Diff for /imach/src/imach.c between versions 1.48 and 1.123

version 1.48, 2002/06/10 13:12:49 version 1.123, 2006/03/20 10:52:43
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.123  2006/03/20 10:52:43  brouard
      * imach.c (Module): <title> changed, corresponds to .htm file
   This program computes Healthy Life Expectancies from    name. <head> headers where missing.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    * imach.c (Module): Weights can have a decimal point as for
   interviewed on their health status or degree of disability (in the    English (a comma might work with a correct LC_NUMERIC environment,
   case of a health survey which is our main interest) -2- at least a    otherwise the weight is truncated).
   second wave of interviews ("longitudinal") which measure each change    Modification of warning when the covariates values are not 0 or
   (if any) in individual health status.  Health expectancies are    1.
   computed from the time spent in each health state according to a    Version 0.98g
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.122  2006/03/20 09:45:41  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Weights can have a decimal point as for
   probability to be observed in state j at the second wave    English (a comma might work with a correct LC_NUMERIC environment,
   conditional to be observed in state i at the first wave. Therefore    otherwise the weight is truncated).
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Modification of warning when the covariates values are not 0 or
   'age' is age and 'sex' is a covariate. If you want to have a more    1.
   complex model than "constant and age", you should modify the program    Version 0.98g
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.121  2006/03/16 17:45:01  lievre
   convergence.    * imach.c (Module): Comments concerning covariates added
   
   The advantage of this computer programme, compared to a simple    * imach.c (Module): refinements in the computation of lli if
   multinomial logistic model, is clear when the delay between waves is not    status=-2 in order to have more reliable computation if stepm is
   identical for each individual. Also, if a individual missed an    not 1 month. Version 0.98f
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   hPijx is the probability to be observed in state i at age x+h    status=-2 in order to have more reliable computation if stepm is
   conditional to the observed state i at age x. The delay 'h' can be    not 1 month. Version 0.98f
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.119  2006/03/15 17:42:26  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Bug if status = -2, the loglikelihood was
   matrix is simply the matrix product of nh*stepm elementary matrices    computed as likelihood omitting the logarithm. Version O.98e
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
   Also this programme outputs the covariance matrix of the parameters but also    table of variances if popbased=1 .
   of the life expectancies. It also computes the prevalence limits.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
      (Module): Function pstamp added
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Version 0.98d
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.117  2006/03/14 17:16:22  brouard
   from the European Union.    (Module): varevsij Comments added explaining the second
   It is copyrighted identically to a GNU software product, ie programme and    table of variances if popbased=1 .
   software can be distributed freely for non commercial use. Latest version    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Function pstamp added
   **********************************************************************/    (Module): Version 0.98d
    
 #include <math.h>    Revision 1.116  2006/03/06 10:29:27  brouard
 #include <stdio.h>    (Module): Variance-covariance wrong links and
 #include <stdlib.h>    varian-covariance of ej. is needed (Saito).
 #include <unistd.h>  
     Revision 1.115  2006/02/27 12:17:45  brouard
 #define MAXLINE 256    (Module): One freematrix added in mlikeli! 0.98c
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.114  2006/02/26 12:57:58  brouard
 #define FILENAMELENGTH 80    (Module): Some improvements in processing parameter
 /*#define DEBUG*/    filename with strsep.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.113  2006/02/24 14:20:24  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    allocation too.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.112  2006/01/30 09:55:26  brouard
 #define NINTERVMAX 8    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.111  2006/01/25 20:38:18  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Lots of cleaning and bugs added (Gompertz)
 #define MAXN 20000    (Module): Comments can be added in data file. Missing date values
 #define YEARM 12. /* Number of months per year */    can be a simple dot '.'.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.110  2006/01/25 00:51:50  brouard
 #ifdef windows    (Module): Lots of cleaning and bugs added (Gompertz)
 #define DIRSEPARATOR '\\'  
 #else    Revision 1.109  2006/01/24 19:37:15  brouard
 #define DIRSEPARATOR '/'    (Module): Comments (lines starting with a #) are allowed in data.
 #endif  
     Revision 1.108  2006/01/19 18:05:42  lievre
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Gnuplot problem appeared...
 int erreur; /* Error number */    To be fixed
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.107  2006/01/19 16:20:37  brouard
 int npar=NPARMAX;    Test existence of gnuplot in imach path
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.106  2006/01/19 13:24:36  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Some cleaning and links added in html output
 int popbased=0;  
     Revision 1.105  2006/01/05 20:23:19  lievre
 int *wav; /* Number of waves for this individuual 0 is possible */    *** empty log message ***
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.104  2005/09/30 16:11:43  lievre
 int mle, weightopt;    (Module): sump fixed, loop imx fixed, and simplifications.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): If the status is missing at the last wave but we know
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    that the person is alive, then we can code his/her status as -2
 double jmean; /* Mean space between 2 waves */    (instead of missing=-1 in earlier versions) and his/her
 double **oldm, **newm, **savm; /* Working pointers to matrices */    contributions to the likelihood is 1 - Prob of dying from last
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    the healthy state at last known wave). Version is 0.98
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *fichtm; /* Html File */    Revision 1.103  2005/09/30 15:54:49  lievre
 FILE *ficreseij;    (Module): sump fixed, loop imx fixed, and simplifications.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.102  2004/09/15 17:31:30  brouard
 char fileresv[FILENAMELENGTH];    Add the possibility to read data file including tab characters.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.101  2004/09/15 10:38:38  brouard
 char title[MAXLINE];    Fix on curr_time
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
     Revision 1.99  2004/06/05 08:57:40  brouard
 char filerest[FILENAMELENGTH];    *** empty log message ***
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 #define NR_END 1    This is the basic analysis of mortality and should be done before any
 #define FREE_ARG char*    other analysis, in order to test if the mortality estimated from the
 #define FTOL 1.0e-10    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 #define NRANSI  
 #define ITMAX 200    The same imach parameter file can be used but the option for mle should be -3.
   
 #define TOL 2.0e-4    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    The output is very simple: only an estimate of the intercept and of
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    the slope with 95% confident intervals.
   
 #define GOLD 1.618034    Current limitations:
 #define GLIMIT 100.0    A) Even if you enter covariates, i.e. with the
 #define TINY 1.0e-20    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.97  2004/02/20 13:25:42  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Version 0.96d. Population forecasting command line is (temporarily)
      suppressed.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 static double sqrarg;    rewritten within the same printf. Workaround: many printfs.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 int imx;    (Repository): Using imachwizard code to output a more meaningful covariance
 int stepm;    matrix (cov(a12,c31) instead of numbers.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.94  2003/06/27 13:00:02  brouard
 int estepm;    Just cleaning
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.93  2003/06/25 16:33:55  brouard
 int m,nb;    (Module): On windows (cygwin) function asctime_r doesn't
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    exist so I changed back to asctime which exists.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Version 0.96b
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 double *weight;    exist so I changed back to asctime which exists.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.91  2003/06/25 15:30:29  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    helps to forecast when convergence will be reached. Elapsed time
 double ftolhess; /* Tolerance for computing hessian */    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.90  2003/06/24 12:34:15  brouard
 {    (Module): Some bugs corrected for windows. Also, when
    char *s;                             /* pointer */    mle=-1 a template is output in file "or"mypar.txt with the design
    int  l1, l2;                         /* length counters */    of the covariance matrix to be input.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.89  2003/06/24 12:30:52  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Some bugs corrected for windows. Also, when
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    mle=-1 a template is output in file "or"mypar.txt with the design
    if ( s == NULL ) {                   /* no directory, so use current */    of the covariance matrix to be input.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.87  2003/06/18 12:26:01  brouard
       extern char       *getcwd( );    Version 0.96
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.86  2003/06/17 20:04:08  brouard
 #endif    (Module): Change position of html and gnuplot routines and added
          return( GLOCK_ERROR_GETCWD );    routine fileappend.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.85  2003/06/17 13:12:43  brouard
    } else {                             /* strip direcotry from path */    * imach.c (Repository): Check when date of death was earlier that
       s++;                              /* after this, the filename */    current date of interview. It may happen when the death was just
       l2 = strlen( s );                 /* length of filename */    prior to the death. In this case, dh was negative and likelihood
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    was wrong (infinity). We still send an "Error" but patch by
       strcpy( name, s );                /* save file name */    assuming that the date of death was just one stepm after the
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    interview.
       dirc[l1-l2] = 0;                  /* add zero */    (Repository): Because some people have very long ID (first column)
    }    we changed int to long in num[] and we added a new lvector for
    l1 = strlen( dirc );                 /* length of directory */    memory allocation. But we also truncated to 8 characters (left
 #ifdef windows    truncation)
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Repository): No more line truncation errors.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.84  2003/06/13 21:44:43  brouard
 #endif    * imach.c (Repository): Replace "freqsummary" at a correct
    s = strrchr( name, '.' );            /* find last / */    place. It differs from routine "prevalence" which may be called
    s++;    many times. Probs is memory consuming and must be used with
    strcpy(ext,s);                       /* save extension */    parcimony.
    l1= strlen( name);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.83  2003/06/10 13:39:11  lievre
    finame[l1-l2]= 0;    *** empty log message ***
    return( 0 );                         /* we're done */  
 }    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
   
 /******************************************/  */
   /*
 void replace(char *s, char*t)     Interpolated Markov Chain
 {  
   int i;    Short summary of the programme:
   int lg=20;    
   i=0;    This program computes Healthy Life Expectancies from
   lg=strlen(t);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   for(i=0; i<= lg; i++) {    first survey ("cross") where individuals from different ages are
     (s[i] = t[i]);    interviewed on their health status or degree of disability (in the
     if (t[i]== '\\') s[i]='/';    case of a health survey which is our main interest) -2- at least a
   }    second wave of interviews ("longitudinal") which measure each change
 }    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 int nbocc(char *s, char occ)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   int i,j=0;    simplest model is the multinomial logistic model where pij is the
   int lg=20;    probability to be observed in state j at the second wave
   i=0;    conditional to be observed in state i at the first wave. Therefore
   lg=strlen(s);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   for(i=0; i<= lg; i++) {    'age' is age and 'sex' is a covariate. If you want to have a more
   if  (s[i] == occ ) j++;    complex model than "constant and age", you should modify the program
   }    where the markup *Covariates have to be included here again* invites
   return j;    you to do it.  More covariates you add, slower the
 }    convergence.
   
 void cutv(char *u,char *v, char*t, char occ)    The advantage of this computer programme, compared to a simple
 {    multinomial logistic model, is clear when the delay between waves is not
   int i,lg,j,p=0;    identical for each individual. Also, if a individual missed an
   i=0;    intermediate interview, the information is lost, but taken into
   for(j=0; j<=strlen(t)-1; j++) {    account using an interpolation or extrapolation.  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
   lg=strlen(t);    split into an exact number (nh*stepm) of unobserved intermediate
   for(j=0; j<p; j++) {    states. This elementary transition (by month, quarter,
     (u[j] = t[j]);    semester or year) is modelled as a multinomial logistic.  The hPx
   }    matrix is simply the matrix product of nh*stepm elementary matrices
      u[p]='\0';    and the contribution of each individual to the likelihood is simply
     hPijx.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Also this programme outputs the covariance matrix of the parameters but also
   }    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /********************** nrerror ********************/             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 void nrerror(char error_text[])    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   fprintf(stderr,"ERREUR ...\n");    software can be distributed freely for non commercial use. Latest version
   fprintf(stderr,"%s\n",error_text);    can be accessed at http://euroreves.ined.fr/imach .
   exit(1);  
 }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /*********************** vector *******************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 double *vector(int nl, int nh)    
 {    **********************************************************************/
   double *v;  /*
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    main
   if (!v) nrerror("allocation failure in vector");    read parameterfile
   return v-nl+NR_END;    read datafile
 }    concatwav
     freqsummary
 /************************ free vector ******************/    if (mle >= 1)
 void free_vector(double*v, int nl, int nh)      mlikeli
 {    print results files
   free((FREE_ARG)(v+nl-NR_END));    if mle==1 
 }       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /************************ivector *******************************/        begin-prev-date,...
 int *ivector(long nl,long nh)    open gnuplot file
 {    open html file
   int *v;    period (stable) prevalence
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));     for age prevalim()
   if (!v) nrerror("allocation failure in ivector");    h Pij x
   return v-nl+NR_END;    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /******************free ivector **************************/    Variance-covariance of DFLE
 void free_ivector(int *v, long nl, long nh)    prevalence()
 {     movingaverage()
   free((FREE_ARG)(v+nl-NR_END));    varevsij() 
 }    if popbased==1 varevsij(,popbased)
     total life expectancies
 /******************* imatrix *******************************/    Variance of period (stable) prevalence
 int **imatrix(long nrl, long nrh, long ncl, long nch)   end
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  */
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  
     
   /* allocate pointers to rows */  #include <math.h>
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #include <stdio.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <stdlib.h>
   m += NR_END;  #include <string.h>
   m -= nrl;  #include <unistd.h>
    
