Diff for /imach/src/imach.c between versions 1.48 and 1.130

version 1.48, 2002/06/10 13:12:49 version 1.130, 2009/05/26 06:44:34
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.130  2009/05/26 06:44:34  brouard
      (Module): Max Covariate is now set to 20 instead of 8. A
   This program computes Healthy Life Expectancies from    lot of cleaning with variables initialized to 0. Trying to make
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.129  2007/08/31 13:49:27  lievre
   case of a health survey which is our main interest) -2- at least a    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.128  2006/06/30 13:02:05  brouard
   computed from the time spent in each health state according to a    (Module): Clarifications on computing e.j
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.127  2006/04/28 18:11:50  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Yes the sum of survivors was wrong since
   probability to be observed in state j at the second wave    imach-114 because nhstepm was no more computed in the age
   conditional to be observed in state i at the first wave. Therefore    loop. Now we define nhstepma in the age loop.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): In order to speed up (in case of numerous covariates) we
   'age' is age and 'sex' is a covariate. If you want to have a more    compute health expectancies (without variances) in a first step
   complex model than "constant and age", you should modify the program    and then all the health expectancies with variances or standard
   where the markup *Covariates have to be included here again* invites    deviation (needs data from the Hessian matrices) which slows the
   you to do it.  More covariates you add, slower the    computation.
   convergence.    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.126  2006/04/28 17:23:28  brouard
   identical for each individual. Also, if a individual missed an    (Module): Yes the sum of survivors was wrong since
   intermediate interview, the information is lost, but taken into    imach-114 because nhstepm was no more computed in the age
   account using an interpolation or extrapolation.      loop. Now we define nhstepma in the age loop.
     Version 0.98h
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.125  2006/04/04 15:20:31  lievre
   split into an exact number (nh*stepm) of unobserved intermediate    Errors in calculation of health expectancies. Age was not initialized.
   states. This elementary transition (by month or quarter trimester,    Forecasting file added.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.124  2006/03/22 17:13:53  lievre
   and the contribution of each individual to the likelihood is simply    Parameters are printed with %lf instead of %f (more numbers after the comma).
   hPijx.    The log-likelihood is printed in the log file
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.123  2006/03/20 10:52:43  brouard
   of the life expectancies. It also computes the prevalence limits.    * imach.c (Module): <title> changed, corresponds to .htm file
      name. <head> headers where missing.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    * imach.c (Module): Weights can have a decimal point as for
   This software have been partly granted by Euro-REVES, a concerted action    English (a comma might work with a correct LC_NUMERIC environment,
   from the European Union.    otherwise the weight is truncated).
   It is copyrighted identically to a GNU software product, ie programme and    Modification of warning when the covariates values are not 0 or
   software can be distributed freely for non commercial use. Latest version    1.
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.98g
   **********************************************************************/  
      Revision 1.122  2006/03/20 09:45:41  brouard
 #include <math.h>    (Module): Weights can have a decimal point as for
 #include <stdio.h>    English (a comma might work with a correct LC_NUMERIC environment,
 #include <stdlib.h>    otherwise the weight is truncated).
 #include <unistd.h>    Modification of warning when the covariates values are not 0 or
     1.
 #define MAXLINE 256    Version 0.98g
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.121  2006/03/16 17:45:01  lievre
 #define FILENAMELENGTH 80    * imach.c (Module): Comments concerning covariates added
 /*#define DEBUG*/  
 #define windows    * imach.c (Module): refinements in the computation of lli if
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    status=-2 in order to have more reliable computation if stepm is
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    not 1 month. Version 0.98f
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.120  2006/03/16 15:10:38  lievre
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 #define NINTERVMAX 8    not 1 month. Version 0.98f
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.119  2006/03/15 17:42:26  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Bug if status = -2, the loglikelihood was
 #define MAXN 20000    computed as likelihood omitting the logarithm. Version O.98e
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.118  2006/03/14 18:20:07  brouard
 #define AGEBASE 40    (Module): varevsij Comments added explaining the second
 #ifdef windows    table of variances if popbased=1 .
 #define DIRSEPARATOR '\\'    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #else    (Module): Function pstamp added
 #define DIRSEPARATOR '/'    (Module): Version 0.98d
 #endif  
     Revision 1.117  2006/03/14 17:16:22  brouard
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    (Module): varevsij Comments added explaining the second
 int erreur; /* Error number */    table of variances if popbased=1 .
 int nvar;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Function pstamp added
 int npar=NPARMAX;    (Module): Version 0.98d
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.116  2006/03/06 10:29:27  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Variance-covariance wrong links and
 int popbased=0;    varian-covariance of ej. is needed (Saito).
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.115  2006/02/27 12:17:45  brouard
 int maxwav; /* Maxim number of waves */    (Module): One freematrix added in mlikeli! 0.98c
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.114  2006/02/26 12:57:58  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Some improvements in processing parameter
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    filename with strsep.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.113  2006/02/24 14:20:24  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Memory leaks checks with valgrind and:
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    datafile was not closed, some imatrix were not freed and on matrix
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    allocation too.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.112  2006/01/30 09:55:26  brouard
 char filerese[FILENAMELENGTH];    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.111  2006/01/25 20:38:18  brouard
 FILE  *ficresvpl;    (Module): Lots of cleaning and bugs added (Gompertz)
 char fileresvpl[FILENAMELENGTH];    (Module): Comments can be added in data file. Missing date values
 char title[MAXLINE];    can be a simple dot '.'.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
     Revision 1.109  2006/01/24 19:37:15  brouard
 char filerest[FILENAMELENGTH];    (Module): Comments (lines starting with a #) are allowed in data.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    To be fixed
   
 #define NR_END 1    Revision 1.107  2006/01/19 16:20:37  brouard
 #define FREE_ARG char*    Test existence of gnuplot in imach path
 #define FTOL 1.0e-10  
     Revision 1.106  2006/01/19 13:24:36  brouard
 #define NRANSI    Some cleaning and links added in html output
 #define ITMAX 200  
     Revision 1.105  2006/01/05 20:23:19  lievre
 #define TOL 2.0e-4    *** empty log message ***
   
 #define CGOLD 0.3819660    Revision 1.104  2005/09/30 16:11:43  lievre
 #define ZEPS 1.0e-10    (Module): sump fixed, loop imx fixed, and simplifications.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 #define GOLD 1.618034    (instead of missing=-1 in earlier versions) and his/her
 #define GLIMIT 100.0    contributions to the likelihood is 1 - Prob of dying from last
 #define TINY 1.0e-20    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.103  2005/09/30 15:54:49  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): sump fixed, loop imx fixed, and simplifications.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.102  2004/09/15 17:31:30  brouard
 #define rint(a) floor(a+0.5)    Add the possibility to read data file including tab characters.
   
 static double sqrarg;    Revision 1.101  2004/09/15 10:38:38  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Fix on curr_time
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.100  2004/07/12 18:29:06  brouard
 int imx;    Add version for Mac OS X. Just define UNIX in Makefile
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 int m,nb;    directly from the data i.e. without the need of knowing the health
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    state at each age, but using a Gompertz model: log u =a + b*age .
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    This is the basic analysis of mortality and should be done before any
 double **pmmij, ***probs, ***mobaverage;    other analysis, in order to test if the mortality estimated from the
 double dateintmean=0;    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 double *weight;  
 int **s; /* Status */    The same imach parameter file can be used but the option for mle should be -3.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Current limitations:
 {    A) Even if you enter covariates, i.e. with the
    char *s;                             /* pointer */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    int  l1, l2;                         /* length counters */    B) There is no computation of Life Expectancy nor Life Table.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.97  2004/02/20 13:25:42  lievre
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Version 0.96d. Population forecasting command line is (temporarily)
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    suppressed.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.96  2003/07/15 15:38:55  brouard
       extern char       *getwd( );    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.95  2003/07/08 07:54:34  brouard
       extern char       *getcwd( );    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    matrix (cov(a12,c31) instead of numbers.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.94  2003/06/27 13:00:02  brouard
       }    Just cleaning
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.93  2003/06/25 16:33:55  brouard
       s++;                              /* after this, the filename */    (Module): On windows (cygwin) function asctime_r doesn't
       l2 = strlen( s );                 /* length of filename */    exist so I changed back to asctime which exists.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Version 0.96b
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.92  2003/06/25 16:30:45  brouard
       dirc[l1-l2] = 0;                  /* add zero */    (Module): On windows (cygwin) function asctime_r doesn't
    }    exist so I changed back to asctime which exists.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.91  2003/06/25 15:30:29  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    * imach.c (Repository): Duplicated warning errors corrected.
 #else    (Repository): Elapsed time after each iteration is now output. It
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    helps to forecast when convergence will be reached. Elapsed time
 #endif    is stamped in powell.  We created a new html file for the graphs
    s = strrchr( name, '.' );            /* find last / */    concerning matrix of covariance. It has extension -cov.htm.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.90  2003/06/24 12:34:15  brouard
    l1= strlen( name);    (Module): Some bugs corrected for windows. Also, when
    l2= strlen( s)+1;    mle=-1 a template is output in file "or"mypar.txt with the design
    strncpy( finame, name, l1-l2);    of the covariance matrix to be input.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.89  2003/06/24 12:30:52  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /******************************************/  
     Revision 1.88  2003/06/23 17:54:56  brouard
 void replace(char *s, char*t)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 {  
   int i;    Revision 1.87  2003/06/18 12:26:01  brouard
   int lg=20;    Version 0.96
   i=0;  
   lg=strlen(t);    Revision 1.86  2003/06/17 20:04:08  brouard
   for(i=0; i<= lg; i++) {    (Module): Change position of html and gnuplot routines and added
     (s[i] = t[i]);    routine fileappend.
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 int nbocc(char *s, char occ)    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   int i,j=0;    assuming that the date of death was just one stepm after the
   int lg=20;    interview.
   i=0;    (Repository): Because some people have very long ID (first column)
   lg=strlen(s);    we changed int to long in num[] and we added a new lvector for
   for(i=0; i<= lg; i++) {    memory allocation. But we also truncated to 8 characters (left
   if  (s[i] == occ ) j++;    truncation)
   }    (Repository): No more line truncation errors.
   return j;  
 }    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 void cutv(char *u,char *v, char*t, char occ)    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
   int i,lg,j,p=0;    parcimony.
   i=0;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.83  2003/06/10 13:39:11  lievre
   }    *** empty log message ***
   
