Diff for /imach/src/imach.c between versions 1.48 and 1.129

version 1.48, 2002/06/10 13:12:49 version 1.129, 2007/08/31 13:49:27
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.129  2007/08/31 13:49:27  lievre
      Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.128  2006/06/30 13:02:05  brouard
   first survey ("cross") where individuals from different ages are    (Module): Clarifications on computing e.j
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.127  2006/04/28 18:11:50  brouard
   second wave of interviews ("longitudinal") which measure each change    (Module): Yes the sum of survivors was wrong since
   (if any) in individual health status.  Health expectancies are    imach-114 because nhstepm was no more computed in the age
   computed from the time spent in each health state according to a    loop. Now we define nhstepma in the age loop.
   model. More health states you consider, more time is necessary to reach the    (Module): In order to speed up (in case of numerous covariates) we
   Maximum Likelihood of the parameters involved in the model.  The    compute health expectancies (without variances) in a first step
   simplest model is the multinomial logistic model where pij is the    and then all the health expectancies with variances or standard
   probability to be observed in state j at the second wave    deviation (needs data from the Hessian matrices) which slows the
   conditional to be observed in state i at the first wave. Therefore    computation.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    In the future we should be able to stop the program is only health
   'age' is age and 'sex' is a covariate. If you want to have a more    expectancies and graph are needed without standard deviations.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.126  2006/04/28 17:23:28  brouard
   you to do it.  More covariates you add, slower the    (Module): Yes the sum of survivors was wrong since
   convergence.    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
   The advantage of this computer programme, compared to a simple    Version 0.98h
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.125  2006/04/04 15:20:31  lievre
   intermediate interview, the information is lost, but taken into    Errors in calculation of health expectancies. Age was not initialized.
   account using an interpolation or extrapolation.      Forecasting file added.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.124  2006/03/22 17:13:53  lievre
   conditional to the observed state i at age x. The delay 'h' can be    Parameters are printed with %lf instead of %f (more numbers after the comma).
   split into an exact number (nh*stepm) of unobserved intermediate    The log-likelihood is printed in the log file
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.123  2006/03/20 10:52:43  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Module): <title> changed, corresponds to .htm file
   and the contribution of each individual to the likelihood is simply    name. <head> headers where missing.
   hPijx.  
     * imach.c (Module): Weights can have a decimal point as for
   Also this programme outputs the covariance matrix of the parameters but also    English (a comma might work with a correct LC_NUMERIC environment,
   of the life expectancies. It also computes the prevalence limits.    otherwise the weight is truncated).
      Modification of warning when the covariates values are not 0 or
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    1.
            Institut national d'études démographiques, Paris.    Version 0.98g
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.122  2006/03/20 09:45:41  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Weights can have a decimal point as for
   software can be distributed freely for non commercial use. Latest version    English (a comma might work with a correct LC_NUMERIC environment,
   can be accessed at http://euroreves.ined.fr/imach .    otherwise the weight is truncated).
   **********************************************************************/    Modification of warning when the covariates values are not 0 or
      1.
 #include <math.h>    Version 0.98g
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.121  2006/03/16 17:45:01  lievre
 #include <unistd.h>    * imach.c (Module): Comments concerning covariates added
   
 #define MAXLINE 256    * imach.c (Module): refinements in the computation of lli if
 #define GNUPLOTPROGRAM "gnuplot"    status=-2 in order to have more reliable computation if stepm is
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    not 1 month. Version 0.98f
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.120  2006/03/16 15:10:38  lievre
 #define windows    (Module): refinements in the computation of lli if
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    status=-2 in order to have more reliable computation if stepm is
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    not 1 month. Version 0.98f
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.119  2006/03/15 17:42:26  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.118  2006/03/14 18:20:07  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): varevsij Comments added explaining the second
 #define NCOVMAX 8 /* Maximum number of covariates */    table of variances if popbased=1 .
 #define MAXN 20000    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define YEARM 12. /* Number of months per year */    (Module): Function pstamp added
 #define AGESUP 130    (Module): Version 0.98d
 #define AGEBASE 40  
 #ifdef windows    Revision 1.117  2006/03/14 17:16:22  brouard
 #define DIRSEPARATOR '\\'    (Module): varevsij Comments added explaining the second
 #else    table of variances if popbased=1 .
 #define DIRSEPARATOR '/'    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #endif    (Module): Function pstamp added
     (Module): Version 0.98d
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.116  2006/03/06 10:29:27  brouard
 int nvar;    (Module): Variance-covariance wrong links and
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    varian-covariance of ej. is needed (Saito).
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.115  2006/02/27 12:17:45  brouard
 int ndeath=1; /* Number of dead states */    (Module): One freematrix added in mlikeli! 0.98c
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 int *wav; /* Number of waves for this individuual 0 is possible */    filename with strsep.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.113  2006/02/24 14:20:24  brouard
 int mle, weightopt;    (Module): Memory leaks checks with valgrind and:
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    datafile was not closed, some imatrix were not freed and on matrix
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    allocation too.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.112  2006/01/30 09:55:26  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.111  2006/01/25 20:38:18  brouard
 FILE *fichtm; /* Html File */    (Module): Lots of cleaning and bugs added (Gompertz)
 FILE *ficreseij;    (Module): Comments can be added in data file. Missing date values
 char filerese[FILENAMELENGTH];    can be a simple dot '.'.
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.110  2006/01/25 00:51:50  brouard
 FILE  *ficresvpl;    (Module): Lots of cleaning and bugs added (Gompertz)
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.109  2006/01/24 19:37:15  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    (Module): Comments (lines starting with a #) are allowed in data.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.108  2006/01/19 18:05:42  lievre
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Gnuplot problem appeared...
     To be fixed
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.107  2006/01/19 16:20:37  brouard
 char popfile[FILENAMELENGTH];    Test existence of gnuplot in imach path
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.105  2006/01/05 20:23:19  lievre
 #define FTOL 1.0e-10    *** empty log message ***
   
 #define NRANSI    Revision 1.104  2005/09/30 16:11:43  lievre
 #define ITMAX 200    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 #define TOL 2.0e-4    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 #define CGOLD 0.3819660    contributions to the likelihood is 1 - Prob of dying from last
 #define ZEPS 1.0e-10    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    the healthy state at last known wave). Version is 0.98
   
 #define GOLD 1.618034    Revision 1.103  2005/09/30 15:54:49  lievre
 #define GLIMIT 100.0    (Module): sump fixed, loop imx fixed, and simplifications.
 #define TINY 1.0e-20  
     Revision 1.102  2004/09/15 17:31:30  brouard
 static double maxarg1,maxarg2;    Add the possibility to read data file including tab characters.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.101  2004/09/15 10:38:38  brouard
      Fix on curr_time
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.99  2004/06/05 08:57:40  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    *** empty log message ***
   
 int imx;    Revision 1.98  2004/05/16 15:05:56  brouard
 int stepm;    New version 0.97 . First attempt to estimate force of mortality
 /* Stepm, step in month: minimum step interpolation*/    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 int estepm;    This is the basic analysis of mortality and should be done before any
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 int m,nb;    from other sources like vital statistic data.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    The same imach parameter file can be used but the option for mle should be -3.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 double *weight;  
 int **s; /* Status */    The output is very simple: only an estimate of the intercept and of
 double *agedc, **covar, idx;    the slope with 95% confident intervals.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Current limitations:
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    A) Even if you enter covariates, i.e. with the
 double ftolhess; /* Tolerance for computing hessian */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.97  2004/02/20 13:25:42  lievre
 {    Version 0.96d. Population forecasting command line is (temporarily)
    char *s;                             /* pointer */    suppressed.
    int  l1, l2;                         /* length counters */  
     Revision 1.96  2003/07/15 15:38:55  brouard
    l1 = strlen( path );                 /* length of path */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    rewritten within the same printf. Workaround: many printfs.
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.95  2003/07/08 07:54:34  brouard
 #if     defined(__bsd__)                /* get current working directory */    * imach.c (Repository):
       extern char       *getwd( );    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.94  2003/06/27 13:00:02  brouard
       extern char       *getcwd( );    Just cleaning
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.93  2003/06/25 16:33:55  brouard
 #endif    (Module): On windows (cygwin) function asctime_r doesn't
          return( GLOCK_ERROR_GETCWD );    exist so I changed back to asctime which exists.
       }    (Module): Version 0.96b
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.92  2003/06/25 16:30:45  brouard
       s++;                              /* after this, the filename */    (Module): On windows (cygwin) function asctime_r doesn't
       l2 = strlen( s );                 /* length of filename */    exist so I changed back to asctime which exists.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.91  2003/06/25 15:30:29  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    * imach.c (Repository): Duplicated warning errors corrected.
       dirc[l1-l2] = 0;                  /* add zero */    (Repository): Elapsed time after each iteration is now output. It
    }    helps to forecast when convergence will be reached. Elapsed time
    l1 = strlen( dirc );                 /* length of directory */    is stamped in powell.  We created a new html file for the graphs
 #ifdef windows    concerning matrix of covariance. It has extension -cov.htm.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.90  2003/06/24 12:34:15  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): Some bugs corrected for windows. Also, when
 #endif    mle=-1 a template is output in file "or"mypar.txt with the design
    s = strrchr( name, '.' );            /* find last / */    of the covariance matrix to be input.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.89  2003/06/24 12:30:52  brouard
    l1= strlen( name);    (Module): Some bugs corrected for windows. Also, when
    l2= strlen( s)+1;    mle=-1 a template is output in file "or"mypar.txt with the design
    strncpy( finame, name, l1-l2);    of the covariance matrix to be input.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.88  2003/06/23 17:54:56  brouard
 }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
     Revision 1.87  2003/06/18 12:26:01  brouard
 /******************************************/    Version 0.96
   
 void replace(char *s, char*t)    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   int i;    routine fileappend.
   int lg=20;  
   i=0;    Revision 1.85  2003/06/17 13:12:43  brouard
   lg=strlen(t);    * imach.c (Repository): Check when date of death was earlier that
   for(i=0; i<= lg; i++) {    current date of interview. It may happen when the death was just
     (s[i] = t[i]);    prior to the death. In this case, dh was negative and likelihood
     if (t[i]== '\\') s[i]='/';    was wrong (infinity). We still send an "Error" but patch by
   }    assuming that the date of death was just one stepm after the
 }    interview.
     (Repository): Because some people have very long ID (first column)
 int nbocc(char *s, char occ)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   int i,j=0;    truncation)
   int lg=20;    (Repository): No more line truncation errors.
   i=0;  
   lg=strlen(s);    Revision 1.84  2003/06/13 21:44:43  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository): Replace "freqsummary" at a correct
   if  (s[i] == occ ) j++;    place. It differs from routine "prevalence" which may be called
   }    many times. Probs is memory consuming and must be used with
   return j;    parcimony.
 }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.83  2003/06/10 13:39:11  lievre
 {    *** empty log message ***
   int i,lg,j,p=0;  
   i=0;    Revision 1.82  2003/06/05 15:57:20  brouard
   for(j=0; j<=strlen(t)-1; j++) {    Add log in  imach.c and  fullversion number is now printed.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  */
   /*
   lg=strlen(t);     Interpolated Markov Chain
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Short summary of the programme:
   }    
      u[p]='\0';    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    for(j=0; j<= lg; j++) {    first survey ("cross") where individuals from different ages are
     if (j>=(p+1))(v[j-p-1] = t[j]);    interviewed on their health status or degree of disability (in the
   }    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /********************** nrerror ********************/    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 void nrerror(char error_text[])    Maximum Likelihood of the parameters involved in the model.  The
 {    simplest model is the multinomial logistic model where pij is the
   fprintf(stderr,"ERREUR ...\n");    probability to be observed in state j at the second wave
   fprintf(stderr,"%s\n",error_text);    conditional to be observed in state i at the first wave. Therefore
   exit(1);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
 /*********************** vector *******************/    complex model than "constant and age", you should modify the program
 double *vector(int nl, int nh)    where the markup *Covariates have to be included here again* invites
 {    you to do it.  More covariates you add, slower the
   double *v;    convergence.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    The advantage of this computer programme, compared to a simple
   return v-nl+NR_END;    multinomial logistic model, is clear when the delay between waves is not
 }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /************************ free vector ******************/    account using an interpolation or extrapolation.  
 void free_vector(double*v, int nl, int nh)  
 {    hPijx is the probability to be observed in state i at age x+h
   free((FREE_ARG)(v+nl-NR_END));    conditional to the observed state i at age x. The delay 'h' can be
 }    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 /************************ivector *******************************/    semester or year) is modelled as a multinomial logistic.  The hPx
 int *ivector(long nl,long nh)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   int *v;    hPijx.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Also this programme outputs the covariance matrix of the parameters but also
   return v-nl+NR_END;    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /******************free ivector **************************/             Institut national d'études démographiques, Paris.
 void free_ivector(int *v, long nl, long nh)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   free((FREE_ARG)(v+nl-NR_END));    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 {    
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    **********************************************************************/
   int **m;  /*
      main
   /* allocate pointers to rows */    read parameterfile
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    read datafile
   if (!m) nrerror("allocation failure 1 in matrix()");    concatwav
   m += NR_END;    freqsummary
   m -= nrl;    if (mle >= 1)
        mlikeli
      print results files
   /* allocate rows and set pointers to them */    if mle==1 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));       computes hessian
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl] += NR_END;        begin-prev-date,...
   m[nrl] -= ncl;    open gnuplot file
      open html file
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    period (stable) prevalence
       for age prevalim()
   /* return pointer to array of pointers to rows */    h Pij x
   return m;    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /****************** free_imatrix *************************/    Variance-covariance of DFLE
 void free_imatrix(m,nrl,nrh,ncl,nch)    prevalence()
       int **m;     movingaverage()
       long nch,ncl,nrh,nrl;    varevsij() 
      /* free an int matrix allocated by imatrix() */    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Variance of period (stable) prevalence
   free((FREE_ARG) (m+nrl-NR_END));   end
 }  */
   
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {   
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #include <math.h>
   double **m;  #include <stdio.h>
   #include <stdlib.h>
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <string.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <unistd.h>
   m += NR_END;  
   m -= nrl;  #include <limits.h>
   #include <sys/types.h>
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <sys/stat.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <errno.h>
   m[nrl] += NR_END;  extern int errno;
   m[nrl] -= ncl;  
   /* #include <sys/time.h> */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <time.h>
   return m;  #include "timeval.h"
 }  
   /* #include <libintl.h> */
 /*************************free matrix ************************/  /* #define _(String) gettext (String) */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define MAXLINE 256
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #define GNUPLOTPROGRAM "gnuplot"
 }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define NINTERVMAX 8
   m += NR_END;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   m -= nrl;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define MAXN 20000
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define YEARM 12. /* Number of months per year */
   m[nrl] += NR_END;  #define AGESUP 130
   m[nrl] -= ncl;  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #ifdef UNIX
   #define DIRSEPARATOR '/'
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define CHARSEPARATOR "/"
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define ODIRSEPARATOR '\\'
   m[nrl][ncl] += NR_END;  #else
   m[nrl][ncl] -= nll;  #define DIRSEPARATOR '\\'
   for (j=ncl+1; j<=nch; j++)  #define CHARSEPARATOR "\\"
     m[nrl][j]=m[nrl][j-1]+nlay;  #define ODIRSEPARATOR '/'
    #endif
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /* $Id$ */
     for (j=ncl+1; j<=nch; j++)  /* $State$ */
       m[i][j]=m[i][j-1]+nlay;  
   }  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
   return m;  char fullversion[]="$Revision$ $Date$"; 
 }  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 /*************************free ma3x ************************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int npar=NPARMAX;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int nlstate=2; /* Number of live states */
   free((FREE_ARG)(m+nrl-NR_END));  int ndeath=1; /* Number of dead states */
 }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 /***************** f1dim *************************/  
 extern int ncom;  int *wav; /* Number of waves for this individuual 0 is possible */
 extern double *pcom,*xicom;  int maxwav; /* Maxim number of waves */
 extern double (*nrfunc)(double []);  int jmin, jmax; /* min, max spacing between 2 waves */
    int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 double f1dim(double x)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   int j;  int mle, weightopt;
   double f;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   double *xt;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   xt=vector(1,ncom);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double jmean; /* Mean space between 2 waves */
   f=(*nrfunc)(xt);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   free_vector(xt,1,ncom);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   return f;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /*****************brent *************************/  double fretone; /* Only one call to likelihood */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  long ipmx; /* Number of contributions */
 {  double sw; /* Sum of weights */
   int iter;  char filerespow[FILENAMELENGTH];
   double a,b,d,etemp;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double fu,fv,fw,fx;  FILE *ficresilk;
   double ftemp;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  FILE *ficresprobmorprev;
   double e=0.0;  FILE *fichtm, *fichtmcov; /* Html File */
    FILE *ficreseij;
   a=(ax < cx ? ax : cx);  char filerese[FILENAMELENGTH];
   b=(ax > cx ? ax : cx);  FILE *ficresstdeij;
   x=w=v=bx;  char fileresstde[FILENAMELENGTH];
   fw=fv=fx=(*f)(x);  FILE *ficrescveij;
   for (iter=1;iter<=ITMAX;iter++) {  char filerescve[FILENAMELENGTH];
     xm=0.5*(a+b);  FILE  *ficresvij;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char fileresv[FILENAMELENGTH];
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  FILE  *ficresvpl;
     printf(".");fflush(stdout);  char fileresvpl[FILENAMELENGTH];
 #ifdef DEBUG  char title[MAXLINE];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 #endif  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char command[FILENAMELENGTH];
       *xmin=x;  int  outcmd=0;
       return fx;  
     }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     ftemp=fu;  
     if (fabs(e) > tol1) {  char filelog[FILENAMELENGTH]; /* Log file */
       r=(x-w)*(fx-fv);  char filerest[FILENAMELENGTH];
       q=(x-v)*(fx-fw);  char fileregp[FILENAMELENGTH];
       p=(x-v)*q-(x-w)*r;  char popfile[FILENAMELENGTH];
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       q=fabs(q);  
       etemp=e;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       e=d;  struct timezone tzp;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  extern int gettimeofday();
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       else {  long time_value;
         d=p/q;  extern long time();
         u=x+d;  char strcurr[80], strfor[80];
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  char *endptr;
       }  long lval;
     } else {  double dval;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  #define NR_END 1
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define FREE_ARG char*
     fu=(*f)(u);  #define FTOL 1.0e-10
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  #define NRANSI 
       SHFT(v,w,x,u)  #define ITMAX 200 
         SHFT(fv,fw,fx,fu)  
         } else {  #define TOL 2.0e-4 
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  #define CGOLD 0.3819660 
             v=w;  #define ZEPS 1.0e-10 
             w=u;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
             fv=fw;  
             fw=fu;  #define GOLD 1.618034 
           } else if (fu <= fv || v == x || v == w) {  #define GLIMIT 100.0 
             v=u;  #define TINY 1.0e-20 
             fv=fu;  
           }  static double maxarg1,maxarg2;
         }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   nrerror("Too many iterations in brent");    
   *xmin=x;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   return fx;  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 /****************** mnbrak ***********************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int agegomp= AGEGOMP;
             double (*func)(double))  
 {  int imx; 
   double ulim,u,r,q, dum;  int stepm=1;
   double fu;  /* Stepm, step in month: minimum step interpolation*/
    
