m=1; (m<= maxwav); m++){    }
         if(s[m][i] >0){    strcpy(fileresprobcov,"probcov"); 
           if (s[m][i] >= nlstate+1) {    strcat(fileresprobcov,fileres);
             if(agedc[i]>0)    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
               if(moisdc[i]!=99 && andc[i]!=9999)      printf("Problem with resultfile: %s\n", fileresprobcov);
                 agev[m][i]=agedc[i];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    }
            else {    strcpy(fileresprobcor,"probcor"); 
               if (andc[i]!=9999){    strcat(fileresprobcor,fileres);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
               agev[m][i]=-1;      printf("Problem with resultfile: %s\n", fileresprobcor);
               }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
             }    }
           }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           else if(s[m][i] !=9){ /* Should no more exist */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             if(mint[m][i]==99 || anint[m][i]==9999)    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               agev[m][i]=1;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             else if(agev[m][i] <agemin){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
               agemin=agev[m][i];    pstamp(ficresprob);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
             }    fprintf(ficresprob,"# Age");
             else if(agev[m][i] >agemax){    pstamp(ficresprobcov);
               agemax=agev[m][i];    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    fprintf(ficresprobcov,"# Age");
             }    pstamp(ficresprobcor);
             /*agev[m][i]=anint[m][i]-annais[i];*/    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             /*   agev[m][i] = age[i]+2*m;*/    fprintf(ficresprobcor,"# Age");
           }  
           else { /* =9 */  
             agev[m][i]=1;    for(i=1; i<=nlstate;i++)
             s[m][i]=-1;      for(j=1; j<=(nlstate+ndeath);j++){
           }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         else /*= 0 Unknown */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           agev[m][i]=1;      }  
       }   /* fprintf(ficresprob,"\n");
        fprintf(ficresprobcov,"\n");
     }    fprintf(ficresprobcor,"\n");
     for (i=1; i<=imx; i++)  {   */
       for(m=1; (m<= maxwav); m++){   xp=vector(1,npar);
         if (s[m][i] > (nlstate+ndeath)) {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           printf("Error: Wrong value in nlstate or ndeath\n");      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           goto end;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       }    first=1;
     }    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    fprintf(fichtm,"\n");
   
     free_vector(severity,1,maxwav);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     free_imatrix(outcome,1,maxwav+1,1,n);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     free_vector(moisnais,1,n);    file %s<br>\n",optionfilehtmcov);
     free_vector(annais,1,n);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     /* free_matrix(mint,1,maxwav,1,n);  and drawn. It helps understanding how is the covariance between two incidences.\
        free_matrix(anint,1,maxwav,1,n);*/   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     free_vector(moisdc,1,n);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     free_vector(andc,1,n);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
      standard deviations wide on each axis. <br>\
     wav=ivector(1,imx);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      
     /* Concatenates waves */    cov[1]=1;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
       Tcode=ivector(1,100);    for(t=1; t<=tj;t++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      for(i1=1; i1<=ncodemax[t];i1++){ 
       ncodemax[1]=1;        j1++;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        if  (cptcovn>0) {
                fprintf(ficresprob, "\n#********** Variable "); 
    codtab=imatrix(1,100,1,10);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    h=0;          fprintf(ficresprob, "**********\n#\n");
    m=pow(2,cptcoveff);          fprintf(ficresprobcov, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    for(k=1;k<=cptcoveff; k++){          fprintf(ficresprobcov, "**********\n#\n");
      for(i=1; i <=(m/pow(2,k));i++){          
        for(j=1; j <= ncodemax[k]; j++){          fprintf(ficgp, "\n#********** Variable "); 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            h++;          fprintf(ficgp, "**********\n#\n");
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          
          }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
        }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
    }          
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          fprintf(ficresprobcor, "\n#********** Variable ");    
       codtab[1][2]=1;codtab[2][2]=2; */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    /* for(i=1; i <=m ;i++){          fprintf(ficresprobcor, "**********\n#");    
       for(k=1; k <=cptcovn; k++){        }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        
       }        for (age=bage; age<=fage; age ++){ 
       printf("\n");          cov[2]=age;
       }          for (k=1; k<=cptcovn;k++) {
       scanf("%d",i);*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
              }
    /* Calculates basic frequencies. Computes observed prevalence at single age          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
        and prints on file fileres'p'. */          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              
              gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gp=vector(1,(nlstate)*(nlstate+ndeath));
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gm=vector(1,(nlstate)*(nlstate+ndeath));
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for(theta=1; theta <=npar; theta++){
                  for(i=1; i<=npar; i++)
     /* For Powell, parameters are in a vector p[] starting at p[1]              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
     if(mle==1){            k=0;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            for(i=1; i<= (nlstate); i++){
     }              for(j=1; j<=(nlstate+ndeath);j++){
                    k=k+1;
     /*--------- results files --------------*/                gp[k]=pmmij[i][j];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              }
              }
             
    jk=1;            for(i=1; i<=npar; i++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      
    for(i=1,jk=1; i <=nlstate; i++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      for(k=1; k <=(nlstate+ndeath); k++){            k=0;
        if (k != i)            for(i=1; i<=(nlstate); i++){
          {              for(j=1; j<=(nlstate+ndeath);j++){
            printf("%d%d ",i,k);                k=k+1;
            fprintf(ficres,"%1d%1d ",i,k);                gm[k]=pmmij[i][j];
            for(j=1; j <=ncovmodel; j++){              }
              printf("%f ",p[jk]);            }
              fprintf(ficres,"%f ",p[jk]);       
              jk++;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
            }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
            printf("\n");          }
            fprintf(ficres,"\n");  
          }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
      }            for(theta=1; theta <=npar; theta++)
    }              trgradg[j][theta]=gradg[theta][j];
  if(mle==1){          
     /* Computing hessian and covariance matrix */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     ftolhess=ftol; /* Usually correct */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     hesscov(matcov, p, npar, delti, ftolhess, func);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
  }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     printf("# Scales (for hessian or gradient estimation)\n");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
         if (j!=i) {          
           fprintf(ficres,"%1d%1d",i,j);          k=0;
           printf("%1d%1d",i,j);          for(i=1; i<=(nlstate); i++){
           for(k=1; k<=ncovmodel;k++){            for(j=1; j<=(nlstate+ndeath);j++){
             printf(" %.5e",delti[jk]);              k=k+1;
             fprintf(ficres," %.5e",delti[jk]);              mu[k][(int) age]=pmmij[i][j];
             jk++;            }
           }          }
           printf("\n");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           fprintf(ficres,"\n");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         }              varpij[i][j][(int)age] = doldm[i][j];
       }  
      }          /*printf("\n%d ",(int)age);
                for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     k=1;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            }*/
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;          fprintf(ficresprob,"\n%d ",(int)age);
       i1=(i-1)/(ncovmodel*nlstate)+1;          fprintf(ficresprobcov,"\n%d ",(int)age);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          fprintf(ficresprobcor,"\n%d ",(int)age);
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       printf("%3d",i);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       for(j=1; j<=i;j++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         fprintf(ficres," %.5e",matcov[i][j]);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         printf(" %.5e",matcov[i][j]);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       }          }
       fprintf(ficres,"\n");          i=0;
       printf("\n");          for (k=1; k<=(nlstate);k++){
       k++;            for (l=1; l<=(nlstate+ndeath);l++){ 
     }              i=i++;
                  fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       ungetc(c,ficpar);              for (j=1; j<=i;j++){
       fgets(line, MAXLINE, ficpar);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       puts(line);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       fputs(line,ficparo);              }
     }            }
     ungetc(c,ficpar);          }/* end of loop for state */
     estepm=0;        } /* end of loop for age */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;        /* Confidence intervalle of pij  */
     if (fage <= 2) {        /*
       bage = ageminpar;          fprintf(ficgp,"\nset noparametric;unset label");
       fage = agemaxpar;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
              fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
          */
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     fgets(line, MAXLINE, ficpar);        first1=1;
     puts(line);        for (k2=1; k2<=(nlstate);k2++){
     fputs(line,ficparo);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   }            if(l2==k2) continue;
   ungetc(c,ficpar);            j=(k2-1)*(nlstate+ndeath)+l2;
              for (k1=1; k1<=(nlstate);k1++){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                if(l1==k1) continue;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                i=(k1-1)*(nlstate+ndeath)+l1;
                      if(i<=j) continue;
   while((c=getc(ficpar))=='#' && c!= EOF){                for (age=bage; age<=fage; age ++){ 
     ungetc(c,ficpar);                  if ((int)age %5==0){
