Diff for /imach/src/imach.c between versions 1.48 and 1.124

version 1.48, 2002/06/10 13:12:49 version 1.124, 2006/03/22 17:13:53
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.124  2006/03/22 17:13:53  lievre
      Parameters are printed with %lf instead of %f (more numbers after the comma).
   This program computes Healthy Life Expectancies from    The log-likelihood is printed in the log file
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.123  2006/03/20 10:52:43  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Module): <title> changed, corresponds to .htm file
   case of a health survey which is our main interest) -2- at least a    name. <head> headers where missing.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    * imach.c (Module): Weights can have a decimal point as for
   computed from the time spent in each health state according to a    English (a comma might work with a correct LC_NUMERIC environment,
   model. More health states you consider, more time is necessary to reach the    otherwise the weight is truncated).
   Maximum Likelihood of the parameters involved in the model.  The    Modification of warning when the covariates values are not 0 or
   simplest model is the multinomial logistic model where pij is the    1.
   probability to be observed in state j at the second wave    Version 0.98g
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.122  2006/03/20 09:45:41  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Weights can have a decimal point as for
   complex model than "constant and age", you should modify the program    English (a comma might work with a correct LC_NUMERIC environment,
   where the markup *Covariates have to be included here again* invites    otherwise the weight is truncated).
   you to do it.  More covariates you add, slower the    Modification of warning when the covariates values are not 0 or
   convergence.    1.
     Version 0.98g
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.121  2006/03/16 17:45:01  lievre
   identical for each individual. Also, if a individual missed an    * imach.c (Module): Comments concerning covariates added
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   hPijx is the probability to be observed in state i at age x+h    not 1 month. Version 0.98f
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.120  2006/03/16 15:10:38  lievre
   states. This elementary transition (by month or quarter trimester,    (Module): refinements in the computation of lli if
   semester or year) is model as a multinomial logistic.  The hPx    status=-2 in order to have more reliable computation if stepm is
   matrix is simply the matrix product of nh*stepm elementary matrices    not 1 month. Version 0.98f
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Also this programme outputs the covariance matrix of the parameters but also    computed as likelihood omitting the logarithm. Version O.98e
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.118  2006/03/14 18:20:07  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): varevsij Comments added explaining the second
            Institut national d'études démographiques, Paris.    table of variances if popbased=1 .
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   from the European Union.    (Module): Function pstamp added
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.98d
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.117  2006/03/14 17:16:22  brouard
   **********************************************************************/    (Module): varevsij Comments added explaining the second
      table of variances if popbased=1 .
 #include <math.h>    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #include <stdio.h>    (Module): Function pstamp added
 #include <stdlib.h>    (Module): Version 0.98d
 #include <unistd.h>  
     Revision 1.116  2006/03/06 10:29:27  brouard
 #define MAXLINE 256    (Module): Variance-covariance wrong links and
 #define GNUPLOTPROGRAM "gnuplot"    varian-covariance of ej. is needed (Saito).
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.115  2006/02/27 12:17:45  brouard
 /*#define DEBUG*/    (Module): One freematrix added in mlikeli! 0.98c
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.114  2006/02/26 12:57:58  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Some improvements in processing parameter
     filename with strsep.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 #define NINTERVMAX 8    datafile was not closed, some imatrix were not freed and on matrix
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    allocation too.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.112  2006/01/30 09:55:26  brouard
 #define MAXN 20000    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.111  2006/01/25 20:38:18  brouard
 #define AGEBASE 40    (Module): Lots of cleaning and bugs added (Gompertz)
 #ifdef windows    (Module): Comments can be added in data file. Missing date values
 #define DIRSEPARATOR '\\'    can be a simple dot '.'.
 #else  
 #define DIRSEPARATOR '/'    Revision 1.110  2006/01/25 00:51:50  brouard
 #endif    (Module): Lots of cleaning and bugs added (Gompertz)
   
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Revision 1.109  2006/01/24 19:37:15  brouard
 int erreur; /* Error number */    (Module): Comments (lines starting with a #) are allowed in data.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.108  2006/01/19 18:05:42  lievre
 int npar=NPARMAX;    Gnuplot problem appeared...
 int nlstate=2; /* Number of live states */    To be fixed
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.107  2006/01/19 16:20:37  brouard
 int popbased=0;    Test existence of gnuplot in imach path
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.106  2006/01/19 13:24:36  brouard
 int maxwav; /* Maxim number of waves */    Some cleaning and links added in html output
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.105  2006/01/05 20:23:19  lievre
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    *** empty log message ***
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.104  2005/09/30 16:11:43  lievre
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): sump fixed, loop imx fixed, and simplifications.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): If the status is missing at the last wave but we know
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    that the person is alive, then we can code his/her status as -2
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (instead of missing=-1 in earlier versions) and his/her
 FILE *fichtm; /* Html File */    contributions to the likelihood is 1 - Prob of dying from last
 FILE *ficreseij;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 char filerese[FILENAMELENGTH];    the healthy state at last known wave). Version is 0.98
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.103  2005/09/30 15:54:49  lievre
 FILE  *ficresvpl;    (Module): sump fixed, loop imx fixed, and simplifications.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.102  2004/09/15 17:31:30  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Add the possibility to read data file including tab characters.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.101  2004/09/15 10:38:38  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Fix on curr_time
   
 char filerest[FILENAMELENGTH];    Revision 1.100  2004/07/12 18:29:06  brouard
 char fileregp[FILENAMELENGTH];    Add version for Mac OS X. Just define UNIX in Makefile
 char popfile[FILENAMELENGTH];  
     Revision 1.99  2004/06/05 08:57:40  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    *** empty log message ***
   
 #define NR_END 1    Revision 1.98  2004/05/16 15:05:56  brouard
 #define FREE_ARG char*    New version 0.97 . First attempt to estimate force of mortality
 #define FTOL 1.0e-10    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 #define NRANSI    This is the basic analysis of mortality and should be done before any
 #define ITMAX 200    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 #define TOL 2.0e-4    from other sources like vital statistic data.
   
 #define CGOLD 0.3819660    The same imach parameter file can be used but the option for mle should be -3.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    The output is very simple: only an estimate of the intercept and of
 #define TINY 1.0e-20    the slope with 95% confident intervals.
   
 static double maxarg1,maxarg2;    Current limitations:
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    A) Even if you enter covariates, i.e. with the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
      B) There is no computation of Life Expectancy nor Life Table.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 static double sqrarg;    suppressed.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int imx;    rewritten within the same printf. Workaround: many printfs.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 int estepm;    (Repository): Using imachwizard code to output a more meaningful covariance
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    matrix (cov(a12,c31) instead of numbers.
   
 int m,nb;    Revision 1.94  2003/06/27 13:00:02  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Just cleaning
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.93  2003/06/25 16:33:55  brouard
 double dateintmean=0;    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 double *weight;    (Module): Version 0.96b
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.92  2003/06/25 16:30:45  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 /**************** split *************************/    (Repository): Elapsed time after each iteration is now output. It
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    helps to forecast when convergence will be reached. Elapsed time
 {    is stamped in powell.  We created a new html file for the graphs
    char *s;                             /* pointer */    concerning matrix of covariance. It has extension -cov.htm.
    int  l1, l2;                         /* length counters */  
     Revision 1.90  2003/06/24 12:34:15  brouard
    l1 = strlen( path );                 /* length of path */    (Module): Some bugs corrected for windows. Also, when
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    mle=-1 a template is output in file "or"mypar.txt with the design
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    of the covariance matrix to be input.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.89  2003/06/24 12:30:52  brouard
       extern char       *getwd( );    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
       if ( getwd( dirc ) == NULL ) {    of the covariance matrix to be input.
 #else  
       extern char       *getcwd( );    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.87  2003/06/18 12:26:01  brouard
          return( GLOCK_ERROR_GETCWD );    Version 0.96
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.86  2003/06/17 20:04:08  brouard
    } else {                             /* strip direcotry from path */    (Module): Change position of html and gnuplot routines and added
       s++;                              /* after this, the filename */    routine fileappend.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.85  2003/06/17 13:12:43  brouard
       strcpy( name, s );                /* save file name */    * imach.c (Repository): Check when date of death was earlier that
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    current date of interview. It may happen when the death was just
       dirc[l1-l2] = 0;                  /* add zero */    prior to the death. In this case, dh was negative and likelihood
    }    was wrong (infinity). We still send an "Error" but patch by
    l1 = strlen( dirc );                 /* length of directory */    assuming that the date of death was just one stepm after the
 #ifdef windows    interview.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Repository): Because some people have very long ID (first column)
 #else    we changed int to long in num[] and we added a new lvector for
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    memory allocation. But we also truncated to 8 characters (left
 #endif    truncation)
    s = strrchr( name, '.' );            /* find last / */    (Repository): No more line truncation errors.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.84  2003/06/13 21:44:43  brouard
    l1= strlen( name);    * imach.c (Repository): Replace "freqsummary" at a correct
    l2= strlen( s)+1;    place. It differs from routine "prevalence" which may be called
    strncpy( finame, name, l1-l2);    many times. Probs is memory consuming and must be used with
    finame[l1-l2]= 0;    parcimony.
    return( 0 );                         /* we're done */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 }  
     Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /******************************************/  
     Revision 1.82  2003/06/05 15:57:20  brouard
 void replace(char *s, char*t)    Add log in  imach.c and  fullversion number is now printed.
 {  
   int i;  */
   int lg=20;  /*
   i=0;     Interpolated Markov Chain
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Short summary of the programme:
     (s[i] = t[i]);    
     if (t[i]== '\\') s[i]='/';    This program computes Healthy Life Expectancies from
   }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 int nbocc(char *s, char occ)    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   int i,j=0;    (if any) in individual health status.  Health expectancies are
   int lg=20;    computed from the time spent in each health state according to a
   i=0;    model. More health states you consider, more time is necessary to reach the
   lg=strlen(s);    Maximum Likelihood of the parameters involved in the model.  The
   for(i=0; i<= lg; i++) {    simplest model is the multinomial logistic model where pij is the
   if  (s[i] == occ ) j++;    probability to be observed in state j at the second wave
   }    conditional to be observed in state i at the first wave. Therefore
   return j;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 void cutv(char *u,char *v, char*t, char occ)    where the markup *Covariates have to be included here again* invites
 {    you to do it.  More covariates you add, slower the
   int i,lg,j,p=0;    convergence.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    The advantage of this computer programme, compared to a simple
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    multinomial logistic model, is clear when the delay between waves is not
   }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
   lg=strlen(t);    account using an interpolation or extrapolation.  
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    hPijx is the probability to be observed in state i at age x+h
   }    conditional to the observed state i at age x. The delay 'h' can be
      u[p]='\0';    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
    for(j=0; j<= lg; j++) {    semester or year) is modelled as a multinomial logistic.  The hPx
     if (j>=(p+1))(v[j-p-1] = t[j]);    matrix is simply the matrix product of nh*stepm elementary matrices
   }    and the contribution of each individual to the likelihood is simply
 }    hPijx.
   