   *fa=(*func)(*ax);  int estepm;
   *fb=(*func)(*bx);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  int m,nb;
       SHFT(dum,*fb,*fa,dum)  long *num;
       }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   *cx=(*bx)+GOLD*(*bx-*ax);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   *fc=(*func)(*cx);  double **pmmij, ***probs;
   while (*fb > *fc) {  double *ageexmed,*agecens;
     r=(*bx-*ax)*(*fb-*fc);  double dateintmean=0;
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  double *weight;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  int **s; /* Status */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double *agedc, **covar, idx;
     if ((*bx-u)*(u-*cx) > 0.0) {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       fu=(*func)(u);  double *lsurv, *lpop, *tpop;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       if (fu < *fc) {  double ftolhess; /* Tolerance for computing hessian */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /**************** split *************************/
           }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       fu=(*func)(u);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     } else {    */ 
       u=(*cx)+GOLD*(*cx-*bx);    char  *ss;                            /* pointer */
       fu=(*func)(u);    int   l1, l2;                         /* length counters */
     }  
     SHFT(*ax,*bx,*cx,u)    l1 = strlen(path );                   /* length of path */
       SHFT(*fa,*fb,*fc,fu)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
 /*************** linmin ************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 int ncom;      /* get current working directory */
 double *pcom,*xicom;      /*    extern  char* getcwd ( char *buf , int len);*/
 double (*nrfunc)(double []);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
          return( GLOCK_ERROR_GETCWD );
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      }
 {      /* got dirc from getcwd*/
   double brent(double ax, double bx, double cx,      printf(" DIRC = %s \n",dirc);
                double (*f)(double), double tol, double *xmin);    } else {                              /* strip direcotry from path */
   double f1dim(double x);      ss++;                               /* after this, the filename */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      l2 = strlen( ss );                  /* length of filename */
               double *fc, double (*func)(double));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   int j;      strcpy( name, ss );         /* save file name */
   double xx,xmin,bx,ax;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double fx,fb,fa;      dirc[l1-l2] = 0;                    /* add zero */
        printf(" DIRC2 = %s \n",dirc);
   ncom=n;    }
   pcom=vector(1,n);    /* We add a separator at the end of dirc if not exists */
   xicom=vector(1,n);    l1 = strlen( dirc );                  /* length of directory */
   nrfunc=func;    if( dirc[l1-1] != DIRSEPARATOR ){
   for (j=1;j<=n;j++) {      dirc[l1] =  DIRSEPARATOR;
     pcom[j]=p[j];      dirc[l1+1] = 0; 
     xicom[j]=xi[j];      printf(" DIRC3 = %s \n",dirc);
   }    }
   ax=0.0;    ss = strrchr( name, '.' );            /* find last / */
   xx=1.0;    if (ss >0){
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      ss++;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      strcpy(ext,ss);                     /* save extension */
 #ifdef DEBUG      l1= strlen( name);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      l2= strlen(ss)+1;
 #endif      strncpy( finame, name, l1-l2);
   for (j=1;j<=n;j++) {      finame[l1-l2]= 0;
     xi[j] *= xmin;    }
     p[j] += xi[j];  
   }    return( 0 );                          /* we're done */
   free_vector(xicom,1,n);  }
   free_vector(pcom,1,n);  
 }  
   /******************************************/
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void replace_back_to_slash(char *s, char*t)
             double (*func)(double []))  {
 {    int i;
   void linmin(double p[], double xi[], int n, double *fret,    int lg=0;
               double (*func)(double []));    i=0;
   int i,ibig,j;    lg=strlen(t);
   double del,t,*pt,*ptt,*xit;    for(i=0; i<= lg; i++) {
   double fp,fptt;      (s[i] = t[i]);
   double *xits;      if (t[i]== '\\') s[i]='/';
   pt=vector(1,n);    }
   ptt=vector(1,n);  }
   xit=vector(1,n);  
   xits=vector(1,n);  int nbocc(char *s, char occ)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    int i,j=0;
   for (*iter=1;;++(*iter)) {    int lg=20;
     fp=(*fret);    i=0;
     ibig=0;    lg=strlen(s);
     del=0.0;    for(i=0; i<= lg; i++) {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if  (s[i] == occ ) j++;
     for (i=1;i<=n;i++)    }
       printf(" %d %.12f",i, p[i]);    return j;
     printf("\n");  }
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  void cutv(char *u,char *v, char*t, char occ)
       fptt=(*fret);  {
 #ifdef DEBUG    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       printf("fret=%lf \n",*fret);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 #endif       gives u="abcedf" and v="ghi2j" */
       printf("%d",i);fflush(stdout);    int i,lg,j,p=0;
       linmin(p,xit,n,fret,func);    i=0;
       if (fabs(fptt-(*fret)) > del) {    for(j=0; j<=strlen(t)-1; j++) {
         del=fabs(fptt-(*fret));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         ibig=i;    }
       }  
 #ifdef DEBUG    lg=strlen(t);
       printf("%d %.12e",i,(*fret));    for(j=0; j<p; j++) {
       for (j=1;j<=n;j++) {      (u[j] = t[j]);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    }
         printf(" x(%d)=%.12e",j,xit[j]);       u[p]='\0';
       }  
       for(j=1;j<=n;j++)     for(j=0; j<= lg; j++) {
         printf(" p=%.12e",p[j]);      if (j>=(p+1))(v[j-p-1] = t[j]);
       printf("\n");    }
 #endif  }
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /********************** nrerror ********************/
 #ifdef DEBUG  
       int k[2],l;  void nrerror(char error_text[])
       k[0]=1;  {
       k[1]=-1;    fprintf(stderr,"ERREUR ...\n");
       printf("Max: %.12e",(*func)(p));    fprintf(stderr,"%s\n",error_text);
       for (j=1;j<=n;j++)    exit(EXIT_FAILURE);
         printf(" %.12e",p[j]);  }
       printf("\n");  /*********************** vector *******************/
       for(l=0;l<=1;l++) {  double *vector(int nl, int nh)
         for (j=1;j<=n;j++) {  {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    double *v;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         }    if (!v) nrerror("allocation failure in vector");
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return v-nl+NR_END;
       }  }
 #endif  
   /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    free((FREE_ARG)(v+nl-NR_END));
       free_vector(ptt,1,n);  }
       free_vector(pt,1,n);  
       return;  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  {
     for (j=1;j<=n;j++) {    int *v;
       ptt[j]=2.0*p[j]-pt[j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       xit[j]=p[j]-pt[j];    if (!v) nrerror("allocation failure in ivector");
       pt[j]=p[j];    return v-nl+NR_END;
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /******************free ivector **************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  void free_ivector(int *v, long nl, long nh)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    free((FREE_ARG)(v+nl-NR_END));
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /************************lvector *******************************/
         }  long *lvector(long nl,long nh)
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    long *v;
         for(j=1;j<=n;j++)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           printf(" %.12e",xit[j]);    if (!v) nrerror("allocation failure in ivector");
         printf("\n");    return v-nl+NR_END;
 #endif  }
       }  
     }  /******************free lvector **************************/
   }  void free_lvector(long *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /**** Prevalence limit ****************/  }
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /******************* imatrix *******************************/
 {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
      matrix by transitions matrix until convergence is reached */  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int i, ii,j,k;    int **m; 
   double min, max, maxmin, maxmax,sumnew=0.;    
   double **matprod2();    /* allocate pointers to rows */ 
   double **out, cov[NCOVMAX], **pmij();    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double **newm;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    m += NR_END; 
     m -= nrl; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    
     for (j=1;j<=nlstate+ndeath;j++){    
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
    cov[1]=1.;    m[nrl] += NR_END; 
      m[nrl] -= ncl; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     newm=savm;    
     /* Covariates have to be included here again */    /* return pointer to array of pointers to rows */ 
      cov[2]=agefin;    return m; 
    } 
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /****************** free_imatrix *************************/
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  void free_imatrix(m,nrl,nrh,ncl,nch)
       }        int **m;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        long nch,ncl,nrh,nrl; 
       for (k=1; k<=cptcovprod;k++)       /* free an int matrix allocated by imatrix() */ 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    free((FREE_ARG) (m+nrl-NR_END)); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  } 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
     savm=oldm;  {
     oldm=newm;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     maxmax=0.;    double **m;
     for(j=1;j<=nlstate;j++){  
       min=1.;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       max=0.;    if (!m) nrerror("allocation failure 1 in matrix()");
       for(i=1; i<=nlstate; i++) {    m += NR_END;
         sumnew=0;    m -= nrl;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         max=FMAX(max,prlim[i][j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         min=FMIN(min,prlim[i][j]);    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
     if(maxmax < ftolpl){    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       return prlim;     */
     }  }
   }  
 }  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 /*************** transition probabilities ***************/  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   double s1, s2;  
   /*double t34;*/  /******************* ma3x *******************************/
   int i,j,j1, nc, ii, jj;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
     for(i=1; i<= nlstate; i++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(j=1; j<i;j++){    double ***m;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    if (!m) nrerror("allocation failure 1 in matrix()");
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m += NR_END;
       }    m -= nrl;
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for(j=i+1; j<=nlstate+ndeath;j++){    m[nrl] += NR_END;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl] -= ncl;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }  
       ps[i][j]=s2;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
     /*ps[3][2]=1;*/    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
   for(i=1; i<= nlstate; i++){      m[nrl][j]=m[nrl][j-1]+nlay;
      s1=0;    
     for(j=1; j<i; j++)    for (i=nrl+1; i<=nrh; i++) {
       s1+=exp(ps[i][j]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for(j=i+1; j<=nlstate+ndeath; j++)      for (j=ncl+1; j<=nch; j++) 
       s1+=exp(ps[i][j]);        m[i][j]=m[i][j-1]+nlay;
     ps[i][i]=1./(s1+1.);    }
     for(j=1; j<i; j++)    return m; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for(j=i+1; j<=nlstate+ndeath; j++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       ps[i][j]= exp(ps[i][j])*ps[i][i];    */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  }
   } /* end i */  
   /*************************free ma3x ************************/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       ps[ii][ii]=1;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   
   /*************** function subdirf ***********/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  char *subdirf(char fileres[])
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
      printf("%lf ",ps[ii][jj]);    /* Caution optionfilefiname is hidden */
    }    strcpy(tmpout,optionfilefiname);
     printf("\n ");    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
     printf("\n ");printf("%lf ",cov[2]);*/    return tmpout;
 /*  }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  /*************** function subdirf2 ***********/
     return ps;  char *subdirf2(char fileres[], char *preop)
 }  {
     
 /**************** Product of 2 matrices ******************/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    strcat(tmpout,fileres);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    return tmpout;
   /* in, b, out are matrice of pointers which should have been initialized  }
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  /*************** function subdirf3 ***********/
   long i, j, k;  char *subdirf3(char fileres[], char *preop, char *preop2)
   for(i=nrl; i<= nrh; i++)  {
     for(k=ncolol; k<=ncoloh; k++)    
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /* Caution optionfilefiname is hidden */
         out[i][k] +=in[i][j]*b[j][k];    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   return out;    strcat(tmpout,preop);
 }    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
     return tmpout;
 /************* Higher Matrix Product ***************/  }
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /***************** f1dim *************************/
 {  extern int ncom; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  extern double *pcom,*xicom;
      duration (i.e. until  extern double (*nrfunc)(double []); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.   
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  double f1dim(double x) 
      (typically every 2 years instead of every month which is too big).  { 
      Model is determined by parameters x and covariates have to be    int j; 
      included manually here.    double f;
     double *xt; 
      */   
     xt=vector(1,ncom); 
   int i, j, d, h, k;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double **out, cov[NCOVMAX];    f=(*nrfunc)(xt); 
   double **newm;    free_vector(xt,1,ncom); 
     return f; 
   /* Hstepm could be zero and should return the unit matrix */  } 
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /*****************brent *************************/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);  { 
     }    int iter; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double a,b,d,etemp;
   for(h=1; h <=nhstepm; h++){    double fu,fv,fw,fx;
     for(d=1; d <=hstepm; d++){    double ftemp;
       newm=savm;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       /* Covariates have to be included here again */    double e=0.0; 
       cov[1]=1.;   
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    a=(ax < cx ? ax : cx); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    b=(ax > cx ? ax : cx); 
       for (k=1; k<=cptcovage;k++)    x=w=v=bx; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    fw=fv=fx=(*f)(x); 
       for (k=1; k<=cptcovprod;k++)    for (iter=1;iter<=ITMAX;iter++) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      printf(".");fflush(stdout);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      fprintf(ficlog,".");fflush(ficlog);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       savm=oldm;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       oldm=newm;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     }  #endif
     for(i=1; i<=nlstate+ndeath; i++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for(j=1;j<=nlstate+ndeath;j++) {        *xmin=x; 
         po[i][j][h]=newm[i][j];        return fx; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      } 
          */      ftemp=fu;
       }      if (fabs(e) > tol1) { 
   } /* end h */        r=(x-w)*(fx-fv); 
   return po;        q=(x-v)*(fx-fw); 
 }        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
 /*************** log-likelihood *************/        q=fabs(q); 
 double func( double *x)        etemp=e; 
 {        e=d; 
   int i, ii, j, k, mi, d, kk;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double **out;        else { 
   double sw; /* Sum of weights */          d=p/q; 
   double lli; /* Individual log likelihood */          u=x+d; 
   long ipmx;          if (u-a < tol2 || b-u < tol2) 
   /*extern weight */            d=SIGN(tol1,xm-x); 
   /* We are differentiating ll according to initial status */        } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      } else { 
   /*for(i=1;i<imx;i++)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     printf(" %d\n",s[4][i]);      } 
   */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   cov[1]=1.;      fu=(*f)(u); 
       if (fu <= fx) { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        if (u >= x) a=x; else b=x; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        SHFT(v,w,x,u) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          SHFT(fv,fw,fx,fu) 
     for(mi=1; mi<= wav[i]-1; mi++){          } else { 
       for (ii=1;ii<=nlstate+ndeath;ii++)            if (u < x) a=u; else b=u; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);            if (fu <= fw || w == x) { 
       for(d=0; d<dh[mi][i]; d++){              v=w; 
         newm=savm;              w=u; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              fv=fw; 
         for (kk=1; kk<=cptcovage;kk++) {              fw=fu; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            } else if (fu <= fv || v == x || v == w) { 
         }              v=u; 
                      fv=fu; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            } 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          } 
         savm=oldm;    } 
         oldm=newm;    nrerror("Too many iterations in brent"); 
            *xmin=x; 
            return fx; 
       } /* end mult */  } 
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /****************** mnbrak ***********************/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       sw += weight[i];              double (*func)(double)) 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  { 
     } /* end of wave */    double ulim,u,r,q, dum;
   } /* end of individual */    double fu; 
    