    #include <limits.h>
   /* allocate rows and set pointers to them */  #include <sys/types.h>
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #include <sys/stat.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <errno.h>
   m[nrl] += NR_END;  extern int errno;
   m[nrl] -= ncl;  
    /* #include <sys/time.h> */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #include <time.h>
    #include "timeval.h"
   /* return pointer to array of pointers to rows */  
   return m;  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /****************** free_imatrix *************************/  #define MAXLINE 256
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  #define GNUPLOTPROGRAM "gnuplot"
       long nch,ncl,nrh,nrl;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
      /* free an int matrix allocated by imatrix() */  #define FILENAMELENGTH 132
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   free((FREE_ARG) (m+nrl-NR_END));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /******************* matrix *******************************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  #define NINTERVMAX 8
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   double **m;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define MAXN 20000
   if (!m) nrerror("allocation failure 1 in matrix()");  #define YEARM 12. /* Number of months per year */
   m += NR_END;  #define AGESUP 130
   m -= nrl;  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #ifdef UNIX
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define DIRSEPARATOR '/'
   m[nrl] += NR_END;  #define CHARSEPARATOR "/"
   m[nrl] -= ncl;  #define ODIRSEPARATOR '\\'
   #else
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define DIRSEPARATOR '\\'
   return m;  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /* $Id$ */
 {  /* $State$ */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 }  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
 /******************* ma3x *******************************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   double ***m;  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int ndeath=1; /* Number of dead states */
   if (!m) nrerror("allocation failure 1 in matrix()");  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m += NR_END;  int popbased=0;
   m -= nrl;  
   int *wav; /* Number of waves for this individuual 0 is possible */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int maxwav; /* Maxim number of waves */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int jmin, jmax; /* min, max spacing between 2 waves */
   m[nrl] += NR_END;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m[nrl] -= ncl;  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m[nrl][ncl] += NR_END;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m[nrl][ncl] -= nll;  double jmean; /* Mean space between 2 waves */
   for (j=ncl+1; j<=nch; j++)  double **oldm, **newm, **savm; /* Working pointers to matrices */
     m[nrl][j]=m[nrl][j-1]+nlay;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   for (i=nrl+1; i<=nrh; i++) {  FILE *ficlog, *ficrespow;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int globpr; /* Global variable for printing or not */
     for (j=ncl+1; j<=nch; j++)  double fretone; /* Only one call to likelihood */
       m[i][j]=m[i][j-1]+nlay;  long ipmx; /* Number of contributions */
   }  double sw; /* Sum of weights */
   return m;  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /*************************free ma3x ************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  FILE *ficreseij;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char filerese[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  FILE *ficresstdeij;
 }  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
 /***************** f1dim *************************/  char filerescve[FILENAMELENGTH];
 extern int ncom;  FILE  *ficresvij;
 extern double *pcom,*xicom;  char fileresv[FILENAMELENGTH];
 extern double (*nrfunc)(double []);  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
 double f1dim(double x)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   int j;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double f;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double *xt;  char command[FILENAMELENGTH];
    int  outcmd=0;
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  char filelog[FILENAMELENGTH]; /* Log file */
   return f;  char filerest[FILENAMELENGTH];
 }  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   int iter;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   double a,b,d,etemp;  struct timezone tzp;
   double fu,fv,fw,fx;  extern int gettimeofday();
   double ftemp;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   double p,q,r,tol1,tol2,u,v,w,x,xm;  long time_value;
   double e=0.0;  extern long time();
    char strcurr[80], strfor[80];
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  char *endptr;
   x=w=v=bx;  long lval;
   fw=fv=fx=(*f)(x);  double dval;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  #define NR_END 1
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define FREE_ARG char*
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define FTOL 1.0e-10
     printf(".");fflush(stdout);  
 #ifdef DEBUG  #define NRANSI 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define ITMAX 200 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  #define TOL 2.0e-4 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  #define CGOLD 0.3819660 
       return fx;  #define ZEPS 1.0e-10 
     }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     ftemp=fu;  
     if (fabs(e) > tol1) {  #define GOLD 1.618034 
       r=(x-w)*(fx-fv);  #define GLIMIT 100.0 
       q=(x-v)*(fx-fw);  #define TINY 1.0e-20 
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  static double maxarg1,maxarg2;
       if (q > 0.0) p = -p;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       q=fabs(q);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       etemp=e;    
       e=d;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define rint(a) floor(a+0.5)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  static double sqrarg;
         d=p/q;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         u=x+d;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
         if (u-a < tol2 || b-u < tol2)  int agegomp= AGEGOMP;
           d=SIGN(tol1,xm-x);  
       }  int imx; 
     } else {  int stepm=1;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /* Stepm, step in month: minimum step interpolation*/
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int estepm;
     fu=(*f)(u);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  int m,nb;
       SHFT(v,w,x,u)  long *num;
         SHFT(fv,fw,fx,fu)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         } else {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
           if (u < x) a=u; else b=u;  double **pmmij, ***probs;
           if (fu <= fw || w == x) {  double *ageexmed,*agecens;
             v=w;  double dateintmean=0;
             w=u;  
             fv=fw;  double *weight;
             fw=fu;  int **s; /* Status */
           } else if (fu <= fv || v == x || v == w) {  double *agedc, **covar, idx;
             v=u;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
             fv=fu;  double *lsurv, *lpop, *tpop;
           }  
         }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   }  double ftolhess; /* Tolerance for computing hessian */
   nrerror("Too many iterations in brent");  
   *xmin=x;  /**************** split *************************/
   return fx;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 /****************** mnbrak ***********************/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    char  *ss;                            /* pointer */
             double (*func)(double))    int   l1, l2;                         /* length counters */
 {  
   double ulim,u,r,q, dum;    l1 = strlen(path );                   /* length of path */
   double fu;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   *fa=(*func)(*ax);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   *fb=(*func)(*bx);      strcpy( name, path );               /* we got the fullname name because no directory */
   if (*fb > *fa) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     SHFT(dum,*ax,*bx,dum)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       SHFT(dum,*fb,*fa,dum)      /* get current working directory */
       }      /*    extern  char* getcwd ( char *buf , int len);*/
   *cx=(*bx)+GOLD*(*bx-*ax);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   *fc=(*func)(*cx);        return( GLOCK_ERROR_GETCWD );
   while (*fb > *fc) {      }
     r=(*bx-*ax)*(*fb-*fc);      /* got dirc from getcwd*/
     q=(*bx-*cx)*(*fb-*fa);      printf(" DIRC = %s \n",dirc);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    } else {                              /* strip direcotry from path */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      ss++;                               /* after this, the filename */
     ulim=(*bx)+GLIMIT*(*cx-*bx);      l2 = strlen( ss );                  /* length of filename */
     if ((*bx-u)*(u-*cx) > 0.0) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       fu=(*func)(u);      strcpy( name, ss );         /* save file name */
     } else if ((*cx-u)*(u-ulim) > 0.0) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       fu=(*func)(u);      dirc[l1-l2] = 0;                    /* add zero */
       if (fu < *fc) {      printf(" DIRC2 = %s \n",dirc);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    }
           SHFT(*fb,*fc,fu,(*func)(u))    /* We add a separator at the end of dirc if not exists */
           }    l1 = strlen( dirc );                  /* length of directory */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    if( dirc[l1-1] != DIRSEPARATOR ){
       u=ulim;      dirc[l1] =  DIRSEPARATOR;
       fu=(*func)(u);      dirc[l1+1] = 0; 
     } else {      printf(" DIRC3 = %s \n",dirc);
       u=(*cx)+GOLD*(*cx-*bx);    }
       fu=(*func)(u);    ss = strrchr( name, '.' );            /* find last / */
     }    if (ss >0){
     SHFT(*ax,*bx,*cx,u)      ss++;
       SHFT(*fa,*fb,*fc,fu)      strcpy(ext,ss);                     /* save extension */
       }      l1= strlen( name);
 }      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
 /*************** linmin ************************/      finame[l1-l2]= 0;
     }
 int ncom;  
 double *pcom,*xicom;    return( 0 );                          /* we're done */
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /******************************************/
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  void replace_back_to_slash(char *s, char*t)
   double f1dim(double x);  {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    int i;
               double *fc, double (*func)(double));    int lg=0;
   int j;    i=0;
   double xx,xmin,bx,ax;    lg=strlen(t);
   double fx,fb,fa;    for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
   ncom=n;      if (t[i]== '\\') s[i]='/';
   pcom=vector(1,n);    }
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  int nbocc(char *s, char occ)
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    int i,j=0;
   }    int lg=20;
   ax=0.0;    i=0;
   xx=1.0;    lg=strlen(s);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    for(i=0; i<= lg; i++) {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if  (s[i] == occ ) j++;
 #ifdef DEBUG    }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    return j;
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  void cutv(char *u,char *v, char*t, char occ)
     p[j] += xi[j];  {
   }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   free_vector(xicom,1,n);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   free_vector(pcom,1,n);       gives u="abcedf" and v="ghi2j" */
 }    int i,lg,j,p=0;
     i=0;
 /*************** powell ************************/    for(j=0; j<=strlen(t)-1; j++) {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
             double (*func)(double []))    }
 {  
   void linmin(double p[], double xi[], int n, double *fret,    lg=strlen(t);
               double (*func)(double []));    for(j=0; j<p; j++) {
   int i,ibig,j;      (u[j] = t[j]);
   double del,t,*pt,*ptt,*xit;    }
   double fp,fptt;       u[p]='\0';
   double *xits;  
   pt=vector(1,n);     for(j=0; j<= lg; j++) {
   ptt=vector(1,n);      if (j>=(p+1))(v[j-p-1] = t[j]);
   xit=vector(1,n);    }
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /********************** nrerror ********************/
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  void nrerror(char error_text[])
     ibig=0;  {
     del=0.0;    fprintf(stderr,"ERREUR ...\n");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    fprintf(stderr,"%s\n",error_text);
     for (i=1;i<=n;i++)    exit(EXIT_FAILURE);
       printf(" %d %.12f",i, p[i]);  }
     printf("\n");  /*********************** vector *******************/
     for (i=1;i<=n;i++) {  double *vector(int nl, int nh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    double *v;
 #ifdef DEBUG    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       printf("fret=%lf \n",*fret);    if (!v) nrerror("allocation failure in vector");
 #endif    return v-nl+NR_END;
       printf("%d",i);fflush(stdout);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /************************ free vector ******************/
         del=fabs(fptt-(*fret));  void free_vector(double*v, int nl, int nh)
         ibig=i;  {
       }    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /************************ivector *******************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  int *ivector(long nl,long nh)
         printf(" x(%d)=%.12e",j,xit[j]);  {
       }    int *v;
       for(j=1;j<=n;j++)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         printf(" p=%.12e",p[j]);    if (!v) nrerror("allocation failure in ivector");
       printf("\n");    return v-nl+NR_END;
 #endif  }
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /******************free ivector **************************/
 #ifdef DEBUG  void free_ivector(int *v, long nl, long nh)
       int k[2],l;  {
       k[0]=1;    free((FREE_ARG)(v+nl-NR_END));
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /************************lvector *******************************/
         printf(" %.12e",p[j]);  long *lvector(long nl,long nh)
       printf("\n");  {
       for(l=0;l<=1;l++) {    long *v;
         for (j=1;j<=n;j++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (!v) nrerror("allocation failure in ivector");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return v-nl+NR_END;
         }  }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /******************free lvector **************************/
 #endif  void free_lvector(long *v, long nl, long nh)
   {
     free((FREE_ARG)(v+nl-NR_END));
       free_vector(xit,1,n);  }
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  /******************* imatrix *******************************/
       free_vector(pt,1,n);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       return;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     }  { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     for (j=1;j<=n;j++) {    int **m; 
       ptt[j]=2.0*p[j]-pt[j];    
       xit[j]=p[j]-pt[j];    /* allocate pointers to rows */ 
       pt[j]=p[j];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     fptt=(*func)(ptt);    m += NR_END; 
     if (fptt < fp) {    m -= nrl; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    
       if (t < 0.0) {    
         linmin(p,xit,n,fret,func);    /* allocate rows and set pointers to them */ 
         for (j=1;j<=n;j++) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           xi[j][ibig]=xi[j][n];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           xi[j][n]=xit[j];    m[nrl] += NR_END; 
         }    m[nrl] -= ncl; 
 #ifdef DEBUG    
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         for(j=1;j<=n;j++)    
           printf(" %.12e",xit[j]);    /* return pointer to array of pointers to rows */ 
         printf("\n");    return m; 
 #endif  } 
       }  
     }  /****************** free_imatrix *************************/
   }  void free_imatrix(m,nrl,nrh,ncl,nch)
 }        int **m;
         long nch,ncl,nrh,nrl; 
 /**** Prevalence limit ****************/       /* free an int matrix allocated by imatrix() */ 
   { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  } 
      matrix by transitions matrix until convergence is reached */  
   /******************* matrix *******************************/
   int i, ii,j,k;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double min, max, maxmin, maxmax,sumnew=0.;  {
   double **matprod2();    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double **out, cov[NCOVMAX], **pmij();    double **m;
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   for (ii=1;ii<=nlstate+ndeath;ii++)    m += NR_END;
     for (j=1;j<=nlstate+ndeath;j++){    m -= nrl;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
    cov[1]=1.;    m[nrl] += NR_END;
      m[nrl] -= ncl;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     newm=savm;    return m;
     /* Covariates have to be included here again */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      cov[2]=agefin;     */
    }
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*************************free matrix ************************/
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       }  {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for (k=1; k<=cptcovprod;k++)    free((FREE_ARG)(m+nrl-NR_END));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /******************* ma3x *******************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
     savm=oldm;  
     oldm=newm;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     maxmax=0.;    if (!m) nrerror("allocation failure 1 in matrix()");
     for(j=1;j<=nlstate;j++){    m += NR_END;
       min=1.;    m -= nrl;
       max=0.;  
       for(i=1; i<=nlstate; i++) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         sumnew=0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m[nrl] += NR_END;
         prlim[i][j]= newm[i][j]/(1-sumnew);    m[nrl] -= ncl;
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }  
       maxmin=max-min;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       maxmax=FMAX(maxmax,maxmin);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
     if(maxmax < ftolpl){    m[nrl][ncl] -= nll;
       return prlim;    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
   }    
 }    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 /*************** transition probabilities ***************/      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    }
 {    return m; 
   double s1, s2;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   /*double t34;*/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   int i,j,j1, nc, ii, jj;    */
   }
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /*************************free ma3x ************************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         /*s2 += param[i][j][nc]*cov[nc];*/  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       ps[i][j]=s2;  }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /*************** function subdirf ***********/
     for(j=i+1; j<=nlstate+ndeath;j++){  char *subdirf(char fileres[])
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* Caution optionfilefiname is hidden */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
       ps[i][j]=s2;    strcat(tmpout,fileres);
     }    return tmpout;
   }  }
     /*ps[3][2]=1;*/  
   /*************** function subdirf2 ***********/
   for(i=1; i<= nlstate; i++){  char *subdirf2(char fileres[], char *preop)
      s1=0;  {
     for(j=1; j<i; j++)    
       s1+=exp(ps[i][j]);    /* Caution optionfilefiname is hidden */
     for(j=i+1; j<=nlstate+ndeath; j++)    strcpy(tmpout,optionfilefiname);
       s1+=exp(ps[i][j]);    strcat(tmpout,"/");
     ps[i][i]=1./(s1+1.);    strcat(tmpout,preop);
     for(j=1; j<i; j++)    strcat(tmpout,fileres);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return tmpout;
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /*************** function subdirf3 ***********/
   } /* end i */  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    
     for(jj=1; jj<= nlstate+ndeath; jj++){    /* Caution optionfilefiname is hidden */
       ps[ii][jj]=0;    strcpy(tmpout,optionfilefiname);
       ps[ii][ii]=1;    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
   }    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
     return tmpout;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /***************** f1dim *************************/
    }  extern int ncom; 
     printf("\n ");  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
     printf("\n ");printf("%lf ",cov[2]);*/   
 /*  double f1dim(double x) 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  { 
   goto end;*/    int j; 
     return ps;    double f;
 }    double *xt; 
    