 /********************** nrerror ********************/    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
 void nrerror(char error_text[])    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   fprintf(stderr,"ERREUR ...\n");             Institut national d'études démographiques, Paris.
   fprintf(stderr,"%s\n",error_text);    This software have been partly granted by Euro-REVES, a concerted action
   exit(1);    from the European Union.
 }    It is copyrighted identically to a GNU software product, ie programme and
 /*********************** vector *******************/    software can be distributed freely for non commercial use. Latest version
 double *vector(int nl, int nh)    can be accessed at http://euroreves.ined.fr/imach .
 {  
   double *v;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   if (!v) nrerror("allocation failure in vector");    
   return v-nl+NR_END;    **********************************************************************/
 }  /*
     main
 /************************ free vector ******************/    read parameterfile
 void free_vector(double*v, int nl, int nh)    read datafile
 {    concatwav
   free((FREE_ARG)(v+nl-NR_END));    freqsummary
 }    if (mle >= 1)
       mlikeli
 /************************ivector *******************************/    print results files
 int *ivector(long nl,long nh)    if mle==1 
 {       computes hessian
   int *v;    read end of parameter file: agemin, agemax, bage, fage, estepm
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));        begin-prev-date,...
   if (!v) nrerror("allocation failure in ivector");    open gnuplot file
   return v-nl+NR_END;    open html file
 }    period (stable) prevalence
      for age prevalim()
 /******************free ivector **************************/    h Pij x
 void free_ivector(int *v, long nl, long nh)    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
   free((FREE_ARG)(v+nl-NR_END));    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 /******************* imatrix *******************************/     movingaverage()
 int **imatrix(long nrl, long nrh, long ncl, long nch)    varevsij() 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Variance of period (stable) prevalence
   int **m;   end
    */
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;   
   m -= nrl;  #include <math.h>
    #include <stdio.h>
    #include <stdlib.h>
   /* allocate rows and set pointers to them */  #include <string.h>
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #include <unistd.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #include <limits.h>
   m[nrl] -= ncl;  #include <sys/types.h>
    #include <sys/stat.h>
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #include <errno.h>
    extern int errno;
   /* return pointer to array of pointers to rows */  
   return m;  /* #include <sys/time.h> */
 }  #include <time.h>
   #include "timeval.h"
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  /* #include <libintl.h> */
       int **m;  /* #define _(String) gettext (String) */
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  #define MAXLINE 256
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define GNUPLOTPROGRAM "gnuplot"
   free((FREE_ARG) (m+nrl-NR_END));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   
 /******************* matrix *******************************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   double **m;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NINTERVMAX 8
   if (!m) nrerror("allocation failure 1 in matrix()");  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   m += NR_END;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m -= nrl;  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define YEARM 12. /* Number of months per year */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define AGESUP 130
   m[nrl] += NR_END;  #define AGEBASE 40
   m[nrl] -= ncl;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define DIRSEPARATOR '/'
   return m;  #define CHARSEPARATOR "/"
 }  #define ODIRSEPARATOR '\\'
   #else
 /*************************free matrix ************************/  #define DIRSEPARATOR '\\'
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define CHARSEPARATOR "\\"
 {  #define ODIRSEPARATOR '/'
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #endif
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /* $Id$ */
   /* $State$ */
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 {  char fullversion[]="$Revision$ $Date$"; 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char strstart[80];
   double ***m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int nvar;
   if (!m) nrerror("allocation failure 1 in matrix()");  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m += NR_END;  int npar=NPARMAX;
   m -= nrl;  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int popbased=0;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int jmin, jmax; /* min, max spacing between 2 waves */
   int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int gipmx, gsw; /* Global variables on the number of contributions 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");                     to the likelihood and the sum of weights (done by funcone)*/
   m[nrl][ncl] += NR_END;  int mle, weightopt;
   m[nrl][ncl] -= nll;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   for (j=ncl+1; j<=nch; j++)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     m[nrl][j]=m[nrl][j-1]+nlay;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
               * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for (i=nrl+1; i<=nrh; i++) {  double jmean; /* Mean space between 2 waves */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  double **oldm, **newm, **savm; /* Working pointers to matrices */
     for (j=ncl+1; j<=nch; j++)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       m[i][j]=m[i][j-1]+nlay;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   }  FILE *ficlog, *ficrespow;
   return m;  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /*************************free ma3x ************************/  double sw; /* Sum of weights */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char filerespow[FILENAMELENGTH];
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  FILE *ficresilk;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   free((FREE_ARG)(m+nrl-NR_END));  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /***************** f1dim *************************/  char filerese[FILENAMELENGTH];
 extern int ncom;  FILE *ficresstdeij;
 extern double *pcom,*xicom;  char fileresstde[FILENAMELENGTH];
 extern double (*nrfunc)(double []);  FILE *ficrescveij;
    char filerescve[FILENAMELENGTH];
 double f1dim(double x)  FILE  *ficresvij;
 {  char fileresv[FILENAMELENGTH];
   int j;  FILE  *ficresvpl;
   double f;  char fileresvpl[FILENAMELENGTH];
   double *xt;  char title[MAXLINE];
    char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   xt=vector(1,ncom);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   f=(*nrfunc)(xt);  char command[FILENAMELENGTH];
   free_vector(xt,1,ncom);  int  outcmd=0;
   return f;  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 /*****************brent *************************/  char filelog[FILENAMELENGTH]; /* Log file */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   int iter;  char popfile[FILENAMELENGTH];
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   double e=0.0;  struct timezone tzp;
    extern int gettimeofday();
   a=(ax < cx ? ax : cx);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   b=(ax > cx ? ax : cx);  long time_value;
   x=w=v=bx;  extern long time();
   fw=fv=fx=(*f)(x);  char strcurr[80], strfor[80];
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  char *endptr;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  long lval;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double dval;
     printf(".");fflush(stdout);  
 #ifdef DEBUG  #define NR_END 1
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define FREE_ARG char*
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define FTOL 1.0e-10
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define NRANSI 
       *xmin=x;  #define ITMAX 200 
       return fx;  
     }  #define TOL 2.0e-4 
     ftemp=fu;  
     if (fabs(e) > tol1) {  #define CGOLD 0.3819660 
       r=(x-w)*(fx-fv);  #define ZEPS 1.0e-10 
       q=(x-v)*(fx-fw);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  #define GOLD 1.618034 
       if (q > 0.0) p = -p;  #define GLIMIT 100.0 
       q=fabs(q);  #define TINY 1.0e-20 
       etemp=e;  
       e=d;  static double maxarg1,maxarg2;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       else {    
         d=p/q;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
         u=x+d;  #define rint(a) floor(a+0.5)
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  static double sqrarg;
       }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     } else {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int agegomp= AGEGOMP;
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int imx; 
     fu=(*f)(u);  int stepm=1;
     if (fu <= fx) {  /* Stepm, step in month: minimum step interpolation*/
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  int estepm;
         SHFT(fv,fw,fx,fu)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         } else {  
           if (u < x) a=u; else b=u;  int m,nb;
           if (fu <= fw || w == x) {  long *num;
             v=w;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
             w=u;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
             fv=fw;  double **pmmij, ***probs;
             fw=fu;  double *ageexmed,*agecens;
           } else if (fu <= fv || v == x || v == w) {  double dateintmean=0;
             v=u;  
             fv=fu;  double *weight;
           }  int **s; /* Status */
         }  double *agedc, **covar, idx;
   }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   nrerror("Too many iterations in brent");  double *lsurv, *lpop, *tpop;
   *xmin=x;  
   return fx;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /****************** mnbrak ***********************/  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  {
             double (*func)(double))    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double ulim,u,r,q, dum;    */ 
   double fu;    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    l1 = strlen(path );                   /* length of path */
   if (*fb > *fa) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     SHFT(dum,*ax,*bx,dum)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       SHFT(dum,*fb,*fa,dum)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       }      strcpy( name, path );               /* we got the fullname name because no directory */
   *cx=(*bx)+GOLD*(*bx-*ax);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   *fc=(*func)(*cx);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   while (*fb > *fc) {      /* get current working directory */
     r=(*bx-*ax)*(*fb-*fc);      /*    extern  char* getcwd ( char *buf , int len);*/
     q=(*bx-*cx)*(*fb-*fa);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/        return( GLOCK_ERROR_GETCWD );
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      }
     ulim=(*bx)+GLIMIT*(*cx-*bx);      /* got dirc from getcwd*/
     if ((*bx-u)*(u-*cx) > 0.0) {      printf(" DIRC = %s \n",dirc);
       fu=(*func)(u);    } else {                              /* strip direcotry from path */
     } else if ((*cx-u)*(u-ulim) > 0.0) {      ss++;                               /* after this, the filename */
       fu=(*func)(u);      l2 = strlen( ss );                  /* length of filename */
       if (fu < *fc) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      strcpy( name, ss );         /* save file name */
           SHFT(*fb,*fc,fu,(*func)(u))      strncpy( dirc, path, l1 - l2 );     /* now the directory */
           }      dirc[l1-l2] = 0;                    /* add zero */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      printf(" DIRC2 = %s \n",dirc);
       u=ulim;    }
       fu=(*func)(u);    /* We add a separator at the end of dirc if not exists */
     } else {    l1 = strlen( dirc );                  /* length of directory */
       u=(*cx)+GOLD*(*cx-*bx);    if( dirc[l1-1] != DIRSEPARATOR ){
       fu=(*func)(u);      dirc[l1] =  DIRSEPARATOR;
     }      dirc[l1+1] = 0; 
     SHFT(*ax,*bx,*cx,u)      printf(" DIRC3 = %s \n",dirc);
       SHFT(*fa,*fb,*fc,fu)    }
       }    ss = strrchr( name, '.' );            /* find last / */
 }    if (ss >0){
       ss++;
 /*************** linmin ************************/      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
 int ncom;      l2= strlen(ss)+1;
 double *pcom,*xicom;      strncpy( finame, name, l1-l2);
 double (*nrfunc)(double []);      finame[l1-l2]= 0;
      }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {    return( 0 );                          /* we're done */
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /******************************************/
               double *fc, double (*func)(double));  
   int j;  void replace_back_to_slash(char *s, char*t)
   double xx,xmin,bx,ax;  {
   double fx,fb,fa;    int i;
      int lg=0;
   ncom=n;    i=0;
   pcom=vector(1,n);    lg=strlen(t);
   xicom=vector(1,n);    for(i=0; i<= lg; i++) {
   nrfunc=func;      (s[i] = t[i]);
   for (j=1;j<=n;j++) {      if (t[i]== '\\') s[i]='/';
     pcom[j]=p[j];    }
     xicom[j]=xi[j];  }
   }  
   ax=0.0;  int nbocc(char *s, char occ)
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int i,j=0;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    int lg=20;
 #ifdef DEBUG    i=0;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    lg=strlen(s);
 #endif    for(i=0; i<= lg; i++) {
   for (j=1;j<=n;j++) {    if  (s[i] == occ ) j++;
     xi[j] *= xmin;    }
     p[j] += xi[j];    return j;
   }  }
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  void cutv(char *u,char *v, char*t, char occ)
 }  {
     /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 /*************** powell ************************/       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,       gives u="abcedf" and v="ghi2j" */
             double (*func)(double []))    int i,lg,j,p=0;
 {    i=0;
   void linmin(double p[], double xi[], int n, double *fret,    for(j=0; j<=strlen(t)-1; j++) {
               double (*func)(double []));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   int i,ibig,j;    }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;    lg=strlen(t);
   double *xits;    for(j=0; j<p; j++) {
   pt=vector(1,n);      (u[j] = t[j]);
   ptt=vector(1,n);    }
   xit=vector(1,n);       u[p]='\0';
   xits=vector(1,n);  
   *fret=(*func)(p);     for(j=0; j<= lg; j++) {
   for (j=1;j<=n;j++) pt[j]=p[j];      if (j>=(p+1))(v[j-p-1] = t[j]);
   for (*iter=1;;++(*iter)) {    }
     fp=(*fret);  }
     ibig=0;  
     del=0.0;  /********************** nrerror ********************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  void nrerror(char error_text[])
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    fprintf(stderr,"ERREUR ...\n");
     for (i=1;i<=n;i++) {    fprintf(stderr,"%s\n",error_text);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    exit(EXIT_FAILURE);
       fptt=(*fret);  }
 #ifdef DEBUG  /*********************** vector *******************/
       printf("fret=%lf \n",*fret);  double *vector(int nl, int nh)
 #endif  {
       printf("%d",i);fflush(stdout);    double *v;
       linmin(p,xit,n,fret,func);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       if (fabs(fptt-(*fret)) > del) {    if (!v) nrerror("allocation failure in vector");
         del=fabs(fptt-(*fret));    return v-nl+NR_END;
         ibig=i;  }
       }  
 #ifdef DEBUG  /************************ free vector ******************/
       printf("%d %.12e",i,(*fret));  void free_vector(double*v, int nl, int nh)
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free((FREE_ARG)(v+nl-NR_END));
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  /************************ivector *******************************/
         printf(" p=%.12e",p[j]);  int *ivector(long nl,long nh)
       printf("\n");  {
 #endif    int *v;
     }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    if (!v) nrerror("allocation failure in ivector");
 #ifdef DEBUG    return v-nl+NR_END;
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /******************free ivector **************************/
       printf("Max: %.12e",(*func)(p));  void free_ivector(int *v, long nl, long nh)
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    free((FREE_ARG)(v+nl-NR_END));
       printf("\n");  }
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /************************lvector *******************************/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  long *lvector(long nl,long nh)
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
         }    long *v;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       }    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
   }
   
       free_vector(xit,1,n);  /******************free lvector **************************/
       free_vector(xits,1,n);  void free_lvector(long *v, long nl, long nh)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    free((FREE_ARG)(v+nl-NR_END));
       return;  }
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /******************* imatrix *******************************/
     for (j=1;j<=n;j++) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       ptt[j]=2.0*p[j]-pt[j];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       xit[j]=p[j]-pt[j];  { 
       pt[j]=p[j];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     }    int **m; 
     fptt=(*func)(ptt);    
     if (fptt < fp) {    /* allocate pointers to rows */ 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       if (t < 0.0) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
         linmin(p,xit,n,fret,func);    m += NR_END; 
         for (j=1;j<=n;j++) {    m -= nrl; 
           xi[j][ibig]=xi[j][n];    
           xi[j][n]=xit[j];    
         }    /* allocate rows and set pointers to them */ 
 #ifdef DEBUG    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         for(j=1;j<=n;j++)    m[nrl] += NR_END; 
           printf(" %.12e",xit[j]);    m[nrl] -= ncl; 
         printf("\n");    
 #endif    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       }    
     }    /* return pointer to array of pointers to rows */ 
   }    return m; 
 }  } 
   
 /**** Prevalence limit ****************/  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        int **m;
 {        long nch,ncl,nrh,nrl; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit       /* free an int matrix allocated by imatrix() */ 
      matrix by transitions matrix until convergence is reached */  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   int i, ii,j,k;    free((FREE_ARG) (m+nrl-NR_END)); 
   double min, max, maxmin, maxmax,sumnew=0.;  } 
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /******************* matrix *******************************/
   double **newm;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double agefin, delaymax=50 ; /* Max number of years to converge */  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for (ii=1;ii<=nlstate+ndeath;ii++)    double **m;
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
    cov[1]=1.;    m -= nrl;
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     newm=savm;    m[nrl] += NR_END;
     /* Covariates have to be included here again */    m[nrl] -= ncl;
      cov[2]=agefin;  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (k=1; k<=cptcovn;k++) {    return m;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/     */
       }  }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /*************************free matrix ************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    free((FREE_ARG)(m+nrl-NR_END));
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /******************* ma3x *******************************/
     savm=oldm;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     oldm=newm;  {
     maxmax=0.;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(j=1;j<=nlstate;j++){    double ***m;
       min=1.;  
       max=0.;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for(i=1; i<=nlstate; i++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         sumnew=0;    m += NR_END;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m -= nrl;
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         min=FMIN(min,prlim[i][j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
       maxmin=max-min;    m[nrl] -= ncl;
       maxmax=FMAX(maxmax,maxmin);  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     if(maxmax < ftolpl){  
       return prlim;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
 }    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
 /*************** transition probabilities ***************/      m[nrl][j]=m[nrl][j-1]+nlay;
     
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    for (i=nrl+1; i<=nrh; i++) {
 {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double s1, s2;      for (j=ncl+1; j<=nch; j++) 
   /*double t34;*/        m[i][j]=m[i][j-1]+nlay;
   int i,j,j1, nc, ii, jj;    }
     return m; 
     for(i=1; i<= nlstate; i++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for(j=1; j<i;j++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    */
         /*s2 += param[i][j][nc]*cov[nc];*/  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       ps[i][j]=s2;  {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(j=i+1; j<=nlstate+ndeath;j++){    free((FREE_ARG)(m+nrl-NR_END));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /*************** function subdirf ***********/
       }  char *subdirf(char fileres[])
       ps[i][j]=s2;  {
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
     /*ps[3][2]=1;*/    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   for(i=1; i<= nlstate; i++){    return tmpout;
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /*************** function subdirf2 ***********/
     for(j=i+1; j<=nlstate+ndeath; j++)  char *subdirf2(char fileres[], char *preop)
       s1+=exp(ps[i][j]);  {
     ps[i][i]=1./(s1+1.);    
     for(j=1; j<i; j++)    /* Caution optionfilefiname is hidden */
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcpy(tmpout,optionfilefiname);
     for(j=i+1; j<=nlstate+ndeath; j++)    strcat(tmpout,"/");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,preop);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    strcat(tmpout,fileres);
   } /* end i */    return tmpout;
   }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*************** function subdirf3 ***********/
       ps[ii][jj]=0;  char *subdirf3(char fileres[], char *preop, char *preop2)
       ps[ii][ii]=1;  {
     }    
   }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    strcat(tmpout,preop);
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,preop2);
      printf("%lf ",ps[ii][jj]);    strcat(tmpout,fileres);
    }    return tmpout;
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /***************** f1dim *************************/
 /*  extern int ncom; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  extern double *pcom,*xicom;
   goto end;*/  extern double (*nrfunc)(double []); 
     return ps;   
 }  double f1dim(double x) 
   { 
 /**************** Product of 2 matrices ******************/    int j; 
     double f;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double *xt; 
 {   
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    xt=vector(1,ncom); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   /* in, b, out are matrice of pointers which should have been initialized    f=(*nrfunc)(xt); 
      before: only the contents of out is modified. The function returns    free_vector(xt,1,ncom); 
      a pointer to pointers identical to out */    return f; 
   long i, j, k;  } 
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  /*****************brent *************************/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         out[i][k] +=in[i][j]*b[j][k];  { 
     int iter; 
   return out;    double a,b,d,etemp;
 }    double fu,fv,fw,fx;
     double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
 /************* Higher Matrix Product ***************/    double e=0.0; 
    
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    a=(ax < cx ? ax : cx); 
 {    b=(ax > cx ? ax : cx); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    x=w=v=bx; 
      duration (i.e. until    fw=fv=fx=(*f)(x); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    for (iter=1;iter<=ITMAX;iter++) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      xm=0.5*(a+b); 
      (typically every 2 years instead of every month which is too big).      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
      Model is determined by parameters x and covariates have to be      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      included manually here.      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
      */  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i, j, d, h, k;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double **out, cov[NCOVMAX];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double **newm;  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   /* Hstepm could be zero and should return the unit matrix */        *xmin=x; 
   for (i=1;i<=nlstate+ndeath;i++)        return fx; 
     for (j=1;j<=nlstate+ndeath;j++){      } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      ftemp=fu;
       po[i][j][0]=(i==j ? 1.0 : 0.0);      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        q=(x-v)*(fx-fw); 
   for(h=1; h <=nhstepm; h++){        p=(x-v)*q-(x-w)*r; 
     for(d=1; d <=hstepm; d++){        q=2.0*(q-r); 
       newm=savm;        if (q > 0.0) p = -p; 
       /* Covariates have to be included here again */        q=fabs(q); 
       cov[1]=1.;        etemp=e; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        e=d; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for (k=1; k<=cptcovage;k++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        else { 
       for (k=1; k<=cptcovprod;k++)          d=p/q; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      } else { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      } 
       savm=oldm;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       oldm=newm;      fu=(*f)(u); 
     }      if (fu <= fx) { 
     for(i=1; i<=nlstate+ndeath; i++)        if (u >= x) a=x; else b=x; 
       for(j=1;j<=nlstate+ndeath;j++) {        SHFT(v,w,x,u) 
         po[i][j][h]=newm[i][j];          SHFT(fv,fw,fx,fu) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          } else { 
          */            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
   } /* end h */              v=w; 
   return po;              w=u; 
 }              fv=fw; 
               fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 /*************** log-likelihood *************/              v=u; 
 double func( double *x)              fv=fu; 
 {            } 
   int i, ii, j, k, mi, d, kk;          } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    } 
   double **out;    nrerror("Too many iterations in brent"); 
   double sw; /* Sum of weights */    *xmin=x; 
   double lli; /* Individual log likelihood */    return fx; 
   long ipmx;  } 
   /*extern weight */  
   /* We are differentiating ll according to initial status */  /****************** mnbrak ***********************/
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     printf(" %d\n",s[4][i]);              double (*func)(double)) 
   */  { 
   cov[1]=1.;    double ulim,u,r,q, dum;
     double fu; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;   
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    *fa=(*func)(*ax); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    *fb=(*func)(*bx); 
     for(mi=1; mi<= wav[i]-1; mi++){    if (*fb > *fa) { 
       for (ii=1;ii<=nlstate+ndeath;ii++)      SHFT(dum,*ax,*bx,dum) 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        SHFT(dum,*fb,*fa,dum) 
       for(d=0; d<dh[mi][i]; d++){        } 
         newm=savm;    *cx=(*bx)+GOLD*(*bx-*ax); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    *fc=(*func)(*cx); 
         for (kk=1; kk<=cptcovage;kk++) {    while (*fb > *fc) { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      r=(*bx-*ax)*(*fb-*fc); 
         }      q=(*bx-*cx)*(*fb-*fa); 
              u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         savm=oldm;      if ((*bx-u)*(u-*cx) > 0.0) { 
         oldm=newm;        fu=(*func)(u); 
              } else if ((*cx-u)*(u-ulim) > 0.0) { 
                fu=(*func)(u); 
       } /* end mult */        if (fu < *fc) { 
                SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);            SHFT(*fb,*fc,fu,(*func)(u)) 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/            } 
       ipmx +=1;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       sw += weight[i];        u=ulim; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        fu=(*func)(u); 
     } /* end of wave */      } else { 
   } /* end of individual */        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      } 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      SHFT(*ax,*bx,*cx,u) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        SHFT(*fa,*fb,*fc,fu) 
   return -l;        } 
 }  } 
   