     fgets(line, MAXLINE, ficpar);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     puts(line);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fputs(line,ficparo);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    mu1=mu[i][(int) age]/stepm*YEARM ;
   ungetc(c,ficpar);                    mu2=mu[j][(int) age]/stepm*YEARM;
                      c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
   fscanf(ficpar,"pop_based=%d\n",&popbased);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   fprintf(ficparo,"pop_based=%d\n",popbased);                      /*v21=sqrt(1.-v11*v11); *//* error */
   fprintf(ficres,"pop_based=%d\n",popbased);                      v21=(lc1-v1)/cv12*v11;
                      v12=-v21;
   while((c=getc(ficpar))=='#' && c!= EOF){                    v22=v11;
     ungetc(c,ficpar);                    tnalp=v21/v11;
     fgets(line, MAXLINE, ficpar);                    if(first1==1){
     puts(line);                      first1=0;
     fputs(line,ficparo);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   }                    }
   ungetc(c,ficpar);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
 while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     ungetc(c,ficpar);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     fgets(line, MAXLINE, ficpar);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     puts(line);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     fputs(line,ficparo);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   ungetc(c,ficpar);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 /*------------ gnuplot -------------*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcpy(optionfilegnuplot,optionfilefiname);                    }else{
   strcat(optionfilegnuplot,".gp");                      first=0;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     printf("Problem with file %s",optionfilegnuplot);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fclose(ficgp);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 /*--------- index.htm --------*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
   strcpy(optionfilehtm,optionfile);                  } /* age mod 5 */
   strcat(optionfilehtm,".htm");                } /* end loop age */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("Problem with %s \n",optionfilehtm), exit(0);                first=1;
   }              } /*l12 */
             } /* k12 */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          } /*l1 */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        }/* k1 */
 \n      } /* loop covariates */
 Total number of observations=%d <br>\n    }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 <hr  size=\"2\" color=\"#EC5E5E\">    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
  <ul><li>Parameter files<br>\n    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    free_vector(xp,1,npar);
   fclose(fichtm);    fclose(ficresprob);
     fclose(ficresprobcov);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    fclose(ficresprobcor);
      fflush(ficgp);
 /*------------ free_vector  -------------*/    fflush(fichtmcov);
  chdir(path);  }
    
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  /******************* Printing html file ***********/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
  free_ivector(num,1,n);                    int lastpass, int stepm, int weightopt, char model[],\
  free_vector(agedc,1,n);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                    int popforecast, int estepm ,\
  fclose(ficparo);                    double jprev1, double mprev1,double anprev1, \
  fclose(ficres);                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
   /*--------------- Prevalence limit --------------*/     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   strcpy(filerespl,"pl");  </ul>");
   strcat(filerespl,fileres);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   }     fprintf(fichtm,"\
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   fprintf(ficrespl,"#Prevalence limit\n");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   fprintf(ficrespl,"#Age ");     fprintf(fichtm,"\
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   fprintf(ficrespl,"\n");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       fprintf(fichtm,"\
   prlim=matrix(1,nlstate,1,nlstate);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     <a href=\"%s\">%s</a> <br>\n</li>",
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   k=0;  
   agebase=ageminpar;   m=cptcoveff;
   agelim=agemaxpar;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   ftolpl=1.e-10;  
   i1=cptcoveff;   jj1=0;
   if (cptcovn < 1){i1=1;}   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   for(cptcov=1;cptcov<=i1;cptcov++){       jj1++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       if (cptcovn > 0) {
         k=k+1;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
         fprintf(ficrespl,"\n#******");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         for(j=1;j<=cptcoveff;j++)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       }
         fprintf(ficrespl,"******\n");       /* Pij */
               fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
         for (age=agebase; age<=agelim; age++){  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       /* Quasi-incidences */
           fprintf(ficrespl,"%.0f",age );       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
           for(i=1; i<=nlstate;i++)   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
           fprintf(ficrespl," %.5f", prlim[i][i]);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
           fprintf(ficrespl,"\n");         /* Period (stable) prevalence in each health state */
         }         for(cpt=1; cpt<nlstate;cpt++){