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    *fa=(*func)(*ax); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    *fb=(*func)(*bx); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    if (*fb > *fa) { 
   return -l;      SHFT(dum,*ax,*bx,dum) 
 }        SHFT(dum,*fb,*fa,dum) 
         } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
 /*********** Maximum Likelihood Estimation ***************/    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      r=(*bx-*ax)*(*fb-*fc); 
 {      q=(*bx-*cx)*(*fb-*fa); 
   int i,j, iter;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double **xi,*delti;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double fret;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   xi=matrix(1,npar,1,npar);      if ((*bx-u)*(u-*cx) > 0.0) { 
   for (i=1;i<=npar;i++)        fu=(*func)(u); 
     for (j=1;j<=npar;j++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       xi[i][j]=(i==j ? 1.0 : 0.0);        fu=(*func)(u); 
   printf("Powell\n");        if (fu < *fc) { 
   powell(p,xi,npar,ftol,&iter,&fret,func);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));            } 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
 }        fu=(*func)(u); 
       } else { 
 /**** Computes Hessian and covariance matrix ***/        u=(*cx)+GOLD*(*cx-*bx); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fu=(*func)(u); 
 {      } 
   double  **a,**y,*x,pd;      SHFT(*ax,*bx,*cx,u) 
   double **hess;        SHFT(*fa,*fb,*fc,fu) 
   int i, j,jk;        } 
   int *indx;  } 
   
   double hessii(double p[], double delta, int theta, double delti[]);  /*************** linmin ************************/
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  int ncom; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  double *pcom,*xicom;
   double (*nrfunc)(double []); 
   hess=matrix(1,npar,1,npar);   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   printf("\nCalculation of the hessian matrix. Wait...\n");  { 
   for (i=1;i<=npar;i++){    double brent(double ax, double bx, double cx, 
     printf("%d",i);fflush(stdout);                 double (*f)(double), double tol, double *xmin); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    double f1dim(double x); 
     /*printf(" %f ",p[i]);*/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     /*printf(" %lf ",hess[i][i]);*/                double *fc, double (*func)(double)); 
   }    int j; 
      double xx,xmin,bx,ax; 
   for (i=1;i<=npar;i++) {    double fx,fb,fa;
     for (j=1;j<=npar;j++)  {   
       if (j>i) {    ncom=n; 
         printf(".%d%d",i,j);fflush(stdout);    pcom=vector(1,n); 
         hess[i][j]=hessij(p,delti,i,j);    xicom=vector(1,n); 
         hess[j][i]=hess[i][j];        nrfunc=func; 
         /*printf(" %lf ",hess[i][j]);*/    for (j=1;j<=n;j++) { 
       }      pcom[j]=p[j]; 
     }      xicom[j]=xi[j]; 
   }    } 
   printf("\n");    ax=0.0; 
     xx=1.0; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   a=matrix(1,npar,1,npar);  #ifdef DEBUG
   y=matrix(1,npar,1,npar);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   x=vector(1,npar);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   indx=ivector(1,npar);  #endif
   for (i=1;i<=npar;i++)    for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      xi[j] *= xmin; 
   ludcmp(a,npar,indx,&pd);      p[j] += xi[j]; 
     } 
   for (j=1;j<=npar;j++) {    free_vector(xicom,1,n); 
     for (i=1;i<=npar;i++) x[i]=0;    free_vector(pcom,1,n); 
     x[j]=1;  } 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  char *asc_diff_time(long time_sec, char ascdiff[])
       matcov[i][j]=x[i];  {
     }    long sec_left, days, hours, minutes;
   }    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
   printf("\n#Hessian matrix#\n");    hours = (sec_left) / (60*60) ;
   for (i=1;i<=npar;i++) {    sec_left = (sec_left) %(60*60);
     for (j=1;j<=npar;j++) {    minutes = (sec_left) /60;
       printf("%.3e ",hess[i][j]);    sec_left = (sec_left) % (60);
     }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     printf("\n");    return ascdiff;
   }  }
   
   /* Recompute Inverse */  /*************** powell ************************/
   for (i=1;i<=npar;i++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];              double (*func)(double [])) 
   ludcmp(a,npar,indx,&pd);  { 
     void linmin(double p[], double xi[], int n, double *fret, 
   /*  printf("\n#Hessian matrix recomputed#\n");                double (*func)(double [])); 
     int i,ibig,j; 
   for (j=1;j<=npar;j++) {    double del,t,*pt,*ptt,*xit;
     for (i=1;i<=npar;i++) x[i]=0;    double fp,fptt;
     x[j]=1;    double *xits;
     lubksb(a,npar,indx,x);    int niterf, itmp;
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];    pt=vector(1,n); 
       printf("%.3e ",y[i][j]);    ptt=vector(1,n); 
     }    xit=vector(1,n); 
     printf("\n");    xits=vector(1,n); 
   }    *fret=(*func)(p); 
   */    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   free_matrix(a,1,npar,1,npar);      fp=(*fret); 
   free_matrix(y,1,npar,1,npar);      ibig=0; 
   free_vector(x,1,npar);      del=0.0; 
   free_ivector(indx,1,npar);      last_time=curr_time;
   free_matrix(hess,1,npar,1,npar);      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
      for (i=1;i<=n;i++) {
 /*************** hessian matrix ****************/        printf(" %d %.12f",i, p[i]);
 double hessii( double x[], double delta, int theta, double delti[])        fprintf(ficlog," %d %.12lf",i, p[i]);
 {        fprintf(ficrespow," %.12lf", p[i]);
   int i;      }
   int l=1, lmax=20;      printf("\n");
   double k1,k2;      fprintf(ficlog,"\n");
   double p2[NPARMAX+1];      fprintf(ficrespow,"\n");fflush(ficrespow);
   double res;      if(*iter <=3){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        tm = *localtime(&curr_time.tv_sec);
   double fx;        strcpy(strcurr,asctime(&tm));
   int k=0,kmax=10;  /*       asctime_r(&tm,strcurr); */
   double l1;        forecast_time=curr_time; 
         itmp = strlen(strcurr);
   fx=func(x);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   for (i=1;i<=npar;i++) p2[i]=x[i];          strcurr[itmp-1]='\0';
   for(l=0 ; l <=lmax; l++){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     l1=pow(10,l);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     delts=delt;        for(niterf=10;niterf<=30;niterf+=10){
     for(k=1 ; k <kmax; k=k+1){          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       delt = delta*(l1*k);          tmf = *localtime(&forecast_time.tv_sec);
       p2[theta]=x[theta] +delt;  /*      asctime_r(&tmf,strfor); */
       k1=func(p2)-fx;          strcpy(strfor,asctime(&tmf));
       p2[theta]=x[theta]-delt;          itmp = strlen(strfor);
       k2=func(p2)-fx;          if(strfor[itmp-1]=='\n')
       /*res= (k1-2.0*fx+k2)/delt/delt; */          strfor[itmp-1]='\0';
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 #ifdef DEBUG        }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      }
 #endif      for (i=1;i<=n;i++) { 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        fptt=(*fret); 
         k=kmax;  #ifdef DEBUG
       }        printf("fret=%lf \n",*fret);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        fprintf(ficlog,"fret=%lf \n",*fret);
         k=kmax; l=lmax*10.;  #endif
       }        printf("%d",i);fflush(stdout);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        fprintf(ficlog,"%d",i);fflush(ficlog);
         delts=delt;        linmin(p,xit,n,fret,func); 
       }        if (fabs(fptt-(*fret)) > del) { 
     }          del=fabs(fptt-(*fret)); 
   }          ibig=i; 
   delti[theta]=delts;        } 
   return res;  #ifdef DEBUG
          printf("%d %.12e",i,(*fret));
 }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 double hessij( double x[], double delti[], int thetai,int thetaj)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 {          printf(" x(%d)=%.12e",j,xit[j]);
   int i;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   int l=1, l1, lmax=20;        }
   double k1,k2,k3,k4,res,fx;        for(j=1;j<=n;j++) {
   double p2[NPARMAX+1];          printf(" p=%.12e",p[j]);
   int k;          fprintf(ficlog," p=%.12e",p[j]);
         }
   fx=func(x);        printf("\n");
   for (k=1; k<=2; k++) {        fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++) p2[i]=x[i];  #endif
     p2[thetai]=x[thetai]+delti[thetai]/k;      } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     k1=func(p2)-fx;  #ifdef DEBUG
          int k[2],l;
     p2[thetai]=x[thetai]+delti[thetai]/k;        k[0]=1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        k[1]=-1;
     k2=func(p2)-fx;        printf("Max: %.12e",(*func)(p));
          fprintf(ficlog,"Max: %.12e",(*func)(p));
     p2[thetai]=x[thetai]-delti[thetai]/k;        for (j=1;j<=n;j++) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          printf(" %.12e",p[j]);
     k3=func(p2)-fx;          fprintf(ficlog," %.12e",p[j]);
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;        printf("\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        fprintf(ficlog,"\n");
     k4=func(p2)-fx;        for(l=0;l<=1;l++) {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          for (j=1;j<=n;j++) {
 #ifdef DEBUG            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 #endif            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
   return res;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
 /************** Inverse of matrix **************/  #endif
 void ludcmp(double **a, int n, int *indx, double *d)  
 {  
   int i,imax,j,k;        free_vector(xit,1,n); 
   double big,dum,sum,temp;        free_vector(xits,1,n); 
   double *vv;        free_vector(ptt,1,n); 
          free_vector(pt,1,n); 
   vv=vector(1,n);        return; 
   *d=1.0;      } 
   for (i=1;i<=n;i++) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     big=0.0;      for (j=1;j<=n;j++) { 
     for (j=1;j<=n;j++)        ptt[j]=2.0*p[j]-pt[j]; 
       if ((temp=fabs(a[i][j])) > big) big=temp;        xit[j]=p[j]-pt[j]; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        pt[j]=p[j]; 
     vv[i]=1.0/big;      } 
   }      fptt=(*func)(ptt); 
   for (j=1;j<=n;j++) {      if (fptt < fp) { 
     for (i=1;i<j;i++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       sum=a[i][j];        if (t < 0.0) { 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          linmin(p,xit,n,fret,func); 
       a[i][j]=sum;          for (j=1;j<=n;j++) { 
     }            xi[j][ibig]=xi[j][n]; 
     big=0.0;            xi[j][n]=xit[j]; 
     for (i=j;i<=n;i++) {          }
       sum=a[i][j];  #ifdef DEBUG
       for (k=1;k<j;k++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         sum -= a[i][k]*a[k][j];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       a[i][j]=sum;          for(j=1;j<=n;j++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {            printf(" %.12e",xit[j]);
         big=dum;            fprintf(ficlog," %.12e",xit[j]);
         imax=i;          }
       }          printf("\n");
     }          fprintf(ficlog,"\n");
     if (j != imax) {  #endif
       for (k=1;k<=n;k++) {        }
         dum=a[imax][k];      } 
         a[imax][k]=a[j][k];    } 
         a[j][k]=dum;  } 
       }  
       *d = -(*d);  /**** Prevalence limit (stable or period prevalence)  ****************/
       vv[imax]=vv[j];  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     indx[j]=imax;  {
     if (a[j][j] == 0.0) a[j][j]=TINY;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     if (j != n) {       matrix by transitions matrix until convergence is reached */
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    int i, ii,j,k;
     }    double min, max, maxmin, maxmax,sumnew=0.;
   }    double **matprod2();
   free_vector(vv,1,n);  /* Doesn't work */    double **out, cov[NCOVMAX], **pmij();
 ;    double **newm;
 }    double agefin, delaymax=50 ; /* Max number of years to converge */
   
 void lubksb(double **a, int n, int *indx, double b[])    for (ii=1;ii<=nlstate+ndeath;ii++)
 {      for (j=1;j<=nlstate+ndeath;j++){
   int i,ii=0,ip,j;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double sum;      }
    
   for (i=1;i<=n;i++) {     cov[1]=1.;
     ip=indx[i];   
     sum=b[ip];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     b[ip]=b[i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     if (ii)      newm=savm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      /* Covariates have to be included here again */
     else if (sum) ii=i;       cov[2]=agefin;
     b[i]=sum;    
   }        for (k=1; k<=cptcovn;k++) {
   for (i=n;i>=1;i--) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     sum=b[i];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        }
     b[i]=sum/a[i][i];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
 }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 /************ Frequencies ********************/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 {  /* Some frequencies */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */      savm=oldm;
   double *pp;      oldm=newm;
   double pos, k2, dateintsum=0,k2cpt=0;      maxmax=0.;
   FILE *ficresp;      for(j=1;j<=nlstate;j++){
   char fileresp[FILENAMELENGTH];        min=1.;
          max=0.;
   pp=vector(1,nlstate);        for(i=1; i<=nlstate; i++) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          sumnew=0;
   strcpy(fileresp,"p");          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   strcat(fileresp,fileres);          prlim[i][j]= newm[i][j]/(1-sumnew);
   if((ficresp=fopen(fileresp,"w"))==NULL) {          max=FMAX(max,prlim[i][j]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);          min=FMIN(min,prlim[i][j]);
     exit(0);        }
   }        maxmin=max-min;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        maxmax=FMAX(maxmax,maxmin);
   j1=0;      }
        if(maxmax < ftolpl){
   j=cptcoveff;        return prlim;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
      }
   for(k1=1; k1<=j;k1++){  }
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  /*************** transition probabilities ***************/ 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for (i=-1; i<=nlstate+ndeath; i++)    {
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double s1, s2;
           for(m=agemin; m <= agemax+3; m++)    /*double t34;*/
             freq[i][jk][m]=0;    int i,j,j1, nc, ii, jj;
        
       dateintsum=0;      for(i=1; i<= nlstate; i++){
       k2cpt=0;        for(j=1; j<i;j++){
       for (i=1; i<=imx; i++) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         bool=1;            /*s2 += param[i][j][nc]*cov[nc];*/
         if  (cptcovn>0) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           for (z1=1; z1<=cptcoveff; z1++)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          }
               bool=0;          ps[i][j]=s2;
         }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         if (bool==1) {        }
           for(m=firstpass; m<=lastpass; m++){        for(j=i+1; j<=nlstate+ndeath;j++){
             k2=anint[m][i]+(mint[m][i]/12.);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          }
               if (m<lastpass) {          ps[i][j]=s2;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      }
               }      /*ps[3][2]=1;*/
                    
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      for(i=1; i<= nlstate; i++){
                 dateintsum=dateintsum+k2;        s1=0;
                 k2cpt++;        for(j=1; j<i; j++)
               }          s1+=exp(ps[i][j]);
             }        for(j=i+1; j<=nlstate+ndeath; j++)
           }          s1+=exp(ps[i][j]);
         }        ps[i][i]=1./(s1+1.);
       }        for(j=1; j<i; j++)
                  ps[i][j]= exp(ps[i][j])*ps[i][i];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
       if  (cptcovn>0) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         fprintf(ficresp, "\n#********** Variable ");      } /* end i */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      
         fprintf(ficresp, "**********\n#");      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       }        for(jj=1; jj<= nlstate+ndeath; jj++){
       for(i=1; i<=nlstate;i++)          ps[ii][jj]=0;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ps[ii][ii]=1;
       fprintf(ficresp, "\n");        }
            }
       for(i=(int)agemin; i <= (int)agemax+3; i++){      
         if(i==(int)agemax+3)  
           printf("Total");  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         else  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
           printf("Age %d", i);  /*         printf("ddd %lf ",ps[ii][jj]); */
         for(jk=1; jk <=nlstate ; jk++){  /*       } */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*       printf("\n "); */
             pp[jk] += freq[jk][m][i];  /*        } */
         }  /*        printf("\n ");printf("%lf ",cov[2]); */
         for(jk=1; jk <=nlstate ; jk++){         /*
           for(m=-1, pos=0; m <=0 ; m++)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
             pos += freq[jk][m][i];        goto end;*/
           if(pp[jk]>=1.e-10)      return ps;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  }
           else  
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /**************** Product of 2 matrices ******************/
         }  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             pp[jk] += freq[jk][m][i];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         }    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
         for(jk=1,pos=0; jk <=nlstate ; jk++)       a pointer to pointers identical to out */
           pos += pp[jk];    long i, j, k;
         for(jk=1; jk <=nlstate ; jk++){    for(i=nrl; i<= nrh; i++)
           if(pos>=1.e-5)      for(k=ncolol; k<=ncoloh; k++)
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           else          out[i][k] +=in[i][j]*b[j][k];
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           if( i <= (int) agemax){    return out;
             if(pos>=1.e-5){  }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  /************* Higher Matrix Product ***************/
             }  
             else  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  {
           }    /* Computes the transition matrix starting at age 'age' over 
         }       'nhstepm*hstepm*stepm' months (i.e. until
               age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         for(jk=-1; jk <=nlstate+ndeath; jk++)       nhstepm*hstepm matrices. 
           for(m=-1; m <=nlstate+ndeath; m++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);       (typically every 2 years instead of every month which is too big 
         if(i <= (int) agemax)       for the memory).
           fprintf(ficresp,"\n");       Model is determined by parameters x and covariates have to be 
         printf("\n");       included manually here. 
       }  
     }       */
   }  
   dateintmean=dateintsum/k2cpt;    int i, j, d, h, k;
      double **out, cov[NCOVMAX];
   fclose(ficresp);    double **newm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
   /* End of Freq */      for (j=1;j<=nlstate+ndeath;j++){
 }        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
 /************ Prevalence ********************/      }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 {  /* Some frequencies */    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        newm=savm;
   double ***freq; /* Frequencies */        /* Covariates have to be included here again */
   double *pp;        cov[1]=1.;
   double pos, k2;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   pp=vector(1,nlstate);        for (k=1; k<=cptcovage;k++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   j1=0;  
    
   j=cptcoveff;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   for(k1=1; k1<=j;k1++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i1=1; i1<=ncodemax[k1];i1++){        savm=oldm;
       j1++;        oldm=newm;
            }
       for (i=-1; i<=nlstate+ndeath; i++)        for(i=1; i<=nlstate+ndeath; i++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for(j=1;j<=nlstate+ndeath;j++) {
           for(m=agemin; m <= agemax+3; m++)          po[i][j][h]=newm[i][j];
             freq[i][jk][m]=0;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
              }
       for (i=1; i<=imx; i++) {      /*printf("h=%d ",h);*/
         bool=1;    } /* end h */
         if  (cptcovn>0) {  /*     printf("\n H=%d \n",h); */
           for (z1=1; z1<=cptcoveff; z1++)    return po;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  }
               bool=0;  
         }  
         if (bool==1) {  /*************** log-likelihood *************/
           for(m=firstpass; m<=lastpass; m++){  double func( double *x)
             k2=anint[m][i]+(mint[m][i]/12.);  {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    int i, ii, j, k, mi, d, kk;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double **out;
               if (m<lastpass) {    double sw; /* Sum of weights */
                 if (calagedate>0)    double lli; /* Individual log likelihood */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    int s1, s2;
                 else    double bbh, survp;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    long ipmx;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    /*extern weight */
               }    /* We are differentiating ll according to initial status */
             }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           }    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
       }    */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    cov[1]=1.;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
             pp[jk] += freq[jk][m][i];  
         }    if(mle==1){
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pos += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];            }
         }          for(d=0; d<dh[mi][i]; d++){
                    newm=savm;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1; jk <=nlstate ; jk++){                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if( i <= (int) agemax){            }
             if(pos>=1.e-5){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               probs[i][jk][j1]= pp[jk]/pos;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             }            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
                
