Diff for /imach/src/imach.c between versions 1.48 and 1.127

version 1.48, 2002/06/10 13:12:49 version 1.127, 2006/04/28 18:11:50
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.127  2006/04/28 18:11:50  brouard
      (Module): Yes the sum of survivors was wrong since
   This program computes Healthy Life Expectancies from    imach-114 because nhstepm was no more computed in the age
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    loop. Now we define nhstepma in the age loop.
   first survey ("cross") where individuals from different ages are    (Module): In order to speed up (in case of numerous covariates) we
   interviewed on their health status or degree of disability (in the    compute health expectancies (without variances) in a first step
   case of a health survey which is our main interest) -2- at least a    and then all the health expectancies with variances or standard
   second wave of interviews ("longitudinal") which measure each change    deviation (needs data from the Hessian matrices) which slows the
   (if any) in individual health status.  Health expectancies are    computation.
   computed from the time spent in each health state according to a    In the future we should be able to stop the program is only health
   model. More health states you consider, more time is necessary to reach the    expectancies and graph are needed without standard deviations.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.126  2006/04/28 17:23:28  brouard
   probability to be observed in state j at the second wave    (Module): Yes the sum of survivors was wrong since
   conditional to be observed in state i at the first wave. Therefore    imach-114 because nhstepm was no more computed in the age
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    loop. Now we define nhstepma in the age loop.
   'age' is age and 'sex' is a covariate. If you want to have a more    Version 0.98h
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.125  2006/04/04 15:20:31  lievre
   you to do it.  More covariates you add, slower the    Errors in calculation of health expectancies. Age was not initialized.
   convergence.    Forecasting file added.
   
   The advantage of this computer programme, compared to a simple    Revision 1.124  2006/03/22 17:13:53  lievre
   multinomial logistic model, is clear when the delay between waves is not    Parameters are printed with %lf instead of %f (more numbers after the comma).
   identical for each individual. Also, if a individual missed an    The log-likelihood is printed in the log file
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
   hPijx is the probability to be observed in state i at age x+h    name. <head> headers where missing.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Module): Weights can have a decimal point as for
   states. This elementary transition (by month or quarter trimester,    English (a comma might work with a correct LC_NUMERIC environment,
   semester or year) is model as a multinomial logistic.  The hPx    otherwise the weight is truncated).
   matrix is simply the matrix product of nh*stepm elementary matrices    Modification of warning when the covariates values are not 0 or
   and the contribution of each individual to the likelihood is simply    1.
   hPijx.    Version 0.98g
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.122  2006/03/20 09:45:41  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Weights can have a decimal point as for
      English (a comma might work with a correct LC_NUMERIC environment,
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    otherwise the weight is truncated).
            Institut national d'études démographiques, Paris.    Modification of warning when the covariates values are not 0 or
   This software have been partly granted by Euro-REVES, a concerted action    1.
   from the European Union.    Version 0.98g
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.121  2006/03/16 17:45:01  lievre
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Module): Comments concerning covariates added
   **********************************************************************/  
      * imach.c (Module): refinements in the computation of lli if
 #include <math.h>    status=-2 in order to have more reliable computation if stepm is
 #include <stdio.h>    not 1 month. Version 0.98f
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 #define MAXLINE 256    status=-2 in order to have more reliable computation if stepm is
 #define GNUPLOTPROGRAM "gnuplot"    not 1 month. Version 0.98f
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.119  2006/03/15 17:42:26  brouard
 /*#define DEBUG*/    (Module): Bug if status = -2, the loglikelihood was
 #define windows    computed as likelihood omitting the logarithm. Version O.98e
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    table of variances if popbased=1 .
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 #define NINTERVMAX 8    (Module): Version 0.98d
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.117  2006/03/14 17:16:22  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): varevsij Comments added explaining the second
 #define MAXN 20000    table of variances if popbased=1 .
 #define YEARM 12. /* Number of months per year */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define AGESUP 130    (Module): Function pstamp added
 #define AGEBASE 40    (Module): Version 0.98d
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.116  2006/03/06 10:29:27  brouard
 #else    (Module): Variance-covariance wrong links and
 #define DIRSEPARATOR '/'    varian-covariance of ej. is needed (Saito).
 #endif  
     Revision 1.115  2006/02/27 12:17:45  brouard
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    (Module): One freematrix added in mlikeli! 0.98c
 int erreur; /* Error number */  
 int nvar;    Revision 1.114  2006/02/26 12:57:58  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Some improvements in processing parameter
 int npar=NPARMAX;    filename with strsep.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.113  2006/02/24 14:20:24  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Memory leaks checks with valgrind and:
 int popbased=0;    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.112  2006/01/30 09:55:26  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.111  2006/01/25 20:38:18  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Lots of cleaning and bugs added (Gompertz)
 double jmean; /* Mean space between 2 waves */    (Module): Comments can be added in data file. Missing date values
 double **oldm, **newm, **savm; /* Working pointers to matrices */    can be a simple dot '.'.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.110  2006/01/25 00:51:50  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): Lots of cleaning and bugs added (Gompertz)
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.109  2006/01/24 19:37:15  brouard
 char filerese[FILENAMELENGTH];    (Module): Comments (lines starting with a #) are allowed in data.
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.108  2006/01/19 18:05:42  lievre
 FILE  *ficresvpl;    Gnuplot problem appeared...
 char fileresvpl[FILENAMELENGTH];    To be fixed
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.107  2006/01/19 16:20:37  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Test existence of gnuplot in imach path
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.105  2006/01/05 20:23:19  lievre
 char popfile[FILENAMELENGTH];    *** empty log message ***
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define NR_END 1    (Module): If the status is missing at the last wave but we know
 #define FREE_ARG char*    that the person is alive, then we can code his/her status as -2
 #define FTOL 1.0e-10    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 #define NRANSI    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define ITMAX 200    the healthy state at last known wave). Version is 0.98
   
 #define TOL 2.0e-4    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.102  2004/09/15 17:31:30  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Add the possibility to read data file including tab characters.
   
 #define GOLD 1.618034    Revision 1.101  2004/09/15 10:38:38  brouard
 #define GLIMIT 100.0    Fix on curr_time
 #define TINY 1.0e-20  
     Revision 1.100  2004/07/12 18:29:06  brouard
 static double maxarg1,maxarg2;    Add version for Mac OS X. Just define UNIX in Makefile
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.99  2004/06/05 08:57:40  brouard
      *** empty log message ***
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 static double sqrarg;    directly from the data i.e. without the need of knowing the health
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    state at each age, but using a Gompertz model: log u =a + b*age .
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 int imx;    cross-longitudinal survey is different from the mortality estimated
 int stepm;    from other sources like vital statistic data.
 /* Stepm, step in month: minimum step interpolation*/  
     The same imach parameter file can be used but the option for mle should be -3.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    The output is very simple: only an estimate of the intercept and of
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    the slope with 95% confident intervals.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Current limitations:
     A) Even if you enter covariates, i.e. with the
 double *weight;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int **s; /* Status */    B) There is no computation of Life Expectancy nor Life Table.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    suppressed.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.96  2003/07/15 15:38:55  brouard
 /**************** split *************************/    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    rewritten within the same printf. Workaround: many printfs.
 {  
    char *s;                             /* pointer */    Revision 1.95  2003/07/08 07:54:34  brouard
    int  l1, l2;                         /* length counters */    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
    l1 = strlen( path );                 /* length of path */    matrix (cov(a12,c31) instead of numbers.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    Revision 1.94  2003/06/27 13:00:02  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Just cleaning
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
       if ( getwd( dirc ) == NULL ) {    exist so I changed back to asctime which exists.
 #else    (Module): Version 0.96b
       extern char       *getcwd( );  
     Revision 1.92  2003/06/25 16:30:45  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): On windows (cygwin) function asctime_r doesn't
 #endif    exist so I changed back to asctime which exists.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.91  2003/06/25 15:30:29  brouard
       strcpy( name, path );             /* we've got it */    * imach.c (Repository): Duplicated warning errors corrected.
    } else {                             /* strip direcotry from path */    (Repository): Elapsed time after each iteration is now output. It
       s++;                              /* after this, the filename */    helps to forecast when convergence will be reached. Elapsed time
       l2 = strlen( s );                 /* length of filename */    is stamped in powell.  We created a new html file for the graphs
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    concerning matrix of covariance. It has extension -cov.htm.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.90  2003/06/24 12:34:15  brouard
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Some bugs corrected for windows. Also, when
    }    mle=-1 a template is output in file "or"mypar.txt with the design
    l1 = strlen( dirc );                 /* length of directory */    of the covariance matrix to be input.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.89  2003/06/24 12:30:52  brouard
 #else    (Module): Some bugs corrected for windows. Also, when
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    mle=-1 a template is output in file "or"mypar.txt with the design
 #endif    of the covariance matrix to be input.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.88  2003/06/23 17:54:56  brouard
    strcpy(ext,s);                       /* save extension */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.87  2003/06/18 12:26:01  brouard
    strncpy( finame, name, l1-l2);    Version 0.96
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.86  2003/06/17 20:04:08  brouard
 }    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
   