   lg=strlen(t);    Revision 1.82  2003/06/05 15:57:20  brouard
   for(j=0; j<p; j++) {    Add log in  imach.c and  fullversion number is now printed.
     (u[j] = t[j]);  
   }  */
      u[p]='\0';  /*
      Interpolated Markov Chain
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Short summary of the programme:
   }    
 }    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 /********************** nrerror ********************/    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 void nrerror(char error_text[])    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   fprintf(stderr,"ERREUR ...\n");    (if any) in individual health status.  Health expectancies are
   fprintf(stderr,"%s\n",error_text);    computed from the time spent in each health state according to a
   exit(1);    model. More health states you consider, more time is necessary to reach the
 }    Maximum Likelihood of the parameters involved in the model.  The
 /*********************** vector *******************/    simplest model is the multinomial logistic model where pij is the
 double *vector(int nl, int nh)    probability to be observed in state j at the second wave
 {    conditional to be observed in state i at the first wave. Therefore
   double *v;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    'age' is age and 'sex' is a covariate. If you want to have a more
   if (!v) nrerror("allocation failure in vector");    complex model than "constant and age", you should modify the program
   return v-nl+NR_END;    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    The advantage of this computer programme, compared to a simple
 {    multinomial logistic model, is clear when the delay between waves is not
   free((FREE_ARG)(v+nl-NR_END));    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   int *v;    split into an exact number (nh*stepm) of unobserved intermediate
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    states. This elementary transition (by month, quarter,
   if (!v) nrerror("allocation failure in ivector");    semester or year) is modelled as a multinomial logistic.  The hPx
   return v-nl+NR_END;    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the period (stable) prevalence. 
   free((FREE_ARG)(v+nl-NR_END));    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 /******************* imatrix *******************************/    This software have been partly granted by Euro-REVES, a concerted action
 int **imatrix(long nrl, long nrh, long ncl, long nch)    from the European Union.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    can be accessed at http://euroreves.ined.fr/imach .
   int **m;  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   /* allocate pointers to rows */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    
   if (!m) nrerror("allocation failure 1 in matrix()");    **********************************************************************/
   m += NR_END;  /*
   m -= nrl;    main
      read parameterfile
      read datafile
   /* allocate rows and set pointers to them */    concatwav
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    freqsummary
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (mle >= 1)
   m[nrl] += NR_END;      mlikeli
   m[nrl] -= ncl;    print results files
      if mle==1 
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;       computes hessian
      read end of parameter file: agemin, agemax, bage, fage, estepm
   /* return pointer to array of pointers to rows */        begin-prev-date,...
   return m;    open gnuplot file
 }    open html file
     period (stable) prevalence
 /****************** free_imatrix *************************/     for age prevalim()
 void free_imatrix(m,nrl,nrh,ncl,nch)    h Pij x
       int **m;    variance of p varprob
       long nch,ncl,nrh,nrl;    forecasting if prevfcast==1 prevforecast call prevalence()
      /* free an int matrix allocated by imatrix() */    health expectancies
 {    Variance-covariance of DFLE
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    prevalence()
   free((FREE_ARG) (m+nrl-NR_END));     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /******************* matrix *******************************/    total life expectancies
 double **matrix(long nrl, long nrh, long ncl, long nch)    Variance of period (stable) prevalence
 {   end
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  */
   double **m;  
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");   
   m += NR_END;  #include <math.h>
   m -= nrl;  #include <stdio.h>
   #include <stdlib.h>
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <string.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <unistd.h>
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #include <limits.h>
   #include <sys/types.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <sys/stat.h>
   return m;  #include <errno.h>
 }  extern int errno;
   
 /*************************free matrix ************************/  /* #include <sys/time.h> */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #include <time.h>
 {  #include "timeval.h"
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /******************* ma3x *******************************/  #define MAXLINE 256
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #define GNUPLOTPROGRAM "gnuplot"
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double ***m;  #define FILENAMELENGTH 132
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m += NR_END;  
   m -= nrl;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NINTERVMAX 8
   m[nrl] += NR_END;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   m[nrl] -= ncl;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 20 /* Maximum number of covariates */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define AGESUP 130
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define AGEBASE 40
   m[nrl][ncl] += NR_END;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   m[nrl][ncl] -= nll;  #ifdef UNIX
   for (j=ncl+1; j<=nch; j++)  #define DIRSEPARATOR '/'
     m[nrl][j]=m[nrl][j-1]+nlay;  #define CHARSEPARATOR "/"
    #define ODIRSEPARATOR '\\'
   for (i=nrl+1; i<=nrh; i++) {  #else
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define DIRSEPARATOR '\\'
     for (j=ncl+1; j<=nch; j++)  #define CHARSEPARATOR "\\"
       m[i][j]=m[i][j-1]+nlay;  #define ODIRSEPARATOR '/'
   }  #endif
   return m;  
 }  /* $Id$ */
   /* $State$ */
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
 {  char fullversion[]="$Revision$ $Date$"; 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char strstart[80];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar=0;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 /***************** f1dim *************************/  int npar=NPARMAX;
 extern int ncom;  int nlstate=2; /* Number of live states */
 extern double *pcom,*xicom;  int ndeath=1; /* Number of dead states */
 extern double (*nrfunc)(double []);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    int popbased=0;
 double f1dim(double x)  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   int j;  int maxwav=0; /* Maxim number of waves */
   double f;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   double *xt;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
    int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   xt=vector(1,ncom);                     to the likelihood and the sum of weights (done by funcone)*/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int mle=1, weightopt=0;
   f=(*nrfunc)(xt);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   free_vector(xt,1,ncom);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   return f;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean=1; /* Mean space between 2 waves */
 /*****************brent *************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   int iter;  FILE *ficlog, *ficrespow;
   double a,b,d,etemp;  int globpr=0; /* Global variable for printing or not */
   double fu,fv,fw,fx;  double fretone; /* Only one call to likelihood */
   double ftemp;  long ipmx=0; /* Number of contributions */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  double sw; /* Sum of weights */
   double e=0.0;  char filerespow[FILENAMELENGTH];
    char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   a=(ax < cx ? ax : cx);  FILE *ficresilk;
   b=(ax > cx ? ax : cx);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   x=w=v=bx;  FILE *ficresprobmorprev;
   fw=fv=fx=(*f)(x);  FILE *fichtm, *fichtmcov; /* Html File */
   for (iter=1;iter<=ITMAX;iter++) {  FILE *ficreseij;
     xm=0.5*(a+b);  char filerese[FILENAMELENGTH];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  FILE *ficresstdeij;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char fileresstde[FILENAMELENGTH];
     printf(".");fflush(stdout);  FILE *ficrescveij;
 #ifdef DEBUG  char filerescve[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  FILE  *ficresvij;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char fileresv[FILENAMELENGTH];
 #endif  FILE  *ficresvpl;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char fileresvpl[FILENAMELENGTH];
       *xmin=x;  char title[MAXLINE];
       return fx;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     ftemp=fu;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     if (fabs(e) > tol1) {  char command[FILENAMELENGTH];
       r=(x-w)*(fx-fv);  int  outcmd=0;
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  char filelog[FILENAMELENGTH]; /* Log file */
       q=fabs(q);  char filerest[FILENAMELENGTH];
       etemp=e;  char fileregp[FILENAMELENGTH];
       e=d;  char popfile[FILENAMELENGTH];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       else {  
         d=p/q;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
         u=x+d;  struct timezone tzp;
         if (u-a < tol2 || b-u < tol2)  extern int gettimeofday();
           d=SIGN(tol1,xm-x);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       }  long time_value;
     } else {  extern long time();
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char strcurr[80], strfor[80];
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char *endptr;
     fu=(*f)(u);  long lval;
     if (fu <= fx) {  double dval;
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  #define NR_END 1
         SHFT(fv,fw,fx,fu)  #define FREE_ARG char*
         } else {  #define FTOL 1.0e-10
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  #define NRANSI 
             v=w;  #define ITMAX 200 
             w=u;  
             fv=fw;  #define TOL 2.0e-4 
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  #define CGOLD 0.3819660 
             v=u;  #define ZEPS 1.0e-10 
             fv=fu;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
           }  
         }  #define GOLD 1.618034 
   }  #define GLIMIT 100.0 
   nrerror("Too many iterations in brent");  #define TINY 1.0e-20 
   *xmin=x;  
   return fx;  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /****************** mnbrak ***********************/    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define rint(a) floor(a+0.5)
             double (*func)(double))  
 {  static double sqrarg;
   double ulim,u,r,q, dum;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double fu;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    int agegomp= AGEGOMP;
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  int imx; 
   if (*fb > *fa) {  int stepm=1;
     SHFT(dum,*ax,*bx,dum)  /* Stepm, step in month: minimum step interpolation*/
       SHFT(dum,*fb,*fa,dum)  
       }  int estepm;
   *cx=(*bx)+GOLD*(*bx-*ax);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  int m,nb;
     r=(*bx-*ax)*(*fb-*fc);  long *num;
     q=(*bx-*cx)*(*fb-*fa);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double **pmmij, ***probs;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double *ageexmed,*agecens;
     if ((*bx-u)*(u-*cx) > 0.0) {  double dateintmean=0;
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double *weight;
       fu=(*func)(u);  int **s; /* Status */
       if (fu < *fc) {  double *agedc, **covar, idx;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
           SHFT(*fb,*fc,fu,(*func)(u))  double *lsurv, *lpop, *tpop;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       u=ulim;  double ftolhess; /* Tolerance for computing hessian */
       fu=(*func)(u);  
     } else {  /**************** split *************************/
       u=(*cx)+GOLD*(*cx-*bx);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       fu=(*func)(u);  {
     }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     SHFT(*ax,*bx,*cx,u)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       SHFT(*fa,*fb,*fc,fu)    */ 
       }    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
   