       }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     }          /* But now since version 0.9 we anticipate for bias at large stepm.
   }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   free_vector(pp,1,nlstate);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
 }  /* End of Freq */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 /************* Waves Concatenation ***************/           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           */
 {          s1=s[mw[mi][i]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          s2=s[mw[mi+1][i]][i];
      Death is a valid wave (if date is known).          bbh=(double)bh[mi][i]/(double)stepm; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          /* bias bh is positive if real duration
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           * is higher than the multiple of stepm and negative otherwise.
      and mw[mi+1][i]. dh depends on stepm.           */
      */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
   int i, mi, m;            /* i.e. if s2 is a death state and if the date of death is known 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;               then the contribution to the likelihood is the probability to 
      double sum=0., jmean=0.;*/               die between last step unit time and current  step unit time, 
                which is also equal to probability to die before dh 
   int j, k=0,jk, ju, jl;               minus probability to die before dh-stepm . 
   double sum=0.;               In version up to 0.92 likelihood was computed
   jmin=1e+5;          as if date of death was unknown. Death was treated as any other
   jmax=-1;          health state: the date of the interview describes the actual state
   jmean=0.;          and not the date of a change in health state. The former idea was
   for(i=1; i<=imx; i++){          to consider that at each interview the state was recorded
     mi=0;          (healthy, disable or death) and IMaCh was corrected; but when we
     m=firstpass;          introduced the exact date of death then we should have modified
     while(s[m][i] <= nlstate){          the contribution of an exact death to the likelihood. This new
       if(s[m][i]>=1)          contribution is smaller and very dependent of the step unit
         mw[++mi][i]=m;          stepm. It is no more the probability to die between last interview
       if(m >=lastpass)          and month of death but the probability to survive from last
         break;          interview up to one month before death multiplied by the
       else          probability to die within a month. Thanks to Chris
         m++;          Jackson for correcting this bug.  Former versions increased
     }/* end while */          mortality artificially. The bad side is that we add another loop
     if (s[m][i] > nlstate){          which slows down the processing. The difference can be up to 10%
       mi++;     /* Death is another wave */          lower mortality.
       /* if(mi==0)  never been interviewed correctly before death */            */
          /* Only death is a correct wave */            lli=log(out[s1][s2] - savm[s1][s2]);
       mw[mi][i]=m;  
     }  
           } else if  (s2==-2) {
     wav[i]=mi;            for (j=1,survp=0. ; j<=nlstate; j++) 
     if(mi==0)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            /*survp += out[s1][j]; */
   }            lli= log(survp);
           }
   for(i=1; i<=imx; i++){          
     for(mi=1; mi<wav[i];mi++){          else if  (s2==-4) { 
       if (stepm <=0)            for (j=3,survp=0. ; j<=nlstate; j++)  
         dh[mi][i]=1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       else{            lli= log(survp); 
         if (s[mw[mi+1][i]][i] > nlstate) {          } 
           if (agedc[i] < 2*AGESUP) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          else if  (s2==-5) { 
           if(j==0) j=1;  /* Survives at least one month after exam */            for (j=1,survp=0. ; j<=2; j++)  
           k=k+1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           if (j >= jmax) jmax=j;            lli= log(survp); 
           if (j <= jmin) jmin=j;          } 
           sum=sum+j;          
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          else{
           }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         else{          } 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           k=k+1;          /*if(lli ==000.0)*/
           if (j >= jmax) jmax=j;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           else if (j <= jmin)jmin=j;          ipmx +=1;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          sw += weight[i];
           sum=sum+j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
         jk= j/stepm;      } /* end of individual */
         jl= j -jk*stepm;    }  else if(mle==2){
         ju= j -(jk+1)*stepm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if(jl <= -ju)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           dh[mi][i]=jk;        for(mi=1; mi<= wav[i]-1; mi++){
         else          for (ii=1;ii<=nlstate+ndeath;ii++)
           dh[mi][i]=jk+1;            for (j=1;j<=nlstate+ndeath;j++){
         if(dh[mi][i]==0)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=1; /* At least one step */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<=dh[mi][i]; d++){
   }            newm=savm;
   jmean=sum/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            for (kk=1; kk<=cptcovage;kk++) {
  }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*********** Tricode ****************************/            }
 void tricode(int *Tvar, int **nbcode, int imx)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int Ndum[20],ij=1, k, j, i;            savm=oldm;
   int cptcode=0;            oldm=newm;
   cptcoveff=0;          } /* end mult */
          
   for (k=0; k<19; k++) Ndum[k]=0;          s1=s[mw[mi][i]][i];
   for (k=1; k<=7; k++) ncodemax[k]=0;          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (i=1; i<=imx; i++) {          ipmx +=1;
       ij=(int)(covar[Tvar[j]][i]);          sw += weight[i];
       Ndum[ij]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        } /* end of wave */
       if (ij > cptcode) cptcode=ij;      } /* end of individual */
     }    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=0; i<=cptcode; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(Ndum[i]!=0) ncodemax[j]++;        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
     ij=1;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=ncodemax[j]; i++) {            }
       for (k=0; k<=19; k++) {          for(d=0; d<dh[mi][i]; d++){
         if (Ndum[k] != 0) {            newm=savm;
           nbcode[Tvar[j]][ij]=k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                      for (kk=1; kk<=cptcovage;kk++) {
           ij++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         if (ij > ncodemax[j]) break;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }              oldm=newm;
           } /* end mult */
  for (k=0; k<19; k++) Ndum[k]=0;        
           s1=s[mw[mi][i]][i];
  for (i=1; i<=ncovmodel-2; i++) {          s2=s[mw[mi+1][i]][i];
       ij=Tvar[i];          bbh=(double)bh[mi][i]/(double)stepm; 
       Ndum[ij]++;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }          ipmx +=1;
           sw += weight[i];
  ij=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  for (i=1; i<=10; i++) {        } /* end of wave */
    if((Ndum[i]!=0) && (i<=ncovcol)){      } /* end of individual */
      Tvaraff[ij]=i;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      ij++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  }        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
     cptcoveff=ij-1;            for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Health Expectancies ****************/            }
           for(d=0; d<dh[mi][i]; d++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   /* Health expectancies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            }
   double age, agelim, hf;          
   double ***p3mat,***varhe;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **dnewm,**doldm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *xp;            savm=oldm;
   double **gp, **gm;            oldm=newm;
   double ***gradg, ***trgradg;          } /* end mult */
   int theta;        
           s1=s[mw[mi][i]][i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          s2=s[mw[mi+1][i]][i];
   xp=vector(1,npar);          if( s2 > nlstate){ 
   dnewm=matrix(1,nlstate*2,1,npar);            lli=log(out[s1][s2] - savm[s1][s2]);
   doldm=matrix(1,nlstate*2,1,nlstate*2);          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fprintf(ficreseij,"# Health expectancies\n");          }
   fprintf(ficreseij,"# Age");          ipmx +=1;
   for(i=1; i<=nlstate;i++)          sw += weight[i];
     for(j=1; j<=nlstate;j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fprintf(ficreseij,"\n");        } /* end of wave */
       } /* end of individual */
   if(estepm < stepm){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     printf ("Problem %d lower than %d\n",estepm, stepm);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   else  hstepm=estepm;          for(mi=1; mi<= wav[i]-1; mi++){
   /* We compute the life expectancy from trapezoids spaced every estepm months          for (ii=1;ii<=nlstate+ndeath;ii++)
    * This is mainly to measure the difference between two models: for example            for (j=1;j<=nlstate+ndeath;j++){
    * if stepm=24 months pijx are given only every 2 years and by summing them              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * we are calculating an estimate of the Life Expectancy assuming a linear              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * progression inbetween and thus overestimating or underestimating according            }
    * to the curvature of the survival function. If, for the same date, we          for(d=0; d<dh[mi][i]; d++){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            newm=savm;
    * to compare the new estimate of Life expectancy with the same linear            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * hypothesis. A more precise result, taking into account a more precise            for (kk=1; kk<=cptcovage;kk++) {
    * curvature will be obtained if estepm is as small as stepm. */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   /* For example we decided to compute the life expectancy with the smallest unit */          
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      nhstepm is the number of hstepm from age to agelim                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      nstepm is the number of stepm from age to agelin.            savm=oldm;
      Look at hpijx to understand the reason of that which relies in memory size            oldm=newm;
      and note for a fixed period like estepm months */          } /* end mult */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        
      survival function given by stepm (the optimization length). Unfortunately it          s1=s[mw[mi][i]][i];
      means that if the survival funtion is printed only each two years of age and if          s2=s[mw[mi+1][i]][i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      results. So we changed our mind and took the option of the best precision.          ipmx +=1;
   */          sw += weight[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   agelim=AGESUP;        } /* end of wave */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } /* end of individual */
     /* nhstepm age range expressed in number of stepm */    } /* End of if */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     /* if (stepm >= YEARM) hstepm=1;*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    return -l;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  
     gp=matrix(0,nhstepm,1,nlstate*2);  /*************** log-likelihood *************/
     gm=matrix(0,nhstepm,1,nlstate*2);  double funcone( double *x)
   {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* Same as likeli but slower because of a lot of printf and if */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    int i, ii, j, k, mi, d, kk;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
     double lli; /* Individual log likelihood */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double llt;
     int s1, s2;
     /* Computing Variances of health expectancies */    double bbh, survp;
     /*extern weight */
      for(theta=1; theta <=npar; theta++){    /* We are differentiating ll according to initial status */
       for(i=1; i<=npar; i++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      */
      cov[1]=1.;
       cptj=0;  
       for(j=1; j<= nlstate; j++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
         for(i=1; i<=nlstate; i++){  
           cptj=cptj+1;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for(mi=1; mi<= wav[i]-1; mi++){
           }        for (ii=1;ii<=nlstate+ndeath;ii++)
         }          for (j=1;j<=nlstate+ndeath;j++){
       }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
                }
       for(i=1; i<=npar; i++)        for(d=0; d<dh[mi][i]; d++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          newm=savm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                for (kk=1; kk<=cptcovage;kk++) {
       cptj=0;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<= nlstate; j++){          }
         for(i=1;i<=nlstate;i++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           cptj=cptj+1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          savm=oldm;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          oldm=newm;
           }        } /* end mult */
         }        
       }        s1=s[mw[mi][i]][i];
       for(j=1; j<= nlstate*2; j++)        s2=s[mw[mi+1][i]][i];
         for(h=0; h<=nhstepm-1; h++){        bbh=(double)bh[mi][i]/(double)stepm; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        /* bias is positive if real duration
         }         * is higher than the multiple of stepm and negative otherwise.
      }         */
            if( s2 > nlstate && (mle <5) ){  /* Jackson */
 /* End theta */          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      for(h=0; h<=nhstepm-1; h++)          lli= log(survp);
       for(j=1; j<=nlstate*2;j++)        }else if (mle==1){
         for(theta=1; theta <=npar; theta++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           trgradg[h][j][theta]=gradg[h][theta][j];        } else if(mle==2){
                lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
      for(i=1;i<=nlstate*2;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(j=1;j<=nlstate*2;j++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         varhe[i][j][(int)age] =0.;          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
      printf("%d|",(int)age);fflush(stdout);          lli=log(out[s1][s2]); /* Original formula */
      for(h=0;h<=nhstepm-1;h++){        } /* End of if */
       for(k=0;k<=nhstepm-1;k++){        ipmx +=1;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        sw += weight[i];
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(i=1;i<=nlstate*2;i++)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for(j=1;j<=nlstate*2;j++)        if(globpr){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       }   %11.6f %11.6f %11.6f ", \
     }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     /* Computing expectancies */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     for(i=1; i<=nlstate;i++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(j=1; j<=nlstate;j++)            llt +=ll[k]*gipmx/gsw;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          }
                    fprintf(ficresilk," %10.6f\n", -llt);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        }
       } /* end of wave */
         }    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     fprintf(ficreseij,"%3.0f",age );    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     cptj=0;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(i=1; i<=nlstate;i++)    if(globpr==0){ /* First time we count the contributions and weights */
       for(j=1; j<=nlstate;j++){      gipmx=ipmx;
         cptj++;      gsw=sw;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    }
       }    return -l;
     fprintf(ficreseij,"\n");  }
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);  
     free_matrix(gp,0,nhstepm,1,nlstate*2);  /*************** function likelione ***********/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* This routine should help understanding what is done with 
   }       the selection of individuals/waves and
   printf("\n");       to check the exact contribution to the likelihood.
        Plotting could be done.
   free_vector(xp,1,npar);     */
   free_matrix(dnewm,1,nlstate*2,1,npar);    int k;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    if(*globpri !=0){ /* Just counts and sums, no printings */
 }      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
 /************ Variance ******************/      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        printf("Problem with resultfile: %s\n", fileresilk);
 {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   /* Variance of health expectancies */      }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double **newm;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double **dnewm,**doldm;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   int i, j, nhstepm, hstepm, h, nstepm ;      for(k=1; k<=nlstate; k++) 
   int k, cptcode;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double *xp;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double **gp, **gm;    }
   double ***gradg, ***trgradg;  
   double ***p3mat;    *fretone=(*funcone)(p);
   double age,agelim, hf;    if(*globpri !=0){
   int theta;      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      fflush(fichtm); 
   fprintf(ficresvij,"# Age");    } 
   for(i=1; i<=nlstate;i++)    return;
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  
   /*********** Maximum Likelihood Estimation ***************/
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   doldm=matrix(1,nlstate,1,nlstate);  {
      int i,j, iter;
   if(estepm < stepm){    double **xi;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double fret;
   }    double fretone; /* Only one call to likelihood */
   else  hstepm=estepm;      /*  char filerespow[FILENAMELENGTH];*/
   /* For example we decided to compute the life expectancy with the smallest unit */    xi=matrix(1,npar,1,npar);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1;i<=npar;i++)
      nhstepm is the number of hstepm from age to agelim      for (j=1;j<=npar;j++)
      nstepm is the number of stepm from age to agelin.        xi[i][j]=(i==j ? 1.0 : 0.0);
      Look at hpijx to understand the reason of that which relies in memory size    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      and note for a fixed period like k years */    strcpy(filerespow,"pow"); 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    strcat(filerespow,fileres);
      survival function given by stepm (the optimization length). Unfortunately it    if((ficrespow=fopen(filerespow,"w"))==NULL) {
      means that if the survival funtion is printed only each two years of age and if      printf("Problem with resultfile: %s\n", filerespow);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      results. So we changed our mind and took the option of the best precision.    }
   */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1;i<=nlstate;i++)
   agelim = AGESUP;      for(j=1;j<=nlstate+ndeath;j++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficrespow,"\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    powell(p,xi,npar,ftol,&iter,&fret,func);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);    free_matrix(xi,1,npar,1,npar);
     gm=matrix(0,nhstepm,1,nlstate);    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for(theta=1; theta <=npar; theta++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(i=1; i<=npar; i++){ /* Computes gradient */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       if (popbased==1) {  {
         for(i=1; i<=nlstate;i++)    double  **a,**y,*x,pd;
           prlim[i][i]=probs[(int)age][i][ij];    double **hess;
       }    int i, j,jk;
      int *indx;
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    void lubksb(double **a, int npar, int *indx, double b[]) ;
         }    void ludcmp(double **a, int npar, int *indx, double *d) ;
       }    double gompertz(double p[]);
        hess=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("\nCalculation of the hessian matrix. Wait...\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++){
        printf("%d",i);fflush(stdout);
       if (popbased==1) {      fprintf(ficlog,"%d",i);fflush(ficlog);
         for(i=1; i<=nlstate;i++)     
           prlim[i][i]=probs[(int)age][i][ij];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       }      
       /*  printf(" %f ",p[i]);
       for(j=1; j<= nlstate; j++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         for(h=0; h<=nhstepm; h++){    }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=1;i<=npar;i++) {
         }      for (j=1;j<=npar;j++)  {
       }        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
       for(j=1; j<= nlstate; j++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(h=0; h<=nhstepm; h++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          
         }          hess[j][i]=hess[i][j];    
     } /* End theta */          /*printf(" %lf ",hess[i][j]);*/
         }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      }
     }
     for(h=0; h<=nhstepm; h++)    printf("\n");
       for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\n");
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    
     for(i=1;i<=nlstate;i++)    a=matrix(1,npar,1,npar);
       for(j=1;j<=nlstate;j++)    y=matrix(1,npar,1,npar);
         vareij[i][j][(int)age] =0.;    x=vector(1,npar);
     indx=ivector(1,npar);
     for(h=0;h<=nhstepm;h++){    for (i=1;i<=npar;i++)
       for(k=0;k<=nhstepm;k++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    ludcmp(a,npar,indx,&pd);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    for (j=1;j<=npar;j++) {
           for(j=1;j<=nlstate;j++)      for (i=1;i<=npar;i++) x[i]=0;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      x[j]=1;
       }      lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     fprintf(ficresvij,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    printf("\n#Hessian matrix#\n");
       }    fprintf(ficlog,"\n#Hessian matrix#\n");
     fprintf(ficresvij,"\n");    for (i=1;i<=npar;i++) { 
     free_matrix(gp,0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++) { 
     free_matrix(gm,0,nhstepm,1,nlstate);        printf("%.3e ",hess[i][j]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        fprintf(ficlog,"%.3e ",hess[i][j]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("\n");
   } /* End age */      fprintf(ficlog,"\n");
      }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    /* Recompute Inverse */
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 }    ludcmp(a,npar,indx,&pd);
   