   /*************** linmin ************************/
 /*********** Maximum Likelihood Estimation ***************/  
   int ncom; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  double *pcom,*xicom;
 {  double (*nrfunc)(double []); 
   int i,j, iter;   
   double **xi,*delti;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double fret;  { 
   xi=matrix(1,npar,1,npar);    double brent(double ax, double bx, double cx, 
   for (i=1;i<=npar;i++)                 double (*f)(double), double tol, double *xmin); 
     for (j=1;j<=npar;j++)    double f1dim(double x); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   printf("Powell\n");                double *fc, double (*func)(double)); 
   powell(p,xi,npar,ftol,&iter,&fret,func);    int j; 
     double xx,xmin,bx,ax; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double fx,fb,fa;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));   
     ncom=n; 
 }    pcom=vector(1,n); 
     xicom=vector(1,n); 
 /**** Computes Hessian and covariance matrix ***/    nrfunc=func; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for (j=1;j<=n;j++) { 
 {      pcom[j]=p[j]; 
   double  **a,**y,*x,pd;      xicom[j]=xi[j]; 
   double **hess;    } 
   int i, j,jk;    ax=0.0; 
   int *indx;    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double hessii(double p[], double delta, int theta, double delti[]);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double hessij(double p[], double delti[], int i, int j);  #ifdef DEBUG
   void lubksb(double **a, int npar, int *indx, double b[]) ;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   void ludcmp(double **a, int npar, int *indx, double *d) ;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   hess=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
   printf("\nCalculation of the hessian matrix. Wait...\n");      p[j] += xi[j]; 
   for (i=1;i<=npar;i++){    } 
     printf("%d",i);fflush(stdout);    free_vector(xicom,1,n); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    free_vector(pcom,1,n); 
     /*printf(" %f ",p[i]);*/  } 
     /*printf(" %lf ",hess[i][i]);*/  
   }  char *asc_diff_time(long time_sec, char ascdiff[])
    {
   for (i=1;i<=npar;i++) {    long sec_left, days, hours, minutes;
     for (j=1;j<=npar;j++)  {    days = (time_sec) / (60*60*24);
       if (j>i) {    sec_left = (time_sec) % (60*60*24);
         printf(".%d%d",i,j);fflush(stdout);    hours = (sec_left) / (60*60) ;
         hess[i][j]=hessij(p,delti,i,j);    sec_left = (sec_left) %(60*60);
         hess[j][i]=hess[i][j];        minutes = (sec_left) /60;
         /*printf(" %lf ",hess[i][j]);*/    sec_left = (sec_left) % (60);
       }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     }    return ascdiff;
   }  }
   printf("\n");  
   /*************** powell ************************/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                double (*func)(double [])) 
   a=matrix(1,npar,1,npar);  { 
   y=matrix(1,npar,1,npar);    void linmin(double p[], double xi[], int n, double *fret, 
   x=vector(1,npar);                double (*func)(double [])); 
   indx=ivector(1,npar);    int i,ibig,j; 
   for (i=1;i<=npar;i++)    double del,t,*pt,*ptt,*xit;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double fp,fptt;
   ludcmp(a,npar,indx,&pd);    double *xits;
     int niterf, itmp;
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    pt=vector(1,n); 
     x[j]=1;    ptt=vector(1,n); 
     lubksb(a,npar,indx,x);    xit=vector(1,n); 
     for (i=1;i<=npar;i++){    xits=vector(1,n); 
       matcov[i][j]=x[i];    *fret=(*func)(p); 
     }    for (j=1;j<=n;j++) pt[j]=p[j]; 
   }    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
   printf("\n#Hessian matrix#\n");      ibig=0; 
   for (i=1;i<=npar;i++) {      del=0.0; 
     for (j=1;j<=npar;j++) {      last_time=curr_time;
       printf("%.3e ",hess[i][j]);      (void) gettimeofday(&curr_time,&tzp);
     }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     printf("\n");      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
      for (i=1;i<=n;i++) {
   /* Recompute Inverse */        printf(" %d %.12f",i, p[i]);
   for (i=1;i<=npar;i++)        fprintf(ficlog," %d %.12lf",i, p[i]);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        fprintf(ficrespow," %.12lf", p[i]);
   ludcmp(a,npar,indx,&pd);      }
       printf("\n");
   /*  printf("\n#Hessian matrix recomputed#\n");      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   for (j=1;j<=npar;j++) {      if(*iter <=3){
     for (i=1;i<=npar;i++) x[i]=0;        tm = *localtime(&curr_time.tv_sec);
     x[j]=1;        strcpy(strcurr,asctime(&tm));
     lubksb(a,npar,indx,x);  /*       asctime_r(&tm,strcurr); */
     for (i=1;i<=npar;i++){        forecast_time=curr_time; 
       y[i][j]=x[i];        itmp = strlen(strcurr);
       printf("%.3e ",y[i][j]);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     }          strcurr[itmp-1]='\0';
     printf("\n");        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   */        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   free_matrix(a,1,npar,1,npar);          tmf = *localtime(&forecast_time.tv_sec);
   free_matrix(y,1,npar,1,npar);  /*      asctime_r(&tmf,strfor); */
   free_vector(x,1,npar);          strcpy(strfor,asctime(&tmf));
   free_ivector(indx,1,npar);          itmp = strlen(strfor);
   free_matrix(hess,1,npar,1,npar);          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
 /*************** hessian matrix ****************/      }
 double hessii( double x[], double delta, int theta, double delti[])      for (i=1;i<=n;i++) { 
 {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   int i;        fptt=(*fret); 
   int l=1, lmax=20;  #ifdef DEBUG
   double k1,k2;        printf("fret=%lf \n",*fret);
   double p2[NPARMAX+1];        fprintf(ficlog,"fret=%lf \n",*fret);
   double res;  #endif
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        printf("%d",i);fflush(stdout);
   double fx;        fprintf(ficlog,"%d",i);fflush(ficlog);
   int k=0,kmax=10;        linmin(p,xit,n,fret,func); 
   double l1;        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   fx=func(x);          ibig=i; 
   for (i=1;i<=npar;i++) p2[i]=x[i];        } 
   for(l=0 ; l <=lmax; l++){  #ifdef DEBUG
     l1=pow(10,l);        printf("%d %.12e",i,(*fret));
     delts=delt;        fprintf(ficlog,"%d %.12e",i,(*fret));
     for(k=1 ; k <kmax; k=k+1){        for (j=1;j<=n;j++) {
       delt = delta*(l1*k);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       p2[theta]=x[theta] +delt;          printf(" x(%d)=%.12e",j,xit[j]);
       k1=func(p2)-fx;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       p2[theta]=x[theta]-delt;        }
       k2=func(p2)-fx;        for(j=1;j<=n;j++) {
       /*res= (k1-2.0*fx+k2)/delt/delt; */          printf(" p=%.12e",p[j]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          fprintf(ficlog," p=%.12e",p[j]);
              }
 #ifdef DEBUG        printf("\n");
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        fprintf(ficlog,"\n");
 #endif  #endif
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      } 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         k=kmax;  #ifdef DEBUG
       }        int k[2],l;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        k[0]=1;
         k=kmax; l=lmax*10.;        k[1]=-1;
       }        printf("Max: %.12e",(*func)(p));
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        fprintf(ficlog,"Max: %.12e",(*func)(p));
         delts=delt;        for (j=1;j<=n;j++) {
       }          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
   }        }
   delti[theta]=delts;        printf("\n");
   return res;        fprintf(ficlog,"\n");
          for(l=0;l<=1;l++) {
 }          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 double hessij( double x[], double delti[], int thetai,int thetaj)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i;          }
   int l=1, l1, lmax=20;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double k1,k2,k3,k4,res,fx;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double p2[NPARMAX+1];        }
   int k;  #endif
   
   fx=func(x);  
   for (k=1; k<=2; k++) {        free_vector(xit,1,n); 
     for (i=1;i<=npar;i++) p2[i]=x[i];        free_vector(xits,1,n); 
     p2[thetai]=x[thetai]+delti[thetai]/k;        free_vector(ptt,1,n); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        free_vector(pt,1,n); 
     k1=func(p2)-fx;        return; 
        } 
     p2[thetai]=x[thetai]+delti[thetai]/k;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for (j=1;j<=n;j++) { 
     k2=func(p2)-fx;        ptt[j]=2.0*p[j]-pt[j]; 
          xit[j]=p[j]-pt[j]; 
     p2[thetai]=x[thetai]-delti[thetai]/k;        pt[j]=p[j]; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } 
     k3=func(p2)-fx;      fptt=(*func)(ptt); 
        if (fptt < fp) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        if (t < 0.0) { 
     k4=func(p2)-fx;          linmin(p,xit,n,fret,func); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          for (j=1;j<=n;j++) { 
 #ifdef DEBUG            xi[j][ibig]=xi[j][n]; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            xi[j][n]=xit[j]; 
 #endif          }
   }  #ifdef DEBUG
   return res;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 /************** Inverse of matrix **************/            printf(" %.12e",xit[j]);
 void ludcmp(double **a, int n, int *indx, double *d)            fprintf(ficlog," %.12e",xit[j]);
 {          }
   int i,imax,j,k;          printf("\n");
   double big,dum,sum,temp;          fprintf(ficlog,"\n");
   double *vv;  #endif
          }
   vv=vector(1,n);      } 
   *d=1.0;    } 
   for (i=1;i<=n;i++) {  } 
     big=0.0;  
     for (j=1;j<=n;j++)  /**** Prevalence limit (stable or period prevalence)  ****************/
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     vv[i]=1.0/big;  {
   }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for (j=1;j<=n;j++) {       matrix by transitions matrix until convergence is reached */
     for (i=1;i<j;i++) {  
       sum=a[i][j];    int i, ii,j,k;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    double min, max, maxmin, maxmax,sumnew=0.;
       a[i][j]=sum;    double **matprod2();
     }    double **out, cov[NCOVMAX], **pmij();
     big=0.0;    double **newm;
     for (i=j;i<=n;i++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
       sum=a[i][j];  
       for (k=1;k<j;k++)    for (ii=1;ii<=nlstate+ndeath;ii++)
         sum -= a[i][k]*a[k][j];      for (j=1;j<=nlstate+ndeath;j++){
       a[i][j]=sum;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if ( (dum=vv[i]*fabs(sum)) >= big) {      }
         big=dum;  
         imax=i;     cov[1]=1.;
       }   
     }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if (j != imax) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       for (k=1;k<=n;k++) {      newm=savm;
         dum=a[imax][k];      /* Covariates have to be included here again */
         a[imax][k]=a[j][k];       cov[2]=agefin;
         a[j][k]=dum;    
       }        for (k=1; k<=cptcovn;k++) {
       *d = -(*d);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       vv[imax]=vv[j];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     }        }
     indx[j]=imax;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     if (a[j][j] == 0.0) a[j][j]=TINY;        for (k=1; k<=cptcovprod;k++)
     if (j != n) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   free_vector(vv,1,n);  /* Doesn't work */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 ;  
 }      savm=oldm;
       oldm=newm;
 void lubksb(double **a, int n, int *indx, double b[])      maxmax=0.;
 {      for(j=1;j<=nlstate;j++){
   int i,ii=0,ip,j;        min=1.;
   double sum;        max=0.;
          for(i=1; i<=nlstate; i++) {
   for (i=1;i<=n;i++) {          sumnew=0;
     ip=indx[i];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     sum=b[ip];          prlim[i][j]= newm[i][j]/(1-sumnew);
     b[ip]=b[i];          max=FMAX(max,prlim[i][j]);
     if (ii)          min=FMIN(min,prlim[i][j]);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        }
     else if (sum) ii=i;        maxmin=max-min;
     b[i]=sum;        maxmax=FMAX(maxmax,maxmin);
   }      }
   for (i=n;i>=1;i--) {      if(maxmax < ftolpl){
     sum=b[i];        return prlim;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      }
     b[i]=sum/a[i][i];    }
   }  }
 }  
   /*************** transition probabilities ***************/ 
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  /* Some frequencies */  {
      double s1, s2;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    /*double t34;*/
   double ***freq; /* Frequencies */    int i,j,j1, nc, ii, jj;
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;      for(i=1; i<= nlstate; i++){
   FILE *ficresp;        for(j=1; j<i;j++){
   char fileresp[FILENAMELENGTH];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              /*s2 += param[i][j][nc]*cov[nc];*/
   pp=vector(1,nlstate);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   strcpy(fileresp,"p");          }
   strcat(fileresp,fileres);          ps[i][j]=s2;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     printf("Problem with prevalence resultfile: %s\n", fileresp);        }
     exit(0);        for(j=i+1; j<=nlstate+ndeath;j++){
   }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   j1=0;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
            }
   j=cptcoveff;          ps[i][j]=s2;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
        }
   for(k1=1; k1<=j;k1++){      /*ps[3][2]=1;*/
     for(i1=1; i1<=ncodemax[k1];i1++){      
       j1++;      for(i=1; i<= nlstate; i++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        s1=0;
         scanf("%d", i);*/        for(j=1; j<i; j++)
       for (i=-1; i<=nlstate+ndeath; i++)            s1+=exp(ps[i][j]);
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for(j=i+1; j<=nlstate+ndeath; j++)
           for(m=agemin; m <= agemax+3; m++)          s1+=exp(ps[i][j]);
             freq[i][jk][m]=0;        ps[i][i]=1./(s1+1.);
              for(j=1; j<i; j++)
       dateintsum=0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       k2cpt=0;        for(j=i+1; j<=nlstate+ndeath; j++)
       for (i=1; i<=imx; i++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
         bool=1;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         if  (cptcovn>0) {      } /* end i */
           for (z1=1; z1<=cptcoveff; z1++)      
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
               bool=0;        for(jj=1; jj<= nlstate+ndeath; jj++){
         }          ps[ii][jj]=0;
         if (bool==1) {          ps[ii][ii]=1;
           for(m=firstpass; m<=lastpass; m++){        }
             k2=anint[m][i]+(mint[m][i]/12.);      }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
               if (m<lastpass) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*         printf("ddd %lf ",ps[ii][jj]); */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*       } */
               }  /*       printf("\n "); */
                /*        } */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  /*        printf("\n ");printf("%lf ",cov[2]); */
                 dateintsum=dateintsum+k2;         /*
                 k2cpt++;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
               }        goto end;*/
             }      return ps;
           }  }
         }  
       }  /**************** Product of 2 matrices ******************/
          
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
       if  (cptcovn>0) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         fprintf(ficresp, "\n#********** Variable ");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* in, b, out are matrice of pointers which should have been initialized 
         fprintf(ficresp, "**********\n#");       before: only the contents of out is modified. The function returns
       }       a pointer to pointers identical to out */
       for(i=1; i<=nlstate;i++)    long i, j, k;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    for(i=nrl; i<= nrh; i++)
       fprintf(ficresp, "\n");      for(k=ncolol; k<=ncoloh; k++)
              for(j=ncl,out[i][k]=0.; j<=nch; j++)
       for(i=(int)agemin; i <= (int)agemax+3; i++){          out[i][k] +=in[i][j]*b[j][k];
         if(i==(int)agemax+3)  
           printf("Total");    return out;
         else  }
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /************* Higher Matrix Product ***************/
             pp[jk] += freq[jk][m][i];  
         }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=-1, pos=0; m <=0 ; m++)    /* Computes the transition matrix starting at age 'age' over 
             pos += freq[jk][m][i];       'nhstepm*hstepm*stepm' months (i.e. until
           if(pp[jk]>=1.e-10)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);       nhstepm*hstepm matrices. 
           else       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);       (typically every 2 years instead of every month which is too big 
         }       for the memory).
        Model is determined by parameters x and covariates have to be 
         for(jk=1; jk <=nlstate ; jk++){       included manually here. 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];       */
         }  
     int i, j, d, h, k;
         for(jk=1,pos=0; jk <=nlstate ; jk++)    double **out, cov[NCOVMAX];
           pos += pp[jk];    double **newm;
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5)    /* Hstepm could be zero and should return the unit matrix */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for (i=1;i<=nlstate+ndeath;i++)
           else      for (j=1;j<=nlstate+ndeath;j++){
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        oldm[i][j]=(i==j ? 1.0 : 0.0);
           if( i <= (int) agemax){        po[i][j][0]=(i==j ? 1.0 : 0.0);
             if(pos>=1.e-5){      }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               probs[i][jk][j1]= pp[jk]/pos;    for(h=1; h <=nhstepm; h++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for(d=1; d <=hstepm; d++){
             }        newm=savm;
             else        /* Covariates have to be included here again */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        cov[1]=1.;
           }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                for (k=1; k<=cptcovage;k++)
         for(jk=-1; jk <=nlstate+ndeath; jk++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(m=-1; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovprod;k++)
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");  
         printf("\n");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   dateintmean=dateintsum/k2cpt;        savm=oldm;
          oldm=newm;
   fclose(ficresp);      }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for(i=1; i<=nlstate+ndeath; i++)
   free_vector(pp,1,nlstate);        for(j=1;j<=nlstate+ndeath;j++) {
            po[i][j][h]=newm[i][j];
   /* End of Freq */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 }           */
         }
 /************ Prevalence ********************/    } /* end h */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    return po;
 {  /* Some frequencies */  }
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  /*************** log-likelihood *************/
   double *pp;  double func( double *x)
   double pos, k2;  {
     int i, ii, j, k, mi, d, kk;
   pp=vector(1,nlstate);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **out;
      double sw; /* Sum of weights */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double lli; /* Individual log likelihood */
   j1=0;    int s1, s2;
      double bbh, survp;
   j=cptcoveff;    long ipmx;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /*extern weight */
      /* We are differentiating ll according to initial status */
   for(k1=1; k1<=j;k1++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for(i1=1; i1<=ncodemax[k1];i1++){    /*for(i=1;i<imx;i++) 
       j1++;      printf(" %d\n",s[4][i]);
          */
       for (i=-1; i<=nlstate+ndeath; i++)      cov[1]=1.;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
             freq[i][jk][m]=0;  
          if(mle==1){
       for (i=1; i<=imx; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         bool=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if  (cptcovn>0) {        for(mi=1; mi<= wav[i]-1; mi++){
           for (z1=1; z1<=cptcoveff; z1++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (j=1;j<=nlstate+ndeath;j++){
               bool=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {            }
           for(m=firstpass; m<=lastpass; m++){          for(d=0; d<dh[mi][i]; d++){
             k2=anint[m][i]+(mint[m][i]/12.);            newm=savm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            for (kk=1; kk<=cptcovage;kk++) {
               if(agev[m][i]==1) agev[m][i]=agemax+2;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if (m<lastpass) {            }
                 if (calagedate>0)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 else            savm=oldm;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            oldm=newm;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          } /* end mult */
               }        
             }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           }          /* But now since version 0.9 we anticipate for bias at large stepm.
         }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       }           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for(i=(int)agemin; i <= (int)agemax+3; i++){           * the nearest (and in case of equal distance, to the lowest) interval but now
         for(jk=1; jk <=nlstate ; jk++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             pp[jk] += freq[jk][m][i];           * probability in order to take into account the bias as a fraction of the way
         }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         for(jk=1; jk <=nlstate ; jk++){           * -stepm/2 to stepm/2 .
           for(m=-1, pos=0; m <=0 ; m++)           * For stepm=1 the results are the same as for previous versions of Imach.
             pos += freq[jk][m][i];           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
                  s1=s[mw[mi][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          s2=s[mw[mi+1][i]][i];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          bbh=(double)bh[mi][i]/(double)stepm; 
             pp[jk] += freq[jk][m][i];          /* bias bh is positive if real duration
         }           * is higher than the multiple of stepm and negative otherwise.
                   */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                  if( s2 > nlstate){ 
         for(jk=1; jk <=nlstate ; jk++){                /* i.e. if s2 is a death state and if the date of death is known 
           if( i <= (int) agemax){               then the contribution to the likelihood is the probability to 
             if(pos>=1.e-5){               die between last step unit time and current  step unit time, 
               probs[i][jk][j1]= pp[jk]/pos;               which is also equal to probability to die before dh 
             }               minus probability to die before dh-stepm . 
           }               In version up to 0.92 likelihood was computed
         }          as if date of death was unknown. Death was treated as any other
                  health state: the date of the interview describes the actual state
       }          and not the date of a change in health state. The former idea was
     }          to consider that at each interview the state was recorded
   }          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
            the contribution of an exact death to the likelihood. This new
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          contribution is smaller and very dependent of the step unit
   free_vector(pp,1,nlstate);          stepm. It is no more the probability to die between last interview
            and month of death but the probability to survive from last
 }  /* End of Freq */          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
 /************* Waves Concatenation ***************/          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          which slows down the processing. The difference can be up to 10%
 {          lower mortality.
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            */
      Death is a valid wave (if date is known).            lli=log(out[s1][s2] - savm[s1][s2]);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.          } else if  (s2==-2) {
      */            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int i, mi, m;            /*survp += out[s1][j]; */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            lli= log(survp);
      double sum=0., jmean=0.;*/          }
           