 /******************************************/    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 void replace(char *s, char*t)    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   int i;    was wrong (infinity). We still send an "Error" but patch by
   int lg=20;    assuming that the date of death was just one stepm after the
   i=0;    interview.
   lg=strlen(t);    (Repository): Because some people have very long ID (first column)
   for(i=0; i<= lg; i++) {    we changed int to long in num[] and we added a new lvector for
     (s[i] = t[i]);    memory allocation. But we also truncated to 8 characters (left
     if (t[i]== '\\') s[i]='/';    truncation)
   }    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   int i,j=0;    many times. Probs is memory consuming and must be used with
   int lg=20;    parcimony.
   i=0;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.83  2003/06/10 13:39:11  lievre
   if  (s[i] == occ ) j++;    *** empty log message ***
   }  
   return j;    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 void cutv(char *u,char *v, char*t, char occ)  */
 {  /*
   int i,lg,j,p=0;     Interpolated Markov Chain
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Short summary of the programme:
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    
   }    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   lg=strlen(t);    first survey ("cross") where individuals from different ages are
   for(j=0; j<p; j++) {    interviewed on their health status or degree of disability (in the
     (u[j] = t[j]);    case of a health survey which is our main interest) -2- at least a
   }    second wave of interviews ("longitudinal") which measure each change
      u[p]='\0';    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
    for(j=0; j<= lg; j++) {    model. More health states you consider, more time is necessary to reach the
     if (j>=(p+1))(v[j-p-1] = t[j]);    Maximum Likelihood of the parameters involved in the model.  The
   }    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /********************** nrerror ********************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 void nrerror(char error_text[])    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   fprintf(stderr,"ERREUR ...\n");    you to do it.  More covariates you add, slower the
   fprintf(stderr,"%s\n",error_text);    convergence.
   exit(1);  
 }    The advantage of this computer programme, compared to a simple
 /*********************** vector *******************/    multinomial logistic model, is clear when the delay between waves is not
 double *vector(int nl, int nh)    identical for each individual. Also, if a individual missed an
 {    intermediate interview, the information is lost, but taken into
   double *v;    account using an interpolation or extrapolation.  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    hPijx is the probability to be observed in state i at age x+h
   return v-nl+NR_END;    conditional to the observed state i at age x. The delay 'h' can be
 }    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 /************************ free vector ******************/    semester or year) is modelled as a multinomial logistic.  The hPx
 void free_vector(double*v, int nl, int nh)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   free((FREE_ARG)(v+nl-NR_END));    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /************************ivector *******************************/    of the life expectancies. It also computes the period (stable) prevalence. 
 int *ivector(long nl,long nh)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   int *v;             Institut national d'études démographiques, Paris.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    This software have been partly granted by Euro-REVES, a concerted action
   if (!v) nrerror("allocation failure in ivector");    from the European Union.
   return v-nl+NR_END;    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   free((FREE_ARG)(v+nl-NR_END));    
 }    **********************************************************************/
   /*
 /******************* imatrix *******************************/    main
 int **imatrix(long nrl, long nrh, long ncl, long nch)    read parameterfile
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    read datafile
 {    concatwav
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    freqsummary
   int **m;    if (mle >= 1)
        mlikeli
   /* allocate pointers to rows */    print results files
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    if mle==1 
   if (!m) nrerror("allocation failure 1 in matrix()");       computes hessian
   m += NR_END;    read end of parameter file: agemin, agemax, bage, fage, estepm
   m -= nrl;        begin-prev-date,...
      open gnuplot file
      open html file
   /* allocate rows and set pointers to them */    period (stable) prevalence
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));     for age prevalim()
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    h Pij x
   m[nrl] += NR_END;    variance of p varprob
   m[nrl] -= ncl;    forecasting if prevfcast==1 prevforecast call prevalence()
      health expectancies
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Variance-covariance of DFLE
      prevalence()
   /* return pointer to array of pointers to rows */     movingaverage()
   return m;    varevsij() 
 }    if popbased==1 varevsij(,popbased)
     total life expectancies
 /****************** free_imatrix *************************/    Variance of period (stable) prevalence
 void free_imatrix(m,nrl,nrh,ncl,nch)   end
       int **m;  */
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   
   free((FREE_ARG) (m+nrl-NR_END));  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /******************* matrix *******************************/  #include <string.h>
 double **matrix(long nrl, long nrh, long ncl, long nch)  #include <unistd.h>
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #include <limits.h>
   double **m;  #include <sys/types.h>
   #include <sys/stat.h>
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <errno.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  extern int errno;
   m += NR_END;  
   m -= nrl;  /* #include <sys/time.h> */
   #include <time.h>
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include "timeval.h"
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /* #include <libintl.h> */
   m[nrl] -= ncl;  /* #define _(String) gettext (String) */
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define MAXLINE 256
   return m;  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /*************************free matrix ************************/  #define FILENAMELENGTH 132
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   double ***m;  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define YEARM 12. /* Number of months per year */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define AGESUP 130
   m += NR_END;  #define AGEBASE 40
   m -= nrl;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define DIRSEPARATOR '/'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define CHARSEPARATOR "/"
   m[nrl] += NR_END;  #define ODIRSEPARATOR '\\'
   m[nrl] -= ncl;  #else
   #define DIRSEPARATOR '\\'
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #endif
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /* $Id$ */
   m[nrl][ncl] -= nll;  /* $State$ */
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  char version[]="Imach version 0.98h, April 2006, INED-EUROREVES-Institut de longevite ";
    char fullversion[]="$Revision$ $Date$"; 
   for (i=nrl+1; i<=nrh; i++) {  char strstart[80];
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     for (j=ncl+1; j<=nch; j++)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       m[i][j]=m[i][j-1]+nlay;  int nvar;
   }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   return m;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /*************************free ma3x ************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int popbased=0;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int *wav; /* Number of waves for this individuual 0 is possible */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int maxwav; /* Maxim number of waves */
   free((FREE_ARG)(m+nrl-NR_END));  int jmin, jmax; /* min, max spacing between 2 waves */
 }  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   int gipmx, gsw; /* Global variables on the number of contributions 
 /***************** f1dim *************************/                     to the likelihood and the sum of weights (done by funcone)*/
 extern int ncom;  int mle, weightopt;
 extern double *pcom,*xicom;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 extern double (*nrfunc)(double []);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double f1dim(double x)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   int j;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double f;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double *xt;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
   xt=vector(1,ncom);  int globpr; /* Global variable for printing or not */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double fretone; /* Only one call to likelihood */
   f=(*nrfunc)(xt);  long ipmx; /* Number of contributions */
   free_vector(xt,1,ncom);  double sw; /* Sum of weights */
   return f;  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /*****************brent *************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   int iter;  FILE *ficreseij;
   double a,b,d,etemp;  char filerese[FILENAMELENGTH];
   double fu,fv,fw,fx;  FILE *ficresstdeij;
   double ftemp;  char fileresstde[FILENAMELENGTH];
   double p,q,r,tol1,tol2,u,v,w,x,xm;  FILE *ficrescveij;
   double e=0.0;  char filerescve[FILENAMELENGTH];
    FILE  *ficresvij;
   a=(ax < cx ? ax : cx);  char fileresv[FILENAMELENGTH];
   b=(ax > cx ? ax : cx);  FILE  *ficresvpl;
   x=w=v=bx;  char fileresvpl[FILENAMELENGTH];
   fw=fv=fx=(*f)(x);  char title[MAXLINE];
   for (iter=1;iter<=ITMAX;iter++) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     xm=0.5*(a+b);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char command[FILENAMELENGTH];
     printf(".");fflush(stdout);  int  outcmd=0;
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  char filelog[FILENAMELENGTH]; /* Log file */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char filerest[FILENAMELENGTH];
       *xmin=x;  char fileregp[FILENAMELENGTH];
       return fx;  char popfile[FILENAMELENGTH];
     }  
     ftemp=fu;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       q=(x-v)*(fx-fw);  struct timezone tzp;
       p=(x-v)*q-(x-w)*r;  extern int gettimeofday();
       q=2.0*(q-r);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       if (q > 0.0) p = -p;  long time_value;
       q=fabs(q);  extern long time();
       etemp=e;  char strcurr[80], strfor[80];
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char *endptr;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  long lval;
       else {  double dval;
         d=p/q;  
         u=x+d;  #define NR_END 1
         if (u-a < tol2 || b-u < tol2)  #define FREE_ARG char*
           d=SIGN(tol1,xm-x);  #define FTOL 1.0e-10
       }  
     } else {  #define NRANSI 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define ITMAX 200 
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define TOL 2.0e-4 
     fu=(*f)(u);  
     if (fu <= fx) {  #define CGOLD 0.3819660 
       if (u >= x) a=x; else b=x;  #define ZEPS 1.0e-10 
       SHFT(v,w,x,u)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         SHFT(fv,fw,fx,fu)  
         } else {  #define GOLD 1.618034 
           if (u < x) a=u; else b=u;  #define GLIMIT 100.0 
           if (fu <= fw || w == x) {  #define TINY 1.0e-20 
             v=w;  
             w=u;  static double maxarg1,maxarg2;
             fv=fw;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
             fw=fu;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
           } else if (fu <= fv || v == x || v == w) {    
             v=u;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
             fv=fu;  #define rint(a) floor(a+0.5)
           }  
         }  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   nrerror("Too many iterations in brent");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   *xmin=x;  int agegomp= AGEGOMP;
   return fx;  
 }  int imx; 
   int stepm=1;
 /****************** mnbrak ***********************/  /* Stepm, step in month: minimum step interpolation*/
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int estepm;
             double (*func)(double))  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   double ulim,u,r,q, dum;  int m,nb;
   double fu;  long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   *fa=(*func)(*ax);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   *fb=(*func)(*bx);  double **pmmij, ***probs;
   if (*fb > *fa) {  double *ageexmed,*agecens;
     SHFT(dum,*ax,*bx,dum)  double dateintmean=0;
       SHFT(dum,*fb,*fa,dum)  
       }  double *weight;
   *cx=(*bx)+GOLD*(*bx-*ax);  int **s; /* Status */
   *fc=(*func)(*cx);  double *agedc, **covar, idx;
   while (*fb > *fc) {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     r=(*bx-*ax)*(*fb-*fc);  double *lsurv, *lpop, *tpop;
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double ftolhess; /* Tolerance for computing hessian */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  /**************** split *************************/
       fu=(*func)(u);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     } else if ((*cx-u)*(u-ulim) > 0.0) {  {
       fu=(*func)(u);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       if (fu < *fc) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    */ 
           SHFT(*fb,*fc,fu,(*func)(u))    char  *ss;                            /* pointer */
           }    int   l1, l2;                         /* length counters */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    l1 = strlen(path );                   /* length of path */
       fu=(*func)(u);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     } else {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       u=(*cx)+GOLD*(*cx-*bx);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       fu=(*func)(u);      strcpy( name, path );               /* we got the fullname name because no directory */
     }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     SHFT(*ax,*bx,*cx,u)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       SHFT(*fa,*fb,*fc,fu)      /* get current working directory */
       }      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /*************** linmin ************************/      }
       /* got dirc from getcwd*/
 int ncom;      printf(" DIRC = %s \n",dirc);
 double *pcom,*xicom;    } else {                              /* strip direcotry from path */
 double (*nrfunc)(double []);      ss++;                               /* after this, the filename */
        l2 = strlen( ss );                  /* length of filename */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 {      strcpy( name, ss );         /* save file name */
   double brent(double ax, double bx, double cx,      strncpy( dirc, path, l1 - l2 );     /* now the directory */
                double (*f)(double), double tol, double *xmin);      dirc[l1-l2] = 0;                    /* add zero */
   double f1dim(double x);      printf(" DIRC2 = %s \n",dirc);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));    /* We add a separator at the end of dirc if not exists */
   int j;    l1 = strlen( dirc );                  /* length of directory */
   double xx,xmin,bx,ax;    if( dirc[l1-1] != DIRSEPARATOR ){
   double fx,fb,fa;      dirc[l1] =  DIRSEPARATOR;
        dirc[l1+1] = 0; 
   ncom=n;      printf(" DIRC3 = %s \n",dirc);
   pcom=vector(1,n);    }
   xicom=vector(1,n);    ss = strrchr( name, '.' );            /* find last / */
   nrfunc=func;    if (ss >0){
   for (j=1;j<=n;j++) {      ss++;
     pcom[j]=p[j];      strcpy(ext,ss);                     /* save extension */
     xicom[j]=xi[j];      l1= strlen( name);
   }      l2= strlen(ss)+1;
   ax=0.0;      strncpy( finame, name, l1-l2);
   xx=1.0;      finame[l1-l2]= 0;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    return( 0 );                          /* we're done */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /******************************************/
     p[j] += xi[j];  
   }  void replace_back_to_slash(char *s, char*t)
   free_vector(xicom,1,n);  {
   free_vector(pcom,1,n);    int i;
 }    int lg=0;
     i=0;
 /*************** powell ************************/    lg=strlen(t);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for(i=0; i<= lg; i++) {
             double (*func)(double []))      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   void linmin(double p[], double xi[], int n, double *fret,    }
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  int nbocc(char *s, char occ)
   double fp,fptt;  {
   double *xits;    int i,j=0;
   pt=vector(1,n);    int lg=20;
   ptt=vector(1,n);    i=0;
   xit=vector(1,n);    lg=strlen(s);
   xits=vector(1,n);    for(i=0; i<= lg; i++) {
   *fret=(*func)(p);    if  (s[i] == occ ) j++;
   for (j=1;j<=n;j++) pt[j]=p[j];    }
   for (*iter=1;;++(*iter)) {    return j;
     fp=(*fret);  }
     ibig=0;  
     del=0.0;  void cutv(char *u,char *v, char*t, char occ)
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     for (i=1;i<=n;i++)    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       printf(" %d %.12f",i, p[i]);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     printf("\n");       gives u="abcedf" and v="ghi2j" */
     for (i=1;i<=n;i++) {    int i,lg,j,p=0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    i=0;
       fptt=(*fret);    for(j=0; j<=strlen(t)-1; j++) {
 #ifdef DEBUG      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       printf("fret=%lf \n",*fret);    }
 #endif  
       printf("%d",i);fflush(stdout);    lg=strlen(t);
       linmin(p,xit,n,fret,func);    for(j=0; j<p; j++) {
       if (fabs(fptt-(*fret)) > del) {      (u[j] = t[j]);
         del=fabs(fptt-(*fret));    }
         ibig=i;       u[p]='\0';
       }  
 #ifdef DEBUG     for(j=0; j<= lg; j++) {
       printf("%d %.12e",i,(*fret));      if (j>=(p+1))(v[j-p-1] = t[j]);
       for (j=1;j<=n;j++) {    }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  }
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  /********************** nrerror ********************/
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  void nrerror(char error_text[])
       printf("\n");  {
 #endif    fprintf(stderr,"ERREUR ...\n");
     }    fprintf(stderr,"%s\n",error_text);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    exit(EXIT_FAILURE);
 #ifdef DEBUG  }
       int k[2],l;  /*********************** vector *******************/
       k[0]=1;  double *vector(int nl, int nh)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    double *v;
       for (j=1;j<=n;j++)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         printf(" %.12e",p[j]);    if (!v) nrerror("allocation failure in vector");
       printf("\n");    return v-nl+NR_END;
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /************************ free vector ******************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void free_vector(double*v, int nl, int nh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free((FREE_ARG)(v+nl-NR_END));
       }  }
 #endif  
   /************************ivector *******************************/
   int *ivector(long nl,long nh)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    int *v;
       free_vector(ptt,1,n);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       free_vector(pt,1,n);    if (!v) nrerror("allocation failure in ivector");
       return;    return v-nl+NR_END;
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /******************free ivector **************************/
       ptt[j]=2.0*p[j]-pt[j];  void free_ivector(int *v, long nl, long nh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    free((FREE_ARG)(v+nl-NR_END));
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /************************lvector *******************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  long *lvector(long nl,long nh)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    long *v;
         for (j=1;j<=n;j++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           xi[j][ibig]=xi[j][n];    if (!v) nrerror("allocation failure in ivector");
           xi[j][n]=xit[j];    return v-nl+NR_END;
         }  }
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /******************free lvector **************************/
         for(j=1;j<=n;j++)  void free_lvector(long *v, long nl, long nh)
           printf(" %.12e",xit[j]);  {
         printf("\n");    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
       }  
     }  /******************* imatrix *******************************/
   }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 /**** Prevalence limit ****************/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    
 {    /* allocate pointers to rows */ 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      matrix by transitions matrix until convergence is reached */    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
   int i, ii,j,k;    m -= nrl; 
   double min, max, maxmin, maxmax,sumnew=0.;    
   double **matprod2();    
   double **out, cov[NCOVMAX], **pmij();    /* allocate rows and set pointers to them */ 
   double **newm;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl] -= ncl; 
     for (j=1;j<=nlstate+ndeath;j++){    
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     }    
     /* return pointer to array of pointers to rows */ 
    cov[1]=1.;    return m; 
    } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /****************** free_imatrix *************************/
     newm=savm;  void free_imatrix(m,nrl,nrh,ncl,nch)
     /* Covariates have to be included here again */        int **m;
      cov[2]=agefin;        long nch,ncl,nrh,nrl; 
         /* free an int matrix allocated by imatrix() */ 
       for (k=1; k<=cptcovn;k++) {  { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    free((FREE_ARG) (m+nrl-NR_END)); 
       }  } 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /******************* matrix *******************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double **m;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
     savm=oldm;    m += NR_END;
     oldm=newm;    m -= nrl;
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       min=1.;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       max=0.;    m[nrl] += NR_END;
       for(i=1; i<=nlstate; i++) {    m[nrl] -= ncl;
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         prlim[i][j]= newm[i][j]/(1-sumnew);    return m;
         max=FMAX(max,prlim[i][j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         min=FMIN(min,prlim[i][j]);     */
       }  }
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     if(maxmax < ftolpl){  {
       return prlim;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
 }  
   /******************* ma3x *******************************/
 /*************** transition probabilities ***************/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 {    double ***m;
   double s1, s2;  
   /*double t34;*/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int i,j,j1, nc, ii, jj;    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
     for(i=1; i<= nlstate; i++){    m -= nrl;
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         /*s2 += param[i][j][nc]*cov[nc];*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m[nrl] += NR_END;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl] -= ncl;
       }  
       ps[i][j]=s2;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for(j=i+1; j<=nlstate+ndeath;j++){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl][ncl] += NR_END;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m[nrl][ncl] -= nll;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    for (j=ncl+1; j<=nch; j++) 
       }      m[nrl][j]=m[nrl][j-1]+nlay;
       ps[i][j]=s2;    
     }    for (i=nrl+1; i<=nrh; i++) {
   }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     /*ps[3][2]=1;*/      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
   for(i=1; i<= nlstate; i++){    }
      s1=0;    return m; 
     for(j=1; j<i; j++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       s1+=exp(ps[i][j]);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for(j=i+1; j<=nlstate+ndeath; j++)    */
       s1+=exp(ps[i][j]);  }
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  /*************************free ma3x ************************/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for(j=i+1; j<=nlstate+ndeath; j++)  {
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   } /* end i */    free((FREE_ARG)(m+nrl-NR_END));
   }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*************** function subdirf ***********/
       ps[ii][jj]=0;  char *subdirf(char fileres[])
       ps[ii][ii]=1;  {
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    return tmpout;
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /*************** function subdirf2 ***********/
     printf("\n ");  char *subdirf2(char fileres[], char *preop)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    
 /*    /* Caution optionfilefiname is hidden */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    strcpy(tmpout,optionfilefiname);
   goto end;*/    strcat(tmpout,"/");
     return ps;    strcat(tmpout,preop);
 }    strcat(tmpout,fileres);
     return tmpout;
 /**************** Product of 2 matrices ******************/  }
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*************** function subdirf3 ***********/
 {  char *subdirf3(char fileres[], char *preop, char *preop2)
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    
   /* in, b, out are matrice of pointers which should have been initialized    /* Caution optionfilefiname is hidden */
      before: only the contents of out is modified. The function returns    strcpy(tmpout,optionfilefiname);
      a pointer to pointers identical to out */    strcat(tmpout,"/");
   long i, j, k;    strcat(tmpout,preop);
   for(i=nrl; i<= nrh; i++)    strcat(tmpout,preop2);
     for(k=ncolol; k<=ncoloh; k++)    strcat(tmpout,fileres);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    return tmpout;
         out[i][k] +=in[i][j]*b[j][k];  }
   
   return out;  /***************** f1dim *************************/
 }  extern int ncom; 
   extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 /************* Higher Matrix Product ***************/   
   double f1dim(double x) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  { 
 {    int j; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    double f;
      duration (i.e. until    double *xt; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.   
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    xt=vector(1,ncom); 
      (typically every 2 years instead of every month which is too big).    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      Model is determined by parameters x and covariates have to be    f=(*nrfunc)(xt); 
      included manually here.    free_vector(xt,1,ncom); 
     return f; 
      */  } 
   
   int i, j, d, h, k;  /*****************brent *************************/
   double **out, cov[NCOVMAX];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double **newm;  { 
     int iter; 
   /* Hstepm could be zero and should return the unit matrix */    double a,b,d,etemp;
   for (i=1;i<=nlstate+ndeath;i++)    double fu,fv,fw,fx;
     for (j=1;j<=nlstate+ndeath;j++){    double ftemp;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double e=0.0; 
     }   
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    a=(ax < cx ? ax : cx); 
   for(h=1; h <=nhstepm; h++){    b=(ax > cx ? ax : cx); 
     for(d=1; d <=hstepm; d++){    x=w=v=bx; 
       newm=savm;    fw=fv=fx=(*f)(x); 
       /* Covariates have to be included here again */    for (iter=1;iter<=ITMAX;iter++) { 
       cov[1]=1.;      xm=0.5*(a+b); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for (k=1; k<=cptcovage;k++)      printf(".");fflush(stdout);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fprintf(ficlog,".");fflush(ficlog);
       for (k=1; k<=cptcovprod;k++)  #ifdef DEBUG
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #endif
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        *xmin=x; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        return fx; 
       savm=oldm;      } 
       oldm=newm;      ftemp=fu;
     }      if (fabs(e) > tol1) { 
     for(i=1; i<=nlstate+ndeath; i++)        r=(x-w)*(fx-fv); 
       for(j=1;j<=nlstate+ndeath;j++) {        q=(x-v)*(fx-fw); 
         po[i][j][h]=newm[i][j];        p=(x-v)*q-(x-w)*r; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        q=2.0*(q-r); 
          */        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
   } /* end h */        etemp=e; 
   return po;        e=d; 
 }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 /*************** log-likelihood *************/          d=p/q; 
 double func( double *x)          u=x+d; 
 {          if (u-a < tol2 || b-u < tol2) 
   int i, ii, j, k, mi, d, kk;            d=SIGN(tol1,xm-x); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        } 
   double **out;      } else { 
   double sw; /* Sum of weights */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double lli; /* Individual log likelihood */      } 
   long ipmx;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   /*extern weight */      fu=(*f)(u); 
   /* We are differentiating ll according to initial status */      if (fu <= fx) { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        if (u >= x) a=x; else b=x; 
   /*for(i=1;i<imx;i++)        SHFT(v,w,x,u) 
     printf(" %d\n",s[4][i]);          SHFT(fv,fw,fx,fu) 
   */          } else { 
   cov[1]=1.;            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;              v=w; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){              w=u; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];              fv=fw; 
     for(mi=1; mi<= wav[i]-1; mi++){              fw=fu; 
       for (ii=1;ii<=nlstate+ndeath;ii++)            } else if (fu <= fv || v == x || v == w) { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);              v=u; 
       for(d=0; d<dh[mi][i]; d++){              fv=fu; 
         newm=savm;            } 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          } 
         for (kk=1; kk<=cptcovage;kk++) {    } 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    nrerror("Too many iterations in brent"); 
         }    *xmin=x; 
            return fx; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  } 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  /****************** mnbrak ***********************/
         oldm=newm;  
          void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                      double (*func)(double)) 
       } /* end mult */  { 
          double ulim,u,r,q, dum;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double fu; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/   
       ipmx +=1;    *fa=(*func)(*ax); 
       sw += weight[i];    *fb=(*func)(*bx); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    if (*fb > *fa) { 
     } /* end of wave */      SHFT(dum,*ax,*bx,dum) 
   } /* end of individual */        SHFT(dum,*fb,*fa,dum) 
         } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    *cx=(*bx)+GOLD*(*bx-*ax); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    *fc=(*func)(*cx); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    while (*fb > *fc) { 
   return -l;      r=(*bx-*ax)*(*fb-*fc); 
 }      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 /*********** Maximum Likelihood Estimation ***************/      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fu=(*func)(u); 
 {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   int i,j, iter;        fu=(*func)(u); 
   double **xi,*delti;        if (fu < *fc) { 
   double fret;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   xi=matrix(1,npar,1,npar);            SHFT(*fb,*fc,fu,(*func)(u)) 
   for (i=1;i<=npar;i++)            } 
     for (j=1;j<=npar;j++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       xi[i][j]=(i==j ? 1.0 : 0.0);        u=ulim; 
   printf("Powell\n");        fu=(*func)(u); 
   powell(p,xi,npar,ftol,&iter,&fret,func);      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fu=(*func)(u); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      } 
       SHFT(*ax,*bx,*cx,u) 
 }        SHFT(*fa,*fb,*fc,fu) 
         } 
 /**** Computes Hessian and covariance matrix ***/  } 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  /*************** linmin ************************/
   double  **a,**y,*x,pd;  
   double **hess;  int ncom; 
   int i, j,jk;  double *pcom,*xicom;
   int *indx;  double (*nrfunc)(double []); 
    