 /************ Variance of prevlim ******************/    /*  printf("\n#Hessian matrix recomputed#\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    for (j=1;j<=npar;j++) {
   /* Variance of prevalence limit */      for (i=1;i<=npar;i++) x[i]=0;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      x[j]=1;
   double **newm;      lubksb(a,npar,indx,x);
   double **dnewm,**doldm;      for (i=1;i<=npar;i++){ 
   int i, j, nhstepm, hstepm;        y[i][j]=x[i];
   int k, cptcode;        printf("%.3e ",y[i][j]);
   double *xp;        fprintf(ficlog,"%.3e ",y[i][j]);
   double *gp, *gm;      }
   double **gradg, **trgradg;      printf("\n");
   double age,agelim;      fprintf(ficlog,"\n");
   int theta;    }
        */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");  
   fprintf(ficresvpl,"# Age");    free_matrix(a,1,npar,1,npar);
   for(i=1; i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
       fprintf(ficresvpl," %1d-%1d",i,i);    free_vector(x,1,npar);
   fprintf(ficresvpl,"\n");    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  }
    
   hstepm=1*YEARM; /* Every year of age */  /*************** hessian matrix ****************/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   agelim = AGESUP;  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int l=1, lmax=20;
     if (stepm >= YEARM) hstepm=1;    double k1,k2;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double p2[NPARMAX+1];
     gradg=matrix(1,npar,1,nlstate);    double res;
     gp=vector(1,nlstate);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     gm=vector(1,nlstate);    double fx;
     int k=0,kmax=10;
     for(theta=1; theta <=npar; theta++){    double l1;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fx=func(x);
       }    for (i=1;i<=npar;i++) p2[i]=x[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(l=0 ; l <=lmax; l++){
       for(i=1;i<=nlstate;i++)      l1=pow(10,l);
         gp[i] = prlim[i][i];      delts=delt;
          for(k=1 ; k <kmax; k=k+1){
       for(i=1; i<=npar; i++) /* Computes gradient */        delt = delta*(l1*k);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        p2[theta]=x[theta] +delt;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        k1=func(p2)-fx;
       for(i=1;i<=nlstate;i++)        p2[theta]=x[theta]-delt;
         gm[i] = prlim[i][i];        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
       for(i=1;i<=nlstate;i++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        
     } /* End theta */  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     trgradg =matrix(1,nlstate,1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
     for(j=1; j<=nlstate;j++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(theta=1; theta <=npar; theta++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         trgradg[j][theta]=gradg[theta][j];          k=kmax;
         }
     for(i=1;i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       varpl[i][(int)age] =0.;          k=kmax; l=lmax*10.;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     for(i=1;i<=nlstate;i++)          delts=delt;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        }
       }
     fprintf(ficresvpl,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    delti[theta]=delts;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    return res; 
     fprintf(ficresvpl,"\n");    
     free_vector(gp,1,nlstate);  }
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     free_matrix(trgradg,1,nlstate,1,npar);  {
   } /* End age */    int i;
     int l=1, l1, lmax=20;
   free_vector(xp,1,npar);    double k1,k2,k3,k4,res,fx;
   free_matrix(doldm,1,nlstate,1,npar);    double p2[NPARMAX+1];
   free_matrix(dnewm,1,nlstate,1,nlstate);    int k;
   
 }    fx=func(x);
     for (k=1; k<=2; k++) {
 /************ Variance of one-step probabilities  ******************/      for (i=1;i<=npar;i++) p2[i]=x[i];
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      p2[thetai]=x[thetai]+delti[thetai]/k;
 {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int i, j,  i1, k1, l1;      k1=func(p2)-fx;
   int k2, l2, j1,  z1;    
   int k=0,l, cptcode;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int first=1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      k2=func(p2)-fx;
   double **dnewm,**doldm;    
   double *xp;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double *gp, *gm;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double **gradg, **trgradg;      k3=func(p2)-fx;
   double **mu;    
   double age,agelim, cov[NCOVMAX];      p2[thetai]=x[thetai]-delti[thetai]/k;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int theta;      k4=func(p2)-fx;
   char fileresprob[FILENAMELENGTH];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   char fileresprobcov[FILENAMELENGTH];  #ifdef DEBUG
   char fileresprobcor[FILENAMELENGTH];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double ***varpij;  #endif
     }
   strcpy(fileresprob,"prob");    return res;
   strcat(fileresprob,fileres);  }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);  /************** Inverse of matrix **************/
   }  void ludcmp(double **a, int n, int *indx, double *d) 
   strcpy(fileresprobcov,"probcov");  { 
   strcat(fileresprobcov,fileres);    int i,imax,j,k; 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    double big,dum,sum,temp; 
     printf("Problem with resultfile: %s\n", fileresprobcov);    double *vv; 
   }   
   strcpy(fileresprobcor,"probcor");    vv=vector(1,n); 
   strcat(fileresprobcor,fileres);    *d=1.0; 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    for (i=1;i<=n;i++) { 
     printf("Problem with resultfile: %s\n", fileresprobcor);      big=0.0; 
   }      for (j=1;j<=n;j++) 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      vv[i]=1.0/big; 
      } 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    for (j=1;j<=n;j++) { 
   fprintf(ficresprob,"# Age");      for (i=1;i<j;i++) { 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        sum=a[i][j]; 
   fprintf(ficresprobcov,"# Age");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        a[i][j]=sum; 
   fprintf(ficresprobcov,"# Age");      } 
       big=0.0; 
       for (i=j;i<=n;i++) { 
   for(i=1; i<=nlstate;i++)        sum=a[i][j]; 
     for(j=1; j<=(nlstate+ndeath);j++){        for (k=1;k<j;k++) 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          sum -= a[i][k]*a[k][j]; 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        a[i][j]=sum; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     }            big=dum; 
   fprintf(ficresprob,"\n");          imax=i; 
   fprintf(ficresprobcov,"\n");        } 
   fprintf(ficresprobcor,"\n");      } 
   xp=vector(1,npar);      if (j != imax) { 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        for (k=1;k<=n;k++) { 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          dum=a[imax][k]; 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          a[imax][k]=a[j][k]; 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          a[j][k]=dum; 
   first=1;        } 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        *d = -(*d); 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        vv[imax]=vv[j]; 
     exit(0);      } 
   }      indx[j]=imax; 
   else{      if (a[j][j] == 0.0) a[j][j]=TINY; 
     fprintf(ficgp,"\n# Routine varprob");      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     printf("Problem with html file: %s\n", optionfilehtm);      } 
     exit(0);    } 
   }    free_vector(vv,1,n);  /* Doesn't work */
   else{  ;
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");  } 
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   }    int i,ii=0,ip,j; 
   cov[1]=1;    double sum; 
   j=cptcoveff;   
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (i=1;i<=n;i++) { 
   j1=0;      ip=indx[i]; 
   for(k1=1; k1<=1;k1++){      sum=b[ip]; 
     for(i1=1; i1<=ncodemax[k1];i1++){      b[ip]=b[i]; 
     j1++;      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     if  (cptcovn>0) {      else if (sum) ii=i; 
       fprintf(ficresprob, "\n#********** Variable ");      b[i]=sum; 
       fprintf(ficresprobcov, "\n#********** Variable ");    } 
       fprintf(ficgp, "\n#********** Variable ");    for (i=n;i>=1;i--) { 
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");      sum=b[i]; 
       fprintf(ficresprobcor, "\n#********** Variable ");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      b[i]=sum/a[i][i]; 
       fprintf(ficresprob, "**********\n#");    } 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  } 
       fprintf(ficresprobcov, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  void pstamp(FILE *fichier)
       fprintf(ficgp, "**********\n#");  {
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       fprintf(ficgp, "**********\n#");  }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(fichtm, "**********\n#");  /************ Frequencies ********************/
     }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      {  /* Some frequencies */
       for (age=bage; age<=fage; age ++){    
         cov[2]=age;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for (k=1; k<=cptcovn;k++) {    int first;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    double ***freq; /* Frequencies */
         }    double *pp, **prop;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for (k=1; k<=cptcovprod;k++)    char fileresp[FILENAMELENGTH];
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
            pp=vector(1,nlstate);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    prop=matrix(1,nlstate,iagemin,iagemax+3);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    strcpy(fileresp,"p");
         gp=vector(1,(nlstate)*(nlstate+ndeath));    strcat(fileresp,fileres);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    if((ficresp=fopen(fileresp,"w"))==NULL) {
          printf("Problem with prevalence resultfile: %s\n", fileresp);
         for(theta=1; theta <=npar; theta++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           for(i=1; i<=npar; i++)      exit(0);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
              freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    j1=0;
              
           k=0;    j=cptcoveff;
           for(i=1; i<= (nlstate); i++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    first=1;
               gp[k]=pmmij[i][j];  
             }    for(k1=1; k1<=j;k1++){
           }      for(i1=1; i1<=ncodemax[k1];i1++){
                  j1++;
           for(i=1; i<=npar; i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          scanf("%d", i);*/
            for (i=-5; i<=nlstate+ndeath; i++)  
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           k=0;            for(m=iagemin; m <= iagemax+3; m++)
           for(i=1; i<=(nlstate); i++){              freq[i][jk][m]=0;
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;      for (i=1; i<=nlstate; i++)  
               gm[k]=pmmij[i][j];        for(m=iagemin; m <= iagemax+3; m++)
             }          prop[i][m]=0;
           }        
              dateintsum=0;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        k2cpt=0;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          for (i=1; i<=imx; i++) {
         }          bool=1;
           if  (cptcovn>0) {
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            for (z1=1; z1<=cptcoveff; z1++) 
           for(theta=1; theta <=npar; theta++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             trgradg[j][theta]=gradg[theta][j];                bool=0;
                  }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          if (bool==1){
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            for(m=firstpass; m<=lastpass; m++){
                      k2=anint[m][i]+(mint[m][i]/12.);
         pmij(pmmij,cov,ncovmodel,x,nlstate);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                        if(agev[m][i]==0) agev[m][i]=iagemax+1;
         k=0;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for(i=1; i<=(nlstate); i++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           for(j=1; j<=(nlstate+ndeath);j++){                if (m<lastpass) {
             k=k+1;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             mu[k][(int) age]=pmmij[i][j];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           }                }
         }                
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                  dateintsum=dateintsum+k2;
             varpij[i][j][(int)age] = doldm[i][j];                  k2cpt++;
                 }
         /*printf("\n%d ",(int)age);                /*}*/
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          }
      }*/        }
          