       }           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
     }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   fclose(ficrespl);         }
        for(cpt=1; cpt<=nlstate;cpt++) {
   /*------------- h Pij x at various ages ------------*/          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {     } /* end i1 */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
   printf("Computing pij: result on file '%s' \n", filerespij);  
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;   fprintf(fichtm,"\
   /*if (stepm<=24) stepsize=2;*/  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     fprintf(fichtm,"\
   k=0;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   for(cptcov=1;cptcov<=i1;cptcov++){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;   fprintf(fichtm,"\
         fprintf(ficrespij,"\n#****** ");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         for(j=1;j<=cptcoveff;j++)           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
         fprintf(ficrespij,"******\n");   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
             <a href=\"%s\">%s</a> <br>\n</li>",
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   fprintf(fichtm,"\
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     <a href=\"%s\">%s</a> <br>\n</li>",
           oldm=oldms;savm=savms;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     fprintf(fichtm,"\
           fprintf(ficrespij,"# Age");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
           for(i=1; i<=nlstate;i++)           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
             for(j=1; j<=nlstate+ndeath;j++)   fprintf(fichtm,"\
               fprintf(ficrespij," %1d-%1d",i,j);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficrespij,"\n");           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
            for (h=0; h<=nhstepm; h++){   fprintf(fichtm,"\
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
             for(i=1; i<=nlstate;i++)           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  /*  if(popforecast==1) fprintf(fichtm,"\n */
             fprintf(ficrespij,"\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
              }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*      <br>",fileres,fileres,fileres,fileres); */
           fprintf(ficrespij,"\n");  /*  else  */
         }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     }   fflush(fichtm);
   }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   fclose(ficrespij);  
    jj1=0;
    for(k1=1; k1<=m;k1++){
   /*---------- Forecasting ------------------*/     for(i1=1; i1<=ncodemax[k1];i1++){
   if((stepm == 1) && (strcmp(model,".")==0)){       jj1++;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);       if (cptcovn > 0) {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++) 
   else{           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     erreur=108;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       }
   }       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   /*---------- Health expectancies and variances ------------*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
   strcpy(filerest,"t");       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   strcat(filerest,fileres);  health expectancies in states (1) and (2): %s%d.png<br>\
   if((ficrest=fopen(filerest,"w"))==NULL) {  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;     } /* end i1 */
   }   }/* End k1 */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);   fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   strcpy(filerese,"e");  
   strcat(filerese,fileres);  /******************* Gnuplot file **************/
   if((ficreseij=fopen(filerese,"w"))==NULL) {  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    char dirfileres[132],optfileres[132];
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
  strcpy(fileresv,"v");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   strcat(fileresv,fileres);  /*     printf("Problem with file %s",optionfilegnuplot); */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  /*   } */
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /*#ifdef windows */
   calagedate=-1;    fprintf(ficgp,"cd \"%s\" \n",pathc);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      /*#endif */
     m=pow(2,cptcoveff);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    strcpy(dirfileres,optionfilefiname);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcpy(optfileres,"vpl");
       k=k+1;   /* 1eme*/
       fprintf(ficrest,"\n#****** ");    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for(j=1;j<=cptcoveff;j++)     for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       fprintf(ficrest,"******\n");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
       fprintf(ficreseij,"\n#****** ");  set ylabel \"Probability\" \n\
       for(j=1;j<=cptcoveff;j++)  set ter png small\n\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  set size 0.65,0.65\n\
       fprintf(ficreseij,"******\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
       fprintf(ficresvij,"\n#****** ");       for (i=1; i<= nlstate ; i ++) {
       for(j=1;j<=cptcoveff;j++)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficresvij,"******\n");       }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       for (i=1; i<= nlstate ; i ++) {
       oldm=oldms;savm=savms;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);           else fprintf(ficgp," \%%*lf (\%%*lf)");
         } 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       oldm=oldms;savm=savms;       for (i=1; i<= nlstate ; i ++) {
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
         fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    }
       fprintf(ficrest,"\n");    /*2 eme*/
     