   double hessii(double p[], double delta, int theta, double delti[]);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double hessij(double p[], double delti[], int i, int j);  { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double brent(double ax, double bx, double cx, 
   void ludcmp(double **a, int npar, int *indx, double *d) ;                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   hess=matrix(1,npar,1,npar);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    int j; 
   for (i=1;i<=npar;i++){    double xx,xmin,bx,ax; 
     printf("%d",i);fflush(stdout);    double fx,fb,fa;
     hess[i][i]=hessii(p,ftolhess,i,delti);   
     /*printf(" %f ",p[i]);*/    ncom=n; 
     /*printf(" %lf ",hess[i][i]);*/    pcom=vector(1,n); 
   }    xicom=vector(1,n); 
      nrfunc=func; 
   for (i=1;i<=npar;i++) {    for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++)  {      pcom[j]=p[j]; 
       if (j>i) {      xicom[j]=xi[j]; 
         printf(".%d%d",i,j);fflush(stdout);    } 
         hess[i][j]=hessij(p,delti,i,j);    ax=0.0; 
         hess[j][i]=hess[i][j];        xx=1.0; 
         /*printf(" %lf ",hess[i][j]);*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
   }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   printf("\n");    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for (j=1;j<=n;j++) { 
        xi[j] *= xmin; 
   a=matrix(1,npar,1,npar);      p[j] += xi[j]; 
   y=matrix(1,npar,1,npar);    } 
   x=vector(1,npar);    free_vector(xicom,1,n); 
   indx=ivector(1,npar);    free_vector(pcom,1,n); 
   for (i=1;i<=npar;i++)  } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   for (j=1;j<=npar;j++) {    long sec_left, days, hours, minutes;
     for (i=1;i<=npar;i++) x[i]=0;    days = (time_sec) / (60*60*24);
     x[j]=1;    sec_left = (time_sec) % (60*60*24);
     lubksb(a,npar,indx,x);    hours = (sec_left) / (60*60) ;
     for (i=1;i<=npar;i++){    sec_left = (sec_left) %(60*60);
       matcov[i][j]=x[i];    minutes = (sec_left) /60;
     }    sec_left = (sec_left) % (60);
   }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   printf("\n#Hessian matrix#\n");  }
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  /*************** powell ************************/
       printf("%.3e ",hess[i][j]);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
     printf("\n");  { 
   }    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   /* Recompute Inverse */    int i,ibig,j; 
   for (i=1;i<=npar;i++)    double del,t,*pt,*ptt,*xit;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double fp,fptt;
   ludcmp(a,npar,indx,&pd);    double *xits;
     int niterf, itmp;
   /*  printf("\n#Hessian matrix recomputed#\n");  
     pt=vector(1,n); 
   for (j=1;j<=npar;j++) {    ptt=vector(1,n); 
     for (i=1;i<=npar;i++) x[i]=0;    xit=vector(1,n); 
     x[j]=1;    xits=vector(1,n); 
     lubksb(a,npar,indx,x);    *fret=(*func)(p); 
     for (i=1;i<=npar;i++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
       y[i][j]=x[i];    for (*iter=1;;++(*iter)) { 
       printf("%.3e ",y[i][j]);      fp=(*fret); 
     }      ibig=0; 
     printf("\n");      del=0.0; 
   }      last_time=curr_time;
   */      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   free_matrix(a,1,npar,1,npar);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   free_matrix(y,1,npar,1,npar);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   free_vector(x,1,npar);     for (i=1;i<=n;i++) {
   free_ivector(indx,1,npar);        printf(" %d %.12f",i, p[i]);
   free_matrix(hess,1,npar,1,npar);        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
       }
 }      printf("\n");
       fprintf(ficlog,"\n");
 /*************** hessian matrix ****************/      fprintf(ficrespow,"\n");fflush(ficrespow);
 double hessii( double x[], double delta, int theta, double delti[])      if(*iter <=3){
 {        tm = *localtime(&curr_time.tv_sec);
   int i;        strcpy(strcurr,asctime(&tm));
   int l=1, lmax=20;  /*       asctime_r(&tm,strcurr); */
   double k1,k2;        forecast_time=curr_time; 
   double p2[NPARMAX+1];        itmp = strlen(strcurr);
   double res;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          strcurr[itmp-1]='\0';
   double fx;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   int k=0,kmax=10;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double l1;        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   fx=func(x);          tmf = *localtime(&forecast_time.tv_sec);
   for (i=1;i<=npar;i++) p2[i]=x[i];  /*      asctime_r(&tmf,strfor); */
   for(l=0 ; l <=lmax; l++){          strcpy(strfor,asctime(&tmf));
     l1=pow(10,l);          itmp = strlen(strfor);
     delts=delt;          if(strfor[itmp-1]=='\n')
     for(k=1 ; k <kmax; k=k+1){          strfor[itmp-1]='\0';
       delt = delta*(l1*k);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       p2[theta]=x[theta] +delt;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       k1=func(p2)-fx;        }
       p2[theta]=x[theta]-delt;      }
       k2=func(p2)-fx;      for (i=1;i<=n;i++) { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        fptt=(*fret); 
        #ifdef DEBUG
 #ifdef DEBUG        printf("fret=%lf \n",*fret);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        fprintf(ficlog,"fret=%lf \n",*fret);
 #endif  #endif
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        printf("%d",i);fflush(stdout);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        fprintf(ficlog,"%d",i);fflush(ficlog);
         k=kmax;        linmin(p,xit,n,fret,func); 
       }        if (fabs(fptt-(*fret)) > del) { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          del=fabs(fptt-(*fret)); 
         k=kmax; l=lmax*10.;          ibig=i; 
       }        } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  #ifdef DEBUG
         delts=delt;        printf("%d %.12e",i,(*fret));
       }        fprintf(ficlog,"%d %.12e",i,(*fret));
     }        for (j=1;j<=n;j++) {
   }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   delti[theta]=delts;          printf(" x(%d)=%.12e",j,xit[j]);
   return res;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
          }
 }        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
 double hessij( double x[], double delti[], int thetai,int thetaj)          fprintf(ficlog," p=%.12e",p[j]);
 {        }
   int i;        printf("\n");
   int l=1, l1, lmax=20;        fprintf(ficlog,"\n");
   double k1,k2,k3,k4,res,fx;  #endif
   double p2[NPARMAX+1];      } 
   int k;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   fx=func(x);        int k[2],l;
   for (k=1; k<=2; k++) {        k[0]=1;
     for (i=1;i<=npar;i++) p2[i]=x[i];        k[1]=-1;
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf("Max: %.12e",(*func)(p));
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     k1=func(p2)-fx;        for (j=1;j<=n;j++) {
            printf(" %.12e",p[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;          fprintf(ficlog," %.12e",p[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k2=func(p2)-fx;        printf("\n");
          fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(l=0;l<=1;l++) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          for (j=1;j<=n;j++) {
     k3=func(p2)-fx;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
              printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          }
     k4=func(p2)-fx;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 #ifdef DEBUG        }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  #endif
 #endif  
   }  
   return res;        free_vector(xit,1,n); 
 }        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
 /************** Inverse of matrix **************/        free_vector(pt,1,n); 
 void ludcmp(double **a, int n, int *indx, double *d)        return; 
 {      } 
   int i,imax,j,k;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double big,dum,sum,temp;      for (j=1;j<=n;j++) { 
   double *vv;        ptt[j]=2.0*p[j]-pt[j]; 
          xit[j]=p[j]-pt[j]; 
   vv=vector(1,n);        pt[j]=p[j]; 
   *d=1.0;      } 
   for (i=1;i<=n;i++) {      fptt=(*func)(ptt); 
     big=0.0;      if (fptt < fp) { 
     for (j=1;j<=n;j++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       if ((temp=fabs(a[i][j])) > big) big=temp;        if (t < 0.0) { 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          linmin(p,xit,n,fret,func); 
     vv[i]=1.0/big;          for (j=1;j<=n;j++) { 
   }            xi[j][ibig]=xi[j][n]; 
   for (j=1;j<=n;j++) {            xi[j][n]=xit[j]; 
     for (i=1;i<j;i++) {          }
       sum=a[i][j];  #ifdef DEBUG
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       a[i][j]=sum;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
     big=0.0;            printf(" %.12e",xit[j]);
     for (i=j;i<=n;i++) {            fprintf(ficlog," %.12e",xit[j]);
       sum=a[i][j];          }
       for (k=1;k<j;k++)          printf("\n");
         sum -= a[i][k]*a[k][j];          fprintf(ficlog,"\n");
       a[i][j]=sum;  #endif
       if ( (dum=vv[i]*fabs(sum)) >= big) {        }
         big=dum;      } 
         imax=i;    } 
       }  } 
     }  
     if (j != imax) {  /**** Prevalence limit (stable or period prevalence)  ****************/
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         a[imax][k]=a[j][k];  {
         a[j][k]=dum;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       }       matrix by transitions matrix until convergence is reached */
       *d = -(*d);  
       vv[imax]=vv[j];    int i, ii,j,k;
     }    double min, max, maxmin, maxmax,sumnew=0.;
     indx[j]=imax;    double **matprod2();
     if (a[j][j] == 0.0) a[j][j]=TINY;    double **out, cov[NCOVMAX], **pmij();
     if (j != n) {    double **newm;
       dum=1.0/(a[j][j]);    double agefin, delaymax=50 ; /* Max number of years to converge */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   free_vector(vv,1,n);  /* Doesn't work */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 ;      }
 }  
      cov[1]=1.;
 void lubksb(double **a, int n, int *indx, double b[])   
 {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i,ii=0,ip,j;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double sum;      newm=savm;
        /* Covariates have to be included here again */
   for (i=1;i<=n;i++) {       cov[2]=agefin;
     ip=indx[i];    
     sum=b[ip];        for (k=1; k<=cptcovn;k++) {
     b[ip]=b[i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     if (ii)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        }
     else if (sum) ii=i;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     b[i]=sum;        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (i=n;i>=1;i--) {  
     sum=b[i];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     b[i]=sum/a[i][i];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 }  
       savm=oldm;
 /************ Frequencies ********************/      oldm=newm;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      maxmax=0.;
 {  /* Some frequencies */      for(j=1;j<=nlstate;j++){
          min=1.;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        max=0.;
   double ***freq; /* Frequencies */        for(i=1; i<=nlstate; i++) {
   double *pp;          sumnew=0;
   double pos, k2, dateintsum=0,k2cpt=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   FILE *ficresp;          prlim[i][j]= newm[i][j]/(1-sumnew);
   char fileresp[FILENAMELENGTH];          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
   pp=vector(1,nlstate);        }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        maxmin=max-min;
   strcpy(fileresp,"p");        maxmax=FMAX(maxmax,maxmin);
   strcat(fileresp,fileres);      }
   if((ficresp=fopen(fileresp,"w"))==NULL) {      if(maxmax < ftolpl){
     printf("Problem with prevalence resultfile: %s\n", fileresp);        return prlim;
     exit(0);      }
   }    }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  }
   j1=0;  
    /*************** transition probabilities ***************/ 
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
   for(k1=1; k1<=j;k1++){    double s1, s2;
     for(i1=1; i1<=ncodemax[k1];i1++){    /*double t34;*/
       j1++;    int i,j,j1, nc, ii, jj;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/      for(i=1; i<= nlstate; i++){
       for (i=-1; i<=nlstate+ndeath; i++)          for(j=1; j<i;j++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           for(m=agemin; m <= agemax+3; m++)            /*s2 += param[i][j][nc]*cov[nc];*/
             freq[i][jk][m]=0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
        /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       dateintsum=0;          }
       k2cpt=0;          ps[i][j]=s2;
       for (i=1; i<=imx; i++) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         bool=1;        }
         if  (cptcovn>0) {        for(j=i+1; j<=nlstate+ndeath;j++){
           for (z1=1; z1<=cptcoveff; z1++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
               bool=0;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         }          }
         if (bool==1) {          ps[i][j]=s2;
           for(m=firstpass; m<=lastpass; m++){        }
             k2=anint[m][i]+(mint[m][i]/12.);      }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      /*ps[3][2]=1;*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;      
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for(i=1; i<= nlstate; i++){
               if (m<lastpass) {        s1=0;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(j=1; j<i; j++)
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          s1+=exp(ps[i][j]);
               }        for(j=i+1; j<=nlstate+ndeath; j++)
                        s1+=exp(ps[i][j]);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        ps[i][i]=1./(s1+1.);
                 dateintsum=dateintsum+k2;        for(j=1; j<i; j++)
                 k2cpt++;          ps[i][j]= exp(ps[i][j])*ps[i][i];
               }        for(j=i+1; j<=nlstate+ndeath; j++)
             }          ps[i][j]= exp(ps[i][j])*ps[i][i];
           }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         }      } /* end i */
       }      
              for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
       if  (cptcovn>0) {          ps[ii][ii]=1;
         fprintf(ficresp, "\n#********** Variable ");        }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
         fprintf(ficresp, "**********\n#");      
       }  
       for(i=1; i<=nlstate;i++)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       fprintf(ficresp, "\n");  /*         printf("ddd %lf ",ps[ii][jj]); */
        /*       } */
       for(i=(int)agemin; i <= (int)agemax+3; i++){  /*       printf("\n "); */
         if(i==(int)agemax+3)  /*        } */
           printf("Total");  /*        printf("\n ");printf("%lf ",cov[2]); */
         else         /*
           printf("Age %d", i);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         for(jk=1; jk <=nlstate ; jk++){        goto end;*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      return ps;
             pp[jk] += freq[jk][m][i];  }
         }  
         for(jk=1; jk <=nlstate ; jk++){  /**************** Product of 2 matrices ******************/
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           if(pp[jk]>=1.e-10)  {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           else       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /* in, b, out are matrice of pointers which should have been initialized 
         }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
         for(jk=1; jk <=nlstate ; jk++){    long i, j, k;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    for(i=nrl; i<= nrh; i++)
             pp[jk] += freq[jk][m][i];      for(k=ncolol; k<=ncoloh; k++)
         }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];    return out;
         for(jk=1; jk <=nlstate ; jk++){  }
           if(pos>=1.e-5)  
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           else  /************* Higher Matrix Product ***************/
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           if( i <= (int) agemax){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             if(pos>=1.e-5){  {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    /* Computes the transition matrix starting at age 'age' over 
               probs[i][jk][j1]= pp[jk]/pos;       'nhstepm*hstepm*stepm' months (i.e. until
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             }       nhstepm*hstepm matrices. 
             else       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);       (typically every 2 years instead of every month which is too big 
           }       for the memory).
         }       Model is determined by parameters x and covariates have to be 
               included manually here. 
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)       */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)    int i, j, d, h, k;
           fprintf(ficresp,"\n");    double **out, cov[NCOVMAX];
         printf("\n");    double **newm;
       }  
     }    /* Hstepm could be zero and should return the unit matrix */
   }    for (i=1;i<=nlstate+ndeath;i++)
   dateintmean=dateintsum/k2cpt;      for (j=1;j<=nlstate+ndeath;j++){
          oldm[i][j]=(i==j ? 1.0 : 0.0);
   fclose(ficresp);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      }
   free_vector(pp,1,nlstate);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   /* End of Freq */      for(d=1; d <=hstepm; d++){
 }        newm=savm;
         /* Covariates have to be included here again */
 /************ Prevalence ********************/        cov[1]=1.;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 {  /* Some frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovprod;k++)
   double *pp;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double pos, k2;  
   
   pp=vector(1,nlstate);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   j1=0;        savm=oldm;
          oldm=newm;
   j=cptcoveff;      }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   for(k1=1; k1<=j;k1++){          po[i][j][h]=newm[i][j];
     for(i1=1; i1<=ncodemax[k1];i1++){          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       j1++;           */
              }
       for (i=-1; i<=nlstate+ndeath; i++)      } /* end h */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      return po;
           for(m=agemin; m <= agemax+3; m++)  }
             freq[i][jk][m]=0;  
        