   int j, k=0,jk, ju, jl;          else if  (s2==-4) { 
   double sum=0.;            for (j=3,survp=0. ; j<=nlstate; j++)  
   jmin=1e+5;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   jmax=-1;            lli= log(survp); 
   jmean=0.;          } 
   for(i=1; i<=imx; i++){  
     mi=0;          else if  (s2==-5) { 
     m=firstpass;            for (j=1,survp=0. ; j<=2; j++)  
     while(s[m][i] <= nlstate){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if(s[m][i]>=1)            lli= log(survp); 
         mw[++mi][i]=m;          } 
       if(m >=lastpass)          
         break;          else{
       else            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         m++;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     }/* end while */          } 
     if (s[m][i] > nlstate){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       mi++;     /* Death is another wave */          /*if(lli ==000.0)*/
       /* if(mi==0)  never been interviewed correctly before death */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
          /* Only death is a correct wave */          ipmx +=1;
       mw[mi][i]=m;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     wav[i]=mi;      } /* end of individual */
     if(mi==0)    }  else if(mle==2){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=imx; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(mi=1; mi<wav[i];mi++){            for (j=1;j<=nlstate+ndeath;j++){
       if (stepm <=0)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         dh[mi][i]=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else{            }
         if (s[mw[mi+1][i]][i] > nlstate) {          for(d=0; d<=dh[mi][i]; d++){
           if (agedc[i] < 2*AGESUP) {            newm=savm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if(j==0) j=1;  /* Survives at least one month after exam */            for (kk=1; kk<=cptcovage;kk++) {
           k=k+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (j >= jmax) jmax=j;            }
           if (j <= jmin) jmin=j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           sum=sum+j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
         else{        
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          s1=s[mw[mi][i]][i];
           k=k+1;          s2=s[mw[mi+1][i]][i];
           if (j >= jmax) jmax=j;          bbh=(double)bh[mi][i]/(double)stepm; 
           else if (j <= jmin)jmin=j;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          ipmx +=1;
           sum=sum+j;          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         jk= j/stepm;        } /* end of wave */
         jl= j -jk*stepm;      } /* end of individual */
         ju= j -(jk+1)*stepm;    }  else if(mle==3){  /* exponential inter-extrapolation */
         if(jl <= -ju)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           dh[mi][i]=jk;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else        for(mi=1; mi<= wav[i]-1; mi++){
           dh[mi][i]=jk+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
         if(dh[mi][i]==0)            for (j=1;j<=nlstate+ndeath;j++){
           dh[mi][i]=1; /* At least one step */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }          for(d=0; d<dh[mi][i]; d++){
   jmean=sum/k;            newm=savm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  }            for (kk=1; kk<=cptcovage;kk++) {
 /*********** Tricode ****************************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void tricode(int *Tvar, int **nbcode, int imx)            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int Ndum[20],ij=1, k, j, i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int cptcode=0;            savm=oldm;
   cptcoveff=0;            oldm=newm;
            } /* end mult */
   for (k=0; k<19; k++) Ndum[k]=0;        
   for (k=1; k<=7; k++) ncodemax[k]=0;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          bbh=(double)bh[mi][i]/(double)stepm; 
     for (i=1; i<=imx; i++) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       ij=(int)(covar[Tvar[j]][i]);          ipmx +=1;
       Ndum[ij]++;          sw += weight[i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if (ij > cptcode) cptcode=ij;        } /* end of wave */
     }      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
     for (i=0; i<=cptcode; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(Ndum[i]!=0) ncodemax[j]++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     ij=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=ncodemax[j]; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=0; k<=19; k++) {            }
         if (Ndum[k] != 0) {          for(d=0; d<dh[mi][i]; d++){
           nbcode[Tvar[j]][ij]=k;            newm=savm;
                      cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           ij++;            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (ij > ncodemax[j]) break;            }
       }            
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
  for (k=0; k<19; k++) Ndum[k]=0;            oldm=newm;
           } /* end mult */
  for (i=1; i<=ncovmodel-2; i++) {        
       ij=Tvar[i];          s1=s[mw[mi][i]][i];
       Ndum[ij]++;          s2=s[mw[mi+1][i]][i];
     }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
  ij=1;          }else{
  for (i=1; i<=10; i++) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
    if((Ndum[i]!=0) && (i<=ncovcol)){          }
      Tvaraff[ij]=i;          ipmx +=1;
      ij++;          sw += weight[i];
    }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          } /* end of wave */
     cptcoveff=ij-1;      } /* end of individual */
 }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Health Expectancies ****************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Health expectancies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            }
   double age, agelim, hf;          for(d=0; d<dh[mi][i]; d++){
   double ***p3mat,***varhe;            newm=savm;
   double **dnewm,**doldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *xp;            for (kk=1; kk<=cptcovage;kk++) {
   double **gp, **gm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***gradg, ***trgradg;            }
   int theta;          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   xp=vector(1,npar);            savm=oldm;
   dnewm=matrix(1,nlstate*2,1,npar);            oldm=newm;
   doldm=matrix(1,nlstate*2,1,nlstate*2);          } /* end mult */
          
   fprintf(ficreseij,"# Health expectancies\n");          s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"# Age");          s2=s[mw[mi+1][i]][i];
   for(i=1; i<=nlstate;i++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(j=1; j<=nlstate;j++)          ipmx +=1;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          sw += weight[i];
   fprintf(ficreseij,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   if(estepm < stepm){        } /* end of wave */
     printf ("Problem %d lower than %d\n",estepm, stepm);      } /* end of individual */
   }    } /* End of if */
   else  hstepm=estepm;      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* We compute the life expectancy from trapezoids spaced every estepm months    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
    * This is mainly to measure the difference between two models: for example    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    * if stepm=24 months pijx are given only every 2 years and by summing them    return -l;
    * we are calculating an estimate of the Life Expectancy assuming a linear  }
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we  /*************** log-likelihood *************/
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  double funcone( double *x)
    * to compare the new estimate of Life expectancy with the same linear  {
    * hypothesis. A more precise result, taking into account a more precise    /* Same as likeli but slower because of a lot of printf and if */
    * curvature will be obtained if estepm is as small as stepm. */    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   /* For example we decided to compute the life expectancy with the smallest unit */    double **out;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double lli; /* Individual log likelihood */
      nhstepm is the number of hstepm from age to agelim    double llt;
      nstepm is the number of stepm from age to agelin.    int s1, s2;
      Look at hpijx to understand the reason of that which relies in memory size    double bbh, survp;
      and note for a fixed period like estepm months */    /*extern weight */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* We are differentiating ll according to initial status */
      survival function given by stepm (the optimization length). Unfortunately it    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      means that if the survival funtion is printed only each two years of age and if    /*for(i=1;i<imx;i++) 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      printf(" %d\n",s[4][i]);
      results. So we changed our mind and took the option of the best precision.    */
   */    cov[1]=1.;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* nhstepm age range expressed in number of stepm */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      for(mi=1; mi<= wav[i]-1; mi++){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        for (ii=1;ii<=nlstate+ndeath;ii++)
     /* if (stepm >= YEARM) hstepm=1;*/          for (j=1;j<=nlstate+ndeath;j++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          }
     gp=matrix(0,nhstepm,1,nlstate*2);        for(d=0; d<dh[mi][i]; d++){
     gm=matrix(0,nhstepm,1,nlstate*2);          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          for (kk=1; kk<=cptcovage;kk++) {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            }
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          savm=oldm;
           oldm=newm;
     /* Computing Variances of health expectancies */        } /* end mult */
         
      for(theta=1; theta <=npar; theta++){        s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++){        s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        bbh=(double)bh[mi][i]/(double)stepm; 
       }        /* bias is positive if real duration
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);           * is higher than the multiple of stepm and negative otherwise.
           */
       cptj=0;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(j=1; j<= nlstate; j++){          lli=log(out[s1][s2] - savm[s1][s2]);
         for(i=1; i<=nlstate; i++){        } else if  (s2==-2) {
           cptj=cptj+1;          for (j=1,survp=0. ; j<=nlstate; j++) 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          lli= log(survp);
           }        }else if (mle==1){
         }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }        } else if(mle==2){
                lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
              } else if(mle==3){  /* exponential inter-extrapolation */
       for(i=1; i<=npar; i++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli=log(out[s1][s2]); /* Original formula */
              } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       cptj=0;          lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<= nlstate; j++){        } /* End of if */
         for(i=1;i<=nlstate;i++){        ipmx +=1;
           cptj=cptj+1;        sw += weight[i];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           }        if(globpr){
         }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       }   %11.6f %11.6f %11.6f ", \
       for(j=1; j<= nlstate*2; j++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         for(h=0; h<=nhstepm-1; h++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         }            llt +=ll[k]*gipmx/gsw;
      }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
              }
 /* End theta */          fprintf(ficresilk," %10.6f\n", -llt);
         }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      } /* end of wave */
     } /* end of individual */
      for(h=0; h<=nhstepm-1; h++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<=nlstate*2;j++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(theta=1; theta <=npar; theta++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           trgradg[h][j][theta]=gradg[h][theta][j];    if(globpr==0){ /* First time we count the contributions and weights */
            gipmx=ipmx;
       gsw=sw;
      for(i=1;i<=nlstate*2;i++)    }
       for(j=1;j<=nlstate*2;j++)    return -l;
         varhe[i][j][(int)age] =0.;  }
   
      printf("%d|",(int)age);fflush(stdout);  
      for(h=0;h<=nhstepm-1;h++){  /*************** function likelione ***********/
       for(k=0;k<=nhstepm-1;k++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  {
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    /* This routine should help understanding what is done with 
         for(i=1;i<=nlstate*2;i++)       the selection of individuals/waves and
           for(j=1;j<=nlstate*2;j++)       to check the exact contribution to the likelihood.
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;       Plotting could be done.
       }     */
     }    int k;
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)    if(*globpri !=0){ /* Just counts and sums, no printings */
       for(j=1; j<=nlstate;j++)      strcpy(fileresilk,"ilk"); 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      strcat(fileresilk,fileres);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                  printf("Problem with resultfile: %s\n", fileresilk);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
         }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     fprintf(ficreseij,"%3.0f",age );      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     cptj=0;      for(k=1; k<=nlstate; k++) 
     for(i=1; i<=nlstate;i++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       for(j=1; j<=nlstate;j++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         cptj++;    }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  
       }    *fretone=(*funcone)(p);
     fprintf(ficreseij,"\n");    if(*globpri !=0){
          fclose(ficresilk);
     free_matrix(gm,0,nhstepm,1,nlstate*2);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     free_matrix(gp,0,nhstepm,1,nlstate*2);      fflush(fichtm); 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    } 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    return;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
   }  
   printf("\n");  
   /*********** Maximum Likelihood Estimation ***************/
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    int i,j, iter;
 }    double **xi;
     double fret;
 /************ Variance ******************/    double fretone; /* Only one call to likelihood */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    /*  char filerespow[FILENAMELENGTH];*/
 {    xi=matrix(1,npar,1,npar);
   /* Variance of health expectancies */    for (i=1;i<=npar;i++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++)
   double **newm;        xi[i][j]=(i==j ? 1.0 : 0.0);
   double **dnewm,**doldm;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   int i, j, nhstepm, hstepm, h, nstepm ;    strcpy(filerespow,"pow"); 
   int k, cptcode;    strcat(filerespow,fileres);
   double *xp;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   double **gp, **gm;      printf("Problem with resultfile: %s\n", filerespow);
   double ***gradg, ***trgradg;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double ***p3mat;    }
   double age,agelim, hf;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int theta;    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficresvij,"# Age");    fprintf(ficrespow,"\n");
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    powell(p,xi,npar,ftol,&iter,&fret,func);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
   xp=vector(1,npar);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   dnewm=matrix(1,nlstate,1,npar);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   doldm=matrix(1,nlstate,1,nlstate);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    
   if(estepm < stepm){  }
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  /**** Computes Hessian and covariance matrix ***/
   else  hstepm=estepm;    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   /* For example we decided to compute the life expectancy with the smallest unit */  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double  **a,**y,*x,pd;
      nhstepm is the number of hstepm from age to agelim    double **hess;
      nstepm is the number of stepm from age to agelin.    int i, j,jk;
      Look at hpijx to understand the reason of that which relies in memory size    int *indx;
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      survival function given by stepm (the optimization length). Unfortunately it    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      means that if the survival funtion is printed only each two years of age and if    void lubksb(double **a, int npar, int *indx, double b[]) ;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    void ludcmp(double **a, int npar, int *indx, double *d) ;
      results. So we changed our mind and took the option of the best precision.    double gompertz(double p[]);
   */    hess=matrix(1,npar,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   agelim = AGESUP;    printf("\nCalculation of the hessian matrix. Wait...\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (i=1;i<=npar;i++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      printf("%d",i);fflush(stdout);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"%d",i);fflush(ficlog);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);     
     gp=matrix(0,nhstepm,1,nlstate);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     gm=matrix(0,nhstepm,1,nlstate);      
       /*  printf(" %f ",p[i]);
     for(theta=1; theta <=npar; theta++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    
       }    for (i=1;i<=npar;i++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++)  {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
       if (popbased==1) {          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(i=1; i<=nlstate;i++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
           prlim[i][i]=probs[(int)age][i][ij];          
       }          hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
       for(j=1; j<= nlstate; j++){        }
         for(h=0; h<=nhstepm; h++){      }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("\n");
         }    fprintf(ficlog,"\n");
       }  
        printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      a=matrix(1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    y=matrix(1,npar,1,npar);
      x=vector(1,npar);
       if (popbased==1) {    indx=ivector(1,npar);
         for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
           prlim[i][i]=probs[(int)age][i][ij];      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       }    ludcmp(a,npar,indx,&pd);
   