 /**************** Product of 2 matrices ******************/    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    f=(*nrfunc)(xt); 
 {    free_vector(xt,1,ncom); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    return f; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  } 
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /*****************brent *************************/
      a pointer to pointers identical to out */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   long i, j, k;  { 
   for(i=nrl; i<= nrh; i++)    int iter; 
     for(k=ncolol; k<=ncoloh; k++)    double a,b,d,etemp;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double fu,fv,fw,fx;
         out[i][k] +=in[i][j]*b[j][k];    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   return out;    double e=0.0; 
 }   
     a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
 /************* Higher Matrix Product ***************/    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    for (iter=1;iter<=ITMAX;iter++) { 
 {      xm=0.5*(a+b); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
      duration (i.e. until      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      printf(".");fflush(stdout);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      fprintf(ficlog,".");fflush(ficlog);
      (typically every 2 years instead of every month which is too big).  #ifdef DEBUG
      Model is determined by parameters x and covariates have to be      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      included manually here.      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      */  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   int i, j, d, h, k;        *xmin=x; 
   double **out, cov[NCOVMAX];        return fx; 
   double **newm;      } 
       ftemp=fu;
   /* Hstepm could be zero and should return the unit matrix */      if (fabs(e) > tol1) { 
   for (i=1;i<=nlstate+ndeath;i++)        r=(x-w)*(fx-fv); 
     for (j=1;j<=nlstate+ndeath;j++){        q=(x-v)*(fx-fw); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        p=(x-v)*q-(x-w)*r; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        q=2.0*(q-r); 
     }        if (q > 0.0) p = -p; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        q=fabs(q); 
   for(h=1; h <=nhstepm; h++){        etemp=e; 
     for(d=1; d <=hstepm; d++){        e=d; 
       newm=savm;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       /* Covariates have to be included here again */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       cov[1]=1.;        else { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          d=p/q; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          u=x+d; 
       for (k=1; k<=cptcovage;k++)          if (u-a < tol2 || b-u < tol2) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            d=SIGN(tol1,xm-x); 
       for (k=1; k<=cptcovprod;k++)        } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      fu=(*f)(u); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      if (fu <= fx) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        if (u >= x) a=x; else b=x; 
       savm=oldm;        SHFT(v,w,x,u) 
       oldm=newm;          SHFT(fv,fw,fx,fu) 
     }          } else { 
     for(i=1; i<=nlstate+ndeath; i++)            if (u < x) a=u; else b=u; 
       for(j=1;j<=nlstate+ndeath;j++) {            if (fu <= fw || w == x) { 
         po[i][j][h]=newm[i][j];              v=w; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);              w=u; 
          */              fv=fw; 
       }              fw=fu; 
   } /* end h */            } else if (fu <= fv || v == x || v == w) { 
   return po;              v=u; 
 }              fv=fu; 
             } 
           } 
 /*************** log-likelihood *************/    } 
 double func( double *x)    nrerror("Too many iterations in brent"); 
 {    *xmin=x; 
   int i, ii, j, k, mi, d, kk;    return fx; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  } 
   double **out;  
   double sw; /* Sum of weights */  /****************** mnbrak ***********************/
   double lli; /* Individual log likelihood */  
   long ipmx;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   /*extern weight */              double (*func)(double)) 
   /* We are differentiating ll according to initial status */  { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double ulim,u,r,q, dum;
   /*for(i=1;i<imx;i++)    double fu; 
     printf(" %d\n",s[4][i]);   
   */    *fa=(*func)(*ax); 
   cov[1]=1.;    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      SHFT(dum,*ax,*bx,dum) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        SHFT(dum,*fb,*fa,dum) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        } 
     for(mi=1; mi<= wav[i]-1; mi++){    *cx=(*bx)+GOLD*(*bx-*ax); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    *fc=(*func)(*cx); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    while (*fb > *fc) { 
       for(d=0; d<dh[mi][i]; d++){      r=(*bx-*ax)*(*fb-*fc); 
         newm=savm;      q=(*bx-*cx)*(*fb-*fa); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         for (kk=1; kk<=cptcovage;kk++) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         }      if ((*bx-u)*(u-*cx) > 0.0) { 
                fu=(*func)(u); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      } else if ((*cx-u)*(u-ulim) > 0.0) { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fu=(*func)(u); 
         savm=oldm;        if (fu < *fc) { 
         oldm=newm;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                    SHFT(*fb,*fc,fu,(*func)(u)) 
                    } 
       } /* end mult */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
              u=ulim; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        fu=(*func)(u); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      } else { 
       ipmx +=1;        u=(*cx)+GOLD*(*cx-*bx); 
       sw += weight[i];        fu=(*func)(u); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      } 
     } /* end of wave */      SHFT(*ax,*bx,*cx,u) 
   } /* end of individual */        SHFT(*fa,*fb,*fc,fu) 
         } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  } 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*************** linmin ************************/
   return -l;  
 }  int ncom; 
   double *pcom,*xicom;
   double (*nrfunc)(double []); 
 /*********** Maximum Likelihood Estimation ***************/   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  { 
 {    double brent(double ax, double bx, double cx, 
   int i,j, iter;                 double (*f)(double), double tol, double *xmin); 
   double **xi,*delti;    double f1dim(double x); 
   double fret;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   xi=matrix(1,npar,1,npar);                double *fc, double (*func)(double)); 
   for (i=1;i<=npar;i++)    int j; 
     for (j=1;j<=npar;j++)    double xx,xmin,bx,ax; 
       xi[i][j]=(i==j ? 1.0 : 0.0);    double fx,fb,fa;
   printf("Powell\n");   
   powell(p,xi,npar,ftol,&iter,&fret,func);    ncom=n; 
     pcom=vector(1,n); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    xicom=vector(1,n); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    nrfunc=func; 
     for (j=1;j<=n;j++) { 
 }      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
 /**** Computes Hessian and covariance matrix ***/    } 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    ax=0.0; 
 {    xx=1.0; 
   double  **a,**y,*x,pd;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double **hess;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   int i, j,jk;  #ifdef DEBUG
   int *indx;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double hessii(double p[], double delta, int theta, double delti[]);  #endif
   double hessij(double p[], double delti[], int i, int j);    for (j=1;j<=n;j++) { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      xi[j] *= xmin; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      p[j] += xi[j]; 
     } 
   hess=matrix(1,npar,1,npar);    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
   printf("\nCalculation of the hessian matrix. Wait...\n");  } 
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  char *asc_diff_time(long time_sec, char ascdiff[])
     hess[i][i]=hessii(p,ftolhess,i,delti);  {
     /*printf(" %f ",p[i]);*/    long sec_left, days, hours, minutes;
     /*printf(" %lf ",hess[i][i]);*/    days = (time_sec) / (60*60*24);
   }    sec_left = (time_sec) % (60*60*24);
      hours = (sec_left) / (60*60) ;
   for (i=1;i<=npar;i++) {    sec_left = (sec_left) %(60*60);
     for (j=1;j<=npar;j++)  {    minutes = (sec_left) /60;
       if (j>i) {    sec_left = (sec_left) % (60);
         printf(".%d%d",i,j);fflush(stdout);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         hess[i][j]=hessij(p,delti,i,j);    return ascdiff;
         hess[j][i]=hess[i][j];      }
         /*printf(" %lf ",hess[i][j]);*/  
       }  /*************** powell ************************/
     }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   }              double (*func)(double [])) 
   printf("\n");  { 
     void linmin(double p[], double xi[], int n, double *fret, 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");                double (*func)(double [])); 
      int i,ibig,j; 
   a=matrix(1,npar,1,npar);    double del,t,*pt,*ptt,*xit;
   y=matrix(1,npar,1,npar);    double fp,fptt;
   x=vector(1,npar);    double *xits;
   indx=ivector(1,npar);    int niterf, itmp;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    pt=vector(1,n); 
   ludcmp(a,npar,indx,&pd);    ptt=vector(1,n); 
     xit=vector(1,n); 
   for (j=1;j<=npar;j++) {    xits=vector(1,n); 
     for (i=1;i<=npar;i++) x[i]=0;    *fret=(*func)(p); 
     x[j]=1;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     lubksb(a,npar,indx,x);    for (*iter=1;;++(*iter)) { 
     for (i=1;i<=npar;i++){      fp=(*fret); 
       matcov[i][j]=x[i];      ibig=0; 
     }      del=0.0; 
   }      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
   printf("\n#Hessian matrix#\n");      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   for (i=1;i<=npar;i++) {      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     for (j=1;j<=npar;j++) {      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       printf("%.3e ",hess[i][j]);      */
     }     for (i=1;i<=n;i++) {
     printf("\n");        printf(" %d %.12f",i, p[i]);
   }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   /* Recompute Inverse */      }
   for (i=1;i<=npar;i++)      printf("\n");
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      fprintf(ficlog,"\n");
   ludcmp(a,npar,indx,&pd);      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   /*  printf("\n#Hessian matrix recomputed#\n");        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   for (j=1;j<=npar;j++) {  /*       asctime_r(&tm,strcurr); */
     for (i=1;i<=npar;i++) x[i]=0;        forecast_time=curr_time; 
     x[j]=1;        itmp = strlen(strcurr);
     lubksb(a,npar,indx,x);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for (i=1;i<=npar;i++){          strcurr[itmp-1]='\0';
       y[i][j]=x[i];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       printf("%.3e ",y[i][j]);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     }        for(niterf=10;niterf<=30;niterf+=10){
     printf("\n");          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   }          tmf = *localtime(&forecast_time.tv_sec);
   */  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
   free_matrix(a,1,npar,1,npar);          itmp = strlen(strfor);
   free_matrix(y,1,npar,1,npar);          if(strfor[itmp-1]=='\n')
   free_vector(x,1,npar);          strfor[itmp-1]='\0';
   free_ivector(indx,1,npar);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   free_matrix(hess,1,npar,1,npar);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
       }
 }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 /*************** hessian matrix ****************/        fptt=(*fret); 
 double hessii( double x[], double delta, int theta, double delti[])  #ifdef DEBUG
 {        printf("fret=%lf \n",*fret);
   int i;        fprintf(ficlog,"fret=%lf \n",*fret);
   int l=1, lmax=20;  #endif
   double k1,k2;        printf("%d",i);fflush(stdout);
   double p2[NPARMAX+1];        fprintf(ficlog,"%d",i);fflush(ficlog);
   double res;        linmin(p,xit,n,fret,func); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        if (fabs(fptt-(*fret)) > del) { 
   double fx;          del=fabs(fptt-(*fret)); 
   int k=0,kmax=10;          ibig=i; 
   double l1;        } 
   #ifdef DEBUG
   fx=func(x);        printf("%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++) p2[i]=x[i];        fprintf(ficlog,"%d %.12e",i,(*fret));
   for(l=0 ; l <=lmax; l++){        for (j=1;j<=n;j++) {
     l1=pow(10,l);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     delts=delt;          printf(" x(%d)=%.12e",j,xit[j]);
     for(k=1 ; k <kmax; k=k+1){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       delt = delta*(l1*k);        }
       p2[theta]=x[theta] +delt;        for(j=1;j<=n;j++) {
       k1=func(p2)-fx;          printf(" p=%.12e",p[j]);
       p2[theta]=x[theta]-delt;          fprintf(ficlog," p=%.12e",p[j]);
       k2=func(p2)-fx;        }
       /*res= (k1-2.0*fx+k2)/delt/delt; */        printf("\n");
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        fprintf(ficlog,"\n");
        #endif
 #ifdef DEBUG      } 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 #endif  #ifdef DEBUG
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        int k[2],l;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        k[0]=1;
         k=kmax;        k[1]=-1;
       }        printf("Max: %.12e",(*func)(p));
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        fprintf(ficlog,"Max: %.12e",(*func)(p));
         k=kmax; l=lmax*10.;        for (j=1;j<=n;j++) {
       }          printf(" %.12e",p[j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          fprintf(ficlog," %.12e",p[j]);
         delts=delt;        }
       }        printf("\n");
     }        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
   delti[theta]=delts;          for (j=1;j<=n;j++) {
   return res;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
              printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
 double hessij( double x[], double delti[], int thetai,int thetaj)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i;        }
   int l=1, l1, lmax=20;  #endif
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  
   int k;        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
   fx=func(x);        free_vector(ptt,1,n); 
   for (k=1; k<=2; k++) {        free_vector(pt,1,n); 
     for (i=1;i<=npar;i++) p2[i]=x[i];        return; 
     p2[thetai]=x[thetai]+delti[thetai]/k;      } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     k1=func(p2)-fx;      for (j=1;j<=n;j++) { 
          ptt[j]=2.0*p[j]-pt[j]; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        xit[j]=p[j]-pt[j]; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        pt[j]=p[j]; 
     k2=func(p2)-fx;      } 
        fptt=(*func)(ptt); 
     p2[thetai]=x[thetai]-delti[thetai]/k;      if (fptt < fp) { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     k3=func(p2)-fx;        if (t < 0.0) { 
            linmin(p,xit,n,fret,func); 
     p2[thetai]=x[thetai]-delti[thetai]/k;          for (j=1;j<=n;j++) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            xi[j][ibig]=xi[j][n]; 
     k4=func(p2)-fx;            xi[j][n]=xit[j]; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          }
 #ifdef DEBUG  #ifdef DEBUG
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 #endif          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          for(j=1;j<=n;j++){
   return res;            printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
 /************** Inverse of matrix **************/          printf("\n");
 void ludcmp(double **a, int n, int *indx, double *d)          fprintf(ficlog,"\n");
 {  #endif
   int i,imax,j,k;        }
   double big,dum,sum,temp;      } 
   double *vv;    } 
    } 
   vv=vector(1,n);  
   *d=1.0;  /**** Prevalence limit (stable or period prevalence)  ****************/
   for (i=1;i<=n;i++) {  
     big=0.0;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for (j=1;j<=n;j++)  {
       if ((temp=fabs(a[i][j])) > big) big=temp;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       matrix by transitions matrix until convergence is reached */
     vv[i]=1.0/big;  
   }    int i, ii,j,k;
   for (j=1;j<=n;j++) {    double min, max, maxmin, maxmax,sumnew=0.;
     for (i=1;i<j;i++) {    double **matprod2();
       sum=a[i][j];    double **out, cov[NCOVMAX], **pmij();
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    double **newm;
       a[i][j]=sum;    double agefin, delaymax=50 ; /* Max number of years to converge */
     }  
     big=0.0;    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=j;i<=n;i++) {      for (j=1;j<=nlstate+ndeath;j++){
       sum=a[i][j];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<j;k++)      }
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;     cov[1]=1.;
       if ( (dum=vv[i]*fabs(sum)) >= big) {   
         big=dum;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         imax=i;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       }      newm=savm;
     }      /* Covariates have to be included here again */
     if (j != imax) {       cov[2]=agefin;
       for (k=1;k<=n;k++) {    
         dum=a[imax][k];        for (k=1; k<=cptcovn;k++) {
         a[imax][k]=a[j][k];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         a[j][k]=dum;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }        }
       *d = -(*d);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       vv[imax]=vv[j];        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     if (j != n) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       dum=1.0/(a[j][j]);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     }  
   }      savm=oldm;
   free_vector(vv,1,n);  /* Doesn't work */      oldm=newm;
 ;      maxmax=0.;
 }      for(j=1;j<=nlstate;j++){
         min=1.;
 void lubksb(double **a, int n, int *indx, double b[])        max=0.;
 {        for(i=1; i<=nlstate; i++) {
   int i,ii=0,ip,j;          sumnew=0;
   double sum;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            prlim[i][j]= newm[i][j]/(1-sumnew);
   for (i=1;i<=n;i++) {          max=FMAX(max,prlim[i][j]);
     ip=indx[i];          min=FMIN(min,prlim[i][j]);
     sum=b[ip];        }
     b[ip]=b[i];        maxmin=max-min;
     if (ii)        maxmax=FMAX(maxmax,maxmin);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      }
     else if (sum) ii=i;      if(maxmax < ftolpl){
     b[i]=sum;        return prlim;
   }      }
   for (i=n;i>=1;i--) {    }
     sum=b[i];  }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  /*************** transition probabilities ***************/ 
   }  
 }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 /************ Frequencies ********************/    double s1, s2;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    /*double t34;*/
 {  /* Some frequencies */    int i,j,j1, nc, ii, jj;
    