 /*************** linmin ************************/    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 int ncom;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 double *pcom,*xicom;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 double (*nrfunc)(double []);      strcpy( name, path );               /* we got the fullname name because no directory */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   double brent(double ax, double bx, double cx,      /*    extern  char* getcwd ( char *buf , int len);*/
                double (*f)(double), double tol, double *xmin);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double f1dim(double x);        return( GLOCK_ERROR_GETCWD );
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      }
               double *fc, double (*func)(double));      /* got dirc from getcwd*/
   int j;      printf(" DIRC = %s \n",dirc);
   double xx,xmin,bx,ax;    } else {                              /* strip direcotry from path */
   double fx,fb,fa;      ss++;                               /* after this, the filename */
        l2 = strlen( ss );                  /* length of filename */
   ncom=n;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   pcom=vector(1,n);      strcpy( name, ss );         /* save file name */
   xicom=vector(1,n);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   nrfunc=func;      dirc[l1-l2] = 0;                    /* add zero */
   for (j=1;j<=n;j++) {      printf(" DIRC2 = %s \n",dirc);
     pcom[j]=p[j];    }
     xicom[j]=xi[j];    /* We add a separator at the end of dirc if not exists */
   }    l1 = strlen( dirc );                  /* length of directory */
   ax=0.0;    if( dirc[l1-1] != DIRSEPARATOR ){
   xx=1.0;      dirc[l1] =  DIRSEPARATOR;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      dirc[l1+1] = 0; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      printf(" DIRC3 = %s \n",dirc);
 #ifdef DEBUG    }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    ss = strrchr( name, '.' );            /* find last / */
 #endif    if (ss >0){
   for (j=1;j<=n;j++) {      ss++;
     xi[j] *= xmin;      strcpy(ext,ss);                     /* save extension */
     p[j] += xi[j];      l1= strlen( name);
   }      l2= strlen(ss)+1;
   free_vector(xicom,1,n);      strncpy( finame, name, l1-l2);
   free_vector(pcom,1,n);      finame[l1-l2]= 0;
 }    }
   
 /*************** powell ************************/    return( 0 );                          /* we're done */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  }
             double (*func)(double []))  
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /******************************************/
               double (*func)(double []));  
   int i,ibig,j;  void replace_back_to_slash(char *s, char*t)
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    int i;
   double *xits;    int lg=0;
   pt=vector(1,n);    i=0;
   ptt=vector(1,n);    lg=strlen(t);
   xit=vector(1,n);    for(i=0; i<= lg; i++) {
   xits=vector(1,n);      (s[i] = t[i]);
   *fret=(*func)(p);      if (t[i]== '\\') s[i]='/';
   for (j=1;j<=n;j++) pt[j]=p[j];    }
   for (*iter=1;;++(*iter)) {  }
     fp=(*fret);  
     ibig=0;  int nbocc(char *s, char occ)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    int i,j=0;
     for (i=1;i<=n;i++)    int lg=20;
       printf(" %d %.12f",i, p[i]);    i=0;
     printf("\n");    lg=strlen(s);
     for (i=1;i<=n;i++) {    for(i=0; i<= lg; i++) {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    if  (s[i] == occ ) j++;
       fptt=(*fret);    }
 #ifdef DEBUG    return j;
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  void cutv(char *u,char *v, char*t, char occ)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         del=fabs(fptt-(*fret));       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         ibig=i;       gives u="abcedf" and v="ghi2j" */
       }    int i,lg,j,p=0;
 #ifdef DEBUG    i=0;
       printf("%d %.12e",i,(*fret));    for(j=0; j<=strlen(t)-1; j++) {
       for (j=1;j<=n;j++) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    }
         printf(" x(%d)=%.12e",j,xit[j]);  
       }    lg=strlen(t);
       for(j=1;j<=n;j++)    for(j=0; j<p; j++) {
         printf(" p=%.12e",p[j]);      (u[j] = t[j]);
       printf("\n");    }
 #endif       u[p]='\0';
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {     for(j=0; j<= lg; j++) {
 #ifdef DEBUG      if (j>=(p+1))(v[j-p-1] = t[j]);
       int k[2],l;    }
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /********************** nrerror ********************/
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  void nrerror(char error_text[])
       printf("\n");  {
       for(l=0;l<=1;l++) {    fprintf(stderr,"ERREUR ...\n");
         for (j=1;j<=n;j++) {    fprintf(stderr,"%s\n",error_text);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    exit(EXIT_FAILURE);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  /*********************** vector *******************/
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double *vector(int nl, int nh)
       }  {
 #endif    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
       free_vector(xit,1,n);    return v-nl+NR_END;
       free_vector(xits,1,n);  }
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /************************ free vector ******************/
       return;  void free_vector(double*v, int nl, int nh)
     }  {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    free((FREE_ARG)(v+nl-NR_END));
     for (j=1;j<=n;j++) {  }
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  /************************ivector *******************************/
       pt[j]=p[j];  int *ivector(long nl,long nh)
     }  {
     fptt=(*func)(ptt);    int *v;
     if (fptt < fp) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    if (!v) nrerror("allocation failure in ivector");
       if (t < 0.0) {    return v-nl+NR_END;
         linmin(p,xit,n,fret,func);  }
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /******************free ivector **************************/
           xi[j][n]=xit[j];  void free_ivector(int *v, long nl, long nh)
         }  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /************************lvector *******************************/
         printf("\n");  long *lvector(long nl,long nh)
 #endif  {
       }    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /**** Prevalence limit ****************/  
   /******************free lvector **************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  void free_lvector(long *v, long nl, long nh)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    free((FREE_ARG)(v+nl-NR_END));
      matrix by transitions matrix until convergence is reached */  }
   
   int i, ii,j,k;  /******************* imatrix *******************************/
   double min, max, maxmin, maxmax,sumnew=0.;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double **matprod2();       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double **out, cov[NCOVMAX], **pmij();  { 
   double **newm;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    int **m; 
     
   for (ii=1;ii<=nlstate+ndeath;ii++)    /* allocate pointers to rows */ 
     for (j=1;j<=nlstate+ndeath;j++){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     }    m += NR_END; 
     m -= nrl; 
    cov[1]=1.;    
      
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* allocate rows and set pointers to them */ 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     newm=savm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     /* Covariates have to be included here again */    m[nrl] += NR_END; 
      cov[2]=agefin;    m[nrl] -= ncl; 
      