         fprintf(ficresprob,"\n%d ",(int)age);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         fprintf(ficresprobcov,"\n%d ",(int)age);        pstamp(ficresp);
         fprintf(ficresprobcor,"\n%d ",(int)age);        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          fprintf(ficresp, "**********\n#");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        for(i=1; i<=nlstate;i++) 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         }        fprintf(ficresp, "\n");
         i=0;        
         for (k=1; k<=(nlstate);k++){        for(i=iagemin; i <= iagemax+3; i++){
           for (l=1; l<=(nlstate+ndeath);l++){          if(i==iagemax+3){
             i=i++;            fprintf(ficlog,"Total");
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          }else{
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            if(first==1){
             for (j=1; j<=i;j++){              first=0;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              printf("See log file for details...\n");
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            }
             }            fprintf(ficlog,"Age %d", i);
           }          }
         }/* end of loop for state */          for(jk=1; jk <=nlstate ; jk++){
       } /* end of loop for age */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              pp[jk] += freq[jk][m][i]; 
       for (k1=1; k1<=(nlstate);k1++){          }
         for (l1=1; l1<=(nlstate+ndeath);l1++){          for(jk=1; jk <=nlstate ; jk++){
           if(l1==k1) continue;            for(m=-1, pos=0; m <=0 ; m++)
           i=(k1-1)*(nlstate+ndeath)+l1;              pos += freq[jk][m][i];
           for (k2=1; k2<=(nlstate);k2++){            if(pp[jk]>=1.e-10){
             for (l2=1; l2<=(nlstate+ndeath);l2++){              if(first==1){
               if(l2==k2) continue;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               j=(k2-1)*(nlstate+ndeath)+l2;              }
               if(j<=i) continue;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               for (age=bage; age<=fage; age ++){            }else{
                 if ((int)age %5==0){              if(first==1)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            }
                   mu1=mu[i][(int) age]/stepm*YEARM ;          }
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   /* Computing eigen value of matrix of covariance */          for(jk=1; jk <=nlstate ; jk++){
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              pp[jk] += freq[jk][m][i];
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          }       
                   /* Eigen vectors */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            pos += pp[jk];
                   v21=sqrt(1.-v11*v11);            posprop += prop[jk][i];
                   v12=-v21;          }
                   v22=v11;          for(jk=1; jk <=nlstate ; jk++){
                   /*printf(fignu*/            if(pos>=1.e-5){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              if(first==1)
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   if(first==1){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                     first=0;            }else{
                     fprintf(ficgp,"\nset parametric;set nolabel");              if(first==1)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);            }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);            if( i <= iagemax){
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);              if(pos>=1.e-5){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              else
                   }else{                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                     first=0;            }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          for(jk=-1; jk <=nlstate+ndeath; jk++)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            for(m=-1; m <=nlstate+ndeath; m++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              if(freq[jk][m][i] !=0 ) {
                   }/* if first */              if(first==1)
                 } /* age mod 5 */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
               } /* end loop age */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);              }
               first=1;          if(i <= iagemax)
             } /*l12 */            fprintf(ficresp,"\n");
           } /* k12 */          if(first==1)
         } /*l1 */            printf("Others in log...\n");
       }/* k1 */          fprintf(ficlog,"\n");
     } /* loop covariates */        }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    dateintmean=dateintsum/k2cpt; 
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);   
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fclose(ficresp);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   }    free_vector(pp,1,nlstate);
   free_vector(xp,1,npar);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   fclose(ficresprob);    /* End of Freq */
   fclose(ficresprobcov);  }
   fclose(ficresprobcor);  
   fclose(ficgp);  /************ Prevalence ********************/
   fclose(fichtm);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 }  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
 /******************* Printing html file ***********/       We still use firstpass and lastpass as another selection.
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    */
                   int lastpass, int stepm, int weightopt, char model[],\   
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
                   int popforecast, int estepm ,\    double ***freq; /* Frequencies */
                   double jprev1, double mprev1,double anprev1, \    double *pp, **prop;
                   double jprev2, double mprev2,double anprev2){    double pos,posprop; 
   int jj1, k1, i1, cpt;    double  y2; /* in fractional years */
   /*char optionfilehtm[FILENAMELENGTH];*/    int iagemin, iagemax;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    prop=matrix(1,nlstate,iagemin,iagemax+3); 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    j1=0;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    
  - Life expectancies by age and initial health status (estepm=%2d months):    j=cptcoveff;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    
     for(k1=1; k1<=j;k1++){
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n      for(i1=1; i1<=ncodemax[k1];i1++){
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        j1++;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        for (i=1; i<=nlstate; i++)  
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          for(m=iagemin; m <= iagemax+3; m++)
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            prop[i][m]=0.0;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n       
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
  if(popforecast==1) fprintf(fichtm,"\n          if  (cptcovn>0) {
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            for (z1=1; z1<=cptcoveff; z1++) 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         <br>",fileres,fileres,fileres,fileres);                bool=0;
  else          } 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          if (bool==1) { 
 fprintf(fichtm," <li>Graphs</li><p>");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  m=cptcoveff;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
  jj1=0;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
  for(k1=1; k1<=m;k1++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
    for(i1=1; i1<=ncodemax[k1];i1++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
      jj1++;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
      if (cptcovn > 0) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                } 
        for (cpt=1; cpt<=cptcoveff;cpt++)              }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            } /* end selection of waves */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          }
      }        }
      /* Pij */        for(i=iagemin; i <= iagemax+3; i++){  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
      /* Quasi-incidences */            posprop += prop[jk][i]; 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          } 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
        /* Stable prevalence in each health state */          for(jk=1; jk <=nlstate ; jk++){     
        for(cpt=1; cpt<nlstate;cpt++){            if( i <=  iagemax){ 
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>              if(posprop>=1.e-5){ 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                probs[i][jk][j1]= prop[jk][i]/posprop;
        }              } else
     for(cpt=1; cpt<=nlstate;cpt++) {                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            } 
 interval) in state (%d): v%s%d%d.png <br>          }/* end jk */ 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }/* end i */ 
      }      } /* end i1 */
      for(cpt=1; cpt<=nlstate;cpt++) {    } /* end k1 */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      }    /*free_vector(pp,1,nlstate);*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 health expectancies in states (1) and (2): e%s%d.png<br>  }  /* End of prevalence */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
    }  /************* Waves Concatenation ***************/
  }  
 fclose(fichtm);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 }  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 /******************* Gnuplot file **************/       Death is a valid wave (if date is known).
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;       and mw[mi+1][i]. dh depends on stepm.
   int ng;       */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    int i, mi, m;
   }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
 #ifdef windows    int first;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    int j, k=0,jk, ju, jl;
 #endif    double sum=0.;
 m=pow(2,cptcoveff);    first=0;
      jmin=1e+5;
  /* 1eme*/    jmax=-1;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    jmean=0.;
    for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=imx; i++){
       mi=0;
 #ifdef windows      m=firstpass;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      while(s[m][i] <= nlstate){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 #endif          mw[++mi][i]=m;
 #ifdef unix        if(m >=lastpass)
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          break;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        else
 #endif          m++;
       }/* end while */
 for (i=1; i<= nlstate ; i ++) {      if (s[m][i] > nlstate){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        mi++;     /* Death is another wave */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        /* if(mi==0)  never been interviewed correctly before death */
 }           /* Only death is a correct wave */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        mw[mi][i]=m;
     for (i=1; i<= nlstate ; i ++) {      }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      wav[i]=mi;
 }      if(mi==0){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        nbwarn++;
      for (i=1; i<= nlstate ; i ++) {        if(first==0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          first=1;
 }          }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        if(first==1){
 #ifdef unix          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        }
 #endif      } /* end mi==0 */
    }    } /* End individuals */
   }  
   /*2 eme*/    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
   for (k1=1; k1<= m ; k1 ++) {        if (stepm <=0)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          dh[mi][i]=1;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        else{
              if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     for (i=1; i<= nlstate+1 ; i ++) {            if (agedc[i] < 2*AGESUP) {
       k=2*i;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              if(j==0) j=1;  /* Survives at least one month after exam */
       for (j=1; j<= nlstate+1 ; j ++) {              else if(j<0){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                nberr++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }                  j=1; /* Temporary Dangerous patch */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for (j=1; j<= nlstate+1 ; j ++) {              }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              k=k+1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");              if (j >= jmax){
 }                  jmax=j;
       fprintf(ficgp,"\" t\"\" w l 0,");                ijmax=i;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              }
       for (j=1; j<= nlstate+1 ; j ++) {              if (j <= jmin){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                jmin=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                ijmin=i;
 }                }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              sum=sum+j;
       else fprintf(ficgp,"\" t\"\" w l 0,");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   }            }
            }
   /*3eme*/          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   for (k1=1; k1<= m ; k1 ++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);            k=k+1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            if (j >= jmax) {
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);              jmax=j;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              ijmax=i;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            else if (j <= jmin){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              jmin=j;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              ijmin=i;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       for (i=1; i< nlstate ; i ++) {            if(j<0){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }            }
   }            sum=sum+j;
            }
   /* CV preval stat */          jk= j/stepm;
     for (k1=1; k1<= m ; k1 ++) {          jl= j -jk*stepm;
     for (cpt=1; cpt<nlstate ; cpt ++) {          ju= j -(jk+1)*stepm;
       k=3;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            if(jl==0){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              dh[mi][i]=jk;
               bh[mi][i]=0;
       for (i=1; i< nlstate ; i ++)            }else{ /* We want a negative bias in order to only have interpolation ie
         fprintf(ficgp,"+$%d",k+i+1);                    * at the price of an extra matrix product in likelihood */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              dh[mi][i]=jk+1;
                    bh[mi][i]=ju;
       l=3+(nlstate+ndeath)*cpt;            }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          }else{
       for (i=1; i< nlstate ; i ++) {            if(jl <= -ju){
         l=3+(nlstate+ndeath)*cpt;              dh[mi][i]=jk;
         fprintf(ficgp,"+$%d",l+i+1);              bh[mi][i]=jl;       /* bias is positive if real duration
       }                                   * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                                     */
     }            }
   }              else{
                dh[mi][i]=jk+1;
   /* proba elementaires */              bh[mi][i]=ju;
    for(i=1,jk=1; i <=nlstate; i++){            }
     for(k=1; k <=(nlstate+ndeath); k++){            if(dh[mi][i]==0){
       if (k != i) {              dh[mi][i]=1; /* At least one step */
         for(j=1; j <=ncovmodel; j++){              bh[mi][i]=ju; /* At least one step */
                      /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            }
           jk++;          } /* end if mle */
           fprintf(ficgp,"\n");        }
         }      } /* end wave */
       }    }
     }    jmean=sum/k;
    }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/   }
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  /*********** Tricode ****************************/
        if (ng==2)  void tricode(int *Tvar, int **nbcode, int imx)
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  {
        else    
          fprintf(ficgp,"\nset title \"Probability\"\n");    int Ndum[20],ij=1, k, j, i, maxncov=19;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    int cptcode=0;
        i=1;    cptcoveff=0; 
        for(k2=1; k2<=nlstate; k2++) {   
          k3=i;    for (k=0; k<maxncov; k++) Ndum[k]=0;
          for(k=1; k<=(nlstate+ndeath); k++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
            if (k != k2){  
              if(ng==2)    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
              else                                 modality*/ 
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
              ij=1;        Ndum[ij]++; /*store the modality */
              for(j=3; j <=ncovmodel; j++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                                         Tvar[j]. If V=sex and male is 0 and 
                  ij++;                                         female is 1, then  cptcode=1.*/
                }      }
                else  
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for (i=0; i<=cptcode; i++) {
              }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
              fprintf(ficgp,")/(1");      }
                
              for(k1=1; k1 <=nlstate; k1++){        ij=1; 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      for (i=1; i<=ncodemax[j]; i++) {
                ij=1;        for (k=0; k<= maxncov; k++) {
                for(j=3; j <=ncovmodel; j++){          if (Ndum[k] != 0) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            nbcode[Tvar[j]][ij]=k; 
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                    ij++;            
                  }            ij++;
                  else          }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          if (ij > ncodemax[j]) break; 
                }        }  
                fprintf(ficgp,")");      } 
              }    }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   for (k=0; k< maxncov; k++) Ndum[k]=0;
              i=i+ncovmodel;  
            }   for (i=1; i<=ncovmodel-2; i++) { 
          }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
        }     ij=Tvar[i];
      }     Ndum[ij]++;
    }   }
    fclose(ficgp);  
 }  /* end gnuplot */   ij=1;
    for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
 /*************** Moving average **************/       Tvaraff[ij]=i; /*For printing */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       ij++;
      }
   int i, cpt, cptcod;   }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)   
       for (i=1; i<=nlstate;i++)   cptcoveff=ij-1; /*Number of simple covariates*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  }
           mobaverage[(int)agedeb][i][cptcod]=0.;  
      /*********** Health Expectancies ****************/
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){  {
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    /* Health expectancies, no variances */
           }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    int nhstepma, nstepma; /* Decreasing with age */
         }    double age, agelim, hf;
       }    double ***p3mat;
     }    double eip;
      
 }    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
 /************** Forecasting ******************/    for(i=1; i<=nlstate;i++){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      for(j=1; j<=nlstate;j++){
          fprintf(ficreseij," e%1d%1d ",i,j);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      }
   int *popage;      fprintf(ficreseij," e%1d. ",i);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }
   double *popeffectif,*popcount;    fprintf(ficreseij,"\n");
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];    
     if(estepm < stepm){
  agelim=AGESUP;      printf ("Problem %d lower than %d\n",estepm, stepm);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    }
     else  hstepm=estepm;   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
       * if stepm=24 months pijx are given only every 2 years and by summing them
   strcpy(fileresf,"f");     * we are calculating an estimate of the Life Expectancy assuming a linear 
   strcat(fileresf,fileres);     * progression in between and thus overestimating or underestimating according
   if((ficresf=fopen(fileresf,"w"))==NULL) {     * to the curvature of the survival function. If, for the same date, we 
     printf("Problem with forecast resultfile: %s\n", fileresf);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
   printf("Computing forecasting: result on file '%s' \n", fileresf);     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     /* For example we decided to compute the life expectancy with the smallest unit */
   if (mobilav==1) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       nhstepm is the number of hstepm from age to agelim 
     movingaverage(agedeb, fage, ageminpar, mobaverage);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (stepm<=12) stepsize=1;       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
   agelim=AGESUP;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   hstepm=1;    */
   hstepm=hstepm/stepm;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;    agelim=AGESUP;
   yp2=modf((yp1*12),&yp);    /* If stepm=6 months */
   mprojmean=yp;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   yp1=modf((yp2*30.5),&yp);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   jprojmean=yp;      
   if(jprojmean==0) jprojmean=1;  /* nhstepm age range expressed in number of stepm */
   if(mprojmean==0) jprojmean=1;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    /* if (stepm >= YEARM) hstepm=1;*/
      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   for(cptcov=1;cptcov<=i2;cptcov++){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    for (age=bage; age<=fage; age ++){ 
       fprintf(ficresf,"\n#******");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       for(j=1;j<=cptcoveff;j++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* if (stepm >= YEARM) hstepm=1;*/
       }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");      /* If stepm=6 months */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
               in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
            
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(ficresf,"\n");      
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      printf("%d|",(int)age);fflush(stdout);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           nhstepm = nhstepm/hstepm;      
                /* Computing expectancies */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;        for(j=1; j<=nlstate;j++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                    eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           for (h=0; h<=nhstepm; h++){            
             if (h==(int) (calagedate+YEARM*cpt)) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }          }
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;      fprintf(ficreseij,"%3.0f",age );
               for(i=1; i<=nlstate;i++) {                    for(i=1; i<=nlstate;i++){
                 if (mobilav==1)        eip=0;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(j=1; j<=nlstate;j++){
                 else {          eip +=eij[i][j][(int)age];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
                 }        }
                        fprintf(ficreseij,"%9.4f", eip );
               }      }
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficreseij,"\n");
                 fprintf(ficresf," %.3f", kk1);      
                            }
               }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    printf("\n");
           }    fprintf(ficlog,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }  }
       }  
     }  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
          {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
   fclose(ficresf);    */
 }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 /************** Forecasting ******************/    int nhstepma, nstepma; /* Decreasing with age */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    double age, agelim, hf;
      double ***p3matp, ***p3matm, ***varhe;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double **dnewm,**doldm;
   int *popage;    double *xp, *xm;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double **gp, **gm;
   double *popeffectif,*popcount;    double ***gradg, ***trgradg;
   double ***p3mat,***tabpop,***tabpopprev;    int theta;
   char filerespop[FILENAMELENGTH];  
     double eip, vip;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   agelim=AGESUP;    xp=vector(1,npar);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    xm=vector(1,npar);
      dnewm=matrix(1,nlstate*nlstate,1,npar);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      
      pstamp(ficresstdeij);
   strcpy(filerespop,"pop");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   strcat(filerespop,fileres);    fprintf(ficresstdeij,"# Age");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    for(i=1; i<=nlstate;i++){
     printf("Problem with forecast resultfile: %s\n", filerespop);      for(j=1; j<=nlstate;j++)
   }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   printf("Computing forecasting: result on file '%s' \n", filerespop);      fprintf(ficresstdeij," e%1d. ",i);
     }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficresstdeij,"\n");
   
   if (mobilav==1) {    pstamp(ficrescveij);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    fprintf(ficrescveij,"# Age");
   }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;        cptj= (j-1)*nlstate+i;
   if (stepm<=12) stepsize=1;        for(i2=1; i2<=nlstate;i2++)
            for(j2=1; j2<=nlstate;j2++){
   agelim=AGESUP;            cptj2= (j2-1)*nlstate+i2;
              if(cptj2 <= cptj)
   hstepm=1;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   hstepm=hstepm/stepm;          }
        }
   if (popforecast==1) {    fprintf(ficrescveij,"\n");
     if((ficpop=fopen(popfile,"r"))==NULL) {    
       printf("Problem with population file : %s\n",popfile);exit(0);    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
     popage=ivector(0,AGESUP);    }
     popeffectif=vector(0,AGESUP);    else  hstepm=estepm;   
     popcount=vector(0,AGESUP);    /* We compute the life expectancy from trapezoids spaced every estepm months
         * This is mainly to measure the difference between two models: for example
     i=1;       * if stepm=24 months pijx are given only every 2 years and by summing them
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
         * progression in between and thus overestimating or underestimating according
     imx=i;     * to the curvature of the survival function. If, for the same date, we 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   for(cptcov=1;cptcov<=i2;cptcov++){     * curvature will be obtained if estepm is as small as stepm. */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficrespop,"\n#******");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for(j=1;j<=cptcoveff;j++) {       nhstepm is the number of hstepm from age to agelim 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       nstepm is the number of stepm from age to agelin. 
       }       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficrespop,"******\n");       and note for a fixed period like estepm months */
       fprintf(ficrespop,"# Age");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       survival function given by stepm (the optimization length). Unfortunately it
       if (popforecast==1)  fprintf(ficrespop," [Population]");       means that if the survival funtion is printed only each two years of age and if
             you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for (cpt=0; cpt<=0;cpt++) {       results. So we changed our mind and took the option of the best precision.
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      */
            hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* If stepm=6 months */
           nhstepm = nhstepm/hstepm;    /* nhstepm age range expressed in number of stepm */
              agelim=AGESUP;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
           oldm=oldms;savm=savms;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* if (stepm >= YEARM) hstepm=1;*/
            nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               kk1=0.;kk2=0;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
               for(i=1; i<=nlstate;i++) {                  gm=matrix(0,nhstepm,1,nlstate*nlstate);
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    for (age=bage; age<=fage; age ++){ 
                 else {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                 }      /* if (stepm >= YEARM) hstepm=1;*/
               }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      /* If stepm=6 months */
                   /*fprintf(ficrespop," %.3f", kk1);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
               }      
             }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             for(i=1; i<=nlstate;i++){  
               kk1=0.;      /* Computing  Variances of health expectancies */
                 for(j=1; j<=nlstate;j++){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];         decrease memory allocation */
                 }      for(theta=1; theta <=npar; theta++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        for(i=1; i<=npar; i++){ 
             }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
           }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }        for(j=1; j<= nlstate; j++){
       }          for(i=1; i<=nlstate; i++){
              for(h=0; h<=nhstepm-1; h++){
   /******/              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       
           nhstepm = nhstepm/hstepm;        for(ij=1; ij<= nlstate*nlstate; ij++)
                    for(h=0; h<=nhstepm-1; h++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }/* End theta */
           for (h=0; h<=nhstepm; h++){      
             if (h==(int) (calagedate+YEARM*cpt)) {      
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(h=0; h<=nhstepm-1; h++)
             }        for(j=1; j<=nlstate*nlstate;j++)
             for(j=1; j<=nlstate+ndeath;j++) {          for(theta=1; theta <=npar; theta++)
               kk1=0.;kk2=0;            trgradg[h][j][theta]=gradg[h][theta][j];
               for(i=1; i<=nlstate;i++) {                    
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }       for(ij=1;ij<=nlstate*nlstate;ij++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        for(ji=1;ji<=nlstate*nlstate;ji++)
             }          varhe[ij][ji][(int)age] =0.;
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       printf("%d|",(int)age);fflush(stdout);
         }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       }       for(h=0;h<=nhstepm-1;h++){
    }        for(k=0;k<=nhstepm-1;k++){
   }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
   if (popforecast==1) {              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     free_ivector(popage,0,AGESUP);        }
     free_vector(popeffectif,0,AGESUP);      }
     free_vector(popcount,0,AGESUP);  
   }      /* Computing expectancies */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
   fclose(ficrespop);        for(j=1; j<=nlstate;j++)
 }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 /***********************************************/            
 /**************** Main Program *****************/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 /***********************************************/  
           }
 int main(int argc, char *argv[])  
 {      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        eip=0.;
   double agedeb, agefin,hf;        vip=0.;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
   double fret;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   double **xi,tmp,delta;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   double dum; /* Dummy variable */        }
   double ***p3mat;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   int *indx;      }
   char line[MAXLINE], linepar[MAXLINE];      fprintf(ficresstdeij,"\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;      fprintf(ficrescveij,"%3.0f",age );
   int sdeb, sfin; /* Status at beginning and end */      for(i=1; i<=nlstate;i++)
   int c,  h , cpt,l;        for(j=1; j<=nlstate;j++){
   int ju,jl, mi;          cptj= (j-1)*nlstate+i;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for(i2=1; i2<=nlstate;i2++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            for(j2=1; j2<=nlstate;j2++){
   int mobilav=0,popforecast=0;              cptj2= (j2-1)*nlstate+i2;
   int hstepm, nhstepm;              if(cptj2 <= cptj)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;      fprintf(ficrescveij,"\n");
   double **prlim;     
   double *severity;    }
   double ***param; /* Matrix of parameters */    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   double  *p;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   double **matcov; /* Matrix of covariance */    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   double ***delti3; /* Scale */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   double *delti; /* Scale */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***eij, ***vareij;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **varpl; /* Variances of prevalence limits by age */    printf("\n");
   double *epj, vepp;    fprintf(ficlog,"\n");
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    free_vector(xm,1,npar);
      free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   char z[1]="c", occ;  
 #include <sys/time.h>  /************ Variance ******************/
 #include <time.h>  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  {
      /* Variance of health expectancies */
   /* long total_usecs;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   struct timeval start_time, end_time;    /* double **newm;*/
      double **dnewm,**doldm;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double **dnewmp,**doldmp;
   getcwd(pathcd, size);    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
   printf("\n%s",version);    double *xp;
   if(argc <=1){    double **gp, **gm;  /* for var eij */
     printf("\nEnter the parameter file name: ");    double ***gradg, ***trgradg; /*for var eij */
     scanf("%s",pathtot);    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
   else{    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     strcpy(pathtot,argv[1]);    double ***p3mat;
   }    double age,agelim, hf;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    double ***mobaverage;
   /*cygwin_split_path(pathtot,path,optionfile);    int theta;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    char digit[4];
   /* cutv(path,optionfile,pathtot,'\\');*/    char digitp[25];
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    char fileresprobmorprev[FILENAMELENGTH];
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);    if(popbased==1){
   replace(pathc,path);      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
 /*-------- arguments in the command line --------*/      else strcpy(digitp,"-populbased-nomobil-");
     }
   strcpy(fileres,"r");    else 
   strcat(fileres, optionfilefiname);      strcpy(digitp,"-stablbased-");
   strcat(fileres,".txt");    /* Other files have txt extension */  
     if (mobilav!=0) {
   /*---------arguments file --------*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with optionfile %s\n",optionfile);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     goto end;      }
   }    }
   