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      for(i=1; i<= nlstate; i++){
   double ***freq; /* Frequencies */        for(j=1; j<i;j++){
   double *pp;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double pos, k2, dateintsum=0,k2cpt=0;            /*s2 += param[i][j][nc]*cov[nc];*/
   FILE *ficresp;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   char fileresp[FILENAMELENGTH];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
            }
   pp=vector(1,nlstate);          ps[i][j]=s2;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   strcpy(fileresp,"p");        }
   strcat(fileresp,fileres);        for(j=i+1; j<=nlstate+ndeath;j++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     exit(0);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   }          }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          ps[i][j]=s2;
   j1=0;        }
        }
   j=cptcoveff;      /*ps[3][2]=1;*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      
        for(i=1; i<= nlstate; i++){
   for(k1=1; k1<=j;k1++){        s1=0;
     for(i1=1; i1<=ncodemax[k1];i1++){        for(j=1; j<i; j++)
       j1++;          s1+=exp(ps[i][j]);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        for(j=i+1; j<=nlstate+ndeath; j++)
         scanf("%d", i);*/          s1+=exp(ps[i][j]);
       for (i=-1; i<=nlstate+ndeath; i++)          ps[i][i]=1./(s1+1.);
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for(j=1; j<i; j++)
           for(m=agemin; m <= agemax+3; m++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
             freq[i][jk][m]=0;        for(j=i+1; j<=nlstate+ndeath; j++)
                ps[i][j]= exp(ps[i][j])*ps[i][i];
       dateintsum=0;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       k2cpt=0;      } /* end i */
       for (i=1; i<=imx; i++) {      
         bool=1;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         if  (cptcovn>0) {        for(jj=1; jj<= nlstate+ndeath; jj++){
           for (z1=1; z1<=cptcoveff; z1++)          ps[ii][jj]=0;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          ps[ii][ii]=1;
               bool=0;        }
         }      }
         if (bool==1) {      
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /*         printf("ddd %lf ",ps[ii][jj]); */
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /*       } */
               if (m<lastpass) {  /*       printf("\n "); */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*        } */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*        printf("\n ");printf("%lf ",cov[2]); */
               }         /*
                      for(i=1; i<= npar; i++) printf("%f ",x[i]);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        goto end;*/
                 dateintsum=dateintsum+k2;      return ps;
                 k2cpt++;  }
               }  
             }  /**************** Product of 2 matrices ******************/
           }  
         }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       }  {
            /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
       if  (cptcovn>0) {       before: only the contents of out is modified. The function returns
         fprintf(ficresp, "\n#********** Variable ");       a pointer to pointers identical to out */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    long i, j, k;
         fprintf(ficresp, "**********\n#");    for(i=nrl; i<= nrh; i++)
       }      for(k=ncolol; k<=ncoloh; k++)
       for(i=1; i<=nlstate;i++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          out[i][k] +=in[i][j]*b[j][k];
       fprintf(ficresp, "\n");  
          return out;
       for(i=(int)agemin; i <= (int)agemax+3; i++){  }
         if(i==(int)agemax+3)  
           printf("Total");  
         else  /************* Higher Matrix Product ***************/
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  {
             pp[jk] += freq[jk][m][i];    /* Computes the transition matrix starting at age 'age' over 
         }       'nhstepm*hstepm*stepm' months (i.e. until
         for(jk=1; jk <=nlstate ; jk++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           for(m=-1, pos=0; m <=0 ; m++)       nhstepm*hstepm matrices. 
             pos += freq[jk][m][i];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           if(pp[jk]>=1.e-10)       (typically every 2 years instead of every month which is too big 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);       for the memory).
           else       Model is determined by parameters x and covariates have to be 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);       included manually here. 
         }  
        */
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    int i, j, d, h, k;
             pp[jk] += freq[jk][m][i];    double **out, cov[NCOVMAX];
         }    double **newm;
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)    /* Hstepm could be zero and should return the unit matrix */
           pos += pp[jk];    for (i=1;i<=nlstate+ndeath;i++)
         for(jk=1; jk <=nlstate ; jk++){      for (j=1;j<=nlstate+ndeath;j++){
           if(pos>=1.e-5)        oldm[i][j]=(i==j ? 1.0 : 0.0);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        po[i][j][0]=(i==j ? 1.0 : 0.0);
           else      }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           if( i <= (int) agemax){    for(h=1; h <=nhstepm; h++){
             if(pos>=1.e-5){      for(d=1; d <=hstepm; d++){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        newm=savm;
               probs[i][jk][j1]= pp[jk]/pos;        /* Covariates have to be included here again */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        cov[1]=1.;
             }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
             else        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for (k=1; k<=cptcovage;k++)
           }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }        for (k=1; k<=cptcovprod;k++)
                  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         if(i <= (int) agemax)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           fprintf(ficresp,"\n");        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         printf("\n");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       }        savm=oldm;
     }        oldm=newm;
   }      }
   dateintmean=dateintsum/k2cpt;      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   fclose(ficresp);          po[i][j][h]=newm[i][j];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   free_vector(pp,1,nlstate);           */
          }
   /* End of Freq */    } /* end h */
 }    return po;
   }
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */  /*************** log-likelihood *************/
    double func( double *x)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  {
   double ***freq; /* Frequencies */    int i, ii, j, k, mi, d, kk;
   double *pp;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double pos, k2;    double **out;
     double sw; /* Sum of weights */
   pp=vector(1,nlstate);    double lli; /* Individual log likelihood */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int s1, s2;
      double bbh, survp;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    long ipmx;
   j1=0;    /*extern weight */
      /* We are differentiating ll according to initial status */
   j=cptcoveff;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   for(k1=1; k1<=j;k1++){    */
     for(i1=1; i1<=ncodemax[k1];i1++){    cov[1]=1.;
       j1++;  
          for(k=1; k<=nlstate; k++) ll[k]=0.;
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)      if(mle==1){
           for(m=agemin; m <= agemax+3; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             freq[i][jk][m]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       for (i=1; i<=imx; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         bool=1;            for (j=1;j<=nlstate+ndeath;j++){
         if  (cptcovn>0) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (z1=1; z1<=cptcoveff; z1++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            }
               bool=0;          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         if (bool==1) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(m=firstpass; m<=lastpass; m++){            for (kk=1; kk<=cptcovage;kk++) {
             k2=anint[m][i]+(mint[m][i]/12.);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            }
               if(agev[m][i]==0) agev[m][i]=agemax+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if(agev[m][i]==1) agev[m][i]=agemax+2;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if (m<lastpass) {            savm=oldm;
                 if (calagedate>0)            oldm=newm;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          } /* end mult */
                 else        
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          /* But now since version 0.9 we anticipate for bias at large stepm.
               }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             }           * (in months) between two waves is not a multiple of stepm, we rounded to 
           }           * the nearest (and in case of equal distance, to the lowest) interval but now
         }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       for(i=(int)agemin; i <= (int)agemax+3; i++){           * probability in order to take into account the bias as a fraction of the way
         for(jk=1; jk <=nlstate ; jk++){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * -stepm/2 to stepm/2 .
             pp[jk] += freq[jk][m][i];           * For stepm=1 the results are the same as for previous versions of Imach.
         }           * For stepm > 1 the results are less biased than in previous versions. 
         for(jk=1; jk <=nlstate ; jk++){           */
           for(m=-1, pos=0; m <=0 ; m++)          s1=s[mw[mi][i]][i];
             pos += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
                  /* bias bh is positive if real duration
         for(jk=1; jk <=nlstate ; jk++){           * is higher than the multiple of stepm and negative otherwise.
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           */
             pp[jk] += freq[jk][m][i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         }          if( s2 > nlstate){ 
                    /* i.e. if s2 is a death state and if the date of death is known 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];               then the contribution to the likelihood is the probability to 
                       die between last step unit time and current  step unit time, 
         for(jk=1; jk <=nlstate ; jk++){                   which is also equal to probability to die before dh 
           if( i <= (int) agemax){               minus probability to die before dh-stepm . 
             if(pos>=1.e-5){               In version up to 0.92 likelihood was computed
               probs[i][jk][j1]= pp[jk]/pos;          as if date of death was unknown. Death was treated as any other
             }          health state: the date of the interview describes the actual state
           }          and not the date of a change in health state. The former idea was
         }          to consider that at each interview the state was recorded
                  (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
     }          the contribution of an exact death to the likelihood. This new
   }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
            and month of death but the probability to survive from last
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          interview up to one month before death multiplied by the
   free_vector(pp,1,nlstate);          probability to die within a month. Thanks to Chris
            Jackson for correcting this bug.  Former versions increased
 }  /* End of Freq */          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
 /************* Waves Concatenation ***************/          lower mortality.
             */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            lli=log(out[s1][s2] - savm[s1][s2]);
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).          } else if  (s2==-2) {
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            for (j=1,survp=0. ; j<=nlstate; j++) 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      and mw[mi+1][i]. dh depends on stepm.            /*survp += out[s1][j]; */
      */            lli= log(survp);
           }
   int i, mi, m;          
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          else if  (s2==-4) { 
      double sum=0., jmean=0.;*/            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int j, k=0,jk, ju, jl;            lli= log(survp); 
   double sum=0.;          } 
   jmin=1e+5;  
   jmax=-1;          else if  (s2==-5) { 
   jmean=0.;            for (j=1,survp=0. ; j<=2; j++)  
   for(i=1; i<=imx; i++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     mi=0;            lli= log(survp); 
     m=firstpass;          } 
     while(s[m][i] <= nlstate){          
       if(s[m][i]>=1)          else{
         mw[++mi][i]=m;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       if(m >=lastpass)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         break;          } 
       else          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         m++;          /*if(lli ==000.0)*/
     }/* end while */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     if (s[m][i] > nlstate){          ipmx +=1;
       mi++;     /* Death is another wave */          sw += weight[i];
       /* if(mi==0)  never been interviewed correctly before death */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          /* Only death is a correct wave */        } /* end of wave */
       mw[mi][i]=m;      } /* end of individual */
     }    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     wav[i]=mi;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if(mi==0)        for(mi=1; mi<= wav[i]-1; mi++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(mi=1; mi<wav[i];mi++){            }
       if (stepm <=0)          for(d=0; d<=dh[mi][i]; d++){
         dh[mi][i]=1;            newm=savm;
       else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (s[mw[mi+1][i]][i] > nlstate) {            for (kk=1; kk<=cptcovage;kk++) {
           if (agedc[i] < 2*AGESUP) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            }
           if(j==0) j=1;  /* Survives at least one month after exam */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           k=k+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j >= jmax) jmax=j;            savm=oldm;
           if (j <= jmin) jmin=j;            oldm=newm;
           sum=sum+j;          } /* end mult */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         else{          bbh=(double)bh[mi][i]/(double)stepm; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           k=k+1;          ipmx +=1;
           if (j >= jmax) jmax=j;          sw += weight[i];
           else if (j <= jmin)jmin=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        } /* end of wave */
           sum=sum+j;      } /* end of individual */
         }    }  else if(mle==3){  /* exponential inter-extrapolation */
         jk= j/stepm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         jl= j -jk*stepm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         ju= j -(jk+1)*stepm;        for(mi=1; mi<= wav[i]-1; mi++){
         if(jl <= -ju)          for (ii=1;ii<=nlstate+ndeath;ii++)
           dh[mi][i]=jk;            for (j=1;j<=nlstate+ndeath;j++){
         else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=jk+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(dh[mi][i]==0)            }
           dh[mi][i]=1; /* At least one step */          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   jmean=sum/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            }
  }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*********** Tricode ****************************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void tricode(int *Tvar, int **nbcode, int imx)            savm=oldm;
 {            oldm=newm;
   int Ndum[20],ij=1, k, j, i;          } /* end mult */
   int cptcode=0;        
   cptcoveff=0;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   for (k=0; k<19; k++) Ndum[k]=0;          bbh=(double)bh[mi][i]/(double)stepm; 
   for (k=1; k<=7; k++) ncodemax[k]=0;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          sw += weight[i];
     for (i=1; i<=imx; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       ij=(int)(covar[Tvar[j]][i]);        } /* end of wave */
       Ndum[ij]++;      } /* end of individual */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       if (ij > cptcode) cptcode=ij;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for (i=0; i<=cptcode; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(Ndum[i]!=0) ncodemax[j]++;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     ij=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
           for(d=0; d<dh[mi][i]; d++){
     for (i=1; i<=ncodemax[j]; i++) {            newm=savm;
       for (k=0; k<=19; k++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (Ndum[k] != 0) {            for (kk=1; kk<=cptcovage;kk++) {
           nbcode[Tvar[j]][ij]=k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                      }
           ij++;          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (ij > ncodemax[j]) break;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }              savm=oldm;
     }            oldm=newm;
   }            } /* end mult */
         
  for (k=0; k<19; k++) Ndum[k]=0;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
  for (i=1; i<=ncovmodel-2; i++) {          if( s2 > nlstate){ 
       ij=Tvar[i];            lli=log(out[s1][s2] - savm[s1][s2]);
       Ndum[ij]++;          }else{
     }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
  ij=1;          ipmx +=1;
  for (i=1; i<=10; i++) {          sw += weight[i];
    if((Ndum[i]!=0) && (i<=ncovcol)){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      Tvaraff[ij]=i;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      ij++;        } /* end of wave */
    }      } /* end of individual */
  }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     cptcoveff=ij-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /*********** Health Expectancies ****************/            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 {          for(d=0; d<dh[mi][i]; d++){
   /* Health expectancies */            newm=savm;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double age, agelim, hf;            for (kk=1; kk<=cptcovage;kk++) {
   double ***p3mat,***varhe;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **dnewm,**doldm;            }
   double *xp;          
   double **gp, **gm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***gradg, ***trgradg;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int theta;            savm=oldm;
             oldm=newm;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          } /* end mult */
   xp=vector(1,npar);        
   dnewm=matrix(1,nlstate*2,1,npar);          s1=s[mw[mi][i]][i];
   doldm=matrix(1,nlstate*2,1,nlstate*2);          s2=s[mw[mi+1][i]][i];
            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fprintf(ficreseij,"# Health expectancies\n");          ipmx +=1;
   fprintf(ficreseij,"# Age");          sw += weight[i];
   for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(j=1; j<=nlstate;j++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        } /* end of wave */
   fprintf(ficreseij,"\n");      } /* end of individual */
     } /* End of if */
   if(estepm < stepm){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     printf ("Problem %d lower than %d\n",estepm, stepm);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   else  hstepm=estepm;      return -l;
   /* We compute the life expectancy from trapezoids spaced every estepm months  }
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them  /*************** log-likelihood *************/
    * we are calculating an estimate of the Life Expectancy assuming a linear  double funcone( double *x)
    * progression inbetween and thus overestimating or underestimating according  {
    * to the curvature of the survival function. If, for the same date, we    /* Same as likeli but slower because of a lot of printf and if */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    int i, ii, j, k, mi, d, kk;
    * to compare the new estimate of Life expectancy with the same linear    double l, ll[NLSTATEMAX], cov[NCOVMAX];
    * hypothesis. A more precise result, taking into account a more precise    double **out;
    * curvature will be obtained if estepm is as small as stepm. */    double lli; /* Individual log likelihood */
     double llt;
   /* For example we decided to compute the life expectancy with the smallest unit */    int s1, s2;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double bbh, survp;
      nhstepm is the number of hstepm from age to agelim    /*extern weight */
      nstepm is the number of stepm from age to agelin.    /* We are differentiating ll according to initial status */
      Look at hpijx to understand the reason of that which relies in memory size    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      and note for a fixed period like estepm months */    /*for(i=1;i<imx;i++) 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      printf(" %d\n",s[4][i]);
      survival function given by stepm (the optimization length). Unfortunately it    */
      means that if the survival funtion is printed only each two years of age and if    cov[1]=1.;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    for(k=1; k<=nlstate; k++) ll[k]=0.;
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   agelim=AGESUP;      for(mi=1; mi<= wav[i]-1; mi++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for (ii=1;ii<=nlstate+ndeath;ii++)
     /* nhstepm age range expressed in number of stepm */          for (j=1;j<=nlstate+ndeath;j++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* if (stepm >= YEARM) hstepm=1;*/          }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for(d=0; d<dh[mi][i]; d++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          newm=savm;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gp=matrix(0,nhstepm,1,nlstate*2);          for (kk=1; kk<=cptcovage;kk++) {
     gm=matrix(0,nhstepm,1,nlstate*2);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            savm=oldm;
            oldm=newm;
         } /* end mult */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        
         s1=s[mw[mi][i]][i];
     /* Computing Variances of health expectancies */        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
      for(theta=1; theta <=npar; theta++){        /* bias is positive if real duration
       for(i=1; i<=npar; i++){         * is higher than the multiple of stepm and negative otherwise.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);         */
       }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli=log(out[s1][s2] - savm[s1][s2]);
          } else if  (s2==-2) {
       cptj=0;          for (j=1,survp=0. ; j<=nlstate; j++) 
       for(j=1; j<= nlstate; j++){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(i=1; i<=nlstate; i++){          lli= log(survp);
           cptj=cptj+1;        }else if (mle==1){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        } else if(mle==2){
           }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }        } else if(mle==3){  /* exponential inter-extrapolation */
       }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
              } else if (mle==4){  /* mle=4 no inter-extrapolation */
                lli=log(out[s1][s2]); /* Original formula */
       for(i=1; i<=npar; i++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          lli=log(out[s1][s2]); /* Original formula */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } /* End of if */
              ipmx +=1;
       cptj=0;        sw += weight[i];
       for(j=1; j<= nlstate; j++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(i=1;i<=nlstate;i++){  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           cptj=cptj+1;        if(globpr){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;   %11.6f %11.6f %11.6f ", \
           }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(j=1; j<= nlstate*2; j++)            llt +=ll[k]*gipmx/gsw;
         for(h=0; h<=nhstepm-1; h++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }          fprintf(ficresilk," %10.6f\n", -llt);
      }        }
          } /* end of wave */
 /* End theta */    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      for(h=0; h<=nhstepm-1; h++)    if(globpr==0){ /* First time we count the contributions and weights */
       for(j=1; j<=nlstate*2;j++)      gipmx=ipmx;
         for(theta=1; theta <=npar; theta++)      gsw=sw;
           trgradg[h][j][theta]=gradg[h][theta][j];    }
          return -l;
   }
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      printf("%d|",(int)age);fflush(stdout);  {
      for(h=0;h<=nhstepm-1;h++){    /* This routine should help understanding what is done with 
       for(k=0;k<=nhstepm-1;k++){       the selection of individuals/waves and
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);       to check the exact contribution to the likelihood.
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);       Plotting could be done.
         for(i=1;i<=nlstate*2;i++)     */
           for(j=1;j<=nlstate*2;j++)    int k;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }    if(*globpri !=0){ /* Just counts and sums, no printings */
     }      strcpy(fileresilk,"ilk"); 
     /* Computing expectancies */      strcat(fileresilk,fileres);
     for(i=1; i<=nlstate;i++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(j=1; j<=nlstate;j++)        printf("Problem with resultfile: %s\n", fileresilk);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      }
                fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         }      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     fprintf(ficreseij,"%3.0f",age );      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     cptj=0;    }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    *fretone=(*funcone)(p);
         cptj++;    if(*globpri !=0){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      fclose(ficresilk);
       }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     fprintf(ficreseij,"\n");      fflush(fichtm); 
        } 
     free_matrix(gm,0,nhstepm,1,nlstate*2);    return;
     free_matrix(gp,0,nhstepm,1,nlstate*2);  }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*********** Maximum Likelihood Estimation ***************/
   }  
   printf("\n");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
   free_vector(xp,1,npar);    int i,j, iter;
   free_matrix(dnewm,1,nlstate*2,1,npar);    double **xi;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    double fret;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    double fretone; /* Only one call to likelihood */
 }    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
 /************ Variance ******************/    for (i=1;i<=npar;i++)
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      for (j=1;j<=npar;j++)
 {        xi[i][j]=(i==j ? 1.0 : 0.0);
   /* Variance of health expectancies */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    strcpy(filerespow,"pow"); 
   double **newm;    strcat(filerespow,fileres);
   double **dnewm,**doldm;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int i, j, nhstepm, hstepm, h, nstepm ;      printf("Problem with resultfile: %s\n", filerespow);
   int k, cptcode;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double *xp;    }
   double **gp, **gm;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   double ***gradg, ***trgradg;    for (i=1;i<=nlstate;i++)
   double ***p3mat;      for(j=1;j<=nlstate+ndeath;j++)
   double age,agelim, hf;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   int theta;    fprintf(ficrespow,"\n");
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    powell(p,xi,npar,ftol,&iter,&fret,func);
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    free_matrix(xi,1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    fclose(ficrespow);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   fprintf(ficresvij,"\n");    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  }
   doldm=matrix(1,nlstate,1,nlstate);  
    /**** Computes Hessian and covariance matrix ***/
   if(estepm < stepm){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     printf ("Problem %d lower than %d\n",estepm, stepm);  {
   }    double  **a,**y,*x,pd;
   else  hstepm=estepm;      double **hess;
   /* For example we decided to compute the life expectancy with the smallest unit */    int i, j,jk;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int *indx;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      Look at hpijx to understand the reason of that which relies in memory size    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      and note for a fixed period like k years */    void lubksb(double **a, int npar, int *indx, double b[]) ;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    void ludcmp(double **a, int npar, int *indx, double *d) ;
      survival function given by stepm (the optimization length). Unfortunately it    double gompertz(double p[]);
      means that if the survival funtion is printed only each two years of age and if    hess=matrix(1,npar,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    printf("\nCalculation of the hessian matrix. Wait...\n");
   */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1;i<=npar;i++){
   agelim = AGESUP;      printf("%d",i);fflush(stdout);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficlog,"%d",i);fflush(ficlog);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      /*  printf(" %f ",p[i]);
     gp=matrix(0,nhstepm,1,nlstate);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     gm=matrix(0,nhstepm,1,nlstate);    }
     