       for (i=1; i<=imx; i++) {  /*************** log-likelihood *************/
         bool=1;  double func( double *x)
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)    int i, ii, j, k, mi, d, kk;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double l, ll[NLSTATEMAX], cov[NCOVMAX];
               bool=0;    double **out;
         }    double sw; /* Sum of weights */
         if (bool==1) {    double lli; /* Individual log likelihood */
           for(m=firstpass; m<=lastpass; m++){    int s1, s2;
             k2=anint[m][i]+(mint[m][i]/12.);    double bbh, survp;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    long ipmx;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /*extern weight */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /* We are differentiating ll according to initial status */
               if (m<lastpass) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                 if (calagedate>0)    /*for(i=1;i<imx;i++) 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      printf(" %d\n",s[4][i]);
                 else    */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    cov[1]=1.;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  
               }    for(k=1; k<=nlstate; k++) ll[k]=0.;
             }  
           }    if(mle==1){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for (j=1;j<=nlstate+ndeath;j++){
             pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pos=0; m <=0 ; m++)          for(d=0; d<dh[mi][i]; d++){
             pos += freq[jk][m][i];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            }
             pp[jk] += freq[jk][m][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                    savm=oldm;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            oldm=newm;
                  } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){            
           if( i <= (int) agemax){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             if(pos>=1.e-5){          /* But now since version 0.9 we anticipate for bias at large stepm.
               probs[i][jk][j1]= pp[jk]/pos;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             }           * (in months) between two waves is not a multiple of stepm, we rounded to 
           }           * the nearest (and in case of equal distance, to the lowest) interval but now
         }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
     }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           */
   free_vector(pp,1,nlstate);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
 }  /* End of Freq */          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
 /************* Waves Concatenation ***************/           * is higher than the multiple of stepm and negative otherwise.
            */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 {          if( s2 > nlstate){ 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            /* i.e. if s2 is a death state and if the date of death is known 
      Death is a valid wave (if date is known).               then the contribution to the likelihood is the probability to 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i               die between last step unit time and current  step unit time, 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]               which is also equal to probability to die before dh 
      and mw[mi+1][i]. dh depends on stepm.               minus probability to die before dh-stepm . 
      */               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
   int i, mi, m;          health state: the date of the interview describes the actual state
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          and not the date of a change in health state. The former idea was
      double sum=0., jmean=0.;*/          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   int j, k=0,jk, ju, jl;          introduced the exact date of death then we should have modified
   double sum=0.;          the contribution of an exact death to the likelihood. This new
   jmin=1e+5;          contribution is smaller and very dependent of the step unit
   jmax=-1;          stepm. It is no more the probability to die between last interview
   jmean=0.;          and month of death but the probability to survive from last
   for(i=1; i<=imx; i++){          interview up to one month before death multiplied by the
     mi=0;          probability to die within a month. Thanks to Chris
     m=firstpass;          Jackson for correcting this bug.  Former versions increased
     while(s[m][i] <= nlstate){          mortality artificially. The bad side is that we add another loop
       if(s[m][i]>=1)          which slows down the processing. The difference can be up to 10%
         mw[++mi][i]=m;          lower mortality.
       if(m >=lastpass)            */
         break;            lli=log(out[s1][s2] - savm[s1][s2]);
       else  
         m++;  
     }/* end while */          } else if  (s2==-2) {
     if (s[m][i] > nlstate){            for (j=1,survp=0. ; j<=nlstate; j++) 
       mi++;     /* Death is another wave */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       /* if(mi==0)  never been interviewed correctly before death */            /*survp += out[s1][j]; */
          /* Only death is a correct wave */            lli= log(survp);
       mw[mi][i]=m;          }
     }          
           else if  (s2==-4) { 
     wav[i]=mi;            for (j=3,survp=0. ; j<=nlstate; j++)  
     if(mi==0)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            lli= log(survp); 
   }          } 
   
   for(i=1; i<=imx; i++){          else if  (s2==-5) { 
     for(mi=1; mi<wav[i];mi++){            for (j=1,survp=0. ; j<=2; j++)  
       if (stepm <=0)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         dh[mi][i]=1;            lli= log(survp); 
       else{          } 
         if (s[mw[mi+1][i]][i] > nlstate) {          
           if (agedc[i] < 2*AGESUP) {          else{
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           if(j==0) j=1;  /* Survives at least one month after exam */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           k=k+1;          } 
           if (j >= jmax) jmax=j;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           if (j <= jmin) jmin=j;          /*if(lli ==000.0)*/
           sum=sum+j;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else{        } /* end of wave */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      } /* end of individual */
           k=k+1;    }  else if(mle==2){
           if (j >= jmax) jmax=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           else if (j <= jmin)jmin=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for(mi=1; mi<= wav[i]-1; mi++){
           sum=sum+j;          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         jk= j/stepm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         jl= j -jk*stepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         ju= j -(jk+1)*stepm;            }
         if(jl <= -ju)          for(d=0; d<=dh[mi][i]; d++){
           dh[mi][i]=jk;            newm=savm;
         else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=jk+1;            for (kk=1; kk<=cptcovage;kk++) {
         if(dh[mi][i]==0)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           dh[mi][i]=1; /* At least one step */            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   jmean=sum/k;            oldm=newm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          } /* end mult */
  }        
 /*********** Tricode ****************************/          s1=s[mw[mi][i]][i];
 void tricode(int *Tvar, int **nbcode, int imx)          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm; 
   int Ndum[20],ij=1, k, j, i;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int cptcode=0;          ipmx +=1;
   cptcoveff=0;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (k=0; k<19; k++) Ndum[k]=0;        } /* end of wave */
   for (k=1; k<=7; k++) ncodemax[k]=0;      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1; i<=imx; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       ij=(int)(covar[Tvar[j]][i]);        for(mi=1; mi<= wav[i]-1; mi++){
       Ndum[ij]++;          for (ii=1;ii<=nlstate+ndeath;ii++)
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            for (j=1;j<=nlstate+ndeath;j++){
       if (ij > cptcode) cptcode=ij;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for (i=0; i<=cptcode; i++) {          for(d=0; d<dh[mi][i]; d++){
       if(Ndum[i]!=0) ncodemax[j]++;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     ij=1;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for (i=1; i<=ncodemax[j]; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (k=0; k<=19; k++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if (Ndum[k] != 0) {            savm=oldm;
           nbcode[Tvar[j]][ij]=k;            oldm=newm;
                    } /* end mult */
           ij++;        
         }          s1=s[mw[mi][i]][i];
         if (ij > ncodemax[j]) break;          s2=s[mw[mi+1][i]][i];
       }            bbh=(double)bh[mi][i]/(double)stepm; 
     }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }            ipmx +=1;
           sw += weight[i];
  for (k=0; k<19; k++) Ndum[k]=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
  for (i=1; i<=ncovmodel-2; i++) {      } /* end of individual */
       ij=Tvar[i];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       Ndum[ij]++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
  ij=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
  for (i=1; i<=10; i++) {            for (j=1;j<=nlstate+ndeath;j++){
    if((Ndum[i]!=0) && (i<=ncovcol)){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Tvaraff[ij]=i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      ij++;            }
    }          for(d=0; d<dh[mi][i]; d++){
  }            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     cptcoveff=ij-1;            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /*********** Health Expectancies ****************/          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 {            oldm=newm;
   /* Health expectancies */          } /* end mult */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        
   double age, agelim, hf;          s1=s[mw[mi][i]][i];
   double ***p3mat,***varhe;          s2=s[mw[mi+1][i]][i];
   double **dnewm,**doldm;          if( s2 > nlstate){ 
   double *xp;            lli=log(out[s1][s2] - savm[s1][s2]);
   double **gp, **gm;          }else{
   double ***gradg, ***trgradg;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int theta;          }
           ipmx +=1;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          sw += weight[i];
   xp=vector(1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   dnewm=matrix(1,nlstate*2,1,npar);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   doldm=matrix(1,nlstate*2,1,nlstate*2);        } /* end of wave */
        } /* end of individual */
   fprintf(ficreseij,"# Health expectancies\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficreseij,"# Age");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(j=1; j<=nlstate;j++)        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficreseij,"\n");            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if(estepm < stepm){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf ("Problem %d lower than %d\n",estepm, stepm);            }
   }          for(d=0; d<dh[mi][i]; d++){
   else  hstepm=estepm;              newm=savm;
   /* We compute the life expectancy from trapezoids spaced every estepm months            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * This is mainly to measure the difference between two models: for example            for (kk=1; kk<=cptcovage;kk++) {
    * if stepm=24 months pijx are given only every 2 years and by summing them              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * we are calculating an estimate of the Life Expectancy assuming a linear            }
    * progression inbetween and thus overestimating or underestimating according          
    * to the curvature of the survival function. If, for the same date, we            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    * estimate the model with stepm=1 month, we can keep estepm to 24 months                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * to compare the new estimate of Life expectancy with the same linear            savm=oldm;
    * hypothesis. A more precise result, taking into account a more precise            oldm=newm;
    * curvature will be obtained if estepm is as small as stepm. */          } /* end mult */
         
   /* For example we decided to compute the life expectancy with the smallest unit */          s1=s[mw[mi][i]][i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          s2=s[mw[mi+1][i]][i];
      nhstepm is the number of hstepm from age to agelim          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      nstepm is the number of stepm from age to agelin.          ipmx +=1;
      Look at hpijx to understand the reason of that which relies in memory size          sw += weight[i];
      and note for a fixed period like estepm months */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      survival function given by stepm (the optimization length). Unfortunately it        } /* end of wave */
      means that if the survival funtion is printed only each two years of age and if      } /* end of individual */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    } /* End of if */
      results. So we changed our mind and took the option of the best precision.    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
   agelim=AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */  /*************** log-likelihood *************/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  double funcone( double *x)
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  {
     /* if (stepm >= YEARM) hstepm=1;*/    /* Same as likeli but slower because of a lot of printf and if */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int i, ii, j, k, mi, d, kk;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    double **out;
     gp=matrix(0,nhstepm,1,nlstate*2);    double lli; /* Individual log likelihood */
     gm=matrix(0,nhstepm,1,nlstate*2);    double llt;
     int s1, s2;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double bbh, survp;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /*extern weight */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      printf(" %d\n",s[4][i]);
     */
     /* Computing Variances of health expectancies */    cov[1]=1.;
   
      for(theta=1; theta <=npar; theta++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(mi=1; mi<= wav[i]-1; mi++){
          for (ii=1;ii<=nlstate+ndeath;ii++)
       cptj=0;          for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<= nlstate; j++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate; i++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           cptj=cptj+1;          }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        for(d=0; d<dh[mi][i]; d++){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          newm=savm;
           }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
       }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                }
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          savm=oldm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            oldm=newm;
              } /* end mult */
       cptj=0;        
       for(j=1; j<= nlstate; j++){        s1=s[mw[mi][i]][i];
         for(i=1;i<=nlstate;i++){        s2=s[mw[mi+1][i]][i];
           cptj=cptj+1;        bbh=(double)bh[mi][i]/(double)stepm; 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        /* bias is positive if real duration
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;         * is higher than the multiple of stepm and negative otherwise.
           }         */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       }          lli=log(out[s1][s2] - savm[s1][s2]);
       for(j=1; j<= nlstate*2; j++)        } else if  (s2==-2) {
         for(h=0; h<=nhstepm-1; h++){          for (j=1,survp=0. ; j<=nlstate; j++) 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }          lli= log(survp);
      }        }else if (mle==1){
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 /* End theta */        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      for(h=0; h<=nhstepm-1; h++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for(j=1; j<=nlstate*2;j++)          lli=log(out[s1][s2]); /* Original formula */
         for(theta=1; theta <=npar; theta++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           trgradg[h][j][theta]=gradg[h][theta][j];          lli=log(out[s1][s2]); /* Original formula */
              } /* End of if */
         ipmx +=1;
      for(i=1;i<=nlstate*2;i++)        sw += weight[i];
       for(j=1;j<=nlstate*2;j++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         varhe[i][j][(int)age] =0.;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
      printf("%d|",(int)age);fflush(stdout);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
      for(h=0;h<=nhstepm-1;h++){   %11.6f %11.6f %11.6f ", \
       for(k=0;k<=nhstepm-1;k++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         for(i=1;i<=nlstate*2;i++)            llt +=ll[k]*gipmx/gsw;
           for(j=1;j<=nlstate*2;j++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          }
       }          fprintf(ficresilk," %10.6f\n", -llt);
     }        }
     /* Computing expectancies */      } /* end of wave */
     for(i=1; i<=nlstate;i++)    } /* end of individual */
       for(j=1; j<=nlstate;j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
              if(globpr==0){ /* First time we count the contributions and weights */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      gipmx=ipmx;
       gsw=sw;
         }    }
     return -l;
     fprintf(ficreseij,"%3.0f",age );  }
     cptj=0;  
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  /*************** function likelione ***********/
         cptj++;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  {
       }    /* This routine should help understanding what is done with 
     fprintf(ficreseij,"\n");       the selection of individuals/waves and
           to check the exact contribution to the likelihood.
     free_matrix(gm,0,nhstepm,1,nlstate*2);       Plotting could be done.
     free_matrix(gp,0,nhstepm,1,nlstate*2);     */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    int k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(*globpri !=0){ /* Just counts and sums, no printings */
   }      strcpy(fileresilk,"ilk"); 
   printf("\n");      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   free_vector(xp,1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
   free_matrix(dnewm,1,nlstate*2,1,npar);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 /************ Variance ******************/      for(k=1; k<=nlstate; k++) 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   /* Variance of health expectancies */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    *fretone=(*funcone)(p);
   double **dnewm,**doldm;    if(*globpri !=0){
   int i, j, nhstepm, hstepm, h, nstepm ;      fclose(ficresilk);
   int k, cptcode;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double *xp;      fflush(fichtm); 
   double **gp, **gm;    } 
   double ***gradg, ***trgradg;    return;
   double ***p3mat;  }
   double age,agelim, hf;  
   int theta;  
   /*********** Maximum Likelihood Estimation ***************/
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    int i,j, iter;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double **xi;
   fprintf(ficresvij,"\n");    double fret;
     double fretone; /* Only one call to likelihood */
   xp=vector(1,npar);    /*  char filerespow[FILENAMELENGTH];*/
   dnewm=matrix(1,nlstate,1,npar);    xi=matrix(1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
   if(estepm < stepm){        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf ("Problem %d lower than %d\n",estepm, stepm);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   }    strcpy(filerespow,"pow"); 
   else  hstepm=estepm;      strcat(filerespow,fileres);
   /* For example we decided to compute the life expectancy with the smallest unit */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      printf("Problem with resultfile: %s\n", filerespow);
      nhstepm is the number of hstepm from age to agelim      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      nstepm is the number of stepm from age to agelin.    }
      Look at hpijx to understand the reason of that which relies in memory size    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      and note for a fixed period like k years */    for (i=1;i<=nlstate;i++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for(j=1;j<=nlstate+ndeath;j++)
      survival function given by stepm (the optimization length). Unfortunately it        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      means that if the survival funtion is printed only each two years of age and if    fprintf(ficrespow,"\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    powell(p,xi,npar,ftol,&iter,&fret,func);
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    free_matrix(xi,1,npar,1,npar);
   agelim = AGESUP;    fclose(ficrespow);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  }
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for(theta=1; theta <=npar; theta++){  {
       for(i=1; i<=npar; i++){ /* Computes gradient */    double  **a,**y,*x,pd;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double **hess;
       }    int i, j,jk;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int *indx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       if (popbased==1) {    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         for(i=1; i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
           prlim[i][i]=probs[(int)age][i][ij];    void ludcmp(double **a, int npar, int *indx, double *d) ;
       }    double gompertz(double p[]);
      hess=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    printf("\nCalculation of the hessian matrix. Wait...\n");
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=1;i<=npar;i++){
         }      printf("%d",i);fflush(stdout);
       }      fprintf(ficlog,"%d",i);fflush(ficlog);
         
       for(i=1; i<=npar; i++) /* Computes gradient */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /*  printf(" %f ",p[i]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      }
       if (popbased==1) {    
         for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) {
           prlim[i][i]=probs[(int)age][i][ij];      for (j=1;j<=npar;j++)  {
       }        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
       for(j=1; j<= nlstate; j++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(h=0; h<=nhstepm; h++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          hess[j][i]=hess[i][j];    
         }          /*printf(" %lf ",hess[i][j]);*/
       }        }
       }
       for(j=1; j<= nlstate; j++)    }
         for(h=0; h<=nhstepm; h++){    printf("\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fprintf(ficlog,"\n");
         }  
     } /* End theta */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    
     a=matrix(1,npar,1,npar);
     for(h=0; h<=nhstepm; h++)    y=matrix(1,npar,1,npar);
       for(j=1; j<=nlstate;j++)    x=vector(1,npar);
         for(theta=1; theta <=npar; theta++)    indx=ivector(1,npar);
           trgradg[h][j][theta]=gradg[h][theta][j];    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    ludcmp(a,npar,indx,&pd);
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    for (j=1;j<=npar;j++) {
         vareij[i][j][(int)age] =0.;      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     for(h=0;h<=nhstepm;h++){      lubksb(a,npar,indx,x);
       for(k=0;k<=nhstepm;k++){      for (i=1;i<=npar;i++){ 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        matcov[i][j]=x[i];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      }
         for(i=1;i<=nlstate;i++)    }
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    printf("\n#Hessian matrix#\n");
       }    fprintf(ficlog,"\n#Hessian matrix#\n");
     }    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
     fprintf(ficresvij,"%.0f ",age );        printf("%.3e ",hess[i][j]);
     for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(j=1; j<=nlstate;j++){      }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      printf("\n");
       }      fprintf(ficlog,"\n");
     fprintf(ficresvij,"\n");    }
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);    /* Recompute Inverse */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    for (i=1;i<=npar;i++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    ludcmp(a,npar,indx,&pd);
   } /* End age */  
      /*  printf("\n#Hessian matrix recomputed#\n");
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    for (j=1;j<=npar;j++) {
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
 }      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
 /************ Variance of prevlim ******************/        y[i][j]=x[i];
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        printf("%.3e ",y[i][j]);
 {        fprintf(ficlog,"%.3e ",y[i][j]);
   /* Variance of prevalence limit */      }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      printf("\n");
   double **newm;      fprintf(ficlog,"\n");
   double **dnewm,**doldm;    }
   int i, j, nhstepm, hstepm;    */
   int k, cptcode;  
   double *xp;    free_matrix(a,1,npar,1,npar);
   double *gp, *gm;    free_matrix(y,1,npar,1,npar);
   double **gradg, **trgradg;    free_vector(x,1,npar);
   double age,agelim;    free_ivector(indx,1,npar);
   int theta;    free_matrix(hess,1,npar,1,npar);
      