       for (k=1; k<=cptcovn;k++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    /* return pointer to array of pointers to rows */ 
       }    return m; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  } 
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        int **m;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        long nch,ncl,nrh,nrl; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/       /* free an int matrix allocated by imatrix() */ 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     savm=oldm;    free((FREE_ARG) (m+nrl-NR_END)); 
     oldm=newm;  } 
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /******************* matrix *******************************/
       min=1.;  double **matrix(long nrl, long nrh, long ncl, long nch)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         sumnew=0;    double **m;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         max=FMAX(max,prlim[i][j]);    if (!m) nrerror("allocation failure 1 in matrix()");
         min=FMIN(min,prlim[i][j]);    m += NR_END;
       }    m -= nrl;
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if(maxmax < ftolpl){    m[nrl] += NR_END;
       return prlim;    m[nrl] -= ncl;
     }  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 /*************** transition probabilities ***************/     */
   }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  /*************************free matrix ************************/
   double s1, s2;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   /*double t34;*/  {
   int i,j,j1, nc, ii, jj;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
     for(i=1; i<= nlstate; i++){  }
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /******************* ma3x *******************************/
         /*s2 += param[i][j][nc]*cov[nc];*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       }    double ***m;
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
     for(j=i+1; j<=nlstate+ndeath;j++){    m += NR_END;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m -= nrl;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ps[i][j]=s2;    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   }  
     /*ps[3][2]=1;*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
   for(i=1; i<= nlstate; i++){    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      s1=0;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     for(j=1; j<i; j++)    m[nrl][ncl] += NR_END;
       s1+=exp(ps[i][j]);    m[nrl][ncl] -= nll;
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=ncl+1; j<=nch; j++) 
       s1+=exp(ps[i][j]);      m[nrl][j]=m[nrl][j-1]+nlay;
     ps[i][i]=1./(s1+1.);    
     for(j=1; j<i; j++)    for (i=nrl+1; i<=nrh; i++) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for(j=i+1; j<=nlstate+ndeath; j++)      for (j=ncl+1; j<=nch; j++) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        m[i][j]=m[i][j-1]+nlay;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    }
   } /* end i */    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for(jj=1; jj<= nlstate+ndeath; jj++){    */
       ps[ii][jj]=0;  }
       ps[ii][ii]=1;  
     }  /*************************free ma3x ************************/
   }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(jj=1; jj<= nlstate+ndeath; jj++){    free((FREE_ARG)(m+nrl-NR_END));
      printf("%lf ",ps[ii][jj]);  }
    }  
     printf("\n ");  /*************** function subdirf ***********/
     }  char *subdirf(char fileres[])
     printf("\n ");printf("%lf ",cov[2]);*/  {
 /*    /* Caution optionfilefiname is hidden */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    strcpy(tmpout,optionfilefiname);
   goto end;*/    strcat(tmpout,"/"); /* Add to the right */
     return ps;    strcat(tmpout,fileres);
 }    return tmpout;
   }
 /**************** Product of 2 matrices ******************/  
   /*************** function subdirf2 ***********/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  char *subdirf2(char fileres[], char *preop)
 {  {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    /* Caution optionfilefiname is hidden */
   /* in, b, out are matrice of pointers which should have been initialized    strcpy(tmpout,optionfilefiname);
      before: only the contents of out is modified. The function returns    strcat(tmpout,"/");
      a pointer to pointers identical to out */    strcat(tmpout,preop);
   long i, j, k;    strcat(tmpout,fileres);
   for(i=nrl; i<= nrh; i++)    return tmpout;
     for(k=ncolol; k<=ncoloh; k++)  }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   return out;  {
 }    
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /************* Higher Matrix Product ***************/    strcat(tmpout,"/");
     strcat(tmpout,preop);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    strcat(tmpout,preop2);
 {    strcat(tmpout,fileres);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    return tmpout;
      duration (i.e. until  }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /***************** f1dim *************************/
      (typically every 2 years instead of every month which is too big).  extern int ncom; 
      Model is determined by parameters x and covariates have to be  extern double *pcom,*xicom;
      included manually here.  extern double (*nrfunc)(double []); 
    
      */  double f1dim(double x) 
   { 
   int i, j, d, h, k;    int j; 
   double **out, cov[NCOVMAX];    double f;
   double **newm;    double *xt; 
    
   /* Hstepm could be zero and should return the unit matrix */    xt=vector(1,ncom); 
   for (i=1;i<=nlstate+ndeath;i++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for (j=1;j<=nlstate+ndeath;j++){    f=(*nrfunc)(xt); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    free_vector(xt,1,ncom); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    return f; 
     }  } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /*****************brent *************************/
     for(d=1; d <=hstepm; d++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       newm=savm;  { 
       /* Covariates have to be included here again */    int iter; 
       cov[1]=1.;    double a,b,d,etemp;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    double fu,fv,fw,fx;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double ftemp;
       for (k=1; k<=cptcovage;k++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double e=0.0; 
       for (k=1; k<=cptcovprod;k++)   
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    fw=fv=fx=(*f)(x); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    for (iter=1;iter<=ITMAX;iter++) { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      xm=0.5*(a+b); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       savm=oldm;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       oldm=newm;      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
     for(i=1; i<=nlstate+ndeath; i++)  #ifdef DEBUG
       for(j=1;j<=nlstate+ndeath;j++) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         po[i][j][h]=newm[i][j];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
          */  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   } /* end h */        *xmin=x; 
   return po;        return fx; 
 }      } 
       ftemp=fu;
       if (fabs(e) > tol1) { 
 /*************** log-likelihood *************/        r=(x-w)*(fx-fv); 
 double func( double *x)        q=(x-v)*(fx-fw); 
 {        p=(x-v)*q-(x-w)*r; 
   int i, ii, j, k, mi, d, kk;        q=2.0*(q-r); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        if (q > 0.0) p = -p; 
   double **out;        q=fabs(q); 
   double sw; /* Sum of weights */        etemp=e; 
   double lli; /* Individual log likelihood */        e=d; 
   long ipmx;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   /*extern weight */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* We are differentiating ll according to initial status */        else { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          d=p/q; 
   /*for(i=1;i<imx;i++)          u=x+d; 
     printf(" %d\n",s[4][i]);          if (u-a < tol2 || b-u < tol2) 
   */            d=SIGN(tol1,xm-x); 
   cov[1]=1.;        } 
       } else { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      } 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for(mi=1; mi<= wav[i]-1; mi++){      fu=(*f)(u); 
       for (ii=1;ii<=nlstate+ndeath;ii++)      if (fu <= fx) { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        if (u >= x) a=x; else b=x; 
       for(d=0; d<dh[mi][i]; d++){        SHFT(v,w,x,u) 
         newm=savm;          SHFT(fv,fw,fx,fu) 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          } else { 
         for (kk=1; kk<=cptcovage;kk++) {            if (u < x) a=u; else b=u; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            if (fu <= fw || w == x) { 
         }              v=w; 
                      w=u; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              fv=fw; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              fw=fu; 
         savm=oldm;            } else if (fu <= fv || v == x || v == w) { 
         oldm=newm;              v=u; 
                      fv=fu; 
                    } 
       } /* end mult */          } 
          } 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    nrerror("Too many iterations in brent"); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    *xmin=x; 
       ipmx +=1;    return fx; 
       sw += weight[i];  } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  /****************** mnbrak ***********************/
   } /* end of individual */  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];              double (*func)(double)) 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double ulim,u,r,q, dum;
   return -l;    double fu; 
 }   
     *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 /*********** Maximum Likelihood Estimation ***************/    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        SHFT(dum,*fb,*fa,dum) 
 {        } 
   int i,j, iter;    *cx=(*bx)+GOLD*(*bx-*ax); 
   double **xi,*delti;    *fc=(*func)(*cx); 
   double fret;    while (*fb > *fc) { 
   xi=matrix(1,npar,1,npar);      r=(*bx-*ax)*(*fb-*fc); 
   for (i=1;i<=npar;i++)      q=(*bx-*cx)*(*fb-*fa); 
     for (j=1;j<=npar;j++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       xi[i][j]=(i==j ? 1.0 : 0.0);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   printf("Powell\n");      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   powell(p,xi,npar,ftol,&iter,&fret,func);      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fu=(*func)(u); 
         if (fu < *fc) { 
 }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 /**** Computes Hessian and covariance matrix ***/            } 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 {        u=ulim; 
   double  **a,**y,*x,pd;        fu=(*func)(u); 
   double **hess;      } else { 
   int i, j,jk;        u=(*cx)+GOLD*(*cx-*bx); 
   int *indx;        fu=(*func)(u); 
       } 
   double hessii(double p[], double delta, int theta, double delti[]);      SHFT(*ax,*bx,*cx,u) 
   double hessij(double p[], double delti[], int i, int j);        SHFT(*fa,*fb,*fc,fu) 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  } 
   
   hess=matrix(1,npar,1,npar);  /*************** linmin ************************/
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  int ncom; 
   for (i=1;i<=npar;i++){  double *pcom,*xicom;
     printf("%d",i);fflush(stdout);  double (*nrfunc)(double []); 
     hess[i][i]=hessii(p,ftolhess,i,delti);   
     /*printf(" %f ",p[i]);*/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     /*printf(" %lf ",hess[i][i]);*/  { 
   }    double brent(double ax, double bx, double cx, 
                   double (*f)(double), double tol, double *xmin); 
   for (i=1;i<=npar;i++) {    double f1dim(double x); 
     for (j=1;j<=npar;j++)  {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       if (j>i) {                double *fc, double (*func)(double)); 
         printf(".%d%d",i,j);fflush(stdout);    int j; 
         hess[i][j]=hessij(p,delti,i,j);    double xx,xmin,bx,ax; 
         hess[j][i]=hess[i][j];        double fx,fb,fa;
         /*printf(" %lf ",hess[i][j]);*/   
       }    ncom=n; 
     }    pcom=vector(1,n); 
   }    xicom=vector(1,n); 
   printf("\n");    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      pcom[j]=p[j]; 
        xicom[j]=xi[j]; 
   a=matrix(1,npar,1,npar);    } 
   y=matrix(1,npar,1,npar);    ax=0.0; 
   x=vector(1,npar);    xx=1.0; 
   indx=ivector(1,npar);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for (i=1;i<=npar;i++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  #ifdef DEBUG
   ludcmp(a,npar,indx,&pd);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (j=1;j<=npar;j++) {  #endif
     for (i=1;i<=npar;i++) x[i]=0;    for (j=1;j<=n;j++) { 
     x[j]=1;      xi[j] *= xmin; 
     lubksb(a,npar,indx,x);      p[j] += xi[j]; 
     for (i=1;i<=npar;i++){    } 
       matcov[i][j]=x[i];    free_vector(xicom,1,n); 
     }    free_vector(pcom,1,n); 
   }  } 
   
   printf("\n#Hessian matrix#\n");  char *asc_diff_time(long time_sec, char ascdiff[])
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++) {    long sec_left, days, hours, minutes;
       printf("%.3e ",hess[i][j]);    days = (time_sec) / (60*60*24);
     }    sec_left = (time_sec) % (60*60*24);
     printf("\n");    hours = (sec_left) / (60*60) ;
   }    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
   /* Recompute Inverse */    sec_left = (sec_left) % (60);
   for (i=1;i<=npar;i++)    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    return ascdiff;
   ludcmp(a,npar,indx,&pd);  }
   