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++) {
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (j=1;j<=npar;j++)  {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if (j>i) { 
       }          printf(".%d%d",i,j);fflush(stdout);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
       if (popbased==1) {          hess[j][i]=hess[i][j];    
         for(i=1; i<=nlstate;i++)          /*printf(" %lf ",hess[i][j]);*/
           prlim[i][i]=probs[(int)age][i][ij];        }
       }      }
      }
       for(j=1; j<= nlstate; j++){    printf("\n");
         for(h=0; h<=nhstepm; h++){    fprintf(ficlog,"\n");
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    
        a=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */    y=matrix(1,npar,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    x=vector(1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      indx=ivector(1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       if (popbased==1) {    ludcmp(a,npar,indx,&pd);
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       for(j=1; j<= nlstate; j++){      lubksb(a,npar,indx,x);
         for(h=0; h<=nhstepm; h++){      for (i=1;i<=npar;i++){ 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        matcov[i][j]=x[i];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }    }
       }  
     printf("\n#Hessian matrix#\n");
       for(j=1; j<= nlstate; j++)    fprintf(ficlog,"\n#Hessian matrix#\n");
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=npar;i++) { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (j=1;j<=npar;j++) { 
         }        printf("%.3e ",hess[i][j]);
     } /* End theta */        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      printf("\n");
       fprintf(ficlog,"\n");
     for(h=0; h<=nhstepm; h++)    }
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    /* Recompute Inverse */
           trgradg[h][j][theta]=gradg[h][theta][j];    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    ludcmp(a,npar,indx,&pd);
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    /*  printf("\n#Hessian matrix recomputed#\n");
         vareij[i][j][(int)age] =0.;  
     for (j=1;j<=npar;j++) {
     for(h=0;h<=nhstepm;h++){      for (i=1;i<=npar;i++) x[i]=0;
       for(k=0;k<=nhstepm;k++){      x[j]=1;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      lubksb(a,npar,indx,x);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for (i=1;i<=npar;i++){ 
         for(i=1;i<=nlstate;i++)        y[i][j]=x[i];
           for(j=1;j<=nlstate;j++)        printf("%.3e ",y[i][j]);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
     }      printf("\n");
       fprintf(ficlog,"\n");
     fprintf(ficresvij,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    */
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    free_matrix(a,1,npar,1,npar);
       }    free_matrix(y,1,npar,1,npar);
     fprintf(ficresvij,"\n");    free_vector(x,1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate);    free_ivector(indx,1,npar);
     free_matrix(gm,0,nhstepm,1,nlstate);    free_matrix(hess,1,npar,1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
   } /* End age */  
    /*************** hessian matrix ****************/
   free_vector(xp,1,npar);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   free_matrix(doldm,1,nlstate,1,npar);  {
   free_matrix(dnewm,1,nlstate,1,nlstate);    int i;
     int l=1, lmax=20;
 }    double k1,k2;
     double p2[NPARMAX+1];
 /************ Variance of prevlim ******************/    double res;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 {    double fx;
   /* Variance of prevalence limit */    int k=0,kmax=10;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double l1;
   double **newm;  
   double **dnewm,**doldm;    fx=func(x);
   int i, j, nhstepm, hstepm;    for (i=1;i<=npar;i++) p2[i]=x[i];
   int k, cptcode;    for(l=0 ; l <=lmax; l++){
   double *xp;      l1=pow(10,l);
   double *gp, *gm;      delts=delt;
   double **gradg, **trgradg;      for(k=1 ; k <kmax; k=k+1){
   double age,agelim;        delt = delta*(l1*k);
   int theta;        p2[theta]=x[theta] +delt;
            k1=func(p2)-fx;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        p2[theta]=x[theta]-delt;
   fprintf(ficresvpl,"# Age");        k2=func(p2)-fx;
   for(i=1; i<=nlstate;i++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
       fprintf(ficresvpl," %1d-%1d",i,i);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   fprintf(ficresvpl,"\n");        
   #ifdef DEBUG
   xp=vector(1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   doldm=matrix(1,nlstate,1,nlstate);  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   hstepm=1*YEARM; /* Every year of age */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          k=kmax;
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          k=kmax; l=lmax*10.;
     if (stepm >= YEARM) hstepm=1;        }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     gradg=matrix(1,npar,1,nlstate);          delts=delt;
     gp=vector(1,nlstate);        }
     gm=vector(1,nlstate);      }
     }
     for(theta=1; theta <=npar; theta++){    delti[theta]=delts;
       for(i=1; i<=npar; i++){ /* Computes gradient */    return res; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    
       }  }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         gp[i] = prlim[i][i];  {
        int i;
       for(i=1; i<=npar; i++) /* Computes gradient */    int l=1, l1, lmax=20;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double k1,k2,k3,k4,res,fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double p2[NPARMAX+1];
       for(i=1;i<=nlstate;i++)    int k;
         gm[i] = prlim[i][i];  
     fx=func(x);
       for(i=1;i<=nlstate;i++)    for (k=1; k<=2; k++) {
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      for (i=1;i<=npar;i++) p2[i]=x[i];
     } /* End theta */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     trgradg =matrix(1,nlstate,1,npar);      k1=func(p2)-fx;
     
     for(j=1; j<=nlstate;j++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(theta=1; theta <=npar; theta++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         trgradg[j][theta]=gradg[theta][j];      k2=func(p2)-fx;
     
     for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
       varpl[i][(int)age] =0.;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      k3=func(p2)-fx;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    
     for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
     fprintf(ficresvpl,"%.0f ",age );      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(i=1; i<=nlstate;i++)  #ifdef DEBUG
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficresvpl,"\n");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_vector(gp,1,nlstate);  #endif
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);    return res;
     free_matrix(trgradg,1,nlstate,1,npar);  }
   } /* End age */  
   /************** Inverse of matrix **************/
   free_vector(xp,1,npar);  void ludcmp(double **a, int n, int *indx, double *d) 
   free_matrix(doldm,1,nlstate,1,npar);  { 
   free_matrix(dnewm,1,nlstate,1,nlstate);    int i,imax,j,k; 
     double big,dum,sum,temp; 
 }    double *vv; 
    
 /************ Variance of one-step probabilities  ******************/    vv=vector(1,n); 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    *d=1.0; 
 {    for (i=1;i<=n;i++) { 
   int i, j,  i1, k1, l1;      big=0.0; 
   int k2, l2, j1,  z1;      for (j=1;j<=n;j++) 
   int k=0,l, cptcode;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   int first=1;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      vv[i]=1.0/big; 
   double **dnewm,**doldm;    } 
   double *xp;    for (j=1;j<=n;j++) { 
   double *gp, *gm;      for (i=1;i<j;i++) { 
   double **gradg, **trgradg;        sum=a[i][j]; 
   double **mu;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double age,agelim, cov[NCOVMAX];        a[i][j]=sum; 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      } 
   int theta;      big=0.0; 
   char fileresprob[FILENAMELENGTH];      for (i=j;i<=n;i++) { 
   char fileresprobcov[FILENAMELENGTH];        sum=a[i][j]; 
   char fileresprobcor[FILENAMELENGTH];        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   double ***varpij;        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   strcpy(fileresprob,"prob");          big=dum; 
   strcat(fileresprob,fileres);          imax=i; 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        } 
     printf("Problem with resultfile: %s\n", fileresprob);      } 
   }      if (j != imax) { 
   strcpy(fileresprobcov,"probcov");        for (k=1;k<=n;k++) { 
   strcat(fileresprobcov,fileres);          dum=a[imax][k]; 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          a[imax][k]=a[j][k]; 
     printf("Problem with resultfile: %s\n", fileresprobcov);          a[j][k]=dum; 
   }        } 
   strcpy(fileresprobcor,"probcor");        *d = -(*d); 
   strcat(fileresprobcor,fileres);        vv[imax]=vv[j]; 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      } 
     printf("Problem with resultfile: %s\n", fileresprobcor);      indx[j]=imax; 
   }      if (a[j][j] == 0.0) a[j][j]=TINY; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      if (j != n) { 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        dum=1.0/(a[j][j]); 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
        } 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    } 
   fprintf(ficresprob,"# Age");    free_vector(vv,1,n);  /* Doesn't work */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  ;
   fprintf(ficresprobcov,"# Age");  } 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     int i,ii=0,ip,j; 
   for(i=1; i<=nlstate;i++)    double sum; 
     for(j=1; j<=(nlstate+ndeath);j++){   
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    for (i=1;i<=n;i++) { 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      ip=indx[i]; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      sum=b[ip]; 
     }        b[ip]=b[i]; 
   fprintf(ficresprob,"\n");      if (ii) 
   fprintf(ficresprobcov,"\n");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   fprintf(ficresprobcor,"\n");      else if (sum) ii=i; 
   xp=vector(1,npar);      b[i]=sum; 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    } 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    for (i=n;i>=1;i--) { 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      sum=b[i]; 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   first=1;      b[i]=sum/a[i][i]; 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    } 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  } 
     exit(0);  
   }  void pstamp(FILE *fichier)
   else{  {
     fprintf(ficgp,"\n# Routine varprob");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }  }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  
     printf("Problem with html file: %s\n", optionfilehtm);  /************ Frequencies ********************/
     exit(0);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   }  {  /* Some frequencies */
   else{    
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    int first;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    double ***freq; /* Frequencies */
     double *pp, **prop;
   }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   cov[1]=1;    char fileresp[FILENAMELENGTH];
   j=cptcoveff;    
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    pp=vector(1,nlstate);
   j1=0;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   for(k1=1; k1<=1;k1++){    strcpy(fileresp,"p");
     for(i1=1; i1<=ncodemax[k1];i1++){    strcat(fileresp,fileres);
     j1++;    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
     if  (cptcovn>0) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficresprob, "\n#********** Variable ");      exit(0);
       fprintf(ficresprobcov, "\n#********** Variable ");    }
       fprintf(ficgp, "\n#********** Variable ");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");    j1=0;
       fprintf(ficresprobcor, "\n#********** Variable ");    
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    j=cptcoveff;
       fprintf(ficresprob, "**********\n#");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficresprobcov, "**********\n#");    first=1;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficgp, "**********\n#");    for(k1=1; k1<=j;k1++){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficgp, "**********\n#");        j1++;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       fprintf(fichtm, "**********\n#");          scanf("%d", i);*/
     }        for (i=-5; i<=nlstate+ndeath; i++)  
              for (jk=-5; jk<=nlstate+ndeath; jk++)  
       for (age=bage; age<=fage; age ++){            for(m=iagemin; m <= iagemax+3; m++)
         cov[2]=age;              freq[i][jk][m]=0;
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      for (i=1; i<=nlstate; i++)  
         }        for(m=iagemin; m <= iagemax+3; m++)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          prop[i][m]=0;
         for (k=1; k<=cptcovprod;k++)        
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        dateintsum=0;
                k2cpt=0;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        for (i=1; i<=imx; i++) {
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          bool=1;
         gp=vector(1,(nlstate)*(nlstate+ndeath));          if  (cptcovn>0) {
         gm=vector(1,(nlstate)*(nlstate+ndeath));            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for(theta=1; theta <=npar; theta++){                bool=0;
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          if (bool==1){
                      for(m=firstpass; m<=lastpass; m++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              k2=anint[m][i]+(mint[m][i]/12.);
                        /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           k=0;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           for(i=1; i<= (nlstate); i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             for(j=1; j<=(nlstate+ndeath);j++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               k=k+1;                if (m<lastpass) {
               gp[k]=pmmij[i][j];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           }                }
                          
           for(i=1; i<=npar; i++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                  dateintsum=dateintsum+k2;
                      k2cpt++;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                }
           k=0;                /*}*/
           for(i=1; i<=(nlstate); i++){            }
             for(j=1; j<=(nlstate+ndeath);j++){          }
               k=k+1;        }
               gm[k]=pmmij[i][j];         
             }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           }        pstamp(ficresp);
              if  (cptcovn>0) {
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          fprintf(ficresp, "\n#********** Variable "); 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresp, "**********\n#");
         }
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        for(i=1; i<=nlstate;i++) 
           for(theta=1; theta <=npar; theta++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             trgradg[j][theta]=gradg[theta][j];        fprintf(ficresp, "\n");
                
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        for(i=iagemin; i <= iagemax+3; i++){
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          if(i==iagemax+3){
                    fprintf(ficlog,"Total");
         pmij(pmmij,cov,ncovmodel,x,nlstate);          }else{
                    if(first==1){
         k=0;              first=0;
         for(i=1; i<=(nlstate); i++){              printf("See log file for details...\n");
           for(j=1; j<=(nlstate+ndeath);j++){            }
             k=k+1;            fprintf(ficlog,"Age %d", i);
             mu[k][(int) age]=pmmij[i][j];          }
           }          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              pp[jk] += freq[jk][m][i]; 
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          }
             varpij[i][j][(int)age] = doldm[i][j];          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
         /*printf("\n%d ",(int)age);              pos += freq[jk][m][i];
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            if(pp[jk]>=1.e-10){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              if(first==1){
      }*/              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
         fprintf(ficresprob,"\n%d ",(int)age);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         fprintf(ficresprobcov,"\n%d ",(int)age);            }else{
         fprintf(ficresprobcor,"\n%d ",(int)age);              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         i=0;              pp[jk] += freq[jk][m][i];
         for (k=1; k<=(nlstate);k++){          }       
           for (l=1; l<=(nlstate+ndeath);l++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             i=i++;            pos += pp[jk];
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            posprop += prop[jk][i];
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          }
             for (j=1; j<=i;j++){          for(jk=1; jk <=nlstate ; jk++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);            if(pos>=1.e-5){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));              if(first==1)
             }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }/* end of loop for state */            }else{
       } /* end of loop for age */              if(first==1)
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for (k1=1; k1<=(nlstate);k1++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for (l1=1; l1<=(nlstate+ndeath);l1++){            }
           if(l1==k1) continue;            if( i <= iagemax){
           i=(k1-1)*(nlstate+ndeath)+l1;              if(pos>=1.e-5){
           for (k2=1; k2<=(nlstate);k2++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             for (l2=1; l2<=(nlstate+ndeath);l2++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
               if(l2==k2) continue;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               j=(k2-1)*(nlstate+ndeath)+l2;              }
               if(j<=i) continue;              else
               for (age=bage; age<=fage; age ++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                 if ((int)age %5==0){            }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          for(jk=-1; jk <=nlstate+ndeath; jk++)
                   mu1=mu[i][(int) age]/stepm*YEARM ;            for(m=-1; m <=nlstate+ndeath; m++)
                   mu2=mu[j][(int) age]/stepm*YEARM;              if(freq[jk][m][i] !=0 ) {
                   /* Computing eigen value of matrix of covariance */              if(first==1)
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              }
                   /* Eigen vectors */          if(i <= iagemax)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            fprintf(ficresp,"\n");
                   v21=sqrt(1.-v11*v11);          if(first==1)
                   v12=-v21;            printf("Others in log...\n");
                   v22=v11;          fprintf(ficlog,"\n");
                   /*printf(fignu*/        }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      }
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    }
                   if(first==1){    dateintmean=dateintsum/k2cpt; 
                     first=0;   
                     fprintf(ficgp,"\nset parametric;set nolabel");    fclose(ficresp);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    free_vector(pp,1,nlstate);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);    /* End of Freq */
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);  }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  /************ Prevalence ********************/
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  {  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   }else{       in each health status at the date of interview (if between dateprev1 and dateprev2).
                     first=0;       We still use firstpass and lastpass as another selection.
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);   
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    double ***freq; /* Frequencies */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    double *pp, **prop;
                   }/* if first */    double pos,posprop; 
                 } /* age mod 5 */    double  y2; /* in fractional years */
               } /* end loop age */    int iagemin, iagemax;
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);  
               first=1;    iagemin= (int) agemin;
             } /*l12 */    iagemax= (int) agemax;
           } /* k12 */    /*pp=vector(1,nlstate);*/
         } /*l1 */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       }/* k1 */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     } /* loop covariates */    j1=0;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    j=cptcoveff;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for(k1=1; k1<=j;k1++){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
   free_vector(xp,1,npar);        
   fclose(ficresprob);        for (i=1; i<=nlstate; i++)  
   fclose(ficresprobcov);          for(m=iagemin; m <= iagemax+3; m++)
   fclose(ficresprobcor);            prop[i][m]=0.0;
   fclose(ficgp);       
   fclose(fichtm);        for (i=1; i<=imx; i++) { /* Each individual */
 }          bool=1;
           if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
 /******************* Printing html file ***********/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                bool=0;
                   int lastpass, int stepm, int weightopt, char model[],\          } 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          if (bool==1) { 
                   int popforecast, int estepm ,\            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                   double jprev1, double mprev1,double anprev1, \              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   double jprev2, double mprev2,double anprev2){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   int jj1, k1, i1, cpt;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /*char optionfilehtm[FILENAMELENGTH];*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     printf("Problem with %s \n",optionfilehtm), exit(0);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n                  prop[s[m][i]][iagemax+3] += weight[i]; 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n                } 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n              }
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n            } /* end selection of waves */
  - Life expectancies by age and initial health status (estepm=%2d months):          }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        for(i=iagemin; i <= iagemax+3; i++){  
           