       for(j=1; j<= nlstate; j++){    for (j=1;j<=npar;j++) {
         for(h=0; h<=nhstepm; h++){      for (i=1;i<=npar;i++) x[i]=0;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      x[j]=1;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
       }        matcov[i][j]=x[i];
       }
       for(j=1; j<= nlstate; j++)    }
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    printf("\n#Hessian matrix#\n");
         }    fprintf(ficlog,"\n#Hessian matrix#\n");
     } /* End theta */    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
     for(h=0; h<=nhstepm; h++)      }
       for(j=1; j<=nlstate;j++)      printf("\n");
         for(theta=1; theta <=npar; theta++)      fprintf(ficlog,"\n");
           trgradg[h][j][theta]=gradg[h][theta][j];    }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /* Recompute Inverse */
     for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++)
       for(j=1;j<=nlstate;j++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         vareij[i][j][(int)age] =0.;    ludcmp(a,npar,indx,&pd);
   
     for(h=0;h<=nhstepm;h++){    /*  printf("\n#Hessian matrix recomputed#\n");
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for (j=1;j<=npar;j++) {
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for (i=1;i<=npar;i++) x[i]=0;
         for(i=1;i<=nlstate;i++)      x[j]=1;
           for(j=1;j<=nlstate;j++)      lubksb(a,npar,indx,x);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for (i=1;i<=npar;i++){ 
       }        y[i][j]=x[i];
     }        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
     fprintf(ficresvij,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)      printf("\n");
       for(j=1; j<=nlstate;j++){      fprintf(ficlog,"\n");
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    }
       }    */
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);    free_matrix(a,1,npar,1,npar);
     free_matrix(gm,0,nhstepm,1,nlstate);    free_matrix(y,1,npar,1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    free_vector(x,1,npar);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    free_ivector(indx,1,npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(hess,1,npar,1,npar);
   } /* End age */  
    
   free_vector(xp,1,npar);  }
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 }  {
     int i;
 /************ Variance of prevlim ******************/    int l=1, lmax=20;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double k1,k2;
 {    double p2[NPARMAX+1];
   /* Variance of prevalence limit */    double res;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double **newm;    double fx;
   double **dnewm,**doldm;    int k=0,kmax=10;
   int i, j, nhstepm, hstepm;    double l1;
   int k, cptcode;  
   double *xp;    fx=func(x);
   double *gp, *gm;    for (i=1;i<=npar;i++) p2[i]=x[i];
   double **gradg, **trgradg;    for(l=0 ; l <=lmax; l++){
   double age,agelim;      l1=pow(10,l);
   int theta;      delts=delt;
          for(k=1 ; k <kmax; k=k+1){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        delt = delta*(l1*k);
   fprintf(ficresvpl,"# Age");        p2[theta]=x[theta] +delt;
   for(i=1; i<=nlstate;i++)        k1=func(p2)-fx;
       fprintf(ficresvpl," %1d-%1d",i,i);        p2[theta]=x[theta]-delt;
   fprintf(ficresvpl,"\n");        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
   xp=vector(1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   dnewm=matrix(1,nlstate,1,npar);        
   doldm=matrix(1,nlstate,1,nlstate);  #ifdef DEBUG
          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   hstepm=1*YEARM; /* Every year of age */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  #endif
   agelim = AGESUP;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          k=kmax;
     if (stepm >= YEARM) hstepm=1;        }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     gradg=matrix(1,npar,1,nlstate);          k=kmax; l=lmax*10.;
     gp=vector(1,nlstate);        }
     gm=vector(1,nlstate);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++){ /* Computes gradient */      }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
       }    delti[theta]=delts;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    return res; 
       for(i=1;i<=nlstate;i++)    
         gp[i] = prlim[i][i];  }
      
       for(i=1; i<=npar; i++) /* Computes gradient */  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i;
       for(i=1;i<=nlstate;i++)    int l=1, l1, lmax=20;
         gm[i] = prlim[i][i];    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
       for(i=1;i<=nlstate;i++)    int k;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    fx=func(x);
     for (k=1; k<=2; k++) {
     trgradg =matrix(1,nlstate,1,npar);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
     for(j=1; j<=nlstate;j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(theta=1; theta <=npar; theta++)      k1=func(p2)-fx;
         trgradg[j][theta]=gradg[theta][j];    
       p2[thetai]=x[thetai]+delti[thetai]/k;
     for(i=1;i<=nlstate;i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       varpl[i][(int)age] =0.;      k2=func(p2)-fx;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      p2[thetai]=x[thetai]-delti[thetai]/k;
     for(i=1;i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      k3=func(p2)-fx;
     
     fprintf(ficresvpl,"%.0f ",age );      p2[thetai]=x[thetai]-delti[thetai]/k;
     for(i=1; i<=nlstate;i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      k4=func(p2)-fx;
     fprintf(ficresvpl,"\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     free_vector(gp,1,nlstate);  #ifdef DEBUG
     free_vector(gm,1,nlstate);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_matrix(gradg,1,npar,1,nlstate);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_matrix(trgradg,1,nlstate,1,npar);  #endif
   } /* End age */    }
     return res;
   free_vector(xp,1,npar);  }
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
 }  { 
     int i,imax,j,k; 
 /************ Variance of one-step probabilities  ******************/    double big,dum,sum,temp; 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    double *vv; 
 {   
   int i, j,  i1, k1, l1;    vv=vector(1,n); 
   int k2, l2, j1,  z1;    *d=1.0; 
   int k=0,l, cptcode;    for (i=1;i<=n;i++) { 
   int first=1;      big=0.0; 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      for (j=1;j<=n;j++) 
   double **dnewm,**doldm;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   double *xp;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double *gp, *gm;      vv[i]=1.0/big; 
   double **gradg, **trgradg;    } 
   double **mu;    for (j=1;j<=n;j++) { 
   double age,agelim, cov[NCOVMAX];      for (i=1;i<j;i++) { 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        sum=a[i][j]; 
   int theta;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   char fileresprob[FILENAMELENGTH];        a[i][j]=sum; 
   char fileresprobcov[FILENAMELENGTH];      } 
   char fileresprobcor[FILENAMELENGTH];      big=0.0; 
       for (i=j;i<=n;i++) { 
   double ***varpij;        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   strcpy(fileresprob,"prob");          sum -= a[i][k]*a[k][j]; 
   strcat(fileresprob,fileres);        a[i][j]=sum; 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     printf("Problem with resultfile: %s\n", fileresprob);          big=dum; 
   }          imax=i; 
   strcpy(fileresprobcov,"probcov");        } 
   strcat(fileresprobcov,fileres);      } 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      if (j != imax) { 
     printf("Problem with resultfile: %s\n", fileresprobcov);        for (k=1;k<=n;k++) { 
   }          dum=a[imax][k]; 
   strcpy(fileresprobcor,"probcor");          a[imax][k]=a[j][k]; 
   strcat(fileresprobcor,fileres);          a[j][k]=dum; 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        } 
     printf("Problem with resultfile: %s\n", fileresprobcor);        *d = -(*d); 
   }        vv[imax]=vv[j]; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      } 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      indx[j]=imax; 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      if (a[j][j] == 0.0) a[j][j]=TINY; 
        if (j != n) { 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        dum=1.0/(a[j][j]); 
   fprintf(ficresprob,"# Age");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      } 
   fprintf(ficresprobcov,"# Age");    } 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    free_vector(vv,1,n);  /* Doesn't work */
   fprintf(ficresprobcov,"# Age");  ;
   } 
   
   for(i=1; i<=nlstate;i++)  void lubksb(double **a, int n, int *indx, double b[]) 
     for(j=1; j<=(nlstate+ndeath);j++){  { 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    int i,ii=0,ip,j; 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    double sum; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);   
     }      for (i=1;i<=n;i++) { 
   fprintf(ficresprob,"\n");      ip=indx[i]; 
   fprintf(ficresprobcov,"\n");      sum=b[ip]; 
   fprintf(ficresprobcor,"\n");      b[ip]=b[i]; 
   xp=vector(1,npar);      if (ii) 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      else if (sum) ii=i; 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      b[i]=sum; 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    } 
   first=1;    for (i=n;i>=1;i--) { 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      sum=b[i]; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     exit(0);      b[i]=sum/a[i][i]; 
   }    } 
   else{  } 
     fprintf(ficgp,"\n# Routine varprob");  
   }  void pstamp(FILE *fichier)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  {
     printf("Problem with html file: %s\n", optionfilehtm);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     exit(0);  }
   }  
   else{  /************ Frequencies ********************/
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  {  /* Some frequencies */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   }    int first;
   cov[1]=1;    double ***freq; /* Frequencies */
   j=cptcoveff;    double *pp, **prop;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   j1=0;    char fileresp[FILENAMELENGTH];
   for(k1=1; k1<=1;k1++){    
     for(i1=1; i1<=ncodemax[k1];i1++){    pp=vector(1,nlstate);
     j1++;    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
     if  (cptcovn>0) {    strcat(fileresp,fileres);
       fprintf(ficresprob, "\n#********** Variable ");    if((ficresp=fopen(fileresp,"w"))==NULL) {
       fprintf(ficresprobcov, "\n#********** Variable ");      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficgp, "\n#********** Variable ");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");      exit(0);
       fprintf(ficresprobcor, "\n#********** Variable ");    }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       fprintf(ficresprob, "**********\n#");    j1=0;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
       fprintf(ficresprobcov, "**********\n#");    j=cptcoveff;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficgp, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    first=1;
       fprintf(ficgp, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(k1=1; k1<=j;k1++){
       fprintf(fichtm, "**********\n#");      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
            /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for (age=bage; age<=fage; age ++){          scanf("%d", i);*/
         cov[2]=age;        for (i=-5; i<=nlstate+ndeath; i++)  
         for (k=1; k<=cptcovn;k++) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            for(m=iagemin; m <= iagemax+3; m++)
         }              freq[i][jk][m]=0;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)      for (i=1; i<=nlstate; i++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(m=iagemin; m <= iagemax+3; m++)
                  prop[i][m]=0;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        dateintsum=0;
         gp=vector(1,(nlstate)*(nlstate+ndeath));        k2cpt=0;
         gm=vector(1,(nlstate)*(nlstate+ndeath));        for (i=1; i<=imx; i++) {
              bool=1;
         for(theta=1; theta <=npar; theta++){          if  (cptcovn>0) {
           for(i=1; i<=npar; i++)            for (z1=1; z1<=cptcoveff; z1++) 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                          bool=0;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          }
                    if (bool==1){
           k=0;            for(m=firstpass; m<=lastpass; m++){
           for(i=1; i<= (nlstate); i++){              k2=anint[m][i]+(mint[m][i]/12.);
             for(j=1; j<=(nlstate+ndeath);j++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
               k=k+1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               gp[k]=pmmij[i][j];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                if (m<lastpass) {
                            freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           for(i=1; i<=npar; i++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                }
                    
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           k=0;                  dateintsum=dateintsum+k2;
           for(i=1; i<=(nlstate); i++){                  k2cpt++;
             for(j=1; j<=(nlstate+ndeath);j++){                }
               k=k+1;                /*}*/
               gm[k]=pmmij[i][j];            }
             }          }
           }        }
               
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          pstamp(ficresp);
         }        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(theta=1; theta <=npar; theta++)          fprintf(ficresp, "**********\n#");
             trgradg[j][theta]=gradg[theta][j];        }
                for(i=1; i<=nlstate;i++) 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        fprintf(ficresp, "\n");
                
         pmij(pmmij,cov,ncovmodel,x,nlstate);        for(i=iagemin; i <= iagemax+3; i++){
                  if(i==iagemax+3){
         k=0;            fprintf(ficlog,"Total");
         for(i=1; i<=(nlstate); i++){            fprintf(fichtm,"<br>Total<br>");
           for(j=1; j<=(nlstate+ndeath);j++){          }else{
             k=k+1;            if(first==1){
             mu[k][(int) age]=pmmij[i][j];              first=0;
           }              printf("See log file for details...\n");
         }            }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            fprintf(ficlog,"Age %d", i);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          }
             varpij[i][j][(int)age] = doldm[i][j];          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         /*printf("\n%d ",(int)age);              pp[jk] += freq[jk][m][i]; 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(jk=1; jk <=nlstate ; jk++){
      }*/            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
         fprintf(ficresprob,"\n%d ",(int)age);            if(pp[jk]>=1.e-10){
         fprintf(ficresprobcov,"\n%d ",(int)age);              if(first==1){
         fprintf(ficresprobcor,"\n%d ",(int)age);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            }else{
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              if(first==1)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
         i=0;          }
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){          for(jk=1; jk <=nlstate ; jk++){
             i=i++;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              pp[jk] += freq[jk][m][i];
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          }       
             for (j=1; j<=i;j++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);            pos += pp[jk];
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            posprop += prop[jk][i];
             }          }
           }          for(jk=1; jk <=nlstate ; jk++){
         }/* end of loop for state */            if(pos>=1.e-5){
       } /* end of loop for age */              if(first==1)
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for (k1=1; k1<=(nlstate);k1++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         for (l1=1; l1<=(nlstate+ndeath);l1++){            }else{
           if(l1==k1) continue;              if(first==1)
           i=(k1-1)*(nlstate+ndeath)+l1;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           for (k2=1; k2<=(nlstate);k2++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             for (l2=1; l2<=(nlstate+ndeath);l2++){            }
               if(l2==k2) continue;            if( i <= iagemax){
               j=(k2-1)*(nlstate+ndeath)+l2;              if(pos>=1.e-5){
               if(j<=i) continue;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
               for (age=bage; age<=fage; age ++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 if ((int)age %5==0){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;              }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              else
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                   mu1=mu[i][(int) age]/stepm*YEARM ;            }
                   mu2=mu[j][(int) age]/stepm*YEARM;          }
                   /* Computing eigen value of matrix of covariance */          
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          for(jk=-1; jk <=nlstate+ndeath; jk++)
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            for(m=-1; m <=nlstate+ndeath; m++)
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              if(freq[jk][m][i] !=0 ) {
                   /* Eigen vectors */              if(first==1)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                   v21=sqrt(1.-v11*v11);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                   v12=-v21;              }
                   v22=v11;          if(i <= iagemax)
                   /*printf(fignu*/            fprintf(ficresp,"\n");
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          if(first==1)
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            printf("Others in log...\n");
                   if(first==1){          fprintf(ficlog,"\n");
                     first=0;        }
                     fprintf(ficgp,"\nset parametric;set nolabel");      }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    dateintmean=dateintsum/k2cpt; 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);   
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);    fclose(ficresp);
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    free_vector(pp,1,nlstate);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    /* End of Freq */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  
                   }else{  /************ Prevalence ********************/
                     first=0;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  {  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\       in each health status at the date of interview (if between dateprev1 and dateprev2).
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \       We still use firstpass and lastpass as another selection.
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    */
                   }/* if first */   
                 } /* age mod 5 */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
               } /* end loop age */    double ***freq; /* Frequencies */
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);    double *pp, **prop;
               first=1;    double pos,posprop; 
             } /*l12 */    double  y2; /* in fractional years */
           } /* k12 */    int iagemin, iagemax;
         } /*l1 */  
       }/* k1 */    iagemin= (int) agemin;
     } /* loop covariates */    iagemax= (int) agemax;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    /*pp=vector(1,nlstate);*/
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    j1=0;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    j=cptcoveff;
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   free_vector(xp,1,npar);    
   fclose(ficresprob);    for(k1=1; k1<=j;k1++){
   fclose(ficresprobcov);      for(i1=1; i1<=ncodemax[k1];i1++){
   fclose(ficresprobcor);        j1++;
   fclose(ficgp);        
   fclose(fichtm);        for (i=1; i<=nlstate; i++)  
 }          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
        
 /******************* Printing html file ***********/        for (i=1; i<=imx; i++) { /* Each individual */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          bool=1;
                   int lastpass, int stepm, int weightopt, char model[],\          if  (cptcovn>0) {
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            for (z1=1; z1<=cptcoveff; z1++) 
                   int popforecast, int estepm ,\              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   double jprev1, double mprev1,double anprev1, \                bool=0;
                   double jprev2, double mprev2,double anprev2){          } 
   int jj1, k1, i1, cpt;          if (bool==1) { 
   /*char optionfilehtm[FILENAMELENGTH];*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     printf("Problem with %s \n",optionfilehtm), exit(0);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n                if (s[m][i]>0 && s[m][i]<=nlstate) { 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
  - Life expectancies by age and initial health status (estepm=%2d months):                  prop[s[m][i]][iagemax+3] += weight[i]; 
    <a href=\"e%s\">e%s</a> <br>\n</li>", \                } 
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              }
             } /* end selection of waves */
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n          }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        for(i=iagemin; i <= iagemax+3; i++){  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n          
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            posprop += prop[jk][i]; 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          } 
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  
           for(jk=1; jk <=nlstate ; jk++){     
  if(popforecast==1) fprintf(fichtm,"\n            if( i <=  iagemax){ 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              if(posprop>=1.e-5){ 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                probs[i][jk][j1]= prop[jk][i]/posprop;
         <br>",fileres,fileres,fileres,fileres);              } 
  else            } 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          }/* end jk */ 
 fprintf(fichtm," <li>Graphs</li><p>");        }/* end i */ 
       } /* end i1 */
  m=cptcoveff;    } /* end k1 */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
  jj1=0;    /*free_vector(pp,1,nlstate);*/
  for(k1=1; k1<=m;k1++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    for(i1=1; i1<=ncodemax[k1];i1++){  }  /* End of prevalence */
      jj1++;  
      if (cptcovn > 0) {  /************* Waves Concatenation ***************/
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  {
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      }       Death is a valid wave (if date is known).
      /* Pij */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           and mw[mi+1][i]. dh depends on stepm.
      /* Quasi-incidences */       */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    int i, mi, m;
        /* Stable prevalence in each health state */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        for(cpt=1; cpt<nlstate;cpt++){       double sum=0., jmean=0.;*/
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    int first;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    int j, k=0,jk, ju, jl;
        }    double sum=0.;
     for(cpt=1; cpt<=nlstate;cpt++) {    first=0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    jmin=1e+5;
 interval) in state (%d): v%s%d%d.png <br>    jmax=-1;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      jmean=0.;
      }    for(i=1; i<=imx; i++){
      for(cpt=1; cpt<=nlstate;cpt++) {      mi=0;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      m=firstpass;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      while(s[m][i] <= nlstate){
      }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          mw[++mi][i]=m;
 health expectancies in states (1) and (2): e%s%d.png<br>        if(m >=lastpass)
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          break;
    }        else
  }          m++;
 fclose(fichtm);      }/* end while */
 }      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
 /******************* Gnuplot file **************/        /* if(mi==0)  never been interviewed correctly before death */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){           /* Only death is a correct wave */
         mw[mi][i]=m;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      }
   int ng;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      wav[i]=mi;
     printf("Problem with file %s",optionfilegnuplot);      if(mi==0){
   }        nbwarn++;
         if(first==0){
 #ifdef windows          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     fprintf(ficgp,"cd \"%s\" \n",pathc);          first=1;
 #endif        }
 m=pow(2,cptcoveff);        if(first==1){
            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
  /* 1eme*/        }
   for (cpt=1; cpt<= nlstate ; cpt ++) {      } /* end mi==0 */
    for (k1=1; k1<= m ; k1 ++) {    } /* End individuals */
   