   /*  printf("\n#Hessian matrix recomputed#\n");  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   for (j=1;j<=npar;j++) {              double (*func)(double [])) 
     for (i=1;i<=npar;i++) x[i]=0;  { 
     x[j]=1;    void linmin(double p[], double xi[], int n, double *fret, 
     lubksb(a,npar,indx,x);                double (*func)(double [])); 
     for (i=1;i<=npar;i++){    int i,ibig,j; 
       y[i][j]=x[i];    double del,t,*pt,*ptt,*xit;
       printf("%.3e ",y[i][j]);    double fp,fptt;
     }    double *xits;
     printf("\n");    int niterf, itmp;
   }  
   */    pt=vector(1,n); 
     ptt=vector(1,n); 
   free_matrix(a,1,npar,1,npar);    xit=vector(1,n); 
   free_matrix(y,1,npar,1,npar);    xits=vector(1,n); 
   free_vector(x,1,npar);    *fret=(*func)(p); 
   free_ivector(indx,1,npar);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   free_matrix(hess,1,npar,1,npar);    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
       ibig=0; 
 }      del=0.0; 
       last_time=curr_time;
 /*************** hessian matrix ****************/      (void) gettimeofday(&curr_time,&tzp);
 double hessii( double x[], double delta, int theta, double delti[])      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   int i;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   int l=1, lmax=20;     for (i=1;i<=n;i++) {
   double k1,k2;        printf(" %d %.12f",i, p[i]);
   double p2[NPARMAX+1];        fprintf(ficlog," %d %.12lf",i, p[i]);
   double res;        fprintf(ficrespow," %.12lf", p[i]);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      }
   double fx;      printf("\n");
   int k=0,kmax=10;      fprintf(ficlog,"\n");
   double l1;      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   fx=func(x);        tm = *localtime(&curr_time.tv_sec);
   for (i=1;i<=npar;i++) p2[i]=x[i];        strcpy(strcurr,asctime(&tm));
   for(l=0 ; l <=lmax; l++){  /*       asctime_r(&tm,strcurr); */
     l1=pow(10,l);        forecast_time=curr_time; 
     delts=delt;        itmp = strlen(strcurr);
     for(k=1 ; k <kmax; k=k+1){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       delt = delta*(l1*k);          strcurr[itmp-1]='\0';
       p2[theta]=x[theta] +delt;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       k1=func(p2)-fx;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       p2[theta]=x[theta]-delt;        for(niterf=10;niterf<=30;niterf+=10){
       k2=func(p2)-fx;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       /*res= (k1-2.0*fx+k2)/delt/delt; */          tmf = *localtime(&forecast_time.tv_sec);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /*      asctime_r(&tmf,strfor); */
                strcpy(strfor,asctime(&tmf));
 #ifdef DEBUG          itmp = strlen(strfor);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          if(strfor[itmp-1]=='\n')
 #endif          strfor[itmp-1]='\0';
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         k=kmax;        }
       }      }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for (i=1;i<=n;i++) { 
         k=kmax; l=lmax*10.;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  #ifdef DEBUG
         delts=delt;        printf("fret=%lf \n",*fret);
       }        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
   }        printf("%d",i);fflush(stdout);
   delti[theta]=delts;        fprintf(ficlog,"%d",i);fflush(ficlog);
   return res;        linmin(p,xit,n,fret,func); 
          if (fabs(fptt-(*fret)) > del) { 
 }          del=fabs(fptt-(*fret)); 
           ibig=i; 
 double hessij( double x[], double delti[], int thetai,int thetaj)        } 
 {  #ifdef DEBUG
   int i;        printf("%d %.12e",i,(*fret));
   int l=1, l1, lmax=20;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double k1,k2,k3,k4,res,fx;        for (j=1;j<=n;j++) {
   double p2[NPARMAX+1];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   int k;          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   fx=func(x);        }
   for (k=1; k<=2; k++) {        for(j=1;j<=n;j++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];          printf(" p=%.12e",p[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;          fprintf(ficlog," p=%.12e",p[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;        printf("\n");
          fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;  #endif
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      } 
     k2=func(p2)-fx;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
    #ifdef DEBUG
     p2[thetai]=x[thetai]-delti[thetai]/k;        int k[2],l;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        k[0]=1;
     k3=func(p2)-fx;        k[1]=-1;
          printf("Max: %.12e",(*func)(p));
     p2[thetai]=x[thetai]-delti[thetai]/k;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (j=1;j<=n;j++) {
     k4=func(p2)-fx;          printf(" %.12e",p[j]);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          fprintf(ficlog," %.12e",p[j]);
 #ifdef DEBUG        }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        printf("\n");
 #endif        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
   return res;          for (j=1;j<=n;j++) {
 }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /************** Inverse of matrix **************/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 void ludcmp(double **a, int n, int *indx, double *d)          }
 {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i,imax,j,k;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double big,dum,sum,temp;        }
   double *vv;  #endif
    
   vv=vector(1,n);  
   *d=1.0;        free_vector(xit,1,n); 
   for (i=1;i<=n;i++) {        free_vector(xits,1,n); 
     big=0.0;        free_vector(ptt,1,n); 
     for (j=1;j<=n;j++)        free_vector(pt,1,n); 
       if ((temp=fabs(a[i][j])) > big) big=temp;        return; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      } 
     vv[i]=1.0/big;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   }      for (j=1;j<=n;j++) { 
   for (j=1;j<=n;j++) {        ptt[j]=2.0*p[j]-pt[j]; 
     for (i=1;i<j;i++) {        xit[j]=p[j]-pt[j]; 
       sum=a[i][j];        pt[j]=p[j]; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      } 
       a[i][j]=sum;      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
     big=0.0;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (i=j;i<=n;i++) {        if (t < 0.0) { 
       sum=a[i][j];          linmin(p,xit,n,fret,func); 
       for (k=1;k<j;k++)          for (j=1;j<=n;j++) { 
         sum -= a[i][k]*a[k][j];            xi[j][ibig]=xi[j][n]; 
       a[i][j]=sum;            xi[j][n]=xit[j]; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {          }
         big=dum;  #ifdef DEBUG
         imax=i;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
     if (j != imax) {            printf(" %.12e",xit[j]);
       for (k=1;k<=n;k++) {            fprintf(ficlog," %.12e",xit[j]);
         dum=a[imax][k];          }
         a[imax][k]=a[j][k];          printf("\n");
         a[j][k]=dum;          fprintf(ficlog,"\n");
       }  #endif
       *d = -(*d);        }
       vv[imax]=vv[j];      } 
     }    } 
     indx[j]=imax;  } 
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  /**** Prevalence limit (stable or period prevalence)  ****************/
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     }  {
   }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   free_vector(vv,1,n);  /* Doesn't work */       matrix by transitions matrix until convergence is reached */
 ;  
 }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
 void lubksb(double **a, int n, int *indx, double b[])    double **matprod2();
 {    double **out, cov[NCOVMAX], **pmij();
   int i,ii=0,ip,j;    double **newm;
   double sum;    double agefin, delaymax=50 ; /* Max number of years to converge */
    