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");  
   fprintf(ficresvpl,"# Age");  }
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);  /*************** hessian matrix ****************/
   fprintf(ficresvpl,"\n");  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
   xp=vector(1,npar);    int i;
   dnewm=matrix(1,nlstate,1,npar);    int l=1, lmax=20;
   doldm=matrix(1,nlstate,1,nlstate);    double k1,k2;
      double p2[NPARMAX+1];
   hstepm=1*YEARM; /* Every year of age */    double res;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   agelim = AGESUP;    double fx;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int k=0,kmax=10;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double l1;
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fx=func(x);
     gradg=matrix(1,npar,1,nlstate);    for (i=1;i<=npar;i++) p2[i]=x[i];
     gp=vector(1,nlstate);    for(l=0 ; l <=lmax; l++){
     gm=vector(1,nlstate);      l1=pow(10,l);
       delts=delt;
     for(theta=1; theta <=npar; theta++){      for(k=1 ; k <kmax; k=k+1){
       for(i=1; i<=npar; i++){ /* Computes gradient */        delt = delta*(l1*k);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        p2[theta]=x[theta] +delt;
       }        k1=func(p2)-fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        p2[theta]=x[theta]-delt;
       for(i=1;i<=nlstate;i++)        k2=func(p2)-fx;
         gp[i] = prlim[i][i];        /*res= (k1-2.0*fx+k2)/delt/delt; */
            res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       for(i=1; i<=npar; i++) /* Computes gradient */        
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #ifdef DEBUG
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=1;i<=nlstate;i++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         gm[i] = prlim[i][i];  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(i=1;i<=nlstate;i++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          k=kmax;
     } /* End theta */        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     trgradg =matrix(1,nlstate,1,npar);          k=kmax; l=lmax*10.;
         }
     for(j=1; j<=nlstate;j++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(theta=1; theta <=npar; theta++)          delts=delt;
         trgradg[j][theta]=gradg[theta][j];        }
       }
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] =0.;    delti[theta]=delts;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    return res; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     fprintf(ficresvpl,"%.0f ",age );  {
     for(i=1; i<=nlstate;i++)    int i;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int l=1, l1, lmax=20;
     fprintf(ficresvpl,"\n");    double k1,k2,k3,k4,res,fx;
     free_vector(gp,1,nlstate);    double p2[NPARMAX+1];
     free_vector(gm,1,nlstate);    int k;
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    fx=func(x);
   } /* End age */    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   free_vector(xp,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   free_matrix(doldm,1,nlstate,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   free_matrix(dnewm,1,nlstate,1,nlstate);      k1=func(p2)-fx;
     
 }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 /************ Variance of one-step probabilities  ******************/      k2=func(p2)-fx;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    
 {      p2[thetai]=x[thetai]-delti[thetai]/k;
   int i, j,  i1, k1, l1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int k2, l2, j1,  z1;      k3=func(p2)-fx;
   int k=0,l, cptcode;    
   int first=1;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double **dnewm,**doldm;      k4=func(p2)-fx;
   double *xp;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   double *gp, *gm;  #ifdef DEBUG
   double **gradg, **trgradg;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double **mu;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double age,agelim, cov[NCOVMAX];  #endif
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    }
   int theta;    return res;
   char fileresprob[FILENAMELENGTH];  }
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
   double ***varpij;  { 
     int i,imax,j,k; 
   strcpy(fileresprob,"prob");    double big,dum,sum,temp; 
   strcat(fileresprob,fileres);    double *vv; 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {   
     printf("Problem with resultfile: %s\n", fileresprob);    vv=vector(1,n); 
   }    *d=1.0; 
   strcpy(fileresprobcov,"probcov");    for (i=1;i<=n;i++) { 
   strcat(fileresprobcov,fileres);      big=0.0; 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for (j=1;j<=n;j++) 
     printf("Problem with resultfile: %s\n", fileresprobcov);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   strcpy(fileresprobcor,"probcor");      vv[i]=1.0/big; 
   strcat(fileresprobcor,fileres);    } 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    for (j=1;j<=n;j++) { 
     printf("Problem with resultfile: %s\n", fileresprobcor);      for (i=1;i<j;i++) { 
   }        sum=a[i][j]; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        a[i][j]=sum; 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      } 
        big=0.0; 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      for (i=j;i<=n;i++) { 
   fprintf(ficresprob,"# Age");        sum=a[i][j]; 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        for (k=1;k<j;k++) 
   fprintf(ficresprobcov,"# Age");          sum -= a[i][k]*a[k][j]; 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        a[i][j]=sum; 
   fprintf(ficresprobcov,"# Age");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
           imax=i; 
   for(i=1; i<=nlstate;i++)        } 
     for(j=1; j<=(nlstate+ndeath);j++){      } 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      if (j != imax) { 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        for (k=1;k<=n;k++) { 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          dum=a[imax][k]; 
     }            a[imax][k]=a[j][k]; 
   fprintf(ficresprob,"\n");          a[j][k]=dum; 
   fprintf(ficresprobcov,"\n");        } 
   fprintf(ficresprobcor,"\n");        *d = -(*d); 
   xp=vector(1,npar);        vv[imax]=vv[j]; 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      } 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      indx[j]=imax; 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      if (a[j][j] == 0.0) a[j][j]=TINY; 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      if (j != n) { 
   first=1;        dum=1.0/(a[j][j]); 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      } 
     exit(0);    } 
   }    free_vector(vv,1,n);  /* Doesn't work */
   else{  ;
     fprintf(ficgp,"\n# Routine varprob");  } 
   }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  void lubksb(double **a, int n, int *indx, double b[]) 
     printf("Problem with html file: %s\n", optionfilehtm);  { 
     exit(0);    int i,ii=0,ip,j; 
   }    double sum; 
   else{   
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");    for (i=1;i<=n;i++) { 
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      ip=indx[i]; 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      sum=b[ip]; 
       b[ip]=b[i]; 
   }      if (ii) 
   cov[1]=1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   j=cptcoveff;      else if (sum) ii=i; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      b[i]=sum; 
   j1=0;    } 
   for(k1=1; k1<=1;k1++){    for (i=n;i>=1;i--) { 
     for(i1=1; i1<=ncodemax[k1];i1++){      sum=b[i]; 
     j1++;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     if  (cptcovn>0) {    } 
       fprintf(ficresprob, "\n#********** Variable ");  } 
       fprintf(ficresprobcov, "\n#********** Variable ");  
       fprintf(ficgp, "\n#********** Variable ");  void pstamp(FILE *fichier)
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");  {
       fprintf(ficresprobcor, "\n#********** Variable ");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  }
       fprintf(ficresprob, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /************ Frequencies ********************/
       fprintf(ficresprobcov, "**********\n#");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  {  /* Some frequencies */
       fprintf(ficgp, "**********\n#");    
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       fprintf(ficgp, "**********\n#");    int first;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double ***freq; /* Frequencies */
       fprintf(fichtm, "**********\n#");    double *pp, **prop;
     }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        char fileresp[FILENAMELENGTH];
       for (age=bage; age<=fage; age ++){    
         cov[2]=age;    pp=vector(1,nlstate);
         for (k=1; k<=cptcovn;k++) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    strcpy(fileresp,"p");
         }    strcat(fileresp,fileres);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if((ficresp=fopen(fileresp,"w"))==NULL) {
         for (k=1; k<=cptcovprod;k++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
              exit(0);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    }
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         gp=vector(1,(nlstate)*(nlstate+ndeath));    j1=0;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    
        j=cptcoveff;
         for(theta=1; theta <=npar; theta++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    first=1;
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    for(k1=1; k1<=j;k1++){
                for(i1=1; i1<=ncodemax[k1];i1++){
           k=0;        j1++;
           for(i=1; i<= (nlstate); i++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             for(j=1; j<=(nlstate+ndeath);j++){          scanf("%d", i);*/
               k=k+1;        for (i=-5; i<=nlstate+ndeath; i++)  
               gp[k]=pmmij[i][j];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             }            for(m=iagemin; m <= iagemax+3; m++)
           }              freq[i][jk][m]=0;
            
           for(i=1; i<=npar; i++)      for (i=1; i<=nlstate; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        
           k=0;        dateintsum=0;
           for(i=1; i<=(nlstate); i++){        k2cpt=0;
             for(j=1; j<=(nlstate+ndeath);j++){        for (i=1; i<=imx; i++) {
               k=k+1;          bool=1;
               gm[k]=pmmij[i][j];          if  (cptcovn>0) {
             }            for (z1=1; z1<=cptcoveff; z1++) 
           }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                      bool=0;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            if (bool==1){
         }            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           for(theta=1; theta <=npar; theta++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             trgradg[j][theta]=gradg[theta][j];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                        if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);                if (m<lastpass) {
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                          freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         pmij(pmmij,cov,ncovmodel,x,nlstate);                }
                        
         k=0;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         for(i=1; i<=(nlstate); i++){                  dateintsum=dateintsum+k2;
           for(j=1; j<=(nlstate+ndeath);j++){                  k2cpt++;
             k=k+1;                }
             mu[k][(int) age]=pmmij[i][j];                /*}*/
           }            }
         }          }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)         
             varpij[i][j][(int)age] = doldm[i][j];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
         /*printf("\n%d ",(int)age);        if  (cptcovn>0) {
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          fprintf(ficresp, "\n#********** Variable "); 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }*/          fprintf(ficresp, "**********\n#");
         }
         fprintf(ficresprob,"\n%d ",(int)age);        for(i=1; i<=nlstate;i++) 
         fprintf(ficresprobcov,"\n%d ",(int)age);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresprobcor,"\n%d ",(int)age);        fprintf(ficresp, "\n");
         
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        for(i=iagemin; i <= iagemax+3; i++){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          if(i==iagemax+3){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            fprintf(ficlog,"Total");
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          }else{
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            if(first==1){
         }              first=0;
         i=0;              printf("See log file for details...\n");
         for (k=1; k<=(nlstate);k++){            }
           for (l=1; l<=(nlstate+ndeath);l++){            fprintf(ficlog,"Age %d", i);
             i=i++;          }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          for(jk=1; jk <=nlstate ; jk++){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             for (j=1; j<=i;j++){              pp[jk] += freq[jk][m][i]; 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          for(jk=1; jk <=nlstate ; jk++){
             }            for(m=-1, pos=0; m <=0 ; m++)
           }              pos += freq[jk][m][i];
         }/* end of loop for state */            if(pp[jk]>=1.e-10){
       } /* end of loop for age */              if(first==1){
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for (k1=1; k1<=(nlstate);k1++){              }
         for (l1=1; l1<=(nlstate+ndeath);l1++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           if(l1==k1) continue;            }else{
           i=(k1-1)*(nlstate+ndeath)+l1;              if(first==1)
           for (k2=1; k2<=(nlstate);k2++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             for (l2=1; l2<=(nlstate+ndeath);l2++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               if(l2==k2) continue;            }
               j=(k2-1)*(nlstate+ndeath)+l2;          }
               if(j<=i) continue;  
               for (age=bage; age<=fage; age ++){          for(jk=1; jk <=nlstate ; jk++){
                 if ((int)age %5==0){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;              pp[jk] += freq[jk][m][i];
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          }       
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   mu1=mu[i][(int) age]/stepm*YEARM ;            pos += pp[jk];
                   mu2=mu[j][(int) age]/stepm*YEARM;            posprop += prop[jk][i];
                   /* Computing eigen value of matrix of covariance */          }
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          for(jk=1; jk <=nlstate ; jk++){
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            if(pos>=1.e-5){
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              if(first==1)
                   /* Eigen vectors */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   v21=sqrt(1.-v11*v11);            }else{
                   v12=-v21;              if(first==1)
                   v22=v11;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   /*printf(fignu*/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            }
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            if( i <= iagemax){
                   if(first==1){              if(pos>=1.e-5){
                     first=0;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                     fprintf(ficgp,"\nset parametric;set nolabel");                /*probs[i][jk][j1]= pp[jk]/pos;*/
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);              else
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);            }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          for(jk=-1; jk <=nlstate+ndeath; jk++)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            for(m=-1; m <=nlstate+ndeath; m++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              if(freq[jk][m][i] !=0 ) {
                   }else{              if(first==1)
                     first=0;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          if(i <= iagemax)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            fprintf(ficresp,"\n");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          if(first==1)
                   }/* if first */            printf("Others in log...\n");
                 } /* age mod 5 */          fprintf(ficlog,"\n");
               } /* end loop age */        }
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);      }
               first=1;    }
             } /*l12 */    dateintmean=dateintsum/k2cpt; 
           } /* k12 */   
         } /*l1 */    fclose(ficresp);
       }/* k1 */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     } /* loop covariates */    free_vector(pp,1,nlstate);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /* End of Freq */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /************ Prevalence ********************/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   }  {  
   free_vector(xp,1,npar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fclose(ficresprob);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   fclose(ficresprobcov);       We still use firstpass and lastpass as another selection.
   fclose(ficresprobcor);    */
   fclose(ficgp);   
   fclose(fichtm);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 }    double ***freq; /* Frequencies */
     double *pp, **prop;
     double pos,posprop; 
 /******************* Printing html file ***********/    double  y2; /* in fractional years */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    int iagemin, iagemax;
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    iagemin= (int) agemin;
                   int popforecast, int estepm ,\    iagemax= (int) agemax;
                   double jprev1, double mprev1,double anprev1, \    /*pp=vector(1,nlstate);*/
                   double jprev2, double mprev2,double anprev2){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   int jj1, k1, i1, cpt;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   /*char optionfilehtm[FILENAMELENGTH];*/    j1=0;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    
     printf("Problem with %s \n",optionfilehtm), exit(0);    j=cptcoveff;
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    for(k1=1; k1<=j;k1++){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      for(i1=1; i1<=ncodemax[k1];i1++){
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        j1++;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        
  - Life expectancies by age and initial health status (estepm=%2d months):        for (i=1; i<=nlstate; i++)  
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          for(m=iagemin; m <= iagemax+3; m++)
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            prop[i][m]=0.0;
        