 #ifdef windows    for(i=1; i<=imx; i++){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for(mi=1; mi<wav[i];mi++){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        if (stepm <=0)
 #endif          dh[mi][i]=1;
 #ifdef unix        else{
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            if (agedc[i] < 2*AGESUP) {
 #endif              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
 for (i=1; i<= nlstate ; i ++) {              else if(j<0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                nberr++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }                j=1; /* Temporary Dangerous patch */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for (i=1; i<= nlstate ; i ++) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }              k=k+1;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              if (j >= jmax){
      for (i=1; i<= nlstate ; i ++) {                jmax=j;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                ijmax=i;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }                if (j <= jmin){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                jmin=j;
 #ifdef unix                ijmin=i;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");              }
 #endif              sum=sum+j;
    }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   /*2 eme*/            }
           }
   for (k1=1; k1<= m ; k1 ++) {          else{
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
      
     for (i=1; i<= nlstate+1 ; i ++) {            k=k+1;
       k=2*i;            if (j >= jmax) {
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              jmax=j;
       for (j=1; j<= nlstate+1 ; j ++) {              ijmax=i;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            else if (j <= jmin){
 }                jmin=j;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              ijmin=i;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       for (j=1; j<= nlstate+1 ; j ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            if(j<0){
         else fprintf(ficgp," \%%*lf (\%%*lf)");              nberr++;
 }                printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"\" t\"\" w l 0,");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            sum=sum+j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          jk= j/stepm;
 }            jl= j -jk*stepm;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          ju= j -(jk+1)*stepm;
       else fprintf(ficgp,"\" t\"\" w l 0,");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     }            if(jl==0){
   }              dh[mi][i]=jk;
                bh[mi][i]=0;
   /*3eme*/            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
   for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk+1;
     for (cpt=1; cpt<= nlstate ; cpt ++) {              bh[mi][i]=ju;
       k=2+nlstate*(2*cpt-2);            }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }else{
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            if(jl <= -ju){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              dh[mi][i]=jk;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              bh[mi][i]=jl;       /* bias is positive if real duration
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                                   * is higher than the multiple of stepm and negative otherwise.
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                                   */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            else{
               dh[mi][i]=jk+1;
 */              bh[mi][i]=ju;
       for (i=1; i< nlstate ; i ++) {            }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
       }              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   }            }
            } /* end if mle */
   /* CV preval stat */        }
     for (k1=1; k1<= m ; k1 ++) {      } /* end wave */
     for (cpt=1; cpt<nlstate ; cpt ++) {    }
       k=3;    jmean=sum/k;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);  /*********** Tricode ****************************/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  void tricode(int *Tvar, int **nbcode, int imx)
        {
       l=3+(nlstate+ndeath)*cpt;    
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
       for (i=1; i< nlstate ; i ++) {    int cptcode=0;
         l=3+(nlstate+ndeath)*cpt;    cptcoveff=0; 
         fprintf(ficgp,"+$%d",l+i+1);   
       }    for (k=0; k<maxncov; k++) Ndum[k]=0;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      for (k=1; k<=7; k++) ncodemax[k]=0;
     }  
   }      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
        for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   /* proba elementaires */                                 modality*/ 
    for(i=1,jk=1; i <=nlstate; i++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     for(k=1; k <=(nlstate+ndeath); k++){        Ndum[ij]++; /*store the modality */
       if (k != i) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         for(j=1; j <=ncovmodel; j++){        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                                 Tvar[j]. If V=sex and male is 0 and 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                                         female is 1, then  cptcode=1.*/
           jk++;      }
           fprintf(ficgp,"\n");  
         }      for (i=0; i<=cptcode; i++) {
       }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     }      }
    }  
       ij=1; 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      for (i=1; i<=ncodemax[j]; i++) {
      for(jk=1; jk <=m; jk++) {        for (k=0; k<= maxncov; k++) {
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          if (Ndum[k] != 0) {
        if (ng==2)            nbcode[Tvar[j]][ij]=k; 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
        else            
          fprintf(ficgp,"\nset title \"Probability\"\n");            ij++;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          }
        i=1;          if (ij > ncodemax[j]) break; 
        for(k2=1; k2<=nlstate; k2++) {        }  
          k3=i;      } 
          for(k=1; k<=(nlstate+ndeath); k++) {    }  
            if (k != k2){  
              if(ng==2)   for (k=0; k< maxncov; k++) Ndum[k]=0;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  
              else   for (i=1; i<=ncovmodel-2; i++) { 
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
              ij=1;     ij=Tvar[i];
              for(j=3; j <=ncovmodel; j++) {     Ndum[ij]++;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;   ij=1;
                }   for (i=1; i<= maxncov; i++) {
                else     if((Ndum[i]!=0) && (i<=ncovcol)){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       Tvaraff[ij]=i; /*For printing */
              }       ij++;
              fprintf(ficgp,")/(1");     }
                 }
              for(k1=1; k1 <=nlstate; k1++){     
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   cptcoveff=ij-1; /*Number of simple covariates*/
                ij=1;  }
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /*********** Health Expectancies ****************/
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
                  }  
                  else  {
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* Health expectancies, no variances */
                }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
                fprintf(ficgp,")");    double age, agelim, hf;
              }    double ***p3mat;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double eip;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;    pstamp(ficreseij);
            }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
          }    fprintf(ficreseij,"# Age");
        }    for(i=1; i<=nlstate;i++){
      }      for(j=1; j<=nlstate;j++){
    }        fprintf(ficreseij," e%1d%1d ",i,j);
    fclose(ficgp);      }
 }  /* end gnuplot */      fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    
     if(estepm < stepm){
   int i, cpt, cptcod;      printf ("Problem %d lower than %d\n",estepm, stepm);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    }
       for (i=1; i<=nlstate;i++)    else  hstepm=estepm;   
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /* We compute the life expectancy from trapezoids spaced every estepm months
           mobaverage[(int)agedeb][i][cptcod]=0.;     * This is mainly to measure the difference between two models: for example
         * if stepm=24 months pijx are given only every 2 years and by summing them
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
       for (i=1; i<=nlstate;i++){     * progression in between and thus overestimating or underestimating according
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * to the curvature of the survival function. If, for the same date, we 
           for (cpt=0;cpt<=4;cpt++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];     * to compare the new estimate of Life expectancy with the same linear 
           }     * hypothesis. A more precise result, taking into account a more precise
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;     * curvature will be obtained if estepm is as small as stepm. */
         }  
       }    /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm is the number of hstepm from age to agelim 
 }       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
 /************** Forecasting ******************/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   int *popage;       results. So we changed our mind and took the option of the best precision.
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    */
   double *popeffectif,*popcount;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];    agelim=AGESUP;
     /* nhstepm age range expressed in number of stepm */
  agelim=AGESUP;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    
   strcpy(fileresf,"f");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   strcat(fileresf,fileres);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   if((ficresf=fopen(fileresf,"w"))==NULL) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     printf("Problem with forecast resultfile: %s\n", fileresf);      
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   printf("Computing forecasting: result on file '%s' \n", fileresf);      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      
       printf("%d|",(int)age);fflush(stdout);
   if (mobilav==1) {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
     movingaverage(agedeb, fage, ageminpar, mobaverage);      /* Computing expectancies */
   }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   if (stepm<=12) stepsize=1;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
   agelim=AGESUP;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   hstepm=1;          }
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);      fprintf(ficreseij,"%3.0f",age );
   anprojmean=yp;      for(i=1; i<=nlstate;i++){
   yp2=modf((yp1*12),&yp);        eip=0;
   mprojmean=yp;        for(j=1; j<=nlstate;j++){
   yp1=modf((yp2*30.5),&yp);          eip +=eij[i][j][(int)age];
   jprojmean=yp;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   if(jprojmean==0) jprojmean=1;        }
   if(mprojmean==0) jprojmean=1;        fprintf(ficreseij,"%9.4f", eip );
        }
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      fprintf(ficreseij,"\n");
        
   for(cptcov=1;cptcov<=i2;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=k+1;    printf("\n");
       fprintf(ficresf,"\n#******");    fprintf(ficlog,"\n");
       for(j=1;j<=cptcoveff;j++) {    
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
       }  
       fprintf(ficresf,"******\n");  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  {
          /* Covariances of health expectancies eij and of total life expectancies according
           to initial status i, ei. .
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    */
         fprintf(ficresf,"\n");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double **dnewm,**doldm;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double *xp, *xm;
           nhstepm = nhstepm/hstepm;    double **gp, **gm;
              double ***gradg, ***trgradg;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int theta;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double eip, vip;
          
           for (h=0; h<=nhstepm; h++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
             if (h==(int) (calagedate+YEARM*cpt)) {    xp=vector(1,npar);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    xm=vector(1,npar);
             }    dnewm=matrix(1,nlstate*nlstate,1,npar);
             for(j=1; j<=nlstate+ndeath;j++) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
               kk1=0.;kk2=0;    
               for(i=1; i<=nlstate;i++) {                  pstamp(ficresstdeij);
                 if (mobilav==1)    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficresstdeij,"# Age");
                 else {    for(i=1; i<=nlstate;i++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      for(j=1; j<=nlstate;j++)
                 }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                      fprintf(ficresstdeij," e%1d. ",i);
               }    }
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficresstdeij,"\n");
                 fprintf(ficresf," %.3f", kk1);  
                            pstamp(ficrescveij);
               }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
             }    fprintf(ficrescveij,"# Age");
           }    for(i=1; i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1; j<=nlstate;j++){
         }        cptj= (j-1)*nlstate+i;
       }        for(i2=1; i2<=nlstate;i2++)
     }          for(j2=1; j2<=nlstate;j2++){
   }            cptj2= (j2-1)*nlstate+i2;
                    if(cptj2 <= cptj)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
   fclose(ficresf);      }
 }    fprintf(ficrescveij,"\n");
 /************** Forecasting ******************/    
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }
   int *popage;    else  hstepm=estepm;   
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* We compute the life expectancy from trapezoids spaced every estepm months
   double *popeffectif,*popcount;     * This is mainly to measure the difference between two models: for example
   double ***p3mat,***tabpop,***tabpopprev;     * if stepm=24 months pijx are given only every 2 years and by summing them
   char filerespop[FILENAMELENGTH];     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * to the curvature of the survival function. If, for the same date, we 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   agelim=AGESUP;     * to compare the new estimate of Life expectancy with the same linear 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcpy(filerespop,"pop");       nhstepm is the number of hstepm from age to agelim 
   strcat(filerespop,fileres);       nstepm is the number of stepm from age to agelin. 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       Look at hpijx to understand the reason of that which relies in memory size
     printf("Problem with forecast resultfile: %s\n", filerespop);       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   printf("Computing forecasting: result on file '%s' \n", filerespop);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   if (mobilav==1) {    */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }    /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    agelim=AGESUP;
   if (stepm<=12) stepsize=1;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   agelim=AGESUP;    /* if (stepm >= YEARM) hstepm=1;*/
      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   hstepm=1;    
   hstepm=hstepm/stepm;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (popforecast==1) {    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     if((ficpop=fopen(popfile,"r"))==NULL) {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       printf("Problem with population file : %s\n",popfile);exit(0);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);    for (age=bage; age<=fage; age ++){ 
     popcount=vector(0,AGESUP);  
          /* Computed by stepm unit matrices, product of hstepm matrices, stored
     i=1;           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;   
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      /* Computing  Variances of health expectancies */
   }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
   for(cptcov=1;cptcov<=i2;cptcov++){      for(theta=1; theta <=npar; theta++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(i=1; i<=npar; i++){ 
       k=k+1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficrespop,"\n#******");          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       for(j=1;j<=cptcoveff;j++) {        }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       fprintf(ficrespop,"******\n");    
       fprintf(ficrespop,"# Age");        for(j=1; j<= nlstate; j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(i=1; i<=nlstate; i++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");            for(h=0; h<=nhstepm-1; h++){
                    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       for (cpt=0; cpt<=0;cpt++) {              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              }
                  }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       
           nhstepm = nhstepm/hstepm;        for(ij=1; ij<= nlstate*nlstate; ij++)
                    for(h=0; h<=nhstepm-1; h++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }/* End theta */
              
           for (h=0; h<=nhstepm; h++){      
             if (h==(int) (calagedate+YEARM*cpt)) {      for(h=0; h<=nhstepm-1; h++)
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(j=1; j<=nlstate*nlstate;j++)
             }          for(theta=1; theta <=npar; theta++)
             for(j=1; j<=nlstate+ndeath;j++) {            trgradg[h][j][theta]=gradg[h][theta][j];
               kk1=0.;kk2=0;      
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)       for(ij=1;ij<=nlstate*nlstate;ij++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(ji=1;ji<=nlstate*nlstate;ji++)
                 else {          varhe[ij][ji][(int)age] =0.;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }       printf("%d|",(int)age);fflush(stdout);
               }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               if (h==(int)(calagedate+12*cpt)){       for(h=0;h<=nhstepm-1;h++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for(k=0;k<=nhstepm-1;k++){
                   /*fprintf(ficrespop," %.3f", kk1);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
               }          for(ij=1;ij<=nlstate*nlstate;ij++)
             }            for(ji=1;ji<=nlstate*nlstate;ji++)
             for(i=1; i<=nlstate;i++){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
               kk1=0.;        }
                 for(j=1; j<=nlstate;j++){      }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      /* Computing expectancies */
                 }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      for(i=1; i<=nlstate;i++)
             }        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            
           }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }          }
       }  
        fprintf(ficresstdeij,"%3.0f",age );
   /******/      for(i=1; i<=nlstate;i++){
         eip=0.;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        vip=0.;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(j=1; j<=nlstate;j++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          eip += eij[i][j][(int)age];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           nhstepm = nhstepm/hstepm;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                    fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
           for (h=0; h<=nhstepm; h++){      fprintf(ficresstdeij,"\n");
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      fprintf(ficrescveij,"%3.0f",age );
             }      for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1; j<=nlstate;j++){
               kk1=0.;kk2=0;          cptj= (j-1)*nlstate+i;
               for(i=1; i<=nlstate;i++) {                        for(i2=1; i2<=nlstate;i2++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                for(j2=1; j2<=nlstate;j2++){
               }              cptj2= (j2-1)*nlstate+i2;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);              if(cptj2 <= cptj)
             }                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
           }            }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }      fprintf(ficrescveij,"\n");
       }     
    }    }
   }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   if (popforecast==1) {    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ivector(popage,0,AGESUP);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(popeffectif,0,AGESUP);    printf("\n");
     free_vector(popcount,0,AGESUP);    fprintf(ficlog,"\n");
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(xm,1,npar);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(xp,1,npar);
   fclose(ficrespop);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 /***********************************************/  }
 /**************** Main Program *****************/  
 /***********************************************/  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 int main(int argc, char *argv[])  {
 {    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    /* double **newm;*/
   double agedeb, agefin,hf;    double **dnewm,**doldm;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   double fret;    int k, cptcode;
   double **xi,tmp,delta;    double *xp;
     double **gp, **gm;  /* for var eij */
   double dum; /* Dummy variable */    double ***gradg, ***trgradg; /*for var eij */
   double ***p3mat;    double **gradgp, **trgradgp; /* for var p point j */
   int *indx;    double *gpp, *gmp; /* for var p point j */
   char line[MAXLINE], linepar[MAXLINE];    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double ***p3mat;
   int firstobs=1, lastobs=10;    double age,agelim, hf;
   int sdeb, sfin; /* Status at beginning and end */    double ***mobaverage;
   int c,  h , cpt,l;    int theta;
   int ju,jl, mi;    char digit[4];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    char digitp[25];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;    char fileresprobmorprev[FILENAMELENGTH];
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    if(popbased==1){
       if(mobilav!=0)
   double bage, fage, age, agelim, agebase;        strcpy(digitp,"-populbased-mobilav-");
   double ftolpl=FTOL;      else strcpy(digitp,"-populbased-nomobil-");
   double **prlim;    }
   double *severity;    else 
   double ***param; /* Matrix of parameters */      strcpy(digitp,"-stablbased-");
   double  *p;  
   double **matcov; /* Matrix of covariance */    if (mobilav!=0) {
   double ***delti3; /* Scale */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double *delti; /* Scale */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   double ***eij, ***vareij;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   double **varpl; /* Variances of prevalence limits by age */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   double *epj, vepp;      }
   double kk1, kk2;    }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
      strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   char z[1]="c", occ;    strcat(fileresprobmorprev,fileres);
 #include <sys/time.h>    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 #include <time.h>      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
   /* long total_usecs;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   struct timeval start_time, end_time;   
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    pstamp(ficresprobmorprev);
   getcwd(pathcd, size);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   printf("\n%s",version);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if(argc <=1){      fprintf(ficresprobmorprev," p.%-d SE",j);
     printf("\nEnter the parameter file name: ");      for(i=1; i<=nlstate;i++)
     scanf("%s",pathtot);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
   else{    fprintf(ficresprobmorprev,"\n");
     strcpy(pathtot,argv[1]);    fprintf(ficgp,"\n# Routine varevsij");
   }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   /*cygwin_split_path(pathtot,path,optionfile);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  /*   } */
   /* cutv(path,optionfile,pathtot,'\\');*/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    if(popbased==1)
   chdir(path);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   replace(pathc,path);    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 /*-------- arguments in the command line --------*/    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   strcpy(fileres,"r");      for(j=1; j<=nlstate;j++)
   strcat(fileres, optionfilefiname);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   strcat(fileres,".txt");    /* Other files have txt extension */    fprintf(ficresvij,"\n");
   