   for (i=1;i<=n;i++) {    for (ii=1;ii<=nlstate+ndeath;ii++)
     ip=indx[i];      for (j=1;j<=nlstate+ndeath;j++){
     sum=b[ip];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[ip]=b[i];      }
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     cov[1]=1.;
     else if (sum) ii=i;   
     b[i]=sum;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for (i=n;i>=1;i--) {      newm=savm;
     sum=b[i];      /* Covariates have to be included here again */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       cov[2]=agefin;
     b[i]=sum/a[i][i];    
   }        for (k=1; k<=cptcovn;k++) {
 }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 /************ Frequencies ********************/        }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {  /* Some frequencies */        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double *pp;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double pos, k2, dateintsum=0,k2cpt=0;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   FILE *ficresp;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   char fileresp[FILENAMELENGTH];  
        savm=oldm;
   pp=vector(1,nlstate);      oldm=newm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      maxmax=0.;
   strcpy(fileresp,"p");      for(j=1;j<=nlstate;j++){
   strcat(fileresp,fileres);        min=1.;
   if((ficresp=fopen(fileresp,"w"))==NULL) {        max=0.;
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for(i=1; i<=nlstate; i++) {
     exit(0);          sumnew=0;
   }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          prlim[i][j]= newm[i][j]/(1-sumnew);
   j1=0;          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        maxmin=max-min;
          maxmax=FMAX(maxmax,maxmin);
   for(k1=1; k1<=j;k1++){      }
     for(i1=1; i1<=ncodemax[k1];i1++){      if(maxmax < ftolpl){
       j1++;        return prlim;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      }
         scanf("%d", i);*/    }
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /*************** transition probabilities ***************/ 
             freq[i][jk][m]=0;  
        double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       dateintsum=0;  {
       k2cpt=0;    double s1, s2;
       for (i=1; i<=imx; i++) {    /*double t34;*/
         bool=1;    int i,j,j1, nc, ii, jj;
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)      for(i=1; i<= nlstate; i++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(j=1; j<i;j++){
               bool=0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         }            /*s2 += param[i][j][nc]*cov[nc];*/
         if (bool==1) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           for(m=firstpass; m<=lastpass; m++){  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
             k2=anint[m][i]+(mint[m][i]/12.);          }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          ps[i][j]=s2;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
               if(agev[m][i]==1) agev[m][i]=agemax+2;        }
               if (m<lastpass) {        for(j=i+1; j<=nlstate+ndeath;j++){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
               }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
                        }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          ps[i][j]=s2;
                 dateintsum=dateintsum+k2;        }
                 k2cpt++;      }
               }      /*ps[3][2]=1;*/
             }      
           }      for(i=1; i<= nlstate; i++){
         }        s1=0;
       }        for(j=1; j<i; j++)
                  s1+=exp(ps[i][j]);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(j=i+1; j<=nlstate+ndeath; j++)
           s1+=exp(ps[i][j]);
       if  (cptcovn>0) {        ps[i][i]=1./(s1+1.);
         fprintf(ficresp, "\n#********** Variable ");        for(j=1; j<i; j++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
         fprintf(ficresp, "**********\n#");        for(j=i+1; j<=nlstate+ndeath; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(i=1; i<=nlstate;i++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      } /* end i */
       fprintf(ficresp, "\n");      
            for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(jj=1; jj<= nlstate+ndeath; jj++){
         if(i==(int)agemax+3)          ps[ii][jj]=0;
           printf("Total");          ps[ii][ii]=1;
         else        }
           printf("Age %d", i);      }
         for(jk=1; jk <=nlstate ; jk++){      
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         for(jk=1; jk <=nlstate ; jk++){  /*         printf("ddd %lf ",ps[ii][jj]); */
           for(m=-1, pos=0; m <=0 ; m++)  /*       } */
             pos += freq[jk][m][i];  /*       printf("\n "); */
           if(pp[jk]>=1.e-10)  /*        } */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*        printf("\n ");printf("%lf ",cov[2]); */
           else         /*
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         }        goto end;*/
       return ps;
         for(jk=1; jk <=nlstate ; jk++){  }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];  /**************** Product of 2 matrices ******************/
         }  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         for(jk=1,pos=0; jk <=nlstate ; jk++)  {
           pos += pp[jk];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         for(jk=1; jk <=nlstate ; jk++){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           if(pos>=1.e-5)    /* in, b, out are matrice of pointers which should have been initialized 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);       before: only the contents of out is modified. The function returns
           else       a pointer to pointers identical to out */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    long i, j, k;
           if( i <= (int) agemax){    for(i=nrl; i<= nrh; i++)
             if(pos>=1.e-5){      for(k=ncolol; k<=ncoloh; k++)
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
               probs[i][jk][j1]= pp[jk]/pos;          out[i][k] +=in[i][j]*b[j][k];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }    return out;
             else  }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }  
         }  /************* Higher Matrix Product ***************/
          
         for(jk=-1; jk <=nlstate+ndeath; jk++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           for(m=-1; m <=nlstate+ndeath; m++)  {
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /* Computes the transition matrix starting at age 'age' over 
         if(i <= (int) agemax)       'nhstepm*hstepm*stepm' months (i.e. until
           fprintf(ficresp,"\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         printf("\n");       nhstepm*hstepm matrices. 
       }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
   }       for the memory).
   dateintmean=dateintsum/k2cpt;       Model is determined by parameters x and covariates have to be 
         included manually here. 
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       */
   free_vector(pp,1,nlstate);  
      int i, j, d, h, k;
   /* End of Freq */    double **out, cov[NCOVMAX];
 }    double **newm;
   
 /************ Prevalence ********************/    /* Hstepm could be zero and should return the unit matrix */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    for (i=1;i<=nlstate+ndeath;i++)
 {  /* Some frequencies */      for (j=1;j<=nlstate+ndeath;j++){
          oldm[i][j]=(i==j ? 1.0 : 0.0);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */      }
   double *pp;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double pos, k2;    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   pp=vector(1,nlstate);        newm=savm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* Covariates have to be included here again */
          cov[1]=1.;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   j1=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
   j=cptcoveff;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
              /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       for (i=-1; i<=nlstate+ndeath; i++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         for (jk=-1; jk<=nlstate+ndeath; jk++)                       pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=agemin; m <= agemax+3; m++)        savm=oldm;
             freq[i][jk][m]=0;        oldm=newm;
            }
       for (i=1; i<=imx; i++) {      for(i=1; i<=nlstate+ndeath; i++)
         bool=1;        for(j=1;j<=nlstate+ndeath;j++) {
         if  (cptcovn>0) {          po[i][j][h]=newm[i][j];
           for (z1=1; z1<=cptcoveff; z1++)          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        }
               bool=0;      /*printf("h=%d ",h);*/
         }    } /* end h */
         if (bool==1) {  /*     printf("\n H=%d \n",h); */
           for(m=firstpass; m<=lastpass; m++){    return po;
             k2=anint[m][i]+(mint[m][i]/12.);  }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /*************** log-likelihood *************/
               if (m<lastpass) {  double func( double *x)
                 if (calagedate>0)  {
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    int i, ii, j, k, mi, d, kk;
                 else    double l, ll[NLSTATEMAX], cov[NCOVMAX];
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double **out;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    double sw; /* Sum of weights */
               }    double lli; /* Individual log likelihood */
             }    int s1, s2;
           }    double bbh, survp;
         }    long ipmx;
       }    /*extern weight */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /* We are differentiating ll according to initial status */
         for(jk=1; jk <=nlstate ; jk++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /*for(i=1;i<imx;i++) 
             pp[jk] += freq[jk][m][i];      printf(" %d\n",s[4][i]);
         }    */
         for(jk=1; jk <=nlstate ; jk++){    cov[1]=1.;
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
            if(mle==1){
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pp[jk] += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){                }
           if( i <= (int) agemax){          for(d=0; d<dh[mi][i]; d++){
             if(pos>=1.e-5){            newm=savm;
               probs[i][jk][j1]= pp[jk]/pos;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             }            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }            oldm=newm;
           } /* end mult */
          