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n            posprop += prop[jk][i]; 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          } 
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          for(jk=1; jk <=nlstate ; jk++){     
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            if( i <=  iagemax){ 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              if(posprop>=1.e-5){ 
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
  if(popforecast==1) fprintf(fichtm,"\n            } 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          }/* end jk */ 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        }/* end i */ 
         <br>",fileres,fileres,fileres,fileres);      } /* end i1 */
  else    } /* end k1 */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    
 fprintf(fichtm," <li>Graphs</li><p>");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
  m=cptcoveff;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  }  /* End of prevalence */
   
  jj1=0;  /************* Waves Concatenation ***************/
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      jj1++;  {
      if (cptcovn > 0) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       Death is a valid wave (if date is known).
        for (cpt=1; cpt<=cptcoveff;cpt++)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       and mw[mi+1][i]. dh depends on stepm.
      }       */
      /* Pij */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    int i, mi, m;
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
      /* Quasi-incidences */       double sum=0., jmean=0.;*/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    int first;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    int j, k=0,jk, ju, jl;
        /* Stable prevalence in each health state */    double sum=0.;
        for(cpt=1; cpt<nlstate;cpt++){    first=0;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    jmin=1e+5;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    jmax=-1;
        }    jmean=0.;
     for(cpt=1; cpt<=nlstate;cpt++) {    for(i=1; i<=imx; i++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      mi=0;
 interval) in state (%d): v%s%d%d.png <br>      m=firstpass;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        while(s[m][i] <= nlstate){
      }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
      for(cpt=1; cpt<=nlstate;cpt++) {          mw[++mi][i]=m;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        if(m >=lastpass)
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          break;
      }        else
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          m++;
 health expectancies in states (1) and (2): e%s%d.png<br>      }/* end while */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      if (s[m][i] > nlstate){
    }        mi++;     /* Death is another wave */
  }        /* if(mi==0)  never been interviewed correctly before death */
 fclose(fichtm);           /* Only death is a correct wave */
 }        mw[mi][i]=m;
       }
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      wav[i]=mi;
       if(mi==0){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        nbwarn++;
   int ng;        if(first==0){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     printf("Problem with file %s",optionfilegnuplot);          first=1;
   }        }
         if(first==1){
 #ifdef windows          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     fprintf(ficgp,"cd \"%s\" \n",pathc);        }
 #endif      } /* end mi==0 */
 m=pow(2,cptcoveff);    } /* End individuals */
    
  /* 1eme*/    for(i=1; i<=imx; i++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {      for(mi=1; mi<wav[i];mi++){
    for (k1=1; k1<= m ; k1 ++) {        if (stepm <=0)
           dh[mi][i]=1;
 #ifdef windows        else{
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            if (agedc[i] < 2*AGESUP) {
 #endif              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 #ifdef unix              if(j==0) j=1;  /* Survives at least one month after exam */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              else if(j<0){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);                nberr++;
 #endif                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
 for (i=1; i<= nlstate ; i ++) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 }              }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              k=k+1;
     for (i=1; i<= nlstate ; i ++) {              if (j >= jmax){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                jmax=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                ijmax=i;
 }              }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              if (j <= jmin){
      for (i=1; i<= nlstate ; i ++) {                jmin=j;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                ijmin=i;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }                sum=sum+j;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 #ifdef unix              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");            }
 #endif          }
    }          else{
   }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*2 eme*/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
   for (k1=1; k1<= m ; k1 ++) {            k=k+1;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            if (j >= jmax) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);              jmax=j;
                  ijmax=i;
     for (i=1; i<= nlstate+1 ; i ++) {            }
       k=2*i;            else if (j <= jmin){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              jmin=j;
       for (j=1; j<= nlstate+1 ; j ++) {              ijmin=i;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 }              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            if(j<0){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              nberr++;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (j=1; j<= nlstate+1 ; j ++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
         else fprintf(ficgp," \%%*lf (\%%*lf)");            sum=sum+j;
 }            }
       fprintf(ficgp,"\" t\"\" w l 0,");          jk= j/stepm;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          jl= j -jk*stepm;
       for (j=1; j<= nlstate+1 ; j ++) {          ju= j -(jk+1)*stepm;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(jl==0){
 }                dh[mi][i]=jk;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              bh[mi][i]=0;
       else fprintf(ficgp,"\" t\"\" w l 0,");            }else{ /* We want a negative bias in order to only have interpolation ie
     }                    * at the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   /*3eme*/            }
           }else{
   for (k1=1; k1<= m ; k1 ++) {            if(jl <= -ju){
     for (cpt=1; cpt<= nlstate ; cpt ++) {              dh[mi][i]=jk;
       k=2+nlstate*(2*cpt-2);              bh[mi][i]=jl;       /* bias is positive if real duration
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                                   * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                                   */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            else{
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              dh[mi][i]=jk+1;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              bh[mi][i]=ju;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
 */              bh[mi][i]=ju; /* At least one step */
       for (i=1; i< nlstate ; i ++) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            }
           } /* end if mle */
       }        }
     }      } /* end wave */
   }    }
      jmean=sum/k;
   /* CV preval stat */    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     for (k1=1; k1<= m ; k1 ++) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     for (cpt=1; cpt<nlstate ; cpt ++) {   }
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /*********** Tricode ****************************/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  void tricode(int *Tvar, int **nbcode, int imx)
   {
       for (i=1; i< nlstate ; i ++)    
         fprintf(ficgp,"+$%d",k+i+1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    int cptcode=0;
          cptcoveff=0; 
       l=3+(nlstate+ndeath)*cpt;   
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
       for (i=1; i< nlstate ; i ++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                                   modality*/ 
     }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   }          Ndum[ij]++; /*store the modality */
          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /* proba elementaires */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
    for(i=1,jk=1; i <=nlstate; i++){                                         Tvar[j]. If V=sex and male is 0 and 
     for(k=1; k <=(nlstate+ndeath); k++){                                         female is 1, then  cptcode=1.*/
       if (k != i) {      }
         for(j=1; j <=ncovmodel; j++){  
              for (i=0; i<=cptcode; i++) {
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           jk++;      }
           fprintf(ficgp,"\n");  
         }      ij=1; 
       }      for (i=1; i<=ncodemax[j]; i++) {
     }        for (k=0; k<= maxncov; k++) {
    }          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      for(jk=1; jk <=m; jk++) {            
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            ij++;
        if (ng==2)          }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          if (ij > ncodemax[j]) break; 
        else        }  
          fprintf(ficgp,"\nset title \"Probability\"\n");      } 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    }  
        i=1;  
        for(k2=1; k2<=nlstate; k2++) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {   for (i=1; i<=ncovmodel-2; i++) { 
            if (k != k2){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
              if(ng==2)     ij=Tvar[i];
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);     Ndum[ij]++;
              else   }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;   ij=1;
              for(j=3; j <=ncovmodel; j++) {   for (i=1; i<= maxncov; i++) {
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     if((Ndum[i]!=0) && (i<=ncovcol)){
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       Tvaraff[ij]=i; /*For printing */
                  ij++;       ij++;
                }     }
                else   }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   
              }   cptcoveff=ij-1; /*Number of simple covariates*/
              fprintf(ficgp,")/(1");  }
                
              for(k1=1; k1 <=nlstate; k1++){    /*********** Health Expectancies ****************/
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
                ij=1;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  {
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* Health expectancies, no variances */
                    ij++;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
                  }    double age, agelim, hf;
                  else    double ***p3mat;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double eip;
                }  
                fprintf(ficgp,")");    pstamp(ficreseij);
              }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficreseij,"# Age");
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    for(i=1; i<=nlstate;i++){
              i=i+ncovmodel;      for(j=1; j<=nlstate;j++){
            }        fprintf(ficreseij," e%1d%1d ",i,j);
          }      }
        }      fprintf(ficreseij," e%1d. ",i);
      }    }
    }    fprintf(ficreseij,"\n");
    fclose(ficgp);  
 }  /* end gnuplot */    
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
 /*************** Moving average **************/    }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   int i, cpt, cptcod;     * This is mainly to measure the difference between two models: for example
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)     * if stepm=24 months pijx are given only every 2 years and by summing them
       for (i=1; i<=nlstate;i++)     * we are calculating an estimate of the Life Expectancy assuming a linear 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)     * progression in between and thus overestimating or underestimating according
           mobaverage[(int)agedeb][i][cptcod]=0.;     * to the curvature of the survival function. If, for the same date, we 
         * estimate the model with stepm=1 month, we can keep estepm to 24 months
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){     * to compare the new estimate of Life expectancy with the same linear 
       for (i=1; i<=nlstate;i++){     * hypothesis. A more precise result, taking into account a more precise
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * curvature will be obtained if estepm is as small as stepm. */
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    /* For example we decided to compute the life expectancy with the smallest unit */
           }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
       }       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like estepm months */
        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 }       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 /************** Forecasting ******************/       results. So we changed our mind and took the option of the best precision.
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;    agelim=AGESUP;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* nhstepm age range expressed in number of stepm */
   double *popeffectif,*popcount;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   double ***p3mat;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   char fileresf[FILENAMELENGTH];    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  agelim=AGESUP;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        
   strcpy(fileresf,"f");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   strcat(fileresf,fileres);      
   if((ficresf=fopen(fileresf,"w"))==NULL) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     printf("Problem with forecast resultfile: %s\n", fileresf);      
   }      printf("%d|",(int)age);fflush(stdout);
   printf("Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   if (mobilav==1) {        for(j=1; j<=nlstate;j++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   }            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;          }
    
   agelim=AGESUP;      fprintf(ficreseij,"%3.0f",age );
        for(i=1; i<=nlstate;i++){
   hstepm=1;        eip=0;
   hstepm=hstepm/stepm;        for(j=1; j<=nlstate;j++){
   yp1=modf(dateintmean,&yp);          eip +=eij[i][j][(int)age];
   anprojmean=yp;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   yp2=modf((yp1*12),&yp);        }
   mprojmean=yp;        fprintf(ficreseij,"%9.4f", eip );
   yp1=modf((yp2*30.5),&yp);      }
   jprojmean=yp;      fprintf(ficreseij,"\n");
   if(jprojmean==0) jprojmean=1;      
   if(mprojmean==0) jprojmean=1;    }
      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    printf("\n");
      fprintf(ficlog,"\n");
   for(cptcov=1;cptcov<=i2;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  }
       k=k+1;  
       fprintf(ficresf,"\n#******");  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  {
       }    /* Covariances of health expectancies eij and of total life expectancies according
       fprintf(ficresf,"******\n");     to initial status i, ei. .
       fprintf(ficresf,"# StartingAge FinalAge");    */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
          double age, agelim, hf;
          double ***p3matp, ***p3matm, ***varhe;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    double **dnewm,**doldm;
         fprintf(ficresf,"\n");    double *xp, *xm;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      double **gp, **gm;
     double ***gradg, ***trgradg;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int theta;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    double eip, vip;
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;    xp=vector(1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      xm=vector(1,npar);
            dnewm=matrix(1,nlstate*nlstate,1,npar);
           for (h=0; h<=nhstepm; h++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {    
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    pstamp(ficresstdeij);
             }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficresstdeij,"# Age");
               kk1=0.;kk2=0;    for(i=1; i<=nlstate;i++){
               for(i=1; i<=nlstate;i++) {                    for(j=1; j<=nlstate;j++)
                 if (mobilav==1)        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      fprintf(ficresstdeij," e%1d. ",i);
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficresstdeij,"\n");
                 }  
                    pstamp(ficrescveij);
               }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficrescveij,"# Age");
                 fprintf(ficresf," %.3f", kk1);    for(i=1; i<=nlstate;i++)
                              for(j=1; j<=nlstate;j++){
               }        cptj= (j-1)*nlstate+i;
             }        for(i2=1; i2<=nlstate;i2++)
           }          for(j2=1; j2<=nlstate;j2++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            cptj2= (j2-1)*nlstate+i2;
         }            if(cptj2 <= cptj)
       }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     }          }
   }      }
            fprintf(ficrescveij,"\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     if(estepm < stepm){
   fclose(ficresf);      printf ("Problem %d lower than %d\n",estepm, stepm);
 }    }
 /************** Forecasting ******************/    else  hstepm=estepm;   
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;     * if stepm=24 months pijx are given only every 2 years and by summing them
   int *popage;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;     * progression in between and thus overestimating or underestimating according
   double *popeffectif,*popcount;     * to the curvature of the survival function. If, for the same date, we 
   double ***p3mat,***tabpop,***tabpopprev;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   char filerespop[FILENAMELENGTH];     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * curvature will be obtained if estepm is as small as stepm. */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;    /* For example we decided to compute the life expectancy with the smallest unit */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
   strcpy(filerespop,"pop");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   strcat(filerespop,fileres);       survival function given by stepm (the optimization length). Unfortunately it
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       means that if the survival funtion is printed only each two years of age and if
     printf("Problem with forecast resultfile: %s\n", filerespop);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   printf("Computing forecasting: result on file '%s' \n", filerespop);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     /* If stepm=6 months */
   if (mobilav==1) {    /* nhstepm age range expressed in number of stepm */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    agelim=AGESUP;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (stepm<=12) stepsize=1;    
      p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agelim=AGESUP;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   hstepm=1;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   hstepm=hstepm/stepm;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {    for (age=bage; age<=fage; age ++){ 
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     popage=ivector(0,AGESUP);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     popeffectif=vector(0,AGESUP);   
     popcount=vector(0,AGESUP);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
     i=1;        /* Computing  Variances of health expectancies */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
             decrease memory allocation */
     imx=i;      for(theta=1; theta <=npar; theta++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for(i=1; i<=npar; i++){ 
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
   for(cptcov=1;cptcov<=i2;cptcov++){        }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       k=k+1;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       fprintf(ficrespop,"\n#******");    
       for(j=1;j<=cptcoveff;j++) {        for(j=1; j<= nlstate; j++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(i=1; i<=nlstate; i++){
       }            for(h=0; h<=nhstepm-1; h++){
       fprintf(ficrespop,"******\n");              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       fprintf(ficrespop,"# Age");              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            }
       if (popforecast==1)  fprintf(ficrespop," [Population]");          }
              }
       for (cpt=0; cpt<=0;cpt++) {       
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(ij=1; ij<= nlstate*nlstate; ij++)
                  for(h=0; h<=nhstepm-1; h++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }
           nhstepm = nhstepm/hstepm;      }/* End theta */
                
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
           oldm=oldms;savm=savms;      for(h=0; h<=nhstepm-1; h++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1; j<=nlstate*nlstate;j++)
                  for(theta=1; theta <=npar; theta++)
           for (h=0; h<=nhstepm; h++){            trgradg[h][j][theta]=gradg[h][theta][j];
             if (h==(int) (calagedate+YEARM*cpt)) {      
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }       for(ij=1;ij<=nlstate*nlstate;ij++)
             for(j=1; j<=nlstate+ndeath;j++) {        for(ji=1;ji<=nlstate*nlstate;ji++)
               kk1=0.;kk2=0;          varhe[ij][ji][(int)age] =0.;
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)       printf("%d|",(int)age);fflush(stdout);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                 else {       for(h=0;h<=nhstepm-1;h++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(k=0;k<=nhstepm-1;k++){
                 }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
               }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
               if (h==(int)(calagedate+12*cpt)){          for(ij=1;ij<=nlstate*nlstate;ij++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            for(ji=1;ji<=nlstate*nlstate;ji++)
                   /*fprintf(ficrespop," %.3f", kk1);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        }
               }      }
             }      /* Computing expectancies */
             for(i=1; i<=nlstate;i++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
               kk1=0.;      for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate;j++){        for(j=1; j<=nlstate;j++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                 }            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];            
             }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }      fprintf(ficresstdeij,"%3.0f",age );
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++){
         }        eip=0.;
       }        vip=0.;
          for(j=1; j<=nlstate;j++){
   /******/          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
           nhstepm = nhstepm/hstepm;      }
                fprintf(ficresstdeij,"\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      fprintf(ficrescveij,"%3.0f",age );
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){        for(j=1; j<=nlstate;j++){
             if (h==(int) (calagedate+YEARM*cpt)) {          cptj= (j-1)*nlstate+i;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for(i2=1; i2<=nlstate;i2++)
             }            for(j2=1; j2<=nlstate;j2++){
             for(j=1; j<=nlstate+ndeath;j++) {              cptj2= (j2-1)*nlstate+i2;
               kk1=0.;kk2=0;              if(cptj2 <= cptj)
               for(i=1; i<=nlstate;i++) {                              fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                }
               }        }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      fprintf(ficrescveij,"\n");
             }     
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         }    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
    }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("\n");
     fprintf(ficlog,"\n");
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);    free_vector(xm,1,npar);
     free_vector(popeffectif,0,AGESUP);    free_vector(xp,1,npar);
     free_vector(popcount,0,AGESUP);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   fclose(ficrespop);  
 }  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 /***********************************************/  {
 /**************** Main Program *****************/    /* Variance of health expectancies */
 /***********************************************/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
 int main(int argc, char *argv[])    double **dnewm,**doldm;
 {    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    int k, cptcode;
   double agedeb, agefin,hf;    double *xp;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   double fret;    double **gradgp, **trgradgp; /* for var p point j */
   double **xi,tmp,delta;    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   double dum; /* Dummy variable */    double ***p3mat;
   double ***p3mat;    double age,agelim, hf;
   int *indx;    double ***mobaverage;
   char line[MAXLINE], linepar[MAXLINE];    int theta;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    char digit[4];
   int firstobs=1, lastobs=10;    char digitp[25];
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    char fileresprobmorprev[FILENAMELENGTH];
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    if(popbased==1){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      if(mobilav!=0)
   int mobilav=0,popforecast=0;        strcpy(digitp,"-populbased-mobilav-");
   int hstepm, nhstepm;      else strcpy(digitp,"-populbased-nomobil-");
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    }
     else 
   double bage, fage, age, agelim, agebase;      strcpy(digitp,"-stablbased-");
   double ftolpl=FTOL;  
   double **prlim;    if (mobilav!=0) {
   double *severity;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double ***param; /* Matrix of parameters */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   double  *p;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   double **matcov; /* Matrix of covariance */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   double ***delti3; /* Scale */      }
   double *delti; /* Scale */    }
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */    strcpy(fileresprobmorprev,"prmorprev"); 
   double *epj, vepp;    sprintf(digit,"%-d",ij);
   double kk1, kk2;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   char z[1]="c", occ;    }
 #include <sys/time.h>    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 #include <time.h>   
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
   /* long total_usecs;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   struct timeval start_time, end_time;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      fprintf(ficresprobmorprev," p.%-d SE",j);
   getcwd(pathcd, size);      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   printf("\n%s",version);    }  
   if(argc <=1){    fprintf(ficresprobmorprev,"\n");
     printf("\nEnter the parameter file name: ");    fprintf(ficgp,"\n# Routine varevsij");
     scanf("%s",pathtot);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   else{    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     strcpy(pathtot,argv[1]);  /*   } */
   }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    pstamp(ficresvij);
   /*cygwin_split_path(pathtot,path,optionfile);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    if(popbased==1)
   /* cutv(path,optionfile,pathtot,'\\');*/      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     else
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficresvij,"# Age");
   chdir(path);    for(i=1; i<=nlstate;i++)
   replace(pathc,path);      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 /*-------- arguments in the command line --------*/    fprintf(ficresvij,"\n");
   