   strcpy(filereso,"o");    strcpy(fileresprobmorprev,"prmorprev"); 
   strcat(filereso,fileres);    sprintf(digit,"%-d",ij);
   if((ficparo=fopen(filereso,"w"))==NULL) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   /* Reads comments: lines beginning with '#' */    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   while((c=getc(ficpar))=='#' && c!= EOF){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fputs(line,ficparo);   
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   ungetc(c,ficpar);    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(ficresprobmorprev," p.%-d SE",j);
 while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     fgets(line, MAXLINE, ficpar);    }  
     puts(line);    fprintf(ficresprobmorprev,"\n");
     fputs(line,ficparo);    fprintf(ficgp,"\n# Routine varevsij");
   }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      /*   } */
   covar=matrix(0,NCOVMAX,1,n);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   cptcovn=0;    pstamp(ficresvij);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
   ncovmodel=2+cptcovn;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   /* Read guess parameters */    fprintf(ficresvij,"# Age");
   /* Reads comments: lines beginning with '#' */    for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j<=nlstate;j++)
     ungetc(c,ficpar);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresvij,"\n");
     puts(line);  
     fputs(line,ficparo);    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   ungetc(c,ficpar);    doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    gpp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"%1d%1d",i1,j1);    gmp=vector(nlstate+1,nlstate+ndeath);
       printf("%1d%1d",i,j);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar," %lf",&param[i][j][k]);    if(estepm < stepm){
         printf(" %lf",param[i][j][k]);      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficparo," %lf",param[i][j][k]);    }
       }    else  hstepm=estepm;   
       fscanf(ficpar,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
       printf("\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficparo,"\n");       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
         Look at function hpijx to understand why (it is linked to memory size questions) */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   p=param[1][1];       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* Reads comments: lines beginning with '#' */       results. So we changed our mind and took the option of the best precision.
   while((c=getc(ficpar))=='#' && c!= EOF){    */
     ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     fgets(line, MAXLINE, ficpar);    agelim = AGESUP;
     puts(line);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fputs(line,ficparo);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   ungetc(c,ficpar);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      gp=matrix(0,nhstepm,1,nlstate);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      gm=matrix(0,nhstepm,1,nlstate);
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(theta=1; theta <=npar; theta++){
       printf("%1d%1d",i,j);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       fprintf(ficparo,"%1d%1d",i1,j1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar,"%le",&delti3[i][j][k]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         printf(" %le",delti3[i][j][k]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }        if (popbased==1) {
       fscanf(ficpar,"\n");          if(mobilav ==0){
       printf("\n");            for(i=1; i<=nlstate;i++)
       fprintf(ficparo,"\n");              prlim[i][i]=probs[(int)age][i][ij];
     }          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   delti=delti3[1][1];              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);        for(j=1; j<= nlstate; j++){
     fgets(line, MAXLINE, ficpar);          for(h=0; h<=nhstepm; h++){
     puts(line);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     fputs(line,ficparo);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
   ungetc(c,ficpar);        }
          /* This for computing probability of death (h=1 means
   matcov=matrix(1,npar,1,npar);           computed over hstepm matrices product = hstepm*stepm months) 
   for(i=1; i <=npar; i++){           as a weighted average of prlim.
     fscanf(ficpar,"%s",&str);        */
     printf("%s",str);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(ficparo,"%s",str);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     for(j=1; j <=i; j++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       fscanf(ficpar," %le",&matcov[i][j]);        }    
       printf(" %.5le",matcov[i][j]);        /* end probability of death */
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     fscanf(ficpar,"\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficparo,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }   
   for(i=1; i <=npar; i++)        if (popbased==1) {
     for(j=i+1;j<=npar;j++)          if(mobilav ==0){
       matcov[i][j]=matcov[j][i];            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
   printf("\n");          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
     /*-------- Rewriting paramater file ----------*/          }
      strcpy(rfileres,"r");    /* "Rparameterfile */        }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          for(h=0; h<=nhstepm; h++){
     if((ficres =fopen(rfileres,"w"))==NULL) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
     fprintf(ficres,"#%s\n",version);        }
            /* This for computing probability of death (h=1 means
     /*-------- data file ----------*/           computed over hstepm matrices product = hstepm*stepm months) 
     if((fic=fopen(datafile,"r"))==NULL)    {           as a weighted average of prlim.
       printf("Problem with datafile: %s\n", datafile);goto end;        */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
     n= lastobs;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     severity = vector(1,maxwav);        }    
     outcome=imatrix(1,maxwav+1,1,n);        /* end probability of death */
     num=ivector(1,n);  
     moisnais=vector(1,n);        for(j=1; j<= nlstate; j++) /* vareij */
     annais=vector(1,n);          for(h=0; h<=nhstepm; h++){
     moisdc=vector(1,n);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     andc=vector(1,n);          }
     agedc=vector(1,n);  
     cod=ivector(1,n);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     weight=vector(1,n);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        }
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);      } /* End theta */
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);          trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
     i=1;          for(theta=1; theta <=npar; theta++)
     while (fgets(line, MAXLINE, fic) != NULL)    {            trgradg[h][j][theta]=gradg[h][theta][j];
       if ((i >= firstobs) && (i <=lastobs)) {  
              for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for (j=maxwav;j>=1;j--){        for(theta=1; theta <=npar; theta++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          trgradgp[j][theta]=gradgp[theta][j];
           strcpy(line,stra);    
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         }      for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          vareij[i][j][(int)age] =0.;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
       for(h=0;h<=nhstepm;h++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(k=0;k<=nhstepm;k++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1;i<=nlstate;i++)
         for (j=ncovcol;j>=1;j--){            for(j=1;j<=nlstate;j++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }        }
         num[i]=atol(stra);      }
            
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      /* pptj */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         i=i+1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     }          varppt[j][i]=doldmp[j][i];
     /* printf("ii=%d", ij);      /* end ppptj */
        scanf("%d",i);*/      /*  x centered again */
   imx=i-1; /* Number of individuals */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   /* for (i=1; i<=imx; i++){   
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      if (popbased==1) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        if(mobilav ==0){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for(i=1; i<=nlstate;i++)
     }*/            prlim[i][i]=probs[(int)age][i][ij];
    /*  for (i=1; i<=imx; i++){        }else{ /* mobilav */ 
      if (s[4][i]==9)  s[4][i]=-1;          for(i=1; i<=nlstate;i++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            prlim[i][i]=mobaverage[(int)age][i][ij];
          }
        }
   /* Calculation of the number of parameter from char model*/               
   Tvar=ivector(1,15);      /* This for computing probability of death (h=1 means
   Tprod=ivector(1,15);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   Tvaraff=ivector(1,15);         as a weighted average of prlim.
   Tvard=imatrix(1,15,1,2);      */
   Tage=ivector(1,15);            for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   if (strlen(model) >1){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     j=0, j1=0, k1=1, k2=1;      }    
     j=nbocc(model,'+');      /* end probability of death */
     j1=nbocc(model,'*');  
     cptcovn=j+1;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     cptcovprod=j1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
            fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     strcpy(modelsav,model);        for(i=1; i<=nlstate;i++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       printf("Error. Non available option model=%s ",model);        }
       goto end;      } 
     }      fprintf(ficresprobmorprev,"\n");
      
     for(i=(j+1); i>=1;i--){      fprintf(ficresvij,"%.0f ",age );
       cutv(stra,strb,modelsav,'+');      for(i=1; i<=nlstate;i++)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        for(j=1; j<=nlstate;j++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       /*scanf("%d",i);*/        }
       if (strchr(strb,'*')) {      fprintf(ficresvij,"\n");
         cutv(strd,strc,strb,'*');      free_matrix(gp,0,nhstepm,1,nlstate);
         if (strcmp(strc,"age")==0) {      free_matrix(gm,0,nhstepm,1,nlstate);
           cptcovprod--;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           cutv(strb,stre,strd,'V');      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           Tvar[i]=atoi(stre);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cptcovage++;    } /* End age */
             Tage[cptcovage]=i;    free_vector(gpp,nlstate+1,nlstate+ndeath);
             /*printf("stre=%s ", stre);*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
         }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         else if (strcmp(strd,"age")==0) {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           cptcovprod--;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           cutv(strb,stre,strc,'V');    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           Tvar[i]=atoi(stre);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           cptcovage++;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           Tage[cptcovage]=i;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         else {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           cutv(strb,stre,strc,'V');    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           Tvar[i]=ncovcol+k1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           cutv(strb,strc,strd,'V');    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           Tprod[k1]=i;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           Tvard[k1][1]=atoi(strc);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           Tvard[k1][2]=atoi(stre);  */
           Tvar[cptcovn+k2]=Tvard[k1][1];  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    free_vector(xp,1,npar);
           k1++;    free_matrix(doldm,1,nlstate,1,nlstate);
           k2=k2+2;    free_matrix(dnewm,1,nlstate,1,npar);
         }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       else {    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        /*  scanf("%d",i);*/    fclose(ficresprobmorprev);
       cutv(strd,strc,strb,'V');    fflush(ficgp);
       Tvar[i]=atoi(strc);    fflush(fichtm); 
       }  }  /* end varevsij */
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  /************ Variance of prevlim ******************/
         scanf("%d",i);*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     }  {
 }    /* Variance of prevalence limit */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double **newm;
   printf("cptcovprod=%d ", cptcovprod);    double **dnewm,**doldm;
   scanf("%d ",i);*/    int i, j, nhstepm, hstepm;
     fclose(fic);    int k, cptcode;
     double *xp;
     /*  if(mle==1){*/    double *gp, *gm;
     if (weightopt != 1) { /* Maximisation without weights*/    double **gradg, **trgradg;
       for(i=1;i<=n;i++) weight[i]=1.0;    double age,agelim;
     }    int theta;
     /*-calculation of age at interview from date of interview and age at death -*/    
     agev=matrix(1,maxwav,1,imx);    pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     for (i=1; i<=imx; i++) {    fprintf(ficresvpl,"# Age");
       for(m=2; (m<= maxwav); m++) {    for(i=1; i<=nlstate;i++)
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        fprintf(ficresvpl," %1d-%1d",i,i);
          anint[m][i]=9999;    fprintf(ficresvpl,"\n");
          s[m][i]=-1;  
        }    xp=vector(1,npar);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
     }    
     hstepm=1*YEARM; /* Every year of age */
     for (i=1; i<=imx; i++)  {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    agelim = AGESUP;
       for(m=1; (m<= maxwav); m++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         if(s[m][i] >0){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           if (s[m][i] >= nlstate+1) {      if (stepm >= YEARM) hstepm=1;
             if(agedc[i]>0)      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
               if(moisdc[i]!=99 && andc[i]!=9999)      gradg=matrix(1,npar,1,nlstate);
                 agev[m][i]=agedc[i];      gp=vector(1,nlstate);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      gm=vector(1,nlstate);
            else {  
               if (andc[i]!=9999){      for(theta=1; theta <=npar; theta++){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        for(i=1; i<=npar; i++){ /* Computes gradient */
               agev[m][i]=-1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               }        }
             }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           }        for(i=1;i<=nlstate;i++)
           else if(s[m][i] !=9){ /* Should no more exist */          gp[i] = prlim[i][i];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      
             if(mint[m][i]==99 || anint[m][i]==9999)        for(i=1; i<=npar; i++) /* Computes gradient */
               agev[m][i]=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             else if(agev[m][i] <agemin){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               agemin=agev[m][i];        for(i=1;i<=nlstate;i++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          gm[i] = prlim[i][i];
             }  
             else if(agev[m][i] >agemax){        for(i=1;i<=nlstate;i++)
               agemax=agev[m][i];          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      } /* End theta */
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/      trgradg =matrix(1,nlstate,1,npar);
             /*   agev[m][i] = age[i]+2*m;*/  
           }      for(j=1; j<=nlstate;j++)
           else { /* =9 */        for(theta=1; theta <=npar; theta++)
             agev[m][i]=1;          trgradg[j][theta]=gradg[theta][j];
             s[m][i]=-1;  
           }      for(i=1;i<=nlstate;i++)
         }        varpl[i][(int)age] =0.;
         else /*= 0 Unknown */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           agev[m][i]=1;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }      for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     }  
     for (i=1; i<=imx; i++)  {      fprintf(ficresvpl,"%.0f ",age );
       for(m=1; (m<= maxwav); m++){      for(i=1; i<=nlstate;i++)
         if (s[m][i] > (nlstate+ndeath)) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           printf("Error: Wrong value in nlstate or ndeath\n");        fprintf(ficresvpl,"\n");
           goto end;      free_vector(gp,1,nlstate);
         }      free_vector(gm,1,nlstate);
       }      free_matrix(gradg,1,npar,1,nlstate);
     }      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
     free_vector(xp,1,npar);
     free_vector(severity,1,maxwav);    free_matrix(doldm,1,nlstate,1,npar);
     free_imatrix(outcome,1,maxwav+1,1,n);    free_matrix(dnewm,1,nlstate,1,nlstate);
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);  }
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/  /************ Variance of one-step probabilities  ******************/
     free_vector(moisdc,1,n);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     free_vector(andc,1,n);  {
     int i, j=0,  i1, k1, l1, t, tj;
        int k2, l2, j1,  z1;
     wav=ivector(1,imx);    int k=0,l, cptcode;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    int first=1, first1;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
        double **dnewm,**doldm;
     /* Concatenates waves */    double *xp;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
       Tcode=ivector(1,100);    double age,agelim, cov[NCOVMAX];
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       ncodemax[1]=1;    int theta;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    char fileresprob[FILENAMELENGTH];
          char fileresprobcov[FILENAMELENGTH];
    codtab=imatrix(1,100,1,10);    char fileresprobcor[FILENAMELENGTH];
    h=0;  
    m=pow(2,cptcoveff);    double ***varpij;
    