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   free_vector(pp,1,nlstate);          /* But now since version 0.9 we anticipate for bias at large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
 }  /* End of Freq */           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 /************* Waves Concatenation ***************/           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           * probability in order to take into account the bias as a fraction of the way
 {           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           * -stepm/2 to stepm/2 .
      Death is a valid wave (if date is known).           * For stepm=1 the results are the same as for previous versions of Imach.
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i           * For stepm > 1 the results are less biased than in previous versions. 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           */
      and mw[mi+1][i]. dh depends on stepm.          s1=s[mw[mi][i]][i];
      */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   int i, mi, m;          /* bias bh is positive if real duration
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           * is higher than the multiple of stepm and negative otherwise.
      double sum=0., jmean=0.;*/           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int j, k=0,jk, ju, jl;          if( s2 > nlstate){ 
   double sum=0.;            /* i.e. if s2 is a death state and if the date of death is known 
   jmin=1e+5;               then the contribution to the likelihood is the probability to 
   jmax=-1;               die between last step unit time and current  step unit time, 
   jmean=0.;               which is also equal to probability to die before dh 
   for(i=1; i<=imx; i++){               minus probability to die before dh-stepm . 
     mi=0;               In version up to 0.92 likelihood was computed
     m=firstpass;          as if date of death was unknown. Death was treated as any other
     while(s[m][i] <= nlstate){          health state: the date of the interview describes the actual state
       if(s[m][i]>=1)          and not the date of a change in health state. The former idea was
         mw[++mi][i]=m;          to consider that at each interview the state was recorded
       if(m >=lastpass)          (healthy, disable or death) and IMaCh was corrected; but when we
         break;          introduced the exact date of death then we should have modified
       else          the contribution of an exact death to the likelihood. This new
         m++;          contribution is smaller and very dependent of the step unit
     }/* end while */          stepm. It is no more the probability to die between last interview
     if (s[m][i] > nlstate){          and month of death but the probability to survive from last
       mi++;     /* Death is another wave */          interview up to one month before death multiplied by the
       /* if(mi==0)  never been interviewed correctly before death */          probability to die within a month. Thanks to Chris
          /* Only death is a correct wave */          Jackson for correcting this bug.  Former versions increased
       mw[mi][i]=m;          mortality artificially. The bad side is that we add another loop
     }          which slows down the processing. The difference can be up to 10%
           lower mortality.
     wav[i]=mi;            */
     if(mi==0)            lli=log(out[s1][s2] - savm[s1][s2]);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }  
           } else if  (s2==-2) {
   for(i=1; i<=imx; i++){            for (j=1,survp=0. ; j<=nlstate; j++) 
     for(mi=1; mi<wav[i];mi++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if (stepm <=0)            /*survp += out[s1][j]; */
         dh[mi][i]=1;            lli= log(survp);
       else{          }
         if (s[mw[mi+1][i]][i] > nlstate) {          
           if (agedc[i] < 2*AGESUP) {          else if  (s2==-4) { 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            for (j=3,survp=0. ; j<=nlstate; j++)  
           if(j==0) j=1;  /* Survives at least one month after exam */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           k=k+1;            lli= log(survp); 
           if (j >= jmax) jmax=j;          } 
           if (j <= jmin) jmin=j;  
           sum=sum+j;          else if  (s2==-5) { 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            for (j=1,survp=0. ; j<=2; j++)  
           }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
         else{          } 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          
           k=k+1;          else{
           if (j >= jmax) jmax=j;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           else if (j <= jmin)jmin=j;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          } 
           sum=sum+j;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
         jk= j/stepm;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         jl= j -jk*stepm;          ipmx +=1;
         ju= j -(jk+1)*stepm;          sw += weight[i];
         if(jl <= -ju)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           dh[mi][i]=jk;        } /* end of wave */
         else      } /* end of individual */
           dh[mi][i]=jk+1;    }  else if(mle==2){
         if(dh[mi][i]==0)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           dh[mi][i]=1; /* At least one step */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   jmean=sum/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  }            }
 /*********** Tricode ****************************/          for(d=0; d<=dh[mi][i]; d++){
 void tricode(int *Tvar, int **nbcode, int imx)            newm=savm;
 {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int Ndum[20],ij=1, k, j, i;            for (kk=1; kk<=cptcovage;kk++) {
   int cptcode=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   cptcoveff=0;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (k=0; k<19; k++) Ndum[k]=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (k=1; k<=7; k++) ncodemax[k]=0;            savm=oldm;
             oldm=newm;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          } /* end mult */
     for (i=1; i<=imx; i++) {        
       ij=(int)(covar[Tvar[j]][i]);          s1=s[mw[mi][i]][i];
       Ndum[ij]++;          s2=s[mw[mi+1][i]][i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          bbh=(double)bh[mi][i]/(double)stepm; 
       if (ij > cptcode) cptcode=ij;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }          ipmx +=1;
           sw += weight[i];
     for (i=0; i<=cptcode; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(Ndum[i]!=0) ncodemax[j]++;        } /* end of wave */
     }      } /* end of individual */
     ij=1;    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1; i<=ncodemax[j]; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       for (k=0; k<=19; k++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         if (Ndum[k] != 0) {            for (j=1;j<=nlstate+ndeath;j++){
           nbcode[Tvar[j]][ij]=k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                        savm[ii][j]=(ii==j ? 1.0 : 0.0);
           ij++;            }
         }          for(d=0; d<dh[mi][i]; d++){
         if (ij > ncodemax[j]) break;            newm=savm;
       }              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
  for (k=0; k<19; k++) Ndum[k]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (i=1; i<=ncovmodel-2; i++) {            savm=oldm;
       ij=Tvar[i];            oldm=newm;
       Ndum[ij]++;          } /* end mult */
     }        
           s1=s[mw[mi][i]][i];
  ij=1;          s2=s[mw[mi+1][i]][i];
  for (i=1; i<=10; i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
    if((Ndum[i]!=0) && (i<=ncovcol)){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      Tvaraff[ij]=i;          ipmx +=1;
      ij++;          sw += weight[i];
    }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }        } /* end of wave */
        } /* end of individual */
     cptcoveff=ij-1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*********** Health Expectancies ****************/        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Health expectancies */            }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          for(d=0; d<dh[mi][i]; d++){
   double age, agelim, hf;            newm=savm;
   double ***p3mat,***varhe;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **dnewm,**doldm;            for (kk=1; kk<=cptcovage;kk++) {
   double *xp;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **gp, **gm;            }
   double ***gradg, ***trgradg;          
   int theta;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            savm=oldm;
   xp=vector(1,npar);            oldm=newm;
   dnewm=matrix(1,nlstate*2,1,npar);          } /* end mult */
   doldm=matrix(1,nlstate*2,1,nlstate*2);        
            s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"# Health expectancies\n");          s2=s[mw[mi+1][i]][i];
   fprintf(ficreseij,"# Age");          if( s2 > nlstate){ 
   for(i=1; i<=nlstate;i++)            lli=log(out[s1][s2] - savm[s1][s2]);
     for(j=1; j<=nlstate;j++)          }else{
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fprintf(ficreseij,"\n");          }
           ipmx +=1;
   if(estepm < stepm){          sw += weight[i];
     printf ("Problem %d lower than %d\n",estepm, stepm);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   else  hstepm=estepm;          } /* end of wave */
   /* We compute the life expectancy from trapezoids spaced every estepm months      } /* end of individual */
    * This is mainly to measure the difference between two models: for example    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
    * if stepm=24 months pijx are given only every 2 years and by summing them      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    * we are calculating an estimate of the Life Expectancy assuming a linear        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    * progression inbetween and thus overestimating or underestimating according        for(mi=1; mi<= wav[i]-1; mi++){
    * to the curvature of the survival function. If, for the same date, we          for (ii=1;ii<=nlstate+ndeath;ii++)
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            for (j=1;j<=nlstate+ndeath;j++){
    * to compare the new estimate of Life expectancy with the same linear              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * hypothesis. A more precise result, taking into account a more precise              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * curvature will be obtained if estepm is as small as stepm. */            }
           for(d=0; d<dh[mi][i]; d++){
   /* For example we decided to compute the life expectancy with the smallest unit */            newm=savm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      nhstepm is the number of hstepm from age to agelim            for (kk=1; kk<=cptcovage;kk++) {
      nstepm is the number of stepm from age to agelin.              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      Look at hpijx to understand the reason of that which relies in memory size            }
      and note for a fixed period like estepm months */          
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      survival function given by stepm (the optimization length). Unfortunately it                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      means that if the survival funtion is printed only each two years of age and if            savm=oldm;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            oldm=newm;
      results. So we changed our mind and took the option of the best precision.          } /* end mult */
   */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   agelim=AGESUP;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          ipmx +=1;
     /* nhstepm age range expressed in number of stepm */          sw += weight[i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     /* if (stepm >= YEARM) hstepm=1;*/        } /* end of wave */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      } /* end of individual */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* End of if */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     gp=matrix(0,nhstepm,1,nlstate*2);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     gm=matrix(0,nhstepm,1,nlstate*2);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    /*************** log-likelihood *************/
    double funcone( double *x)
   {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
     /* Computing Variances of health expectancies */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
      for(theta=1; theta <=npar; theta++){    double lli; /* Individual log likelihood */
       for(i=1; i<=npar; i++){    double llt;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int s1, s2;
       }    double bbh, survp;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /*extern weight */
      /* We are differentiating ll according to initial status */
       cptj=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(j=1; j<= nlstate; j++){    /*for(i=1;i<imx;i++) 
         for(i=1; i<=nlstate; i++){      printf(" %d\n",s[4][i]);
           cptj=cptj+1;    */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    cov[1]=1.;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
       }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1; i<=npar; i++)        for (ii=1;ii<=nlstate+ndeath;ii++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for (j=1;j<=nlstate+ndeath;j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
       cptj=0;          }
       for(j=1; j<= nlstate; j++){        for(d=0; d<dh[mi][i]; d++){
         for(i=1;i<=nlstate;i++){          newm=savm;
           cptj=cptj+1;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          for (kk=1; kk<=cptcovage;kk++) {
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }          }
         }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<= nlstate*2; j++)          savm=oldm;
         for(h=0; h<=nhstepm-1; h++){          oldm=newm;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        } /* end mult */
         }        
      }        s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
 /* End theta */        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);         * is higher than the multiple of stepm and negative otherwise.
          */
      for(h=0; h<=nhstepm-1; h++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(j=1; j<=nlstate*2;j++)          lli=log(out[s1][s2] - savm[s1][s2]);
         for(theta=1; theta <=npar; theta++)        } else if  (s2==-2) {
           trgradg[h][j][theta]=gradg[h][theta][j];          for (j=1,survp=0. ; j<=nlstate; j++) 
                  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
      for(i=1;i<=nlstate*2;i++)        }else if (mle==1){
       for(j=1;j<=nlstate*2;j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         varhe[i][j][(int)age] =0.;        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      printf("%d|",(int)age);fflush(stdout);        } else if(mle==3){  /* exponential inter-extrapolation */
      for(h=0;h<=nhstepm-1;h++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(k=0;k<=nhstepm-1;k++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          lli=log(out[s1][s2]); /* Original formula */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         for(i=1;i<=nlstate*2;i++)          lli=log(out[s1][s2]); /* Original formula */
           for(j=1;j<=nlstate*2;j++)        } /* End of if */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        ipmx +=1;
       }        sw += weight[i];
     }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* Computing expectancies */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i=1; i<=nlstate;i++)        if(globpr){
       for(j=1; j<=nlstate;j++)          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){   %11.6f %11.6f %11.6f ", \
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                            2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
         }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
     fprintf(ficreseij,"%3.0f",age );          fprintf(ficresilk," %10.6f\n", -llt);
     cptj=0;        }
     for(i=1; i<=nlstate;i++)      } /* end of wave */
       for(j=1; j<=nlstate;j++){    } /* end of individual */
         cptj++;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(ficreseij,"\n");    if(globpr==0){ /* First time we count the contributions and weights */
          gipmx=ipmx;
     free_matrix(gm,0,nhstepm,1,nlstate*2);      gsw=sw;
     free_matrix(gp,0,nhstepm,1,nlstate*2);    }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    return -l;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }  
   printf("\n");  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_vector(xp,1,npar);  {
   free_matrix(dnewm,1,nlstate*2,1,npar);    /* This routine should help understanding what is done with 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);       the selection of individuals/waves and
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);       to check the exact contribution to the likelihood.
 }       Plotting could be done.
      */
 /************ Variance ******************/    int k;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  
 {    if(*globpri !=0){ /* Just counts and sums, no printings */
   /* Variance of health expectancies */      strcpy(fileresilk,"ilk"); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      strcat(fileresilk,fileres);
   double **newm;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double **dnewm,**doldm;        printf("Problem with resultfile: %s\n", fileresilk);
   int i, j, nhstepm, hstepm, h, nstepm ;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   int k, cptcode;      }
   double *xp;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double **gp, **gm;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double ***gradg, ***trgradg;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double ***p3mat;      for(k=1; k<=nlstate; k++) 
   double age,agelim, hf;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   int theta;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");    *fretone=(*funcone)(p);
   for(i=1; i<=nlstate;i++)    if(*globpri !=0){
     for(j=1; j<=nlstate;j++)      fclose(ficresilk);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   fprintf(ficresvij,"\n");      fflush(fichtm); 
     } 
   xp=vector(1,npar);    return;
   dnewm=matrix(1,nlstate,1,npar);  }
   doldm=matrix(1,nlstate,1,nlstate);  
    