       epj=vector(1,nlstate+1);    for (k1=1; k1<= m ; k1 ++) { 
       for(age=bage; age <=fage ;age++){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         if (popbased==1) {      
           for(i=1; i<=nlstate;i++)      for (i=1; i<= nlstate+1 ; i ++) {
             prlim[i][i]=probs[(int)age][i][k];        k=2*i;
         }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficrest," %4.0f",age);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        }   
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
           }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           epj[nlstate+1] +=epj[j];        for (j=1; j<= nlstate+1 ; j ++) {
         }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         for(i=1, vepp=0.;i <=nlstate;i++)        }   
           for(j=1;j <=nlstate;j++)        fprintf(ficgp,"\" t\"\" w l 0,");
             vepp += vareij[i][j][(int)age];        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        for (j=1; j<= nlstate+1 ; j ++) {
         for(j=1;j <=nlstate;j++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }        }   
         fprintf(ficrest,"\n");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       }        else fprintf(ficgp,"\" t\"\" w l 0,");
     }      }
   }    }
 free_matrix(mint,1,maxwav,1,n);    
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    /*3eme*/
     free_vector(weight,1,n);    
   fclose(ficreseij);    for (k1=1; k1<= m ; k1 ++) { 
   fclose(ficresvij);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   fclose(ficrest);        /*       k=2+nlstate*(2*cpt-2); */
   fclose(ficpar);        k=2+(nlstate+1)*(cpt-1);
   free_vector(epj,1,nlstate+1);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
          fprintf(ficgp,"set ter png small\n\
   /*------- Variance limit prevalence------*/    set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   strcpy(fileresvpl,"vpl");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   strcat(fileresvpl,fileres);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     exit(0);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          
         */
   k=0;        for (i=1; i< nlstate ; i ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
       k=k+1;          
       fprintf(ficresvpl,"\n#****** ");        } 
       for(j=1;j<=cptcoveff;j++)        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       fprintf(ficresvpl,"******\n");    }
          
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    /* CV preval stable (period) */
       oldm=oldms;savm=savms;    for (k1=1; k1<= m ; k1 ++) { 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     }        k=3;
  }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   fclose(ficresvpl);  set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   /*---------- End : free ----------------*/  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        
          for (i=1; i< nlstate ; i ++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficgp,"+$%d",k+i+1);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
          
          l=3+(nlstate+ndeath)*cpt;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        for (i=1; i< nlstate ; i ++) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          l=3+(nlstate+ndeath)*cpt;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,"+$%d",l+i+1);
          }
   free_matrix(matcov,1,npar,1,npar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   free_vector(delti,1,npar);      } 
   free_matrix(agev,1,maxwav,1,imx);    }  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    
     /* proba elementaires */
   fprintf(fichtm,"\n</body>");    for(i=1,jk=1; i <=nlstate; i++){
   fclose(fichtm);      for(k=1; k <=(nlstate+ndeath); k++){
   fclose(ficgp);        if (k != i) {
            for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   if(erreur >0)            jk++; 
     printf("End of Imach with error or warning %d\n",erreur);            fprintf(ficgp,"\n");
   else   printf("End of Imach\n");          }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        }
        }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/     }
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
  end:         if (ng==2)
 #ifdef windows           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   /* chdir(pathcd);*/         else
 #endif           fprintf(ficgp,"\nset title \"Probability\"\n");
  /*system("wgnuplot graph.plt");*/         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
  /*system("../gp37mgw/wgnuplot graph.plt");*/         i=1;
  /*system("cd ../gp37mgw");*/         for(k2=1; k2<=nlstate; k2++) {
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/           k3=i;
  strcpy(plotcmd,GNUPLOTPROGRAM);           for(k=1; k<=(nlstate+ndeath); k++) {
  strcat(plotcmd," ");             if (k != k2){
  strcat(plotcmd,optionfilegnuplot);               if(ng==2)
  system(plotcmd);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
 #ifdef windows                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   while (z[0] != 'q') {               ij=1;
     /* chdir(path); */               for(j=3; j <=ncovmodel; j++) {
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     scanf("%s",z);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     if (z[0] == 'c') system("./imach");                   ij++;
     else if (z[0] == 'e') system(optionfilehtm);                 }
     else if (z[0] == 'g') system(plotcmd);                 else
     else if (z[0] == 'q') exit(0);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }               }
 #endif               fprintf(ficgp,")/(1");
 }               
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.119


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>