    for(k=1;k<=cptcoveff; k++){    strcpy(fileresprob,"prob"); 
      for(i=1; i <=(m/pow(2,k));i++){    strcat(fileresprob,fileres);
        for(j=1; j <= ncodemax[k]; j++){    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      printf("Problem with resultfile: %s\n", fileresprob);
            h++;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    strcpy(fileresprobcov,"probcov"); 
          }    strcat(fileresprobcov,fileres);
        }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
      }      printf("Problem with resultfile: %s\n", fileresprobcov);
    }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    }
       codtab[1][2]=1;codtab[2][2]=2; */    strcpy(fileresprobcor,"probcor"); 
    /* for(i=1; i <=m ;i++){    strcat(fileresprobcor,fileres);
       for(k=1; k <=cptcovn; k++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      printf("Problem with resultfile: %s\n", fileresprobcor);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       printf("\n");    }
       }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       scanf("%d",i);*/    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    /* Calculates basic frequencies. Computes observed prevalence at single age    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        and prints on file fileres'p'. */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        pstamp(ficresprob);
        fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprob,"# Age");
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    pstamp(ficresprobcov);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcov,"# Age");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    pstamp(ficresprobcor);
          fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(ficresprobcor,"# Age");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
     for(i=1; i<=nlstate;i++)
     if(mle==1){      for(j=1; j<=(nlstate+ndeath);j++){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
            fprintf(ficresprobcor," p%1d-%1d ",i,j);
     /*--------- results files --------------*/      }  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);   /* fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    jk=1;   */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   xp=vector(1,npar);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    for(i=1,jk=1; i <=nlstate; i++){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      for(k=1; k <=(nlstate+ndeath); k++){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
        if (k != i)    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
          {    first=1;
            printf("%d%d ",i,k);    fprintf(ficgp,"\n# Routine varprob");
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
            for(j=1; j <=ncovmodel; j++){    fprintf(fichtm,"\n");
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
              jk++;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
            }    file %s<br>\n",optionfilehtmcov);
            printf("\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
            fprintf(ficres,"\n");  and drawn. It helps understanding how is the covariance between two incidences.\
          }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
    }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
  if(mle==1){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     /* Computing hessian and covariance matrix */  standard deviations wide on each axis. <br>\
     ftolhess=ftol; /* Usually correct */   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     hesscov(matcov, p, npar, delti, ftolhess, func);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
  }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");    cov[1]=1;
      for(i=1,jk=1; i <=nlstate; i++){    tj=cptcoveff;
       for(j=1; j <=nlstate+ndeath; j++){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         if (j!=i) {    j1=0;
           fprintf(ficres,"%1d%1d",i,j);    for(t=1; t<=tj;t++){
           printf("%1d%1d",i,j);      for(i1=1; i1<=ncodemax[t];i1++){ 
           for(k=1; k<=ncovmodel;k++){        j1++;
             printf(" %.5e",delti[jk]);        if  (cptcovn>0) {
             fprintf(ficres," %.5e",delti[jk]);          fprintf(ficresprob, "\n#********** Variable "); 
             jk++;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(ficresprob, "**********\n#\n");
           printf("\n");          fprintf(ficresprobcov, "\n#********** Variable "); 
           fprintf(ficres,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresprobcov, "**********\n#\n");
       }          
      }          fprintf(ficgp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     k=1;          fprintf(ficgp, "**********\n#\n");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          
     for(i=1;i<=npar;i++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       /*  if (k>nlstate) k=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       i1=(i-1)/(ncovmodel*nlstate)+1;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          
       printf("%s%d%d",alph[k],i1,tab[i]);*/          fprintf(ficresprobcor, "\n#********** Variable ");    
       fprintf(ficres,"%3d",i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%3d",i);          fprintf(ficresprobcor, "**********\n#");    
       for(j=1; j<=i;j++){        }
         fprintf(ficres," %.5e",matcov[i][j]);        
         printf(" %.5e",matcov[i][j]);        for (age=bage; age<=fage; age ++){ 
       }          cov[2]=age;
       fprintf(ficres,"\n");          for (k=1; k<=cptcovn;k++) {
       printf("\n");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       k++;          }
     }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
     while((c=getc(ficpar))=='#' && c!= EOF){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       ungetc(c,ficpar);          
       fgets(line, MAXLINE, ficpar);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       puts(line);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fputs(line,ficparo);          gp=vector(1,(nlstate)*(nlstate+ndeath));
     }          gm=vector(1,(nlstate)*(nlstate+ndeath));
     ungetc(c,ficpar);      
     estepm=0;          for(theta=1; theta <=npar; theta++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            for(i=1; i<=npar; i++)
     if (estepm==0 || estepm < stepm) estepm=stepm;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     if (fage <= 2) {            
       bage = ageminpar;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fage = agemaxpar;            
     }            k=0;
                for(i=1; i<= (nlstate); i++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              for(j=1; j<=(nlstate+ndeath);j++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                k=k+1;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                gp[k]=pmmij[i][j];
                }
     while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);            
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=npar; i++)
     puts(line);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     fputs(line,ficparo);      
   }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   ungetc(c,ficpar);            k=0;
              for(i=1; i<=(nlstate); i++){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);              for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                k=k+1;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                gm[k]=pmmij[i][j];
                    }
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);       
     fgets(line, MAXLINE, ficpar);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     puts(line);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     fputs(line,ficparo);          }
   }  
   ungetc(c,ficpar);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
              for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   fscanf(ficpar,"pop_based=%d\n",&popbased);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   fprintf(ficparo,"pop_based=%d\n",popbased);            free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   fprintf(ficres,"pop_based=%d\n",popbased);            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          pmij(pmmij,cov,ncovmodel,x,nlstate);
     fgets(line, MAXLINE, ficpar);          
     puts(line);          k=0;
     fputs(line,ficparo);          for(i=1; i<=(nlstate); i++){
   }            for(j=1; j<=(nlstate+ndeath);j++){
   ungetc(c,ficpar);              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          /*printf("\n%d ",(int)age);
     fgets(line, MAXLINE, ficpar);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     puts(line);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     fputs(line,ficparo);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   }            }*/
   ungetc(c,ficpar);  
           fprintf(ficresprob,"\n%d ",(int)age);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          fprintf(ficresprobcov,"\n%d ",(int)age);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          fprintf(ficresprobcor,"\n%d ",(int)age);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 /*------------ gnuplot -------------*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   strcpy(optionfilegnuplot,optionfilefiname);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   strcat(optionfilegnuplot,".gp");          }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          i=0;
     printf("Problem with file %s",optionfilegnuplot);          for (k=1; k<=(nlstate);k++){
   }            for (l=1; l<=(nlstate+ndeath);l++){ 
   fclose(ficgp);              i=i++;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 /*--------- index.htm --------*/              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
   strcpy(optionfilehtm,optionfile);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   strcat(optionfilehtm,".htm");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              }
     printf("Problem with %s \n",optionfilehtm), exit(0);            }
   }          }/* end of loop for state */
         } /* end of loop for age */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        /* Confidence intervalle of pij  */
 \n        /*
 Total number of observations=%d <br>\n          fprintf(ficgp,"\nset noparametric;unset label");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 <hr  size=\"2\" color=\"#EC5E5E\">          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
  <ul><li>Parameter files<br>\n          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   fclose(fichtm);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  
          /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 /*------------ free_vector  -------------*/        first1=1;
  chdir(path);        for (k2=1; k2<=(nlstate);k2++){
            for (l2=1; l2<=(nlstate+ndeath);l2++){ 
  free_ivector(wav,1,imx);            if(l2==k2) continue;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            j=(k2-1)*(nlstate+ndeath)+l2;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              for (k1=1; k1<=(nlstate);k1++){
  free_ivector(num,1,n);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
  free_vector(agedc,1,n);                if(l1==k1) continue;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                i=(k1-1)*(nlstate+ndeath)+l1;
  fclose(ficparo);                if(i<=j) continue;
  fclose(ficres);                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   /*--------------- Prevalence limit --------------*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   strcpy(filerespl,"pl");                    mu1=mu[i][(int) age]/stepm*YEARM ;
   strcat(filerespl,fileres);                    mu2=mu[j][(int) age]/stepm*YEARM;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                    c12=cv12/sqrt(v1*v2);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                    /* Computing eigen value of matrix of covariance */
   }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fprintf(ficrespl,"#Prevalence limit\n");                    /* Eigen vectors */
   fprintf(ficrespl,"#Age ");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    /*v21=sqrt(1.-v11*v11); *//* error */
   fprintf(ficrespl,"\n");                    v21=(lc1-v1)/cv12*v11;
                      v12=-v21;
   prlim=matrix(1,nlstate,1,nlstate);                    v22=v11;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    tnalp=v21/v11;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    if(first1==1){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      first1=0;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    }
   k=0;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   agebase=ageminpar;                    /*printf(fignu*/
   agelim=agemaxpar;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   ftolpl=1.e-10;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   i1=cptcoveff;                    if(first==1){
   if (cptcovn < 1){i1=1;}                      first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         k=k+1;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         fprintf(ficrespl,"\n#******");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
         for(j=1;j<=cptcoveff;j++)                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficrespl,"******\n");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                              fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         for (age=agebase; age<=agelim; age++){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           fprintf(ficrespl,"%.0f",age );                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           fprintf(ficrespl," %.5f", prlim[i][i]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           fprintf(ficrespl,"\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         }                    }else{
       }                      first=0;
     }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   fclose(ficrespl);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /*------------- h Pij x at various ages ------------*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                    }/* if first */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                  } /* age mod 5 */
   }                } /* end loop age */
   printf("Computing pij: result on file '%s' \n", filerespij);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                  first=1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;              } /*l12 */
   /*if (stepm<=24) stepsize=2;*/            } /* k12 */
           } /*l1 */
   agelim=AGESUP;        }/* k1 */
   hstepm=stepsize*YEARM; /* Every year of age */      } /* loop covariates */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   k=0;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   for(cptcov=1;cptcov<=i1;cptcov++){    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       k=k+1;    free_vector(xp,1,npar);
         fprintf(ficrespij,"\n#****** ");    fclose(ficresprob);
         for(j=1;j<=cptcoveff;j++)    fclose(ficresprobcov);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprobcor);
         fprintf(ficrespij,"******\n");    fflush(ficgp);
            fflush(fichtmcov);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /******************* Printing html file ***********/
           oldm=oldms;savm=savms;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      int lastpass, int stepm, int weightopt, char model[],\
           fprintf(ficrespij,"# Age");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           for(i=1; i<=nlstate;i++)                    int popforecast, int estepm ,\
             for(j=1; j<=nlstate+ndeath;j++)                    double jprev1, double mprev1,double anprev1, \
               fprintf(ficrespij," %1d-%1d",i,j);                    double jprev2, double mprev2,double anprev2){
           fprintf(ficrespij,"\n");    int jj1, k1, i1, cpt;
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
             for(i=1; i<=nlstate;i++)     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
               for(j=1; j<=nlstate+ndeath;j++)  </ul>");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
             fprintf(ficrespij,"\n");   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     fprintf(fichtm,"\
           fprintf(ficrespij,"\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
         }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     }     fprintf(fichtm,"\
   }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   fclose(ficrespij);     <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
   /*---------- Forecasting ------------------*/   - Population projections by age and states: \
   if((stepm == 1) && (strcmp(model,".")==0)){     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   }  
   else{   m=cptcoveff;
     erreur=108;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }   jj1=0;
     for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   /*---------- Health expectancies and variances ------------*/       jj1++;
        if (cptcovn > 0) {
   strcpy(filerest,"t");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcat(filerest,fileres);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   if((ficrest=fopen(filerest,"w"))==NULL) {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   }       }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   strcpy(filerese,"e");       /* Quasi-incidences */
   strcat(filerese,fileres);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   if((ficreseij=fopen(filerese,"w"))==NULL) {   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   }         /* Period (stable) prevalence in each health state */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
  strcpy(fileresv,"v");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   strcat(fileresv,fileres);         }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {       for(cpt=1; cpt<=nlstate;cpt++) {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       }
   calagedate=-1;     } /* end i1 */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   }/* End k1 */
    fprintf(fichtm,"</ul>");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   fprintf(fichtm,"\
       k=k+1;  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       fprintf(ficrest,"\n#****** ");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficrest,"******\n");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
       fprintf(ficreseij,"\n#****** ");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       for(j=1;j<=cptcoveff;j++)           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");   fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresvij,"\n#****** ");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
       fprintf(ficresvij,"******\n");     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   fprintf(fichtm,"\
       oldm=oldms;savm=savms;   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   fprintf(fichtm,"\
       oldm=oldms;savm=savms;   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
             estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   fprintf(fichtm,"\
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fprintf(ficrest,"\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
       epj=vector(1,nlstate+1);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       for(age=bage; age <=fage ;age++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         if (popbased==1) {  /*      <br>",fileres,fileres,fileres,fileres); */
           for(i=1; i<=nlstate;i++)  /*  else  */
             prlim[i][i]=probs[(int)age][i][k];  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         }   fflush(fichtm);
           fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   m=cptcoveff;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/   jj1=0;
           }   for(k1=1; k1<=m;k1++){
           epj[nlstate+1] +=epj[j];     for(i1=1; i1<=ncodemax[k1];i1++){
         }       jj1++;
        if (cptcovn > 0) {
         for(i=1, vepp=0.;i <=nlstate;i++)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for(j=1;j <=nlstate;j++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
             vepp += vareij[i][j][(int)age];           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         for(j=1;j <=nlstate;j++){       }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       for(cpt=1; cpt<=nlstate;cpt++) {
         }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         fprintf(ficrest,"\n");  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     }       }
   }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 free_matrix(mint,1,maxwav,1,n);  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  true period expectancies (those weighted with period prevalences are also\
     free_vector(weight,1,n);   drawn in addition to the population based expectancies computed using\
   fclose(ficreseij);   observed and cahotic prevalences: %s%d.png<br>\
   fclose(ficresvij);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   fclose(ficrest);     } /* end i1 */
   fclose(ficpar);   }/* End k1 */
   free_vector(epj,1,nlstate+1);   fprintf(fichtm,"</ul>");
     fflush(fichtm);
   /*------- Variance limit prevalence------*/    }
   
   strcpy(fileresvpl,"vpl");  /******************* Gnuplot file **************/
   strcat(fileresvpl,fileres);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    char dirfileres[132],optfileres[132];
     exit(0);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }    int ng;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   k=0;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*   } */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    /*#ifdef windows */
       fprintf(ficresvpl,"\n#****** ");    fprintf(ficgp,"cd \"%s\" \n",pathc);
       for(j=1;j<=cptcoveff;j++)      /*#endif */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    m=pow(2,cptcoveff);
       fprintf(ficresvpl,"******\n");  
          strcpy(dirfileres,optionfilefiname);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    strcpy(optfileres,"vpl");
       oldm=oldms;savm=savms;   /* 1eme*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     }     for (k1=1; k1<= m ; k1 ++) {
  }       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   fclose(ficresvpl);       fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   /*---------- End : free ----------------*/  set ter png small\n\
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  set size 0.65,0.65\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       for (i=1; i<= nlstate ; i ++) {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(matcov,1,npar,1,npar);       } 
   free_vector(delti,1,npar);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   free_matrix(agev,1,maxwav,1,imx);       for (i=1; i<= nlstate ; i ++) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(fichtm,"\n</body>");       }  
   fclose(fichtm);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fclose(ficgp);     }
      }
     /*2 eme*/
   if(erreur >0)    
     printf("End of Imach with error or warning %d\n",erreur);    for (k1=1; k1<= m ; k1 ++) { 
   else   printf("End of Imach\n");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
        
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      for (i=1; i<= nlstate+1 ; i ++) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/        k=2*i;
   /*------ End -----------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  end:          else fprintf(ficgp," \%%*lf (\%%*lf)");
 #ifdef windows        }   
   /* chdir(pathcd);*/        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 #endif        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
  /*system("wgnuplot graph.plt");*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        for (j=1; j<= nlstate+1 ; j ++) {
  /*system("cd ../gp37mgw");*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
  strcpy(plotcmd,GNUPLOTPROGRAM);        }   
  strcat(plotcmd," ");        fprintf(ficgp,"\" t\"\" w l 0,");
  strcat(plotcmd,optionfilegnuplot);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  system(plotcmd);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 #ifdef windows          else fprintf(ficgp," \%%*lf (\%%*lf)");
   while (z[0] != 'q') {        }   
     /* chdir(path); */        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        else fprintf(ficgp,"\" t\"\" w l 0,");
     scanf("%s",z);      }
     if (z[0] == 'c') system("./imach");    }
     else if (z[0] == 'e') system(optionfilehtm);    
     else if (z[0] == 'g') system(plotcmd);    /*3eme*/
     else if (z[0] == 'q') exit(0);    
   }    for (k1=1; k1<= m ; k1 ++) { 
 #endif      for (cpt=1; cpt<= nlstate ; cpt ++) {
 }        /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.129


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>