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n        for (i=1; i<=imx; i++) { /* Each individual */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          bool=1;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          if  (cptcovn>0) {
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n            for (z1=1; z1<=cptcoveff; z1++) 
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                bool=0;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          } 
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  if(popforecast==1) fprintf(fichtm,"\n              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         <br>",fileres,fileres,fileres,fileres);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  else                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 fprintf(fichtm," <li>Graphs</li><p>");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
  m=cptcoveff;                  prop[s[m][i]][iagemax+3] += weight[i]; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                } 
               }
  jj1=0;            } /* end selection of waves */
  for(k1=1; k1<=m;k1++){          }
    for(i1=1; i1<=ncodemax[k1];i1++){        }
      jj1++;        for(i=iagemin; i <= iagemax+3; i++){  
      if (cptcovn > 0) {          
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
        for (cpt=1; cpt<=cptcoveff;cpt++)            posprop += prop[jk][i]; 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          } 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }          for(jk=1; jk <=nlstate ; jk++){     
      /* Pij */            if( i <=  iagemax){ 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>              if(posprop>=1.e-5){ 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    probs[i][jk][j1]= prop[jk][i]/posprop;
      /* Quasi-incidences */              } 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>            } 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }/* end jk */ 
        /* Stable prevalence in each health state */        }/* end i */ 
        for(cpt=1; cpt<nlstate;cpt++){      } /* end i1 */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    } /* end k1 */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
        }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for(cpt=1; cpt<=nlstate;cpt++) {    /*free_vector(pp,1,nlstate);*/
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 interval) in state (%d): v%s%d%d.png <br>  }  /* End of prevalence */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }  /************* Waves Concatenation ***************/
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  {
      }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       Death is a valid wave (if date is known).
 health expectancies in states (1) and (2): e%s%d.png<br>       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    }       and mw[mi+1][i]. dh depends on stepm.
  }       */
 fclose(fichtm);  
 }    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 /******************* Gnuplot file **************/       double sum=0., jmean=0.;*/
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    int first;
     int j, k=0,jk, ju, jl;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double sum=0.;
   int ng;    first=0;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    jmin=1e+5;
     printf("Problem with file %s",optionfilegnuplot);    jmax=-1;
   }    jmean=0.;
     for(i=1; i<=imx; i++){
 #ifdef windows      mi=0;
     fprintf(ficgp,"cd \"%s\" \n",pathc);      m=firstpass;
 #endif      while(s[m][i] <= nlstate){
 m=pow(2,cptcoveff);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
            mw[++mi][i]=m;
  /* 1eme*/        if(m >=lastpass)
   for (cpt=1; cpt<= nlstate ; cpt ++) {          break;
    for (k1=1; k1<= m ; k1 ++) {        else
           m++;
 #ifdef windows      }/* end while */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      if (s[m][i] > nlstate){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        mi++;     /* Death is another wave */
 #endif        /* if(mi==0)  never been interviewed correctly before death */
 #ifdef unix           /* Only death is a correct wave */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        mw[mi][i]=m;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      }
 #endif  
       wav[i]=mi;
 for (i=1; i<= nlstate ; i ++) {      if(mi==0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        nbwarn++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(first==0){
 }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          first=1;
     for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if(first==1){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 }        }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      } /* end mi==0 */
      for (i=1; i<= nlstate ; i ++) {    } /* End individuals */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=imx; i++){
 }        for(mi=1; mi<wav[i];mi++){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        if (stepm <=0)
 #ifdef unix          dh[mi][i]=1;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        else{
 #endif          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    }            if (agedc[i] < 2*AGESUP) {
   }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   /*2 eme*/              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
   for (k1=1; k1<= m ; k1 ++) {                nberr++;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                j=1; /* Temporary Dangerous patch */
                    printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for (i=1; i<= nlstate+1 ; i ++) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       k=2*i;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              }
       for (j=1; j<= nlstate+1 ; j ++) {              k=k+1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if (j >= jmax){
   else fprintf(ficgp," \%%*lf (\%%*lf)");                jmax=j;
 }                  ijmax=i;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              if (j <= jmin){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                jmin=j;
       for (j=1; j<= nlstate+1 ; j ++) {                ijmin=i;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              }
         else fprintf(ficgp," \%%*lf (\%%*lf)");              sum=sum+j;
 }                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       fprintf(ficgp,"\" t\"\" w l 0,");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 }    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");            k=k+1;
     }            if (j >= jmax) {
   }              jmax=j;
                ijmax=i;
   /*3eme*/            }
             else if (j <= jmin){
   for (k1=1; k1<= m ; k1 ++) {              jmin=j;
     for (cpt=1; cpt<= nlstate ; cpt ++) {              ijmin=i;
       k=2+nlstate*(2*cpt-2);            }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            if(j<0){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              nberr++;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            sum=sum+j;
           }
 */          jk= j/stepm;
       for (i=1; i< nlstate ; i ++) {          jl= j -jk*stepm;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       }            if(jl==0){
     }              dh[mi][i]=jk;
   }              bh[mi][i]=0;
              }else{ /* We want a negative bias in order to only have interpolation ie
   /* CV preval stat */                    * at the price of an extra matrix product in likelihood */
     for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk+1;
     for (cpt=1; cpt<nlstate ; cpt ++) {              bh[mi][i]=ju;
       k=3;            }
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }else{
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            if(jl <= -ju){
               dh[mi][i]=jk;
       for (i=1; i< nlstate ; i ++)              bh[mi][i]=jl;       /* bias is positive if real duration
         fprintf(ficgp,"+$%d",k+i+1);                                   * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                                   */
                  }
       l=3+(nlstate+ndeath)*cpt;            else{
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              dh[mi][i]=jk+1;
       for (i=1; i< nlstate ; i ++) {              bh[mi][i]=ju;
         l=3+(nlstate+ndeath)*cpt;            }
         fprintf(ficgp,"+$%d",l+i+1);            if(dh[mi][i]==0){
       }              dh[mi][i]=1; /* At least one step */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   }              }
            } /* end if mle */
   /* proba elementaires */        }
    for(i=1,jk=1; i <=nlstate; i++){      } /* end wave */
     for(k=1; k <=(nlstate+ndeath); k++){    }
       if (k != i) {    jmean=sum/k;
         for(j=1; j <=ncovmodel; j++){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
            fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);   }
           jk++;  
           fprintf(ficgp,"\n");  /*********** Tricode ****************************/
         }  void tricode(int *Tvar, int **nbcode, int imx)
       }  {
     }    
    }    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    cptcoveff=0; 
      for(jk=1; jk <=m; jk++) {   
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    for (k=0; k<maxncov; k++) Ndum[k]=0;
        if (ng==2)    for (k=1; k<=7; k++) ncodemax[k]=0;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
          fprintf(ficgp,"\nset title \"Probability\"\n");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                                 modality*/ 
        i=1;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
        for(k2=1; k2<=nlstate; k2++) {        Ndum[ij]++; /*store the modality */
          k3=i;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
          for(k=1; k<=(nlstate+ndeath); k++) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
            if (k != k2){                                         Tvar[j]. If V=sex and male is 0 and 
              if(ng==2)                                         female is 1, then  cptcode=1.*/
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      }
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      for (i=0; i<=cptcode; i++) {
              ij=1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
              for(j=3; j <=ncovmodel; j++) {      }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      ij=1; 
                  ij++;      for (i=1; i<=ncodemax[j]; i++) {
                }        for (k=0; k<= maxncov; k++) {
                else          if (Ndum[k] != 0) {
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            nbcode[Tvar[j]][ij]=k; 
              }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              fprintf(ficgp,")/(1");            
                          ij++;
              for(k1=1; k1 <=nlstate; k1++){            }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          if (ij > ncodemax[j]) break; 
                ij=1;        }  
                for(j=3; j <=ncovmodel; j++){      } 
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;   for (k=0; k< maxncov; k++) Ndum[k]=0;
                  }  
                  else   for (i=1; i<=ncovmodel-2; i++) { 
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                }     ij=Tvar[i];
                fprintf(ficgp,")");     Ndum[ij]++;
              }   }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   ij=1;
              i=i+ncovmodel;   for (i=1; i<= maxncov; i++) {
            }     if((Ndum[i]!=0) && (i<=ncovcol)){
          }       Tvaraff[ij]=i; /*For printing */
        }       ij++;
      }     }
    }   }
    fclose(ficgp);   
 }  /* end gnuplot */   cptcoveff=ij-1; /*Number of simple covariates*/
   }
   
 /*************** Moving average **************/  /*********** Health Expectancies ****************/
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  {
       for (i=1; i<=nlstate;i++)    /* Health expectancies, no variances */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           mobaverage[(int)agedeb][i][cptcod]=0.;    int nhstepma, nstepma; /* Decreasing with age */
        double age, agelim, hf;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    double ***p3mat;
       for (i=1; i<=nlstate;i++){    double eip;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){    pstamp(ficreseij);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           }    fprintf(ficreseij,"# Age");
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    for(i=1; i<=nlstate;i++){
         }      for(j=1; j<=nlstate;j++){
       }        fprintf(ficreseij," e%1d%1d ",i,j);
     }      }
          fprintf(ficreseij," e%1d. ",i);
 }    }
     fprintf(ficreseij,"\n");
   
 /************** Forecasting ******************/    
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }
   int *popage;    else  hstepm=estepm;   
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* We compute the life expectancy from trapezoids spaced every estepm months
   double *popeffectif,*popcount;     * This is mainly to measure the difference between two models: for example
   double ***p3mat;     * if stepm=24 months pijx are given only every 2 years and by summing them
   char fileresf[FILENAMELENGTH];     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
  agelim=AGESUP;     * to the curvature of the survival function. If, for the same date, we 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
    
   strcpy(fileresf,"f");    /* For example we decided to compute the life expectancy with the smallest unit */
   strcat(fileresf,fileres);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if((ficresf=fopen(fileresf,"w"))==NULL) {       nhstepm is the number of hstepm from age to agelim 
     printf("Problem with forecast resultfile: %s\n", fileresf);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   printf("Computing forecasting: result on file '%s' \n", fileresf);       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   if (mobilav==1) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       results. So we changed our mind and took the option of the best precision.
     movingaverage(agedeb, fage, ageminpar, mobaverage);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    agelim=AGESUP;
   if (stepm<=12) stepsize=1;    /* If stepm=6 months */
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
   agelim=AGESUP;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        
   hstepm=1;  /* nhstepm age range expressed in number of stepm */
   hstepm=hstepm/stepm;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   yp1=modf(dateintmean,&yp);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   anprojmean=yp;    /* if (stepm >= YEARM) hstepm=1;*/
   yp2=modf((yp1*12),&yp);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   mprojmean=yp;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;    for (age=bage; age<=fage; age ++){ 
   if(jprojmean==0) jprojmean=1;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   if(mprojmean==0) jprojmean=1;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
    
   for(cptcov=1;cptcov<=i2;cptcov++){      /* If stepm=6 months */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       k=k+1;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       fprintf(ficresf,"\n#******");      
       for(j=1;j<=cptcoveff;j++) {      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficresf,"******\n");      
       fprintf(ficresf,"# StartingAge FinalAge");      printf("%d|",(int)age);fflush(stdout);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
            
            /* Computing expectancies */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"\n");        for(j=1; j<=nlstate;j++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           nhstepm = nhstepm/hstepm;  
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      fprintf(ficreseij,"%3.0f",age );
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1; i<=nlstate;i++){
                eip=0;
           for (h=0; h<=nhstepm; h++){        for(j=1; j<=nlstate;j++){
             if (h==(int) (calagedate+YEARM*cpt)) {          eip +=eij[i][j][(int)age];
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficreseij,"%9.4f", eip );
               kk1=0.;kk2=0;      }
               for(i=1; i<=nlstate;i++) {                    fprintf(ficreseij,"\n");
                 if (mobilav==1)      
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    }
                 else {    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    printf("\n");
                 }    fprintf(ficlog,"\n");
                    
               }  }
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
                          
               }  {
             }    /* Covariances of health expectancies eij and of total life expectancies according
           }     to initial status i, ei. .
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
         }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       }    int nhstepma, nstepma; /* Decreasing with age */
     }    double age, agelim, hf;
   }    double ***p3matp, ***p3matm, ***varhe;
            double **dnewm,**doldm;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *xp, *xm;
     double **gp, **gm;
   fclose(ficresf);    double ***gradg, ***trgradg;
 }    int theta;
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    double eip, vip;
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   int *popage;    xp=vector(1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    xm=vector(1,npar);
   double *popeffectif,*popcount;    dnewm=matrix(1,nlstate*nlstate,1,npar);
   double ***p3mat,***tabpop,***tabpopprev;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   char filerespop[FILENAMELENGTH];    
     pstamp(ficresstdeij);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresstdeij,"# Age");
   agelim=AGESUP;    for(i=1; i<=nlstate;i++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      for(j=1; j<=nlstate;j++)
          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(ficresstdeij," e%1d. ",i);
      }
      fprintf(ficresstdeij,"\n");
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);    pstamp(ficrescveij);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     printf("Problem with forecast resultfile: %s\n", filerespop);    fprintf(ficrescveij,"# Age");
   }    for(i=1; i<=nlstate;i++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);      for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
   if (mobilav==1) {            cptj2= (j2-1)*nlstate+i2;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(cptj2 <= cptj)
     movingaverage(agedeb, fage, ageminpar, mobaverage);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   }          }
       }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficrescveij,"\n");
   if (stepm<=12) stepsize=1;    
      if(estepm < stepm){
   agelim=AGESUP;      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   hstepm=1;    else  hstepm=estepm;   
   hstepm=hstepm/stepm;    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   if (popforecast==1) {     * if stepm=24 months pijx are given only every 2 years and by summing them
     if((ficpop=fopen(popfile,"r"))==NULL) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
       printf("Problem with population file : %s\n",popfile);exit(0);     * progression in between and thus overestimating or underestimating according
     }     * to the curvature of the survival function. If, for the same date, we 
     popage=ivector(0,AGESUP);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     popeffectif=vector(0,AGESUP);     * to compare the new estimate of Life expectancy with the same linear 
     popcount=vector(0,AGESUP);     * hypothesis. A more precise result, taking into account a more precise
         * curvature will be obtained if estepm is as small as stepm. */
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     imx=i;       nhstepm is the number of hstepm from age to agelim 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   for(cptcov=1;cptcov<=i2;cptcov++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       survival function given by stepm (the optimization length). Unfortunately it
       k=k+1;       means that if the survival funtion is printed only each two years of age and if
       fprintf(ficrespop,"\n#******");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for(j=1;j<=cptcoveff;j++) {       results. So we changed our mind and took the option of the best precision.
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");    /* If stepm=6 months */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    /* nhstepm age range expressed in number of stepm */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    agelim=AGESUP;
          nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       for (cpt=0; cpt<=0;cpt++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* if (stepm >= YEARM) hstepm=1;*/
            nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           nhstepm = nhstepm/hstepm;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           oldm=oldms;savm=savms;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
          
           for (h=0; h<=nhstepm; h++){    for (age=bage; age<=fage; age ++){ 
             if (h==(int) (calagedate+YEARM*cpt)) {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             }      /* if (stepm >= YEARM) hstepm=1;*/
             for(j=1; j<=nlstate+ndeath;j++) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                    /* If stepm=6 months */
                 if (mobilav==1)      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                 else {      
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                 }  
               }      /* Computing  Variances of health expectancies */
               if (h==(int)(calagedate+12*cpt)){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;         decrease memory allocation */
                   /*fprintf(ficrespop," %.3f", kk1);      for(theta=1; theta <=npar; theta++){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(i=1; i<=npar; i++){ 
               }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
             for(i=1; i<=nlstate;i++){        }
               kk1=0.;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
                 for(j=1; j<=nlstate;j++){        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    
                 }        for(j=1; j<= nlstate; j++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          for(i=1; i<=nlstate; i++){
             }            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            }
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }       
       }        for(ij=1; ij<= nlstate*nlstate; ij++)
            for(h=0; h<=nhstepm-1; h++){
   /******/            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      }/* End theta */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(h=0; h<=nhstepm-1; h++)
           nhstepm = nhstepm/hstepm;        for(j=1; j<=nlstate*nlstate;j++)
                    for(theta=1; theta <=npar; theta++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            trgradg[h][j][theta]=gradg[h][theta][j];
           oldm=oldms;savm=savms;      
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){       for(ij=1;ij<=nlstate*nlstate;ij++)
             if (h==(int) (calagedate+YEARM*cpt)) {        for(ji=1;ji<=nlstate*nlstate;ji++)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          varhe[ij][ji][(int)age] =0.;
             }  
             for(j=1; j<=nlstate+ndeath;j++) {       printf("%d|",(int)age);fflush(stdout);
               kk1=0.;kk2=0;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               for(i=1; i<=nlstate;i++) {                     for(h=0;h<=nhstepm-1;h++){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            for(k=0;k<=nhstepm-1;k++){
               }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
             }          for(ij=1;ij<=nlstate*nlstate;ij++)
           }            for(ji=1;ji<=nlstate*nlstate;ji++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }        }
       }      }
    }  
   }      /* Computing expectancies */
        hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   if (popforecast==1) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     free_ivector(popage,0,AGESUP);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     free_vector(popeffectif,0,AGESUP);            
     free_vector(popcount,0,AGESUP);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);      fprintf(ficresstdeij,"%3.0f",age );
 }      for(i=1; i<=nlstate;i++){
         eip=0.;
 /***********************************************/        vip=0.;
 /**************** Main Program *****************/        for(j=1; j<=nlstate;j++){
 /***********************************************/          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 int main(int argc, char *argv[])            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 {          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   double agedeb, agefin,hf;      }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      fprintf(ficresstdeij,"\n");
   