   if(estepm < stepm){  /*********** Maximum Likelihood Estimation ***************/
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   else  hstepm=estepm;    {
   /* For example we decided to compute the life expectancy with the smallest unit */    int i,j, iter;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double **xi;
      nhstepm is the number of hstepm from age to agelim    double fret;
      nstepm is the number of stepm from age to agelin.    double fretone; /* Only one call to likelihood */
      Look at hpijx to understand the reason of that which relies in memory size    /*  char filerespow[FILENAMELENGTH];*/
      and note for a fixed period like k years */    xi=matrix(1,npar,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    for (i=1;i<=npar;i++)
      survival function given by stepm (the optimization length). Unfortunately it      for (j=1;j<=npar;j++)
      means that if the survival funtion is printed only each two years of age and if        xi[i][j]=(i==j ? 1.0 : 0.0);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      results. So we changed our mind and took the option of the best precision.    strcpy(filerespow,"pow"); 
   */    strcat(filerespow,fileres);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   agelim = AGESUP;      printf("Problem with resultfile: %s\n", filerespow);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=nlstate;i++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
     gp=matrix(0,nhstepm,1,nlstate);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     gm=matrix(0,nhstepm,1,nlstate);    fprintf(ficrespow,"\n");
   
     for(theta=1; theta <=npar; theta++){    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_matrix(xi,1,npar,1,npar);
       }    fclose(ficrespow);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  }
           prlim[i][i]=probs[(int)age][i][ij];  
       }  /**** Computes Hessian and covariance matrix ***/
    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(j=1; j<= nlstate; j++){  {
         for(h=0; h<=nhstepm; h++){    double  **a,**y,*x,pd;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double **hess;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int i, j,jk;
         }    int *indx;
       }  
        double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       for(i=1; i<=npar; i++) /* Computes gradient */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      void ludcmp(double **a, int npar, int *indx, double *d) ;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double gompertz(double p[]);
      hess=matrix(1,npar,1,npar);
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
           prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
       for(j=1; j<= nlstate; j++){      fprintf(ficlog,"%d",i);fflush(ficlog);
         for(h=0; h<=nhstepm; h++){     
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      
         }      /*  printf(" %f ",p[i]);
       }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
       for(j=1; j<= nlstate; j++)    
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=npar;i++) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (j=1;j<=npar;j++)  {
         }        if (j>i) { 
     } /* End theta */          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
     for(h=0; h<=nhstepm; h++)          hess[j][i]=hess[i][j];    
       for(j=1; j<=nlstate;j++)          /*printf(" %lf ",hess[i][j]);*/
         for(theta=1; theta <=npar; theta++)        }
           trgradg[h][j][theta]=gradg[h][theta][j];      }
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("\n");
     for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n");
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(h=0;h<=nhstepm;h++){    
       for(k=0;k<=nhstepm;k++){    a=matrix(1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    y=matrix(1,npar,1,npar);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    x=vector(1,npar);
         for(i=1;i<=nlstate;i++)    indx=ivector(1,npar);
           for(j=1;j<=nlstate;j++)    for (i=1;i<=npar;i++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       }    ludcmp(a,npar,indx,&pd);
     }  
     for (j=1;j<=npar;j++) {
     fprintf(ficresvij,"%.0f ",age );      for (i=1;i<=npar;i++) x[i]=0;
     for(i=1; i<=nlstate;i++)      x[j]=1;
       for(j=1; j<=nlstate;j++){      lubksb(a,npar,indx,x);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for (i=1;i<=npar;i++){ 
       }        matcov[i][j]=x[i];
     fprintf(ficresvij,"\n");      }
     free_matrix(gp,0,nhstepm,1,nlstate);    }
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    printf("\n#Hessian matrix#\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++) { 
   } /* End age */      for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
   free_vector(xp,1,npar);        fprintf(ficlog,"%.3e ",hess[i][j]);
   free_matrix(doldm,1,nlstate,1,npar);      }
   free_matrix(dnewm,1,nlstate,1,nlstate);      printf("\n");
       fprintf(ficlog,"\n");
 }    }
   
 /************ Variance of prevlim ******************/    /* Recompute Inverse */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for (i=1;i<=npar;i++)
 {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   /* Variance of prevalence limit */    ludcmp(a,npar,indx,&pd);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    /*  printf("\n#Hessian matrix recomputed#\n");
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    for (j=1;j<=npar;j++) {
   int k, cptcode;      for (i=1;i<=npar;i++) x[i]=0;
   double *xp;      x[j]=1;
   double *gp, *gm;      lubksb(a,npar,indx,x);
   double **gradg, **trgradg;      for (i=1;i<=npar;i++){ 
   double age,agelim;        y[i][j]=x[i];
   int theta;        printf("%.3e ",y[i][j]);
            fprintf(ficlog,"%.3e ",y[i][j]);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      }
   fprintf(ficresvpl,"# Age");      printf("\n");
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"\n");
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");    */
   
   xp=vector(1,npar);    free_matrix(a,1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);    free_matrix(y,1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    free_vector(x,1,npar);
      free_ivector(indx,1,npar);
   hstepm=1*YEARM; /* Every year of age */    free_matrix(hess,1,npar,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /*************** hessian matrix ****************/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     gradg=matrix(1,npar,1,nlstate);  {
     gp=vector(1,nlstate);    int i;
     gm=vector(1,nlstate);    int l=1, lmax=20;
     double k1,k2;
     for(theta=1; theta <=npar; theta++){    double p2[NPARMAX+1];
       for(i=1; i<=npar; i++){ /* Computes gradient */    double res;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       }    double fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int k=0,kmax=10;
       for(i=1;i<=nlstate;i++)    double l1;
         gp[i] = prlim[i][i];  
        fx=func(x);
       for(i=1; i<=npar; i++) /* Computes gradient */    for (i=1;i<=npar;i++) p2[i]=x[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(l=0 ; l <=lmax; l++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      l1=pow(10,l);
       for(i=1;i<=nlstate;i++)      delts=delt;
         gm[i] = prlim[i][i];      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
       for(i=1;i<=nlstate;i++)        p2[theta]=x[theta] +delt;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        k1=func(p2)-fx;
     } /* End theta */        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
     trgradg =matrix(1,nlstate,1,npar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     for(j=1; j<=nlstate;j++)        
       for(theta=1; theta <=npar; theta++)  #ifdef DEBUG
         trgradg[j][theta]=gradg[theta][j];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(i=1;i<=nlstate;i++)  #endif
       varpl[i][(int)age] =0.;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          k=kmax;
     for(i=1;i<=nlstate;i++)        }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
     fprintf(ficresvpl,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          delts=delt;
     fprintf(ficresvpl,"\n");        }
     free_vector(gp,1,nlstate);      }
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);    delti[theta]=delts;
     free_matrix(trgradg,1,nlstate,1,npar);    return res; 
   } /* End age */    
   }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   free_matrix(dnewm,1,nlstate,1,nlstate);  {
     int i;
 }    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 /************ Variance of one-step probabilities  ******************/    double p2[NPARMAX+1];
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    int k;
 {  
   int i, j,  i1, k1, l1;    fx=func(x);
   int k2, l2, j1,  z1;    for (k=1; k<=2; k++) {
   int k=0,l, cptcode;      for (i=1;i<=npar;i++) p2[i]=x[i];
   int first=1;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double **dnewm,**doldm;      k1=func(p2)-fx;
   double *xp;    
   double *gp, *gm;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double **gradg, **trgradg;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double **mu;      k2=func(p2)-fx;
   double age,agelim, cov[NCOVMAX];    
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      p2[thetai]=x[thetai]-delti[thetai]/k;
   int theta;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   char fileresprob[FILENAMELENGTH];      k3=func(p2)-fx;
   char fileresprobcov[FILENAMELENGTH];    
   char fileresprobcor[FILENAMELENGTH];      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double ***varpij;      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   strcpy(fileresprob,"prob");  #ifdef DEBUG
   strcat(fileresprob,fileres);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     printf("Problem with resultfile: %s\