   strcpy(fileres,"r");    xp=vector(1,npar);
   strcat(fileres, optionfilefiname);    dnewm=matrix(1,nlstate,1,npar);
   strcat(fileres,".txt");    /* Other files have txt extension */    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   /*---------arguments file --------*/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     printf("Problem with optionfile %s\n",optionfile);    gpp=vector(nlstate+1,nlstate+ndeath);
     goto end;    gmp=vector(nlstate+1,nlstate+ndeath);
   }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
   strcpy(filereso,"o");    if(estepm < stepm){
   strcat(filereso,fileres);      printf ("Problem %d lower than %d\n",estepm, stepm);
   if((ficparo=fopen(filereso,"w"))==NULL) {    }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    else  hstepm=estepm;   
   }    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /* Reads comments: lines beginning with '#' */       nhstepm is the number of hstepm from age to agelim 
   while((c=getc(ficpar))=='#' && c!= EOF){       nstepm is the number of stepm from age to agelin. 
     ungetc(c,ficpar);       Look at hpijx to understand the reason of that which relies in memory size
     fgets(line, MAXLINE, ficpar);       and note for a fixed period like k years */
     puts(line);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fputs(line,ficparo);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed every two years of age and if
   ungetc(c,ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    agelim = AGESUP;
 while((c=getc(ficpar))=='#' && c!= EOF){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     ungetc(c,ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fgets(line, MAXLINE, ficpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     puts(line);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate);
   ungetc(c,ficpar);      gm=matrix(0,nhstepm,1,nlstate);
    
      
   covar=matrix(0,NCOVMAX,1,n);      for(theta=1; theta <=npar; theta++){
   cptcovn=0;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   ncovmodel=2+cptcovn;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   /* Read guess parameters */        if (popbased==1) {
   /* Reads comments: lines beginning with '#' */          if(mobilav ==0){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);              prlim[i][i]=probs[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);          }else{ /* mobilav */ 
     puts(line);            for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
   ungetc(c,ficpar);        }
      
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(j=1; j<= nlstate; j++){
     for(i=1; i <=nlstate; i++)          for(h=0; h<=nhstepm; h++){
     for(j=1; j <=nlstate+ndeath-1; j++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficparo,"%1d%1d",i1,j1);          }
       printf("%1d%1d",i,j);        }
       for(k=1; k<=ncovmodel;k++){        /* This for computing probability of death (h=1 means
         fscanf(ficpar," %lf",&param[i][j][k]);           computed over hstepm matrices product = hstepm*stepm months) 
         printf(" %lf",param[i][j][k]);           as a weighted average of prlim.
         fprintf(ficparo," %lf",param[i][j][k]);        */
       }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fscanf(ficpar,"\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       printf("\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficparo,"\n");        }    
     }        /* end probability of death */
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   p=param[1][1];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Reads comments: lines beginning with '#' */   
   while((c=getc(ficpar))=='#' && c!= EOF){        if (popbased==1) {
     ungetc(c,ficpar);          if(mobilav ==0){
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=nlstate;i++)
     puts(line);              prlim[i][i]=probs[(int)age][i][ij];
     fputs(line,ficparo);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){        for(j=1; j<= nlstate; j++){
     for(j=1; j <=nlstate+ndeath-1; j++){          for(h=0; h<=nhstepm; h++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       printf("%1d%1d",i,j);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficparo,"%1d%1d",i1,j1);          }
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar,"%le",&delti3[i][j][k]);        /* This for computing probability of death (h=1 means
         printf(" %le",delti3[i][j][k]);           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficparo," %le",delti3[i][j][k]);           as a weighted average of prlim.
       }        */
       fscanf(ficpar,"\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       printf("\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       fprintf(ficparo,"\n");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     }        }    
   }        /* end probability of death */
   delti=delti3[1][1];  
          for(j=1; j<= nlstate; j++) /* vareij */
   /* Reads comments: lines beginning with '#' */          for(h=0; h<=nhstepm; h++){
   while((c=getc(ficpar))=='#' && c!= EOF){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);  
     puts(line);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     fputs(line,ficparo);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   }        }
   ungetc(c,ficpar);  
        } /* End theta */
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);      for(h=0; h<=nhstepm; h++) /* veij */
     fprintf(ficparo,"%s",str);        for(j=1; j<=nlstate;j++)
     for(j=1; j <=i; j++){          for(theta=1; theta <=npar; theta++)
       fscanf(ficpar," %le",&matcov[i][j]);            trgradg[h][j][theta]=gradg[h][theta][j];
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     }        for(theta=1; theta <=npar; theta++)
     fscanf(ficpar,"\n");          trgradgp[j][theta]=gradgp[theta][j];
     printf("\n");    
     fprintf(ficparo,"\n");  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   for(i=1; i <=npar; i++)      for(i=1;i<=nlstate;i++)
     for(j=i+1;j<=npar;j++)        for(j=1;j<=nlstate;j++)
       matcov[i][j]=matcov[j][i];          vareij[i][j][(int)age] =0.;
      
   printf("\n");      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     /*-------- Rewriting paramater file ----------*/          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
      strcpy(rfileres,"r");    /* "Rparameterfile */          for(i=1;i<=nlstate;i++)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            for(j=1;j<=nlstate;j++)
      strcat(rfileres,".");    /* */              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        }
     if((ficres =fopen(rfileres,"w"))==NULL) {      }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    
     }      /* pptj */
     fprintf(ficres,"#%s\n",version);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
          matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     /*-------- data file ----------*/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     if((fic=fopen(datafile,"r"))==NULL)    {        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       printf("Problem with datafile: %s\n", datafile);goto end;          varppt[j][i]=doldmp[j][i];
     }      /* end ppptj */
       /*  x centered again */
     n= lastobs;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     severity = vector(1,maxwav);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     outcome=imatrix(1,maxwav+1,1,n);   
     num=ivector(1,n);      if (popbased==1) {
     moisnais=vector(1,n);        if(mobilav ==0){
     annais=vector(1,n);          for(i=1; i<=nlstate;i++)
     moisdc=vector(1,n);            prlim[i][i]=probs[(int)age][i][ij];
     andc=vector(1,n);        }else{ /* mobilav */ 
     agedc=vector(1,n);          for(i=1; i<=nlstate;i++)
     cod=ivector(1,n);            prlim[i][i]=mobaverage[(int)age][i][ij];
     weight=vector(1,n);        }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      }
     mint=matrix(1,maxwav,1,n);               
     anint=matrix(1,maxwav,1,n);      /* This for computing probability of death (h=1 means
     s=imatrix(1,maxwav+1,1,n);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     adl=imatrix(1,maxwav+1,1,n);             as a weighted average of prlim.
     tab=ivector(1,NCOVMAX);      */
     ncodemax=ivector(1,8);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     i=1;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     while (fgets(line, MAXLINE, fic) != NULL)    {      }    
       if ((i >= firstobs) && (i <=lastobs)) {      /* end probability of death */
          
         for (j=maxwav;j>=1;j--){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           strcpy(line,stra);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1; i<=nlstate;i++){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }        }
              } 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresprobmorprev,"\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
       fprintf(ficresvij,"%.0f ",age );
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         for (j=ncovcol;j>=1;j--){      fprintf(ficresvij,"\n");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      free_matrix(gp,0,nhstepm,1,nlstate);
         }      free_matrix(gm,0,nhstepm,1,nlstate);
         num[i]=atol(stra);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
              free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
         i=i+1;    free_vector(gmp,nlstate+1,nlstate+ndeath);
       }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* printf("ii=%d", ij);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
        scanf("%d",i);*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   imx=i-1; /* Number of individuals */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /* for (i=1; i<=imx; i++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     }*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
    /*  for (i=1; i<=imx; i++){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      if (s[4][i]==9)  s[4][i]=-1;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
    */
    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   /* Calculation of the number of parameter from char model*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);    free_vector(xp,1,npar);
   Tvaraff=ivector(1,15);    free_matrix(doldm,1,nlstate,1,nlstate);
   Tvard=imatrix(1,15,1,2);    free_matrix(dnewm,1,nlstate,1,npar);
   Tage=ivector(1,15);          free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   if (strlen(model) >1){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     j=0, j1=0, k1=1, k2=1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     j=nbocc(model,'+');    fclose(ficresprobmorprev);
     j1=nbocc(model,'*');    fflush(ficgp);
     cptcovn=j+1;    fflush(fichtm); 
     cptcovprod=j1;  }  /* end varevsij */
      
     strcpy(modelsav,model);  /************ Variance of prevlim ******************/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       printf("Error. Non available option model=%s ",model);  {
       goto end;    /* Variance of prevalence limit */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
        double **newm;
     for(i=(j+1); i>=1;i--){    double **dnewm,**doldm;
       cutv(stra,strb,modelsav,'+');    int i, j, nhstepm, hstepm;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    int k, cptcode;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    double *xp;
       /*scanf("%d",i);*/    double *gp, *gm;
       if (strchr(strb,'*')) {    double **gradg, **trgradg;
         cutv(strd,strc,strb,'*');    double age,agelim;
         if (strcmp(strc,"age")==0) {    int theta;
           cptcovprod--;    
           cutv(strb,stre,strd,'V');    pstamp(ficresvpl);
           Tvar[i]=atoi(stre);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
           cptcovage++;    fprintf(ficresvpl,"# Age");
             Tage[cptcovage]=i;    for(i=1; i<=nlstate;i++)
             /*printf("stre=%s ", stre);*/        fprintf(ficresvpl," %1d-%1d",i,i);
         }    fprintf(ficresvpl,"\n");
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;    xp=vector(1,npar);
           cutv(strb,stre,strc,'V');    dnewm=matrix(1,nlstate,1,npar);
           Tvar[i]=atoi(stre);    doldm=matrix(1,nlstate,1,nlstate);
           cptcovage++;    
           Tage[cptcovage]=i;    hstepm=1*YEARM; /* Every year of age */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         else {    agelim = AGESUP;
           cutv(strb,stre,strc,'V');    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           Tvar[i]=ncovcol+k1;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           cutv(strb,strc,strd,'V');      if (stepm >= YEARM) hstepm=1;
           Tprod[k1]=i;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           Tvard[k1][1]=atoi(strc);      gradg=matrix(1,npar,1,nlstate);
           Tvard[k1][2]=atoi(stre);      gp=vector(1,nlstate);
           Tvar[cptcovn+k2]=Tvard[k1][1];      gm=vector(1,nlstate);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)      for(theta=1; theta <=npar; theta++){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for(i=1; i<=npar; i++){ /* Computes gradient */
           k1++;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           k2=k2+2;        }
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
       else {          gp[i] = prlim[i][i];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      
        /*  scanf("%d",i);*/        for(i=1; i<=npar; i++) /* Computes gradient */
       cutv(strd,strc,strb,'V');          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       Tvar[i]=atoi(strc);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
       strcpy(modelsav,stra);            gm[i] = prlim[i][i];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/        for(i=1;i<=nlstate;i++)
     }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 }      } /* End theta */
    
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      trgradg =matrix(1,nlstate,1,npar);
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/      for(j=1; j<=nlstate;j++)
     fclose(fic);        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/      for(i=1;i<=nlstate;i++)
       for(i=1;i<=n;i++) weight[i]=1.0;        varpl[i][(int)age] =0.;
     }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     /*-calculation of age at interview from date of interview and age at death -*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     agev=matrix(1,maxwav,1,imx);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {      fprintf(ficresvpl,"%.0f ",age );
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      for(i=1; i<=nlstate;i++)
          anint[m][i]=9999;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
          s[m][i]=-1;      fprintf(ficresvpl,"\n");
        }      free_vector(gp,1,nlstate);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      free_vector(gm,1,nlstate);
       }      free_matrix(gradg,1,npar,1,nlstate);
     }      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    free_vector(xp,1,npar);
       for(m=1; (m<= maxwav); m++){    free_matrix(doldm,1,nlstate,1,npar);
         if(s[m][i] >0){    free_matrix(dnewm,1,nlstate,1,nlstate);
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)  }
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];  /************ Variance of one-step probabilities  ******************/
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
            else {  {
               if (andc[i]!=9999){    int i, j=0,  i1, k1, l1, t, tj;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    int k2, l2, j1,  z1;
               agev[m][i]=-1;    int k=0,l, cptcode;
               }    int first=1, first1;
             }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           }    double **dnewm,**doldm;
           else if(s[m][i] !=9){ /* Should no more exist */    double *xp;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    double *gp, *gm;
             if(mint[m][i]==99 || anint[m][i]==9999)    double **gradg, **trgradg;
               agev[m][i]=1;    double **mu;
             else if(agev[m][i] <agemin){    double age,agelim, cov[NCOVMAX];
               agemin=agev[m][i];    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    int theta;
             }    char fileresprob[FILENAMELENGTH];
             else if(agev[m][i] >agemax){    char fileresprobcov[FILENAMELENGTH];
               agemax=agev[m][i];    char fileresprobcor[FILENAMELENGTH];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }    double ***varpij;
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/    strcpy(fileresprob,"prob"); 
           }    strcat(fileresprob,fileres);
           else { /* =9 */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
             agev[m][i]=1;      printf("Problem with resultfile: %s\n", fileresprob);
             s[m][i]=-1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           }    }
         }    strcpy(fileresprobcov,"probcov"); 
         else /*= 0 Unknown */    strcat(fileresprobcov,fileres);
           agev[m][i]=1;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprobcov);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }    }
     for (i=1; i<=imx; i++)  {    strcpy(fileresprobcor,"probcor"); 
       for(m=1; (m<= maxwav); m++){    strcat(fileresprobcor,fileres);
         if (s[m][i] > (nlstate+ndeath)) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           printf("Error: Wrong value in nlstate or ndeath\n");        printf("Problem with resultfile: %s\n", fileresprobcor);
           goto end;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         }    }
       }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     free_vector(severity,1,maxwav);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     free_imatrix(outcome,1,maxwav+1,1,n);    pstamp(ficresprob);
     free_vector(moisnais,1,n);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     free_vector(annais,1,n);    fprintf(ficresprob,"# Age");
     /* free_matrix(mint,1,maxwav,1,n);    pstamp(ficresprobcov);
        free_matrix(anint,1,maxwav,1,n);*/    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     free_vector(moisdc,1,n);    fprintf(ficresprobcov,"# Age");
     free_vector(andc,1,n);    pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
        fprintf(ficresprobcor,"# Age");
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    for(i=1; i<=nlstate;i++)
          for(j=1; j<=(nlstate+ndeath);j++){
     /* Concatenates waves */        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
       Tcode=ivector(1,100);   /* fprintf(ficresprob,"\n");
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    fprintf(ficresprobcov,"\n");
       ncodemax[1]=1;    fprintf(ficresprobcor,"\n");
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   */
         xp=vector(1,npar);
    codtab=imatrix(1,100,1,10);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    h=0;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    m=pow(2,cptcoveff);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
    for(k=1;k<=cptcoveff; k++){    first=1;
      for(i=1; i <=(m/pow(2,k));i++){    fprintf(ficgp,"\n# Routine varprob");
        for(j=1; j <= ncodemax[k]; j++){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fprintf(fichtm,"\n");
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
          }    file %s<br>\n",optionfilehtmcov);
        }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
      }  and drawn. It helps understanding how is the covariance between two incidences.\
    }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       codtab[1][2]=1;codtab[2][2]=2; */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    /* for(i=1; i <=m ;i++){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       for(k=1; k <=cptcovn; k++){  standard deviations wide on each axis. <br>\
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       printf("\n");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       }  
       scanf("%d",i);*/    cov[1]=1;
        tj=cptcoveff;
    /* Calculates basic frequencies. Computes observed prevalence at single age    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        and prints on file fileres'p'. */    j1=0;
     for(t=1; t<=tj;t++){
          for(i1=1; i1<=ncodemax[t];i1++){ 
            j1++;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if  (cptcovn>0) {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprob, "\n#********** Variable "); 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprob, "**********\n#\n");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficresprobcov, "\n#********** Variable "); 
                for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /* For Powell, parameters are in a vector p[] starting at p[1]          fprintf(ficresprobcov, "**********\n#\n");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if(mle==1){          fprintf(ficgp, "**********\n#\n");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          
     }          
              fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     /*--------- results files --------------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
           fprintf(ficresprobcor, "\n#********** Variable ");    
    jk=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(ficresprobcor, "**********\n#");    
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }
    for(i=1,jk=1; i <=nlstate; i++){        
      for(k=1; k <=(nlstate+ndeath); k++){        for (age=bage; age<=fage; age ++){ 
        if (k != i)          cov[2]=age;
          {          for (k=1; k<=cptcovn;k++) {
            printf("%d%d ",i,k);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
            fprintf(ficres,"%1d%1d ",i,k);          }
            for(j=1; j <=ncovmodel; j++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              printf("%f ",p[jk]);          for (k=1; k<=cptcovprod;k++)
              fprintf(ficres,"%f ",p[jk]);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              jk++;          
            }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            printf("\n");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            fprintf(ficres,"\n");          gp=vector(1,(nlstate)*(nlstate+ndeath));
          }          gm=vector(1,(nlstate)*(nlstate+ndeath));
      }      
    }          for(theta=1; theta <=npar; theta++){
  if(mle==1){            for(i=1; i<=npar; i++)
     /* Computing hessian and covariance matrix */              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     ftolhess=ftol; /* Usually correct */            
     hesscov(matcov, p, npar, delti, ftolhess, func);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
  }            
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            k=0;
     printf("# Scales (for hessian or gradient estimation)\n");            for(i=1; i<= (nlstate); i++){
      for(i=1,jk=1; i <=nlstate; i++){              for(j=1; j<=(nlstate+ndeath);j++){
       for(j=1; j <=nlstate+ndeath; j++){                k=k+1;
         if (j!=i) {                gp[k]=pmmij[i][j];
           fprintf(ficres,"%1d%1d",i,j);              }
           printf("%1d%1d",i,j);            }
           for(k=1; k<=ncovmodel;k++){            
             printf(" %.5e",delti[jk]);            for(i=1; i<=npar; i++)
             fprintf(ficres," %.5e",delti[jk]);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
             jk++;      
           }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           printf("\n");            k=0;
           fprintf(ficres,"\n");            for(i=1; i<=(nlstate); i++){
         }              for(j=1; j<=(nlstate+ndeath);j++){
       }                k=k+1;
      }                gm[k]=pmmij[i][j];
                  }
     k=1;            }
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     for(i=1;i<=npar;i++){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       /*  if (k>nlstate) k=1;          }
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       printf("%s%d%d",alph[k],i1,tab[i]);*/            for(theta=1; theta <=npar; theta++)
       fprintf(ficres,"%3d",i);              trgradg[j][theta]=gradg[theta][j];
       printf("%3d",i);          
       for(j=1; j<=i;j++){          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
         fprintf(ficres," %.5e",matcov[i][j]);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         printf(" %.5e",matcov[i][j]);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficres,"\n");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       printf("\n");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       k++;  
     }          pmij(pmmij,cov,ncovmodel,x,nlstate);
              