   double fret;      fprintf(ficrescveij,"%3.0f",age );
   double **xi,tmp,delta;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   double dum; /* Dummy variable */          cptj= (j-1)*nlstate+i;
   double ***p3mat;          for(i2=1; i2<=nlstate;i2++)
   int *indx;            for(j2=1; j2<=nlstate;j2++){
   char line[MAXLINE], linepar[MAXLINE];              cptj2= (j2-1)*nlstate+i2;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              if(cptj2 <= cptj)
   int firstobs=1, lastobs=10;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   int sdeb, sfin; /* Status at beginning and end */            }
   int c,  h , cpt,l;        }
   int ju,jl, mi;      fprintf(ficrescveij,"\n");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;     
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    }
   int mobilav=0,popforecast=0;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   int hstepm, nhstepm;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   double bage, fage, age, agelim, agebase;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ftolpl=FTOL;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **prlim;    printf("\n");
   double *severity;    fprintf(ficlog,"\n");
   double ***param; /* Matrix of parameters */  
   double  *p;    free_vector(xm,1,npar);
   double **matcov; /* Matrix of covariance */    free_vector(xp,1,npar);
   double ***delti3; /* Scale */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   double *delti; /* Scale */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   double ***eij, ***vareij;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   double **varpl; /* Variances of prevalence limits by age */  }
   double *epj, vepp;  
   double kk1, kk2;  /************ Variance ******************/
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    {
     /* Variance of health expectancies */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
   char z[1]="c", occ;    double **dnewmp,**doldmp;
 #include <sys/time.h>    int i, j, nhstepm, hstepm, h, nstepm ;
 #include <time.h>    int k, cptcode;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double *xp;
      double **gp, **gm;  /* for var eij */
   /* long total_usecs;    double ***gradg, ***trgradg; /*for var eij */
   struct timeval start_time, end_time;    double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   getcwd(pathcd, size);    double ***p3mat;
     double age,agelim, hf;
   printf("\n%s",version);    double ***mobaverage;
   if(argc <=1){    int theta;
     printf("\nEnter the parameter file name: ");    char digit[4];
     scanf("%s",pathtot);    char digitp[25];
   }  
   else{    char fileresprobmorprev[FILENAMELENGTH];
     strcpy(pathtot,argv[1]);  
   }    if(popbased==1){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      if(mobilav!=0)
   /*cygwin_split_path(pathtot,path,optionfile);        strcpy(digitp,"-populbased-mobilav-");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      else strcpy(digitp,"-populbased-nomobil-");
   /* cutv(path,optionfile,pathtot,'\\');*/    }
     else 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      strcpy(digitp,"-stablbased-");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);    if (mobilav!=0) {
   replace(pathc,path);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 /*-------- arguments in the command line --------*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcpy(fileres,"r");      }
   strcat(fileres, optionfilefiname);    }
   strcat(fileres,".txt");    /* Other files have txt extension */  
     strcpy(fileresprobmorprev,"prmorprev"); 
   /*---------arguments file --------*/    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     printf("Problem with optionfile %s\n",optionfile);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     goto end;    strcat(fileresprobmorprev,fileres);
   }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
   strcpy(filereso,"o");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   strcat(filereso,fileres);    }
   if((ficparo=fopen(filereso,"w"))==NULL) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;   
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
   /* Reads comments: lines beginning with '#' */    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     ungetc(c,ficpar);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fgets(line, MAXLINE, ficpar);      fprintf(ficresprobmorprev," p.%-d SE",j);
     puts(line);      for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
   ungetc(c,ficpar);    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 while((c=getc(ficpar))=='#' && c!= EOF){  /*   } */
     ungetc(c,ficpar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    pstamp(ficresvij);
     puts(line);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     fputs(line,ficparo);    if(popbased==1)
   }      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   ungetc(c,ficpar);    else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
        fprintf(ficresvij,"# Age");
   covar=matrix(0,NCOVMAX,1,n);    for(i=1; i<=nlstate;i++)
   cptcovn=0;      for(j=1; j<=nlstate;j++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   /* Read guess parameters */    doldm=matrix(1,nlstate,1,nlstate);
   /* Reads comments: lines beginning with '#' */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     puts(line);    gpp=vector(nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    gmp=vector(nlstate+1,nlstate+ndeath);
   }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   ungetc(c,ficpar);    
      if(estepm < stepm){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      printf ("Problem %d lower than %d\n",estepm, stepm);
     for(i=1; i <=nlstate; i++)    }
     for(j=1; j <=nlstate+ndeath-1; j++){    else  hstepm=estepm;   
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficparo,"%1d%1d",i1,j1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       printf("%1d%1d",i,j);       nhstepm is the number of hstepm from age to agelim 
       for(k=1; k<=ncovmodel;k++){       nstepm is the number of stepm from age to agelin. 
         fscanf(ficpar," %lf",&param[i][j][k]);       Look at hpijx to understand the reason of that which relies in memory size
         printf(" %lf",param[i][j][k]);       and note for a fixed period like k years */
         fprintf(ficparo," %lf",param[i][j][k]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
       fscanf(ficpar,"\n");       means that if the survival funtion is printed every two years of age and if
       printf("\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficparo,"\n");       results. So we changed our mind and took the option of the best precision.
     }    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   p=param[1][1];      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /* Reads comments: lines beginning with '#' */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   while((c=getc(ficpar))=='#' && c!= EOF){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     ungetc(c,ficpar);      gp=matrix(0,nhstepm,1,nlstate);
     fgets(line, MAXLINE, ficpar);      gm=matrix(0,nhstepm,1,nlstate);
     puts(line);  
     fputs(line,ficparo);  
   }      for(theta=1; theta <=npar; theta++){
   ungetc(c,ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for(i=1; i <=nlstate; i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);        if (popbased==1) {
       printf("%1d%1d",i,j);          if(mobilav ==0){
       fprintf(ficparo,"%1d%1d",i1,j1);            for(i=1; i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){              prlim[i][i]=probs[(int)age][i][ij];
         fscanf(ficpar,"%le",&delti3[i][j][k]);          }else{ /* mobilav */ 
         printf(" %le",delti3[i][j][k]);            for(i=1; i<=nlstate;i++)
         fprintf(ficparo," %le",delti3[i][j][k]);              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
       fscanf(ficpar,"\n");        }
       printf("\n");    
       fprintf(ficparo,"\n");        for(j=1; j<= nlstate; j++){
     }          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   delti=delti3[1][1];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){        /* This for computing probability of death (h=1 means
     ungetc(c,ficpar);           computed over hstepm matrices product = hstepm*stepm months) 
     fgets(line, MAXLINE, ficpar);           as a weighted average of prlim.
     puts(line);        */
     fputs(line,ficparo);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   ungetc(c,ficpar);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   matcov=matrix(1,npar,1,npar);        /* end probability of death */
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     printf("%s",str);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fprintf(ficparo,"%s",str);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for(j=1; j <=i; j++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fscanf(ficpar," %le",&matcov[i][j]);   
       printf(" %.5le",matcov[i][j]);        if (popbased==1) {
       fprintf(ficparo," %.5le",matcov[i][j]);          if(mobilav ==0){
     }            for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"\n");              prlim[i][i]=probs[(int)age][i][ij];
     printf("\n");          }else{ /* mobilav */ 
     fprintf(ficparo,"\n");            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
   for(i=1; i <=npar; i++)          }
     for(j=i+1;j<=npar;j++)        }
       matcov[i][j]=matcov[j][i];  
            for(j=1; j<= nlstate; j++){
   printf("\n");          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     /*-------- Rewriting paramater file ----------*/          }
      strcpy(rfileres,"r");    /* "Rparameterfile */        }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        /* This for computing probability of death (h=1 means
      strcat(rfileres,".");    /* */           computed over hstepm matrices product = hstepm*stepm months) 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */           as a weighted average of prlim.
     if((ficres =fopen(rfileres,"w"))==NULL) {        */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     fprintf(ficres,"#%s\n",version);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
            }    
     /*-------- data file ----------*/        /* end probability of death */
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;        for(j=1; j<= nlstate; j++) /* vareij */
     }          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     n= lastobs;          }
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     num=ivector(1,n);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     moisnais=vector(1,n);        }
     annais=vector(1,n);  
     moisdc=vector(1,n);      } /* End theta */
     andc=vector(1,n);  
     agedc=vector(1,n);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     cod=ivector(1,n);  
     weight=vector(1,n);      for(h=0; h<=nhstepm; h++) /* veij */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for(j=1; j<=nlstate;j++)
     mint=matrix(1,maxwav,1,n);          for(theta=1; theta <=npar; theta++)
     anint=matrix(1,maxwav,1,n);            trgradg[h][j][theta]=gradg[h][theta][j];
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);          for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     tab=ivector(1,NCOVMAX);        for(theta=1; theta <=npar; theta++)
     ncodemax=ivector(1,8);          trgradgp[j][theta]=gradgp[theta][j];
     
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       if ((i >= firstobs) && (i <=lastobs)) {      for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
         for (j=maxwav;j>=1;j--){          vareij[i][j][(int)age] =0.;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);      for(h=0;h<=nhstepm;h++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(k=0;k<=nhstepm;k++){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                  for(i=1;i<=nlstate;i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(j=1;j<=nlstate;j++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    
       /* pptj */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         for (j=ncovcol;j>=1;j--){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         num[i]=atol(stra);          varppt[j][i]=doldmp[j][i];
              /* end ppptj */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      /*  x centered again */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         i=i+1;   
       }      if (popbased==1) {
     }        if(mobilav ==0){
     /* printf("ii=%d", ij);          for(i=1; i<=nlstate;i++)
        scanf("%d",i);*/            prlim[i][i]=probs[(int)age][i][ij];
   imx=i-1; /* Number of individuals */        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   /* for (i=1; i<=imx; i++){            prlim[i][i]=mobaverage[(int)age][i][ij];
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;               
     }*/      /* This for computing probability of death (h=1 means
    /*  for (i=1; i<=imx; i++){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
      if (s[4][i]==9)  s[4][i]=-1;         as a weighted average of prlim.
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   /* Calculation of the number of parameter from char model*/          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   Tvar=ivector(1,15);      }    
   Tprod=ivector(1,15);      /* end probability of death */
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   Tage=ivector(1,15);            for(j=nlstate+1; j<=(nlstate+ndeath);j++){
            fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   if (strlen(model) >1){        for(i=1; i<=nlstate;i++){
     j=0, j1=0, k1=1, k2=1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     j=nbocc(model,'+');        }
     j1=nbocc(model,'*');      } 
     cptcovn=j+1;      fprintf(ficresprobmorprev,"\n");
     cptcovprod=j1;  
          fprintf(ficresvij,"%.0f ",age );
     strcpy(modelsav,model);      for(i=1; i<=nlstate;i++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        for(j=1; j<=nlstate;j++){
       printf("Error. Non available option model=%s ",model);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       goto end;        }
     }      fprintf(ficresvij,"\n");
          free_matrix(gp,0,nhstepm,1,nlstate);
     for(i=(j+1); i>=1;i--){      free_matrix(gm,0,nhstepm,1,nlstate);
       cutv(stra,strb,modelsav,'+');      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*scanf("%d",i);*/    } /* End age */
       if (strchr(strb,'*')) {    free_vector(gpp,nlstate+1,nlstate+ndeath);
         cutv(strd,strc,strb,'*');    free_vector(gmp,nlstate+1,nlstate+ndeath);
         if (strcmp(strc,"age")==0) {    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           cptcovprod--;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           cutv(strb,stre,strd,'V');    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           Tvar[i]=atoi(stre);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           cptcovage++;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
             Tage[cptcovage]=i;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
             /*printf("stre=%s ", stre);*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         else if (strcmp(strd,"age")==0) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           cptcovprod--;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           cutv(strb,stre,strc,'V');    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           Tvar[i]=atoi(stre);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           cptcovage++;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           Tage[cptcovage]=i;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         }  */
         else {  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           cutv(strb,stre,strc,'V');    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V');    free_vector(xp,1,npar);
           Tprod[k1]=i;    free_matrix(doldm,1,nlstate,1,nlstate);
           Tvard[k1][1]=atoi(strc);    free_matrix(dnewm,1,nlstate,1,npar);
           Tvard[k1][2]=atoi(stre);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           Tvar[cptcovn+k2]=Tvard[k1][1];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for (k=1; k<=lastobs;k++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fclose(ficresprobmorprev);
           k1++;    fflush(ficgp);
           k2=k2+2;    fflush(fichtm); 
         }  }  /* end varevsij */
       }  
       else {  /************ Variance of prevlim ******************/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
        /*  scanf("%d",i);*/  {
       cutv(strd,strc,strb,'V');    /* Variance of prevalence limit */
       Tvar[i]=atoi(strc);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       }    double **newm;
       strcpy(modelsav,stra);      double **dnewm,**doldm;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    int i, j, nhstepm, hstepm;
         scanf("%d",i);*/    int k, cptcode;
     }    double *xp;
 }    double *gp, *gm;
      double **gradg, **trgradg;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double age,agelim;
   printf("cptcovprod=%d ", cptcovprod);    int theta;
   scanf("%d ",i);*/    
     fclose(fic);    pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     /*  if(mle==1){*/    fprintf(ficresvpl,"# Age");
     if (weightopt != 1) { /* Maximisation without weights*/    for(i=1; i<=nlstate;i++)
       for(i=1;i<=n;i++) weight[i]=1.0;        fprintf(ficresvpl," %1d-%1d",i,i);
     }    fprintf(ficresvpl,"\n");
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     for (i=1; i<=imx; i++) {    doldm=matrix(1,nlstate,1,nlstate);
       for(m=2; (m<= maxwav); m++) {    
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    hstepm=1*YEARM; /* Every year of age */
          anint[m][i]=9999;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
          s[m][i]=-1;    agelim = AGESUP;
        }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      if (stepm >= YEARM) hstepm=1;
     }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
     for (i=1; i<=imx; i++)  {      gp=vector(1,nlstate);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      gm=vector(1,nlstate);
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){      for(theta=1; theta <=npar; theta++){
           if (s[m][i] >= nlstate+1) {        for(i=1; i<=npar; i++){ /* Computes gradient */
             if(agedc[i]>0)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               if(moisdc[i]!=99 && andc[i]!=9999)        }
                 agev[m][i]=agedc[i];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        for(i=1;i<=nlstate;i++)
            else {          gp[i] = prlim[i][i];
               if (andc[i]!=9999){      
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        for(i=1; i<=npar; i++) /* Computes gradient */
               agev[m][i]=-1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             }        for(i=1;i<=nlstate;i++)
           }          gm[i] = prlim[i][i];
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        for(i=1;i<=nlstate;i++)
             if(mint[m][i]==99 || anint[m][i]==9999)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
               agev[m][i]=1;      } /* End theta */
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];      trgradg =matrix(1,nlstate,1,npar);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }      for(j=1; j<=nlstate;j++)
             else if(agev[m][i] >agemax){        for(theta=1; theta <=npar; theta++)
               agemax=agev[m][i];          trgradg[j][theta]=gradg[theta][j];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }      for(i=1;i<=nlstate;i++)
             /*agev[m][i]=anint[m][i]-annais[i];*/        varpl[i][(int)age] =0.;
             /*   agev[m][i] = age[i]+2*m;*/      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           else { /* =9 */      for(i=1;i<=nlstate;i++)
             agev[m][i]=1;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
             s[m][i]=-1;  
           }      fprintf(ficresvpl,"%.0f ",age );
         }      for(i=1; i<=nlstate;i++)
         else /*= 0 Unknown */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           agev[m][i]=1;      fprintf(ficresvpl,"\n");
       }      free_vector(gp,1,nlstate);
          free_vector(gm,1,nlstate);
     }      free_matrix(gradg,1,npar,1,nlstate);
     for (i=1; i<=imx; i++)  {      free_matrix(trgradg,1,nlstate,1,npar);
       for(m=1; (m<= maxwav); m++){    } /* End age */
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");      free_vector(xp,1,npar);
           goto end;    free_matrix(doldm,1,nlstate,1,npar);
         }    free_matrix(dnewm,1,nlstate,1,nlstate);
       }  
     }  }
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     free_vector(severity,1,maxwav);  {
     free_imatrix(outcome,1,maxwav+1,1,n);    int i, j=0,  i1, k1, l1, t, tj;
     free_vector(moisnais,1,n);    int k2, l2, j1,  z1;
     free_vector(annais,1,n);    int k=0,l, cptcode;
     /* free_matrix(mint,1,maxwav,1,n);    int first=1, first1;
        free_matrix(anint,1,maxwav,1,n);*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     free_vector(moisdc,1,n);    double **dnewm,**doldm;
     free_vector(andc,1,n);    double *xp;
     double *gp, *gm;
        double **gradg, **trgradg;
     wav=ivector(1,imx);    double **mu;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    double age,agelim, cov[NCOVMAX];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
        int theta;
     /* Concatenates waves */    char fileresprob[FILENAMELENGTH];
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
       Tcode=ivector(1,100);    double ***varpij;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;    strcpy(fileresprob,"prob"); 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    strcat(fileresprob,fileres);
          if((ficresprob=fopen(fileresprob,"w"))==NULL) {
    codtab=imatrix(1,100,1,10);      printf("Problem with resultfile: %s\n", fileresprob);
    h=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
    m=pow(2,cptcoveff);    }
      strcpy(fileresprobcov,"probcov"); 
    for(k=1;k<=cptcoveff; k++){    strcat(fileresprobcov,fileres);
      for(i=1; i <=(m/pow(2,k));i++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        for(j=1; j <= ncodemax[k]; j++){      printf("Problem with resultfile: %s\n", fileresprobcov);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
            h++;    }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    strcpy(fileresprobcor,"probcor"); 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    strcat(fileresprobcor,fileres);
          }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        }      printf("Problem with resultfile: %s\n", fileresprobcor);
      }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
    }    }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       codtab[1][2]=1;codtab[2][2]=2; */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    /* for(i=1; i <=m ;i++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for(k=1; k <=cptcovn; k++){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       printf("\n");    pstamp(ficresprob);
       }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       scanf("%d",i);*/    fprintf(ficresprob,"# Age");
        pstamp(ficresprobcov);
    /* Calculates basic frequencies. Computes observed prevalence at single age    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
        and prints on file fileres'p'. */    fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
        fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
        fprintf(ficresprobcor,"# Age");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(i=1; i<=nlstate;i++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(j=1; j<=(nlstate+ndeath);j++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
              fprintf(ficresprobcov," p%1d-%1d ",i,j);
     /* For Powell, parameters are in a vector p[] starting at p[1]        fprintf(ficresprobcor," p%1d-%1d ",i,j);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      }  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     if(mle==1){    fprintf(ficresprobcor,"\n");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   */
     }   xp=vector(1,npar);
        dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     /*--------- results files --------------*/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
    jk=1;    fprintf(ficgp,"\n# Routine varprob");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(fichtm,"\n");
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
        if (k != i)    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
          {    file %s<br>\n",optionfilehtmcov);
            printf("%d%d ",i,k);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
            fprintf(ficres,"%1d%1d ",i,k);  and drawn. It helps understanding how is the covariance between two incidences.\
            for(j=1; j <=ncovmodel; j++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
              printf("%f ",p[jk]);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
              fprintf(ficres,"%f ",p[jk]);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
              jk++;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
            }  standard deviations wide on each axis. <br>\
            printf("\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
            fprintf(ficres,"\n");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
          }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      }  
    }    cov[1]=1;
  if(mle==1){    tj=cptcoveff;
     /* Computing hessian and covariance matrix */    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     ftolhess=ftol; /* Usually correct */    j1=0;
     hesscov(matcov, p, npar, delti, ftolhess, func);    for(t=1; t<=tj;t++){
  }      for(i1=1; i1<=ncodemax[t];i1++){ 
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        j1++;
     printf("# Scales (for hessian or gradient estimation)\n");        if  (cptcovn>0) {
      for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficresprob, "\n#********** Variable "); 
       for(j=1; j <=nlstate+ndeath; j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if (j!=i) {          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficres,"%1d%1d",i,j);          fprintf(ficresprobcov, "\n#********** Variable "); 
           printf("%1d%1d",i,j);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(k=1; k<=ncovmodel;k++){          fprintf(ficresprobcov, "**********\n#\n");
             printf(" %.5e",delti[jk]);          
             fprintf(ficres," %.5e",delti[jk]);          fprintf(ficgp, "\n#********** Variable "); 
             jk++;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(ficgp, "**********\n#\n");
           printf("\n");          
           fprintf(ficres,"\n");          
         }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
              