   /*---------arguments file --------*/    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    doldm=matrix(1,nlstate,1,nlstate);
     printf("Problem with optionfile %s\n",optionfile);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     goto end;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   strcpy(filereso,"o");    gpp=vector(nlstate+1,nlstate+ndeath);
   strcat(filereso,fileres);    gmp=vector(nlstate+1,nlstate+ndeath);
   if((ficparo=fopen(filereso,"w"))==NULL) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    
   }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    else  hstepm=estepm;   
     ungetc(c,ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
     fgets(line, MAXLINE, ficpar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     puts(line);       nhstepm is the number of hstepm from age to agelim 
     fputs(line,ficparo);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   ungetc(c,ficpar);       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       survival function given by stepm (the optimization length). Unfortunately it
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);       means that if the survival funtion is printed every two years of age and if
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 while((c=getc(ficpar))=='#' && c!= EOF){       results. So we changed our mind and took the option of the best precision.
     ungetc(c,ficpar);    */
     fgets(line, MAXLINE, ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     puts(line);    agelim = AGESUP;
     fputs(line,ficparo);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   ungetc(c,ficpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   covar=matrix(0,NCOVMAX,1,n);      gp=matrix(0,nhstepm,1,nlstate);
   cptcovn=0;      gm=matrix(0,nhstepm,1,nlstate);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
   
   ncovmodel=2+cptcovn;      for(theta=1; theta <=npar; theta++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /* Read guess parameters */        }
   /* Reads comments: lines beginning with '#' */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   while((c=getc(ficpar))=='#' && c!= EOF){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        if (popbased==1) {
     puts(line);          if(mobilav ==0){
     fputs(line,ficparo);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   ungetc(c,ficpar);          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              prlim[i][i]=mobaverage[(int)age][i][ij];
     for(i=1; i <=nlstate; i++)          }
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    
       fprintf(ficparo,"%1d%1d",i1,j1);        for(j=1; j<= nlstate; j++){
       printf("%1d%1d",i,j);          for(h=0; h<=nhstepm; h++){
       for(k=1; k<=ncovmodel;k++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         fscanf(ficpar," %lf",&param[i][j][k]);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         printf(" %lf",param[i][j][k]);          }
         fprintf(ficparo," %lf",param[i][j][k]);        }
       }        /* This for computing probability of death (h=1 means
       fscanf(ficpar,"\n");           computed over hstepm matrices product = hstepm*stepm months) 
       printf("\n");           as a weighted average of prlim.
       fprintf(ficparo,"\n");        */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   p=param[1][1];        /* end probability of death */
    
   /* Reads comments: lines beginning with '#' */        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   while((c=getc(ficpar))=='#' && c!= EOF){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     ungetc(c,ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fgets(line, MAXLINE, ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     puts(line);   
     fputs(line,ficparo);        if (popbased==1) {
   }          if(mobilav ==0){
   ungetc(c,ficpar);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          }else{ /* mobilav */ 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            for(i=1; i<=nlstate;i++)
   for(i=1; i <=nlstate; i++){              prlim[i][i]=mobaverage[(int)age][i][ij];
     for(j=1; j <=nlstate+ndeath-1; j++){          }
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);        for(j=1; j<= nlstate; j++){
       for(k=1; k<=ncovmodel;k++){          for(h=0; h<=nhstepm; h++){
         fscanf(ficpar,"%le",&delti3[i][j][k]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         printf(" %le",delti3[i][j][k]);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficparo," %le",delti3[i][j][k]);          }
       }        }
       fscanf(ficpar,"\n");        /* This for computing probability of death (h=1 means
       printf("\n");           computed over hstepm matrices product = hstepm*stepm months) 
       fprintf(ficparo,"\n");           as a weighted average of prlim.
     }        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   delti=delti3[1][1];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             gmp[j] += prlim[i][i]*p3mat[i][j][1];
   /* Reads comments: lines beginning with '#' */        }    
   while((c=getc(ficpar))=='#' && c!= EOF){        /* end probability of death */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for(j=1; j<= nlstate; j++) /* vareij */
     puts(line);          for(h=0; h<=nhstepm; h++){
     fputs(line,ficparo);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
   ungetc(c,ficpar);  
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   matcov=matrix(1,npar,1,npar);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   for(i=1; i <=npar; i++){        }
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);      } /* End theta */
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);      for(h=0; h<=nhstepm; h++) /* veij */
       fprintf(ficparo," %.5le",matcov[i][j]);        for(j=1; j<=nlstate;j++)
     }          for(theta=1; theta <=npar; theta++)
     fscanf(ficpar,"\n");            trgradg[h][j][theta]=gradg[h][theta][j];
     printf("\n");  
     fprintf(ficparo,"\n");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   }        for(theta=1; theta <=npar; theta++)
   for(i=1; i <=npar; i++)          trgradgp[j][theta]=gradgp[theta][j];
     for(j=i+1;j<=npar;j++)    
       matcov[i][j]=matcov[j][i];  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   printf("\n");      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */      for(h=0;h<=nhstepm;h++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        for(k=0;k<=nhstepm;k++){
      strcat(rfileres,".");    /* */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     if((ficres =fopen(rfileres,"w"))==NULL) {          for(i=1;i<=nlstate;i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            for(j=1;j<=nlstate;j++)
     }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     fprintf(ficres,"#%s\n",version);        }
          }
     /*-------- data file ----------*/    
     if((fic=fopen(datafile,"r"))==NULL)    {      /* pptj */
       printf("Problem with datafile: %s\n", datafile);goto end;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
     n= lastobs;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     severity = vector(1,maxwav);          varppt[j][i]=doldmp[j][i];
     outcome=imatrix(1,maxwav+1,1,n);      /* end ppptj */
     num=ivector(1,n);      /*  x centered again */
     moisnais=vector(1,n);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     annais=vector(1,n);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     moisdc=vector(1,n);   
     andc=vector(1,n);      if (popbased==1) {
     agedc=vector(1,n);        if(mobilav ==0){
     cod=ivector(1,n);          for(i=1; i<=nlstate;i++)
     weight=vector(1,n);            prlim[i][i]=probs[(int)age][i][ij];
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        }else{ /* mobilav */ 
     mint=matrix(1,maxwav,1,n);          for(i=1; i<=nlstate;i++)
     anint=matrix(1,maxwav,1,n);            prlim[i][i]=mobaverage[(int)age][i][ij];
     s=imatrix(1,maxwav+1,1,n);        }
     adl=imatrix(1,maxwav+1,1,n);          }
     tab=ivector(1,NCOVMAX);               
     ncodemax=ivector(1,8);      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     i=1;         as a weighted average of prlim.
     while (fgets(line, MAXLINE, fic) != NULL)    {      */
       if ((i >= firstobs) && (i <=lastobs)) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         for (j=maxwav;j>=1;j--){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      }    
           strcpy(line,stra);      /* end probability of death */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1; i<=nlstate;i++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      } 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresprobmorprev,"\n");
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresvij,"%.0f ",age );
         for (j=ncovcol;j>=1;j--){      for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<=nlstate;j++){
         }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         num[i]=atol(stra);        }
              fprintf(ficresvij,"\n");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      free_matrix(gp,0,nhstepm,1,nlstate);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         i=i+1;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    } /* End age */
     /* printf("ii=%d", ij);    free_vector(gpp,nlstate+1,nlstate+ndeath);
        scanf("%d",i);*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
   imx=i-1; /* Number of individuals */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /* for (i=1; i<=imx; i++){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     }*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
    /*  for (i=1; i<=imx; i++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      if (s[4][i]==9)  s[4][i]=-1;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   /* Calculation of the number of parameter from char model*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   Tvar=ivector(1,15);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   Tprod=ivector(1,15);  */
   Tvaraff=ivector(1,15);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   Tvard=imatrix(1,15,1,2);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   Tage=ivector(1,15);        
        free_vector(xp,1,npar);
   if (strlen(model) >1){    free_matrix(doldm,1,nlstate,1,nlstate);
     j=0, j1=0, k1=1, k2=1;    free_matrix(dnewm,1,nlstate,1,npar);
     j=nbocc(model,'+');    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     j1=nbocc(model,'*');    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     cptcovn=j+1;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     cptcovprod=j1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fclose(ficresprobmorprev);
     strcpy(modelsav,model);    fflush(ficgp);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fflush(fichtm); 
       printf("Error. Non available option model=%s ",model);  }  /* end varevsij */
       goto end;  
     }  /************ Variance of prevlim ******************/
      void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     for(i=(j+1); i>=1;i--){  {
       cutv(stra,strb,modelsav,'+');    /* Variance of prevalence limit */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    double **newm;
       /*scanf("%d",i);*/    double **dnewm,**doldm;
       if (strchr(strb,'*')) {    int i, j, nhstepm, hstepm;
         cutv(strd,strc,strb,'*');    int k, cptcode;
         if (strcmp(strc,"age")==0) {    double *xp;
           cptcovprod--;    double *gp, *gm;
           cutv(strb,stre,strd,'V');    double **gradg, **trgradg;
           Tvar[i]=atoi(stre);    double age,agelim;
           cptcovage++;    int theta;
             Tage[cptcovage]=i;    
             /*printf("stre=%s ", stre);*/    pstamp(ficresvpl);
         }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
         else if (strcmp(strd,"age")==0) {    fprintf(ficresvpl,"# Age");
           cptcovprod--;    for(i=1; i<=nlstate;i++)
           cutv(strb,stre,strc,'V');        fprintf(ficresvpl," %1d-%1d",i,i);
           Tvar[i]=atoi(stre);    fprintf(ficresvpl,"\n");
           cptcovage++;  
           Tage[cptcovage]=i;    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
         else {    doldm=matrix(1,nlstate,1,nlstate);
           cutv(strb,stre,strc,'V');    
           Tvar[i]=ncovcol+k1;    hstepm=1*YEARM; /* Every year of age */
           cutv(strb,strc,strd,'V');    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           Tprod[k1]=i;    agelim = AGESUP;
           Tvard[k1][1]=atoi(strc);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           Tvard[k1][2]=atoi(stre);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           Tvar[cptcovn+k2]=Tvard[k1][1];      if (stepm >= YEARM) hstepm=1;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           for (k=1; k<=lastobs;k++)      gradg=matrix(1,npar,1,nlstate);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      gp=vector(1,nlstate);
           k1++;      gm=vector(1,nlstate);
           k2=k2+2;  
         }      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ /* Computes gradient */
       else {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        }
        /*  scanf("%d",i);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       cutv(strd,strc,strb,'V');        for(i=1;i<=nlstate;i++)
       Tvar[i]=atoi(strc);          gp[i] = prlim[i][i];
       }      
       strcpy(modelsav,stra);          for(i=1; i<=npar; i++) /* Computes gradient */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         scanf("%d",i);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }        for(i=1;i<=nlstate;i++)
 }          gm[i] = prlim[i][i];
    
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        for(i=1;i<=nlstate;i++)
   printf("cptcovprod=%d ", cptcovprod);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   scanf("%d ",i);*/      } /* End theta */
     fclose(fic);  
       trgradg =matrix(1,nlstate,1,npar);
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/      for(j=1; j<=nlstate;j++)
       for(i=1;i<=n;i++) weight[i]=1.0;        for(theta=1; theta <=npar; theta++)
     }          trgradg[j][theta]=gradg[theta][j];
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
     for (i=1; i<=imx; i++) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       for(m=2; (m<= maxwav); m++) {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      for(i=1;i<=nlstate;i++)
          anint[m][i]=9999;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
          s[m][i]=-1;  
        }      fprintf(ficresvpl,"%.0f ",age );
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      for(i=1; i<=nlstate;i++)
       }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     }      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
     for (i=1; i<=imx; i++)  {      free_vector(gm,1,nlstate);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      free_matrix(gradg,1,npar,1,nlstate);
       for(m=1; (m<= maxwav); m++){      free_matrix(trgradg,1,nlstate,1,npar);
         if(s[m][i] >0){    } /* End age */
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)    free_vector(xp,1,npar);
               if(moisdc[i]!=99 && andc[i]!=9999)    free_matrix(doldm,1,nlstate,1,npar);
                 agev[m][i]=agedc[i];    free_matrix(dnewm,1,nlstate,1,nlstate);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {  }
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  /************ Variance of one-step probabilities  ******************/
               agev[m][i]=-1;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
               }  {
             }    int i, j=0,  i1, k1, l1, t, tj;
           }    int k2, l2, j1,  z1;
           else if(s[m][i] !=9){ /* Should no more exist */    int k=0,l, cptcode;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    int first=1, first1;
             if(mint[m][i]==99 || anint[m][i]==9999)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
               agev[m][i]=1;    double **dnewm,**doldm;
             else if(agev[m][i] <agemin){    double *xp;
               agemin=agev[m][i];    double *gp, *gm;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    double **gradg, **trgradg;
             }    double **mu;
             else if(agev[m][i] >agemax){    double age,agelim, cov[NCOVMAX];
               agemax=agev[m][i];    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    int theta;
             }    char fileresprob[FILENAMELENGTH];
             /*agev[m][i]=anint[m][i]-annais[i];*/    char fileresprobcov[FILENAMELENGTH];
             /*   agev[m][i] = age[i]+2*m;*/    char fileresprobcor[FILENAMELENGTH];
           }  
           else { /* =9 */    double ***varpij;
             agev[m][i]=1;  
             s[m][i]=-1;    strcpy(fileresprob,"prob"); 
           }    strcat(fileresprob,fileres);
         }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         else /*= 0 Unknown */      printf("Problem with resultfile: %s\n", fileresprob);
           agev[m][i]=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       }    }
        strcpy(fileresprobcov,"probcov"); 
     }    strcat(fileresprobcov,fileres);
     for (i=1; i<=imx; i++)  {    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       for(m=1; (m<= maxwav); m++){      printf("Problem with resultfile: %s\n", fileresprobcov);
         if (s[m][i] > (nlstate+ndeath)) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           printf("Error: Wrong value in nlstate or ndeath\n");      }
           goto end;    strcpy(fileresprobcor,"probcor"); 
         }    strcat(fileresprobcor,fileres);
       }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     free_vector(severity,1,maxwav);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     free_imatrix(outcome,1,maxwav+1,1,n);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     free_vector(moisnais,1,n);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     free_vector(annais,1,n);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     /* free_matrix(mint,1,maxwav,1,n);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        free_matrix(anint,1,maxwav,1,n);*/    pstamp(ficresprob);
     free_vector(moisdc,1,n);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     free_vector(andc,1,n);    fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
        fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     wav=ivector(1,imx);    fprintf(ficresprobcov,"# Age");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    pstamp(ficresprobcor);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
        fprintf(ficresprobcor,"# Age");
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
       Tcode=ivector(1,100);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       ncodemax[1]=1;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      }  
         /* fprintf(ficresprob,"\n");
    codtab=imatrix(1,100,1,10);    fprintf(ficresprobcov,"\n");
    h=0;    fprintf(ficresprobcor,"\n");
    m=pow(2,cptcoveff);   */
     xp=vector(1,npar);
    for(k=1;k<=cptcoveff; k++){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      for(i=1; i <=(m/pow(2,k));i++){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        for(j=1; j <= ncodemax[k]; j++){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
            h++;    first=1;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    fprintf(ficgp,"\n# Routine varprob");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
          }    fprintf(fichtm,"\n");
        }  
      }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
    }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    file %s<br>\n",optionfilehtmcov);
       codtab[1][2]=1;codtab[2][2]=2; */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    /* for(i=1; i <=m ;i++){  and drawn. It helps understanding how is the covariance between two incidences.\
       for(k=1; k <=cptcovn; k++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       printf("\n");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       }  standard deviations wide on each axis. <br>\
       scanf("%d",i);*/   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
    /* Calculates basic frequencies. Computes observed prevalence at single age  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
        and prints on file fileres'p'. */  
     cov[1]=1;
        tj=cptcoveff;
        if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    j1=0;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(t=1; t<=tj;t++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i1=1; i1<=ncodemax[t];i1++){ 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        j1++;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        if  (cptcovn>0) {
                fprintf(ficresprob, "\n#********** Variable "); 
     /* For Powell, parameters are in a vector p[] starting at p[1]          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          fprintf(ficresprob, "**********\n#\n");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if(mle==1){          fprintf(ficresprobcov, "**********\n#\n");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          
     }          fprintf(ficgp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /*--------- results files --------------*/          fprintf(ficgp, "**********\n#\n");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          
            