     while((c=getc(ficpar))=='#' && c!= EOF){          k=0;
       ungetc(c,ficpar);          for(i=1; i<=(nlstate); i++){
       fgets(line, MAXLINE, ficpar);            for(j=1; j<=(nlstate+ndeath);j++){
       puts(line);              k=k+1;
       fputs(line,ficparo);              mu[k][(int) age]=pmmij[i][j];
     }            }
     ungetc(c,ficpar);          }
     estepm=0;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     if (estepm==0 || estepm < stepm) estepm=stepm;              varpij[i][j][(int)age] = doldm[i][j];
     if (fage <= 2) {  
       bage = ageminpar;          /*printf("\n%d ",(int)age);
       fage = agemaxpar;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            }*/
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcor,"\n%d ",(int)age);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     puts(line);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     fputs(line,ficparo);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   ungetc(c,ficpar);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
            }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          i=0;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (k=1; k<=(nlstate);k++){
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for (l=1; l<=(nlstate+ndeath);l++){ 
                    i=i++;
   while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     ungetc(c,ficpar);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     fgets(line, MAXLINE, ficpar);              for (j=1; j<=i;j++){
     puts(line);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     fputs(line,ficparo);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   }              }
   ungetc(c,ficpar);            }
            }/* end of loop for state */
         } /* end of loop for age */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        /* Confidence intervalle of pij  */
         /*
   fscanf(ficpar,"pop_based=%d\n",&popbased);          fprintf(ficgp,"\nset noparametric;unset label");
   fprintf(ficparo,"pop_based=%d\n",popbased);            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   fprintf(ficres,"pop_based=%d\n",popbased);            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
            fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     ungetc(c,ficpar);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     puts(line);        */
     fputs(line,ficparo);  
   }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   ungetc(c,ficpar);        first1=1;
         for (k2=1; k2<=(nlstate);k2++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            if(l2==k2) continue;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 while((c=getc(ficpar))=='#' && c!= EOF){                if(l1==k1) continue;
     ungetc(c,ficpar);                i=(k1-1)*(nlstate+ndeath)+l1;
     fgets(line, MAXLINE, ficpar);                if(i<=j) continue;
     puts(line);                for (age=bage; age<=fage; age ++){ 
     fputs(line,ficparo);                  if ((int)age %5==0){
   }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   ungetc(c,ficpar);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    mu2=mu[j][(int) age]/stepm*YEARM;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 /*------------ gnuplot -------------*/                    /* Eigen vectors */
   strcpy(optionfilegnuplot,optionfilefiname);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   strcat(optionfilegnuplot,".gp");                    /*v21=sqrt(1.-v11*v11); *//* error */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                    v21=(lc1-v1)/cv12*v11;
     printf("Problem with file %s",optionfilegnuplot);                    v12=-v21;
   }                    v22=v11;
   fclose(ficgp);                    tnalp=v21/v11;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                    if(first1==1){
 /*--------- index.htm --------*/                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   strcpy(optionfilehtm,optionfile);                    }
   strcat(optionfilehtm,".htm");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                    /*printf(fignu*/
     printf("Problem with %s \n",optionfilehtm), exit(0);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                      first=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                      fprintf(ficgp,"\nset parametric;unset label");
 \n                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 Total number of observations=%d <br>\n                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 <hr  size=\"2\" color=\"#EC5E5E\">   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
  <ul><li>Parameter files<br>\n  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fclose(fichtm);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 /*------------ free_vector  -------------*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  chdir(path);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  free_ivector(wav,1,imx);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                    }else{
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                        first=0;
  free_ivector(num,1,n);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
  free_vector(agedc,1,n);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
  fclose(ficparo);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  fclose(ficres);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
   /*--------------- Prevalence limit --------------*/                  } /* age mod 5 */
                  } /* end loop age */
   strcpy(filerespl,"pl");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcat(filerespl,fileres);                first=1;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              } /*l12 */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            } /* k12 */
   }          } /*l1 */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }/* k1 */
   fprintf(ficrespl,"#Prevalence limit\n");      } /* loop covariates */
   fprintf(ficrespl,"#Age ");    }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   fprintf(ficrespl,"\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   prlim=matrix(1,nlstate,1,nlstate);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(xp,1,npar);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fclose(ficresprob);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fclose(ficresprobcov);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fclose(ficresprobcor);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fflush(ficgp);
   k=0;    fflush(fichtmcov);
   agebase=ageminpar;  }
   agelim=agemaxpar;  
   ftolpl=1.e-10;  
   i1=cptcoveff;  /******************* Printing html file ***********/
   if (cptcovn < 1){i1=1;}  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   for(cptcov=1;cptcov<=i1;cptcov++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    int popforecast, int estepm ,\
         k=k+1;                    double jprev1, double mprev1,double anprev1, \
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                    double jprev2, double mprev2,double anprev2){
         fprintf(ficrespl,"\n#******");    int jj1, k1, i1, cpt;
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
         fprintf(ficrespl,"******\n");     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
          </ul>");
         for (age=agebase; age<=agelim; age++){     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
           fprintf(ficrespl,"%.0f",age );             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
           for(i=1; i<=nlstate;i++)     fprintf(fichtm,"\
           fprintf(ficrespl," %.5f", prlim[i][i]);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
           fprintf(ficrespl,"\n");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
         }     fprintf(fichtm,"\
       }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   fclose(ficrespl);     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   /*------------- h Pij x at various ages ------------*/     <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/   jj1=0;
    for(k1=1; k1<=m;k1++){
   agelim=AGESUP;     for(i1=1; i1<=ncodemax[k1];i1++){
   hstepm=stepsize*YEARM; /* Every year of age */       jj1++;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   k=0;         for (cpt=1; cpt<=cptcoveff;cpt++) 
   for(cptcov=1;cptcov<=i1;cptcov++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       k=k+1;       }
         fprintf(ficrespij,"\n#****** ");       /* Pij */
         for(j=1;j<=cptcoveff;j++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         fprintf(ficrespij,"******\n");       /* Quasi-incidences */
               fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */         /* Period (stable) prevalence in each health state */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         for(cpt=1; cpt<nlstate;cpt++){
           oldm=oldms;savm=savms;           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           fprintf(ficrespij,"# Age");         }
           for(i=1; i<=nlstate;i++)       for(cpt=1; cpt<=nlstate;cpt++) {
             for(j=1; j<=nlstate+ndeath;j++)          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
               fprintf(ficrespij," %1d-%1d",i,j);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           fprintf(ficrespij,"\n");       }
            for (h=0; h<=nhstepm; h++){     } /* end i1 */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   }/* End k1 */
             for(i=1; i<=nlstate;i++)   fprintf(fichtm,"</ul>");
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");   fprintf(fichtm,"\
              }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
           fprintf(ficrespij,"\n");  
         }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   }   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
   fclose(ficrespij);   fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   /*---------- Forecasting ------------------*/   fprintf(fichtm,"\
   if((stepm == 1) && (strcmp(model,".")==0)){   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);     <a href=\"%s\">%s</a> <br>\n</li>",
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   }   fprintf(fichtm,"\
   else{   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     erreur=108;     <a href=\"%s\">%s</a> <br>\n</li>",
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   }   fprintf(fichtm,"\
     - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   /*---------- Health expectancies and variances ------------*/   fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   strcpy(filerest,"t");           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   strcat(filerest,fileres);   fprintf(fichtm,"\
   if((ficrest=fopen(filerest,"w"))==NULL) {   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   strcpy(filerese,"e");  /*      <br>",fileres,fileres,fileres,fileres); */
   strcat(filerese,fileres);  /*  else  */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   fflush(fichtm);
   }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
    m=cptcoveff;
  strcpy(fileresv,"v");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   jj1=0;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   for(k1=1; k1<=m;k1++){
   }     for(i1=1; i1<=ncodemax[k1];i1++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       jj1++;
   calagedate=-1;       if (cptcovn > 0) {
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   k=0;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   for(cptcov=1;cptcov<=i1;cptcov++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       }
       k=k+1;       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficrest,"\n#****** ");         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       for(j=1;j<=cptcoveff;j++)  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       fprintf(ficrest,"******\n");       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       fprintf(ficreseij,"\n#****** ");  health expectancies in states (1) and (2): %s%d.png<br>\
       for(j=1;j<=cptcoveff;j++)  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     } /* end i1 */
       fprintf(ficreseij,"******\n");   }/* End k1 */
    fprintf(fichtm,"</ul>");
       fprintf(ficresvij,"\n#****** ");   fflush(fichtm);
       for(j=1;j<=cptcoveff;j++)  }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");  /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    char dirfileres[132],optfileres[132];
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      int ng;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       oldm=oldms;savm=savms;  /*     printf("Problem with file %s",optionfilegnuplot); */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
      /*   } */
   
      /*#ifdef windows */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficgp,"cd \"%s\" \n",pathc);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      /*#endif */
       fprintf(ficrest,"\n");    m=pow(2,cptcoveff);
   
       epj=vector(1,nlstate+1);    strcpy(dirfileres,optionfilefiname);
       for(age=bage; age <=fage ;age++){    strcpy(optfileres,"vpl");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   /* 1eme*/
         if (popbased==1) {    for (cpt=1; cpt<= nlstate ; cpt ++) {
           for(i=1; i<=nlstate;i++)     for (k1=1; k1<= m ; k1 ++) {
             prlim[i][i]=probs[(int)age][i][k];       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
               fprintf(ficgp,"set xlabel \"Age\" \n\
         fprintf(ficrest," %4.0f",age);  set ylabel \"Probability\" \n\
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  set ter png small\n\
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  set size 0.65,0.65\n\
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }       for (i=1; i<= nlstate ; i ++) {
           epj[nlstate+1] +=epj[j];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         }         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
         for(i=1, vepp=0.;i <=nlstate;i++)       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           for(j=1;j <=nlstate;j++)       for (i=1; i<= nlstate ; i ++) {
             vepp += vareij[i][j][(int)age];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));         else fprintf(ficgp," \%%*lf (\%%*lf)");
         for(j=1;j <=nlstate;j++){       } 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         }       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficrest,"\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       }  
   }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 free_matrix(mint,1,maxwav,1,n);     }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    }
     free_vector(weight,1,n);    /*2 eme*/
   fclose(ficreseij);    
   fclose(ficresvij);    for (k1=1; k1<= m ; k1 ++) { 
   fclose(ficrest);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   fclose(ficpar);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   free_vector(epj,1,nlstate+1);      
        for (i=1; i<= nlstate+1 ; i ++) {
   /*------- Variance limit prevalence------*/          k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   strcpy(fileresvpl,"vpl");        for (j=1; j<= nlstate+1 ; j ++) {
   strcat(fileresvpl,fileres);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        }   
     exit(0);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   k=0;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }   
       k=k+1;        fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficresvpl,"\n#****** ");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++)        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresvpl,"******\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
              }   
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       oldm=oldms;savm=savms;        else fprintf(ficgp,"\" t\"\" w l 0,");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }
     }    }
  }    
     /*3eme*/
   fclose(ficresvpl);    
     for (k1=1; k1<= m ; k1 ++) { 
   /*---------- End : free ----------------*/      for (cpt=1; cpt<= nlstate ; cpt ++) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        /*       k=2+nlstate*(2*cpt-2); */
          k=2+(nlstate+1)*(cpt-1);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,"set ter png small\n\
    set size 0.65,0.65\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   free_matrix(matcov,1,npar,1,npar);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   free_vector(delti,1,npar);          
   free_matrix(agev,1,maxwav,1,imx);        */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   fprintf(fichtm,"\n</body>");          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   fclose(fichtm);          
   fclose(ficgp);        } 
          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
   if(erreur >0)    }
     printf("End of Imach with error or warning %d\n",erreur);    
   else   printf("End of Imach\n");    /* CV preval stable (period) */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<=nlstate ; cpt ++) {
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        k=3;
   /*printf("Total time was %d uSec.\n", total_usecs);*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   /*------ End -----------*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
  end:  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 #ifdef windows        
   /* chdir(pathcd);*/        for (i=1; i< nlstate ; i ++)
 #endif          fprintf(ficgp,"+$%d",k+i+1);
  /*system("wgnuplot graph.plt");*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        
  /*system("cd ../gp37mgw");*/        l=3+(nlstate+ndeath)*cpt;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
  strcpy(plotcmd,GNUPLOTPROGRAM);        for (i=1; i< nlstate ; i ++) {
  strcat(plotcmd," ");          l=3+(nlstate+ndeath)*cpt;
  strcat(plotcmd,optionfilegnuplot);          fprintf(ficgp,"+$%d",l+i+1);
  system(plotcmd);        }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 #ifdef windows      } 
   while (z[0] != 'q') {    }  
     /* chdir(path); */    
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    /* proba elementaires */
     scanf("%s",z);    for(i=1,jk=1; i <=nlstate; i++){
     if (z[0] == 'c') system("./imach");      for(k=1; k <=(nlstate+ndeath); k++){
     else if (z[0] == 'e') system(optionfilehtm);        if (k != i) {
     else if (z[0] == 'g') system(plotcmd);          for(j=1; j <=ncovmodel; j++){
     else if (z[0] == 'q') exit(0);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   }            jk++; 
 #endif            fprintf(ficgp,"\n");
 }          }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.123


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>