     k=1;          fprintf(ficresprobcor, "\n#********** Variable ");    
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficresprobcor, "**********\n#");    
     for(i=1;i<=npar;i++){        }
       /*  if (k>nlstate) k=1;        
       i1=(i-1)/(ncovmodel*nlstate)+1;        for (age=bage; age<=fage; age ++){ 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          cov[2]=age;
       printf("%s%d%d",alph[k],i1,tab[i]);*/          for (k=1; k<=cptcovn;k++) {
       fprintf(ficres,"%3d",i);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       printf("%3d",i);          }
       for(j=1; j<=i;j++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         fprintf(ficres," %.5e",matcov[i][j]);          for (k=1; k<=cptcovprod;k++)
         printf(" %.5e",matcov[i][j]);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }          
       fprintf(ficres,"\n");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       printf("\n");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       k++;          gp=vector(1,(nlstate)*(nlstate+ndeath));
     }          gm=vector(1,(nlstate)*(nlstate+ndeath));
          
     while((c=getc(ficpar))=='#' && c!= EOF){          for(theta=1; theta <=npar; theta++){
       ungetc(c,ficpar);            for(i=1; i<=npar; i++)
       fgets(line, MAXLINE, ficpar);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       puts(line);            
       fputs(line,ficparo);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     }            
     ungetc(c,ficpar);            k=0;
     estepm=0;            for(i=1; i<= (nlstate); i++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);              for(j=1; j<=(nlstate+ndeath);j++){
     if (estepm==0 || estepm < stepm) estepm=stepm;                k=k+1;
     if (fage <= 2) {                gp[k]=pmmij[i][j];
       bage = ageminpar;              }
       fage = agemaxpar;            }
     }            
                for(i=1; i<=npar; i++)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              k=0;
     while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=(nlstate); i++){
     ungetc(c,ficpar);              for(j=1; j<=(nlstate+ndeath);j++){
     fgets(line, MAXLINE, ficpar);                k=k+1;
     puts(line);                gm[k]=pmmij[i][j];
     fputs(line,ficparo);              }
   }            }
   ungetc(c,ficpar);       
              for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
                for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   while((c=getc(ficpar))=='#' && c!= EOF){            for(theta=1; theta <=npar; theta++)
     ungetc(c,ficpar);              trgradg[j][theta]=gradg[theta][j];
     fgets(line, MAXLINE, ficpar);          
     puts(line);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     fputs(line,ficparo);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   ungetc(c,ficpar);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
   fscanf(ficpar,"pop_based=%d\n",&popbased);          k=0;
   fprintf(ficparo,"pop_based=%d\n",popbased);            for(i=1; i<=(nlstate); i++){
   fprintf(ficres,"pop_based=%d\n",popbased);              for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
   while((c=getc(ficpar))=='#' && c!= EOF){              mu[k][(int) age]=pmmij[i][j];
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);          }
     puts(line);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     fputs(line,ficparo);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   }              varpij[i][j][(int)age] = doldm[i][j];
   ungetc(c,ficpar);  
           /*printf("\n%d ",(int)age);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
 while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprob,"\n%d ",(int)age);
     ungetc(c,ficpar);          fprintf(ficresprobcov,"\n%d ",(int)age);
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcor,"\n%d ",(int)age);
     puts(line);  
     fputs(line,ficparo);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   ungetc(c,ficpar);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          i=0;
           for (k=1; k<=(nlstate);k++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
 /*------------ gnuplot -------------*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   strcpy(optionfilegnuplot,optionfilefiname);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   strcat(optionfilegnuplot,".gp");              for (j=1; j<=i;j++){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     printf("Problem with file %s",optionfilegnuplot);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   }              }
   fclose(ficgp);            }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          }/* end of loop for state */
 /*--------- index.htm --------*/        } /* end of loop for age */
   
   strcpy(optionfilehtm,optionfile);        /* Confidence intervalle of pij  */
   strcat(optionfilehtm,".htm");        /*
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          fprintf(ficgp,"\nset noparametric;unset label");
     printf("Problem with %s \n",optionfilehtm), exit(0);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 \n          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 Total number of observations=%d <br>\n        */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  
 <hr  size=\"2\" color=\"#EC5E5E\">        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
  <ul><li>Parameter files<br>\n        first1=1;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        for (k2=1; k2<=(nlstate);k2++){
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   fclose(fichtm);            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);            for (k1=1; k1<=(nlstate);k1++){
                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 /*------------ free_vector  -------------*/                if(l1==k1) continue;
  chdir(path);                i=(k1-1)*(nlstate+ndeath)+l1;
                  if(i<=j) continue;
  free_ivector(wav,1,imx);                for (age=bage; age<=fage; age ++){ 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                  if ((int)age %5==0){
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
  free_ivector(num,1,n);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
  free_vector(agedc,1,n);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
  fclose(ficparo);                    mu2=mu[j][(int) age]/stepm*YEARM;
  fclose(ficres);                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /*--------------- Prevalence limit --------------*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      /* Eigen vectors */
   strcpy(filerespl,"pl");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   strcat(filerespl,fileres);                    /*v21=sqrt(1.-v11*v11); *//* error */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                    v21=(lc1-v1)/cv12*v11;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                    v12=-v21;
   }                    v22=v11;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                    tnalp=v21/v11;
   fprintf(ficrespl,"#Prevalence limit\n");                    if(first1==1){
   fprintf(ficrespl,"#Age ");                      first1=0;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   fprintf(ficrespl,"\n");                    }
                      fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   prlim=matrix(1,nlstate,1,nlstate);                    /*printf(fignu*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    if(first==1){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      first=0;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                      fprintf(ficgp,"\nset parametric;unset label");
   k=0;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   agebase=ageminpar;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   agelim=agemaxpar;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   ftolpl=1.e-10;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   i1=cptcoveff;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   if (cptcovn < 1){i1=1;}                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         k=k+1;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         fprintf(ficrespl,"\n#******");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fprintf(ficrespl,"******\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                            }else{
         for (age=agebase; age<=agelim; age++){                      first=0;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           fprintf(ficrespl,"%.0f",age );                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           fprintf(ficrespl," %.5f", prlim[i][i]);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           fprintf(ficrespl,"\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }/* if first */
     }                  } /* age mod 5 */
   fclose(ficrespl);                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*------------- h Pij x at various ages ------------*/                first=1;
                } /*l12 */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            } /* k12 */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          } /*l1 */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        }/* k1 */
   }      } /* loop covariates */
   printf("Computing pij: result on file '%s' \n", filerespij);    }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   /*if (stepm<=24) stepsize=2;*/    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   agelim=AGESUP;    free_vector(xp,1,npar);
   hstepm=stepsize*YEARM; /* Every year of age */    fclose(ficresprob);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fclose(ficresprobcov);
      fclose(ficresprobcor);
   k=0;    fflush(ficgp);
   for(cptcov=1;cptcov<=i1;cptcov++){    fflush(fichtmcov);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  }
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)  /******************* Printing html file ***********/
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         fprintf(ficrespij,"******\n");                    int lastpass, int stepm, int weightopt, char model[],\
                            int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                    int popforecast, int estepm ,\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    double jprev1, double mprev1,double anprev1, \
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                    double jprev2, double mprev2,double anprev2){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int jj1, k1, i1, cpt;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
           fprintf(ficrespij,"# Age");     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
           for(i=1; i<=nlstate;i++)  </ul>");
             for(j=1; j<=nlstate+ndeath;j++)     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
               fprintf(ficrespij," %1d-%1d",i,j);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
           fprintf(ficrespij,"\n");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
            for (h=0; h<=nhstepm; h++){     fprintf(fichtm,"\
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
             for(i=1; i<=nlstate;i++)             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
               for(j=1; j<=nlstate+ndeath;j++)     fprintf(fichtm,"\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
             fprintf(ficrespij,"\n");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
              }     fprintf(fichtm,"\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
           fprintf(ficrespij,"\n");     <a href=\"%s\">%s</a> <br>\n",
         }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     }     fprintf(fichtm,"\
   }   - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   fclose(ficrespij);  
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){   jj1=0;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   for(k1=1; k1<=m;k1++){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);     for(i1=1; i1<=ncodemax[k1];i1++){
   }       jj1++;
   else{       if (cptcovn > 0) {
     erreur=108;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   /*---------- Health expectancies and variances ------------*/       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   strcpy(filerest,"t");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   strcat(filerest,fileres);       /* Quasi-incidences */
   if((ficrest=fopen(filerest,"w"))==NULL) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   strcpy(filerese,"e");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   strcat(filerese,fileres);         }
   if((ficreseij=fopen(filerese,"w"))==NULL) {       for(cpt=1; cpt<=nlstate;cpt++) {
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       }
      } /* end i1 */
  strcpy(fileresv,"v");   }/* End k1 */
   strcat(fileresv,fileres);   fprintf(fichtm,"</ul>");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }   fprintf(fichtm,"\
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   calagedate=-1;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   k=0;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   for(cptcov=1;cptcov<=i1;cptcov++){   fprintf(fichtm,"\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       k=k+1;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficrest,"******\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
       fprintf(ficreseij,"\n#****** ");   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
       for(j=1;j<=cptcoveff;j++)     <a href=\"%s\">%s</a> <br>\n</li>",
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       fprintf(ficreseij,"******\n");   fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       fprintf(ficresvij,"\n#****** ");     <a href=\"%s\">%s</a> <br>\n</li>",
       for(j=1;j<=cptcoveff;j++)             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
       fprintf(ficresvij,"******\n");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   fprintf(fichtm,"\
       oldm=oldms;savm=savms;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);             subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     fprintf(fichtm,"\
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       oldm=oldms;savm=savms;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  
      /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
    /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /*      <br>",fileres,fileres,fileres,fileres); */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /*  else  */
       fprintf(ficrest,"\n");  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
       epj=vector(1,nlstate+1);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   m=cptcoveff;
         if (popbased==1) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];   jj1=0;
         }   for(k1=1; k1<=m;k1++){
             for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficrest," %4.0f",age);       jj1++;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       if (cptcovn > 0) {
           for(i=1, epj[j]=0.;i <=nlstate;i++) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];         for (cpt=1; cpt<=cptcoveff;cpt++) 
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           epj[nlstate+1] +=epj[j];       }
         }       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         for(i=1, vepp=0.;i <=nlstate;i++)  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
           for(j=1;j <=nlstate;j++)  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
             vepp += vareij[i][j][(int)age];       }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         for(j=1;j <=nlstate;j++){  health expectancies in states (1) and (2): %s%d.png<br>\
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         }     } /* end i1 */
         fprintf(ficrest,"\n");   }/* End k1 */
       }   fprintf(fichtm,"</ul>");
     }   fflush(fichtm);
   }  }
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  /******************* Gnuplot file **************/
     free_vector(weight,1,n);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   fclose(ficreseij);  
   fclose(ficresvij);    char dirfileres[132],optfileres[132];
   fclose(ficrest);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   fclose(ficpar);    int ng;
   free_vector(epj,1,nlstate+1);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
    /*     printf("Problem with file %s",optionfilegnuplot); */
   /*------- Variance limit prevalence------*/    /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    /*#ifdef windows */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    fprintf(ficgp,"cd \"%s\" \n",pathc);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      /*#endif */
     exit(0);    m=pow(2,cptcoveff);
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
   k=0;   /* 1eme*/
   for(cptcov=1;cptcov<=i1;cptcov++){    for (cpt=1; cpt<= nlstate ; cpt ++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     for (k1=1; k1<= m ; k1 ++) {
       k=k+1;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       fprintf(ficresvpl,"\n#****** ");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       for(j=1;j<=cptcoveff;j++)       fprintf(ficgp,"set xlabel \"Age\" \n\
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  set ylabel \"Probability\" \n\
       fprintf(ficresvpl,"******\n");  set ter png small\n\
        set size 0.65,0.65\n\
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       for (i=1; i<= nlstate ; i ++) {
     }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  }         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
   fclose(ficresvpl);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
   /*---------- End : free ----------------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         } 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       }  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);     }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
      /*2 eme*/
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);    for (k1=1; k1<= m ; k1 ++) { 
   free_matrix(agev,1,maxwav,1,imx);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
   fprintf(fichtm,"\n</body>");      for (i=1; i<= nlstate+1 ; i ++) {
   fclose(fichtm);        k=2*i;
   fclose(ficgp);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if(erreur >0)          else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("End of Imach with error or warning %d\n",erreur);        }   
   else   printf("End of Imach\n");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for (j=1; j<= nlstate+1 ; j ++) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /*------ End -----------*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
  end:        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 #ifdef windows        for (j=1; j<= nlstate+1 ; j ++) {
   /* chdir(pathcd);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 #endif          else fprintf(ficgp," \%%*lf (\%%*lf)");
  /*system("wgnuplot graph.plt");*/        }   
  /*system("../gp37mgw/wgnuplot graph.plt");*/        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
  /*system("cd ../gp37mgw");*/        else fprintf(ficgp,"\" t\"\" w l 0,");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      }
  strcpy(plotcmd,GNUPLOTPROGRAM);    }
  strcat(plotcmd," ");    
  strcat(plotcmd,optionfilegnuplot);    /*3eme*/
  system(plotcmd);    
     for (k1=1; k1<= m ; k1 ++) { 
 #ifdef windows      for (cpt=1; cpt<= nlstate ; cpt ++) {
   while (z[0] != 'q') {        /*       k=2+nlstate*(2*cpt-2); */
     /* chdir(path); */        k=2+(nlstate+1)*(cpt-1);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     scanf("%s",z);        fprintf(ficgp,"set ter png small\n\
     if (z[0] == 'c') system("./imach");  set size 0.65,0.65\n\
     else if (z[0] == 'e') system(optionfilehtm);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     else if (z[0] == 'g') system(plotcmd);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     else if (z[0] == 'q') exit(0);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 #endif          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.127


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>