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
    jk=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          
    for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficresprobcor, "\n#********** Variable ");    
      for(k=1; k <=(nlstate+ndeath); k++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        if (k != i)          fprintf(ficresprobcor, "**********\n#");    
          {        }
            printf("%d%d ",i,k);        
            fprintf(ficres,"%1d%1d ",i,k);        for (age=bage; age<=fage; age ++){ 
            for(j=1; j <=ncovmodel; j++){          cov[2]=age;
              printf("%f ",p[jk]);          for (k=1; k<=cptcovn;k++) {
              fprintf(ficres,"%f ",p[jk]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
              jk++;          }
            }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            printf("\n");          for (k=1; k<=cptcovprod;k++)
            fprintf(ficres,"\n");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          }          
      }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
    }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  if(mle==1){          gp=vector(1,(nlstate)*(nlstate+ndeath));
     /* Computing hessian and covariance matrix */          gm=vector(1,(nlstate)*(nlstate+ndeath));
     ftolhess=ftol; /* Usually correct */      
     hesscov(matcov, p, npar, delti, ftolhess, func);          for(theta=1; theta <=npar; theta++){
  }            for(i=1; i<=npar; i++)
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     printf("# Scales (for hessian or gradient estimation)\n");            
      for(i=1,jk=1; i <=nlstate; i++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       for(j=1; j <=nlstate+ndeath; j++){            
         if (j!=i) {            k=0;
           fprintf(ficres,"%1d%1d",i,j);            for(i=1; i<= (nlstate); i++){
           printf("%1d%1d",i,j);              for(j=1; j<=(nlstate+ndeath);j++){
           for(k=1; k<=ncovmodel;k++){                k=k+1;
             printf(" %.5e",delti[jk]);                gp[k]=pmmij[i][j];
             fprintf(ficres," %.5e",delti[jk]);              }
             jk++;            }
           }            
           printf("\n");            for(i=1; i<=npar; i++)
           fprintf(ficres,"\n");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         }      
       }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      }            k=0;
                for(i=1; i<=(nlstate); i++){
     k=1;              for(j=1; j<=(nlstate+ndeath);j++){
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                k=k+1;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                gm[k]=pmmij[i][j];
     for(i=1;i<=npar;i++){              }
       /*  if (k>nlstate) k=1;            }
       i1=(i-1)/(ncovmodel*nlstate)+1;       
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       printf("%s%d%d",alph[k],i1,tab[i]);*/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       fprintf(ficres,"%3d",i);          }
       printf("%3d",i);  
       for(j=1; j<=i;j++){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         fprintf(ficres," %.5e",matcov[i][j]);            for(theta=1; theta <=npar; theta++)
         printf(" %.5e",matcov[i][j]);              trgradg[j][theta]=gradg[theta][j];
       }          
       fprintf(ficres,"\n");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       printf("\n");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       k++;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
              free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     while((c=getc(ficpar))=='#' && c!= EOF){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);          pmij(pmmij,cov,ncovmodel,x,nlstate);
       puts(line);          
       fputs(line,ficparo);          k=0;
     }          for(i=1; i<=(nlstate); i++){
     ungetc(c,ficpar);            for(j=1; j<=(nlstate+ndeath);j++){
     estepm=0;              k=k+1;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);              mu[k][(int) age]=pmmij[i][j];
     if (estepm==0 || estepm < stepm) estepm=stepm;            }
     if (fage <= 2) {          }
       bage = ageminpar;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       fage = agemaxpar;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     }              varpij[i][j][(int)age] = doldm[i][j];
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          /*printf("\n%d ",(int)age);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     while((c=getc(ficpar))=='#' && c!= EOF){            }*/
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprob,"\n%d ",(int)age);
     puts(line);          fprintf(ficresprobcov,"\n%d ",(int)age);
     fputs(line,ficparo);          fprintf(ficresprobcor,"\n%d ",(int)age);
   }  
   ungetc(c,ficpar);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                }
   while((c=getc(ficpar))=='#' && c!= EOF){          i=0;
     ungetc(c,ficpar);          for (k=1; k<=(nlstate);k++){
     fgets(line, MAXLINE, ficpar);            for (l=1; l<=(nlstate+ndeath);l++){ 
     puts(line);              i=i++;
     fputs(line,ficparo);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   ungetc(c,ficpar);              for (j=1; j<=i;j++){
                  fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            }
           }/* end of loop for state */
   fscanf(ficpar,"pop_based=%d\n",&popbased);        } /* end of loop for age */
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);          /* Confidence intervalle of pij  */
          /*
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"\nset noparametric;unset label");
     ungetc(c,ficpar);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     puts(line);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     fputs(line,ficparo);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   ungetc(c,ficpar);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 while((c=getc(ficpar))=='#' && c!= EOF){            if(l2==k2) continue;
     ungetc(c,ficpar);            j=(k2-1)*(nlstate+ndeath)+l2;
     fgets(line, MAXLINE, ficpar);            for (k1=1; k1<=(nlstate);k1++){
     puts(line);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     fputs(line,ficparo);                if(l1==k1) continue;
   }                i=(k1-1)*(nlstate+ndeath)+l1;
   ungetc(c,ficpar);                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                  if ((int)age %5==0){
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
 /*------------ gnuplot -------------*/                    c12=cv12/sqrt(v1*v2);
   strcpy(optionfilegnuplot,optionfilefiname);                    /* Computing eigen value of matrix of covariance */
   strcat(optionfilegnuplot,".gp");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     printf("Problem with file %s",optionfilegnuplot);                    /* Eigen vectors */
   }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   fclose(ficgp);                    /*v21=sqrt(1.-v11*v11); *//* error */
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                    v21=(lc1-v1)/cv12*v11;
 /*--------- index.htm --------*/                    v12=-v21;
                     v22=v11;
   strcpy(optionfilehtm,optionfile);                    tnalp=v21/v11;
   strcat(optionfilehtm,".htm");                    if(first1==1){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                      first1=0;
     printf("Problem with %s \n",optionfilehtm), exit(0);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   }                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                    /*printf(fignu*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 \n                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 Total number of observations=%d <br>\n                    if(first==1){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                      first=0;
 <hr  size=\"2\" color=\"#EC5E5E\">                      fprintf(ficgp,"\nset parametric;unset label");
  <ul><li>Parameter files<br>\n                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   fclose(fichtm);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 /*------------ free_vector  -------------*/                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  chdir(path);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  free_ivector(wav,1,imx);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  free_ivector(num,1,n);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  free_vector(agedc,1,n);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                    }else{
  fclose(ficparo);                      first=0;
  fclose(ficres);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /*--------------- Prevalence limit --------------*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcpy(filerespl,"pl");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcat(filerespl,fileres);                    }/* if first */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                  } /* age mod 5 */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                } /* end loop age */
   }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                first=1;
   fprintf(ficrespl,"#Prevalence limit\n");              } /*l12 */
   fprintf(ficrespl,"#Age ");            } /* k12 */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          } /*l1 */
   fprintf(ficrespl,"\n");        }/* k1 */
        } /* loop covariates */
   prlim=matrix(1,nlstate,1,nlstate);    }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    free_vector(xp,1,npar);
   k=0;    fclose(ficresprob);
   agebase=ageminpar;    fclose(ficresprobcov);
   agelim=agemaxpar;    fclose(ficresprobcor);
   ftolpl=1.e-10;    fflush(ficgp);
   i1=cptcoveff;    fflush(fichtmcov);
   if (cptcovn < 1){i1=1;}  }
   
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /******************* Printing html file ***********/
         k=k+1;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                    int lastpass, int stepm, int weightopt, char model[],\
         fprintf(ficrespl,"\n#******");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         for(j=1;j<=cptcoveff;j++)                    int popforecast, int estepm ,\
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    double jprev1, double mprev1,double anprev1, \
         fprintf(ficrespl,"******\n");                    double jprev2, double mprev2,double anprev2){
            int jj1, k1, i1, cpt;
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
           fprintf(ficrespl,"%.0f",age );     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
           for(i=1; i<=nlstate;i++)  </ul>");
           fprintf(ficrespl," %.5f", prlim[i][i]);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
           fprintf(ficrespl,"\n");   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
         }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       }     fprintf(fichtm,"\
     }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   fclose(ficrespl);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
   /*------------- h Pij x at various ages ------------*/   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);     fprintf(fichtm,"\
   if((ficrespij=fopen(filerespij,"w"))==NULL) {   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     <a href=\"%s\">%s</a> <br>\n</li>",
   }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   printf("Computing pij: result on file '%s' \n", filerespij);  
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   /*if (stepm<=24) stepsize=2;*/  
    m=cptcoveff;
   agelim=AGESUP;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   jj1=0;
     for(k1=1; k1<=m;k1++){
   k=0;     for(i1=1; i1<=ncodemax[k1];i1++){
   for(cptcov=1;cptcov<=i1;cptcov++){       jj1++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       if (cptcovn > 0) {
       k=k+1;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         fprintf(ficrespij,"\n#****** ");         for (cpt=1; cpt<=cptcoveff;cpt++) 
         for(j=1;j<=cptcoveff;j++)           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficrespij,"******\n");       }
               /* Pij */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       /* Quasi-incidences */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
           oldm=oldms;savm=savms;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
           fprintf(ficrespij,"# Age");         /* Period (stable) prevalence in each health state */
           for(i=1; i<=nlstate;i++)         for(cpt=1; cpt<nlstate;cpt++){
             for(j=1; j<=nlstate+ndeath;j++)           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
               fprintf(ficrespij," %1d-%1d",i,j);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           fprintf(ficrespij,"\n");         }
            for (h=0; h<=nhstepm; h++){       for(cpt=1; cpt<=nlstate;cpt++) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
             for(i=1; i<=nlstate;i++)  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
               for(j=1; j<=nlstate+ndeath;j++)       }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);     } /* end i1 */
             fprintf(ficrespij,"\n");   }/* End k1 */
              }   fprintf(fichtm,"</ul>");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");  
         }   fprintf(fichtm,"\
     }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   fclose(ficrespij);   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){   fprintf(fichtm,"\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   }   fprintf(fichtm,"\
   else{   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     erreur=108;     <a href=\"%s\">%s</a> <br>\n</li>",
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   }   fprintf(fichtm,"\
     - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   /*---------- Health expectancies and variances ------------*/             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
   strcpy(filerest,"t");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   strcat(filerest,fileres);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   if((ficrest=fopen(filerest,"w"))==NULL) {   fprintf(fichtm,"\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   printf("Computing Total LEs with variances: file '%s' \n", filerest);   fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   strcpy(filerese,"e");  
   strcat(filerese,fileres);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   }  /*      <br>",fileres,fileres,fileres,fileres); */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
  strcpy(fileresv,"v");   fflush(fichtm);
   strcat(fileresv,fileres);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   m=cptcoveff;
   }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;   jj1=0;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   k=0;       jj1++;
   for(cptcov=1;cptcov<=i1;cptcov++){       if (cptcovn > 0) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       k=k+1;         for (cpt=1; cpt<=cptcoveff;cpt++) 
       fprintf(ficrest,"\n#****** ");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       for(j=1;j<=cptcoveff;j++)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       }
       fprintf(ficrest,"******\n");       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       fprintf(ficreseij,"\n#****** ");  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       for(j=1;j<=cptcoveff;j++)  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       }
       fprintf(ficreseij,"******\n");       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
       fprintf(ficresvij,"\n#****** ");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       for(j=1;j<=cptcoveff;j++)     } /* end i1 */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   }/* End k1 */
       fprintf(ficresvij,"******\n");   fprintf(fichtm,"</ul>");
    fflush(fichtm);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  }
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    /******************* Gnuplot file **************/
    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    char dirfileres[132],optfileres[132];
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
        int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
    /*     printf("Problem with file %s",optionfilegnuplot); */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /*   } */
       fprintf(ficrest,"\n");  
     /*#ifdef windows */
       epj=vector(1,nlstate+1);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       for(age=bage; age <=fage ;age++){      /*#endif */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    m=pow(2,cptcoveff);
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)    strcpy(dirfileres,optionfilefiname);
             prlim[i][i]=probs[(int)age][i][k];    strcpy(optfileres,"vpl");
         }   /* 1eme*/
            for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficrest," %4.0f",age);     for (k1=1; k1<= m ; k1 ++) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];       fprintf(ficgp,"set xlabel \"Age\" \n\
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  set ylabel \"Probability\" \n\
           }  set ter png small\n\
           epj[nlstate+1] +=epj[j];  set size 0.65,0.65\n\
         }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
         for(i=1, vepp=0.;i <=nlstate;i++)       for (i=1; i<= nlstate ; i ++) {
           for(j=1;j <=nlstate;j++)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             vepp += vareij[i][j][(int)age];         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       }
         for(j=1;j <=nlstate;j++){       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       for (i=1; i<= nlstate ; i ++) {
         }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrest,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
       }       } 
     }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   }       for (i=1; i<= nlstate ; i ++) {
 free_matrix(mint,1,maxwav,1,n);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     free_vector(weight,1,n);       }  
   fclose(ficreseij);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fclose(ficresvij);     }
   fclose(ficrest);    }
   fclose(ficpar);    /*2 eme*/
   free_vector(epj,1,nlstate+1);    
      for (k1=1; k1<= m ; k1 ++) { 
   /*------- Variance limit prevalence------*/        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   strcpy(fileresvpl,"vpl");      
   strcat(fileresvpl,fileres);      for (i=1; i<= nlstate+1 ; i ++) {
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        k=2*i;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     exit(0);        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   k=0;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   for(cptcov=1;cptcov<=i1;cptcov++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       k=k+1;        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficresvpl,"\n#****** ");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       for(j=1;j<=cptcoveff;j++)          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }   
       fprintf(ficresvpl,"******\n");        fprintf(ficgp,"\" t\"\" w l 0,");
              fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        for (j=1; j<= nlstate+1 ; j ++) {
       oldm=oldms;savm=savms;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }   
  }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
   fclose(ficresvpl);      }
     }
   /*---------- End : free ----------------*/    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    /*3eme*/
      
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for (k1=1; k1<= m ; k1 ++) { 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for (cpt=1; cpt<= nlstate ; cpt ++) {
          /*       k=2+nlstate*(2*cpt-2); */
          k=2+(nlstate+1)*(cpt-1);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficgp,"set ter png small\n\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  set size 0.65,0.65\n\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
          /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   free_matrix(matcov,1,npar,1,npar);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   free_vector(delti,1,npar);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   free_matrix(agev,1,maxwav,1,imx);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   fprintf(fichtm,"\n</body>");          
   fclose(fichtm);        */
   fclose(ficgp);        for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   if(erreur >0)          
     printf("End of Imach with error or warning %d\n",erreur);        } 
   else   printf("End of Imach\n");        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      }
      }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /* CV preval stable (period) */
   /*------ End -----------*/    for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
  end:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 #ifdef windows        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   /* chdir(pathcd);*/  set ter png small\nset size 0.65,0.65\n\
 #endif  unset log y\n\
  /*system("wgnuplot graph.plt");*/  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        
  /*system("cd ../gp37mgw");*/        for (i=1; i< nlstate ; i ++)
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          fprintf(ficgp,"+$%d",k+i+1);
  strcpy(plotcmd,GNUPLOTPROGRAM);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
  strcat(plotcmd," ");        
  strcat(plotcmd,optionfilegnuplot);        l=3+(nlstate+ndeath)*cpt;
  system(plotcmd);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
 #ifdef windows          l=3+(nlstate+ndeath)*cpt;
   while (z[0] != 'q') {          fprintf(ficgp,"+$%d",l+i+1);
     /* chdir(path); */        }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     scanf("%s",z);      } 
     if (z[0] == 'c') system("./imach");    }  
     else if (z[0] == 'e') system(optionfilehtm);    
     else if (z[0] == 'g') system(plotcmd);    /* proba elementaires */
     else if (z[0] == 'q') exit(0);    for(i=1,jk=1; i <=nlstate; i++){
   }      for(k=1; k <=(nlstate+ndeath); k++){
 #endif        if (k != i) {
 }          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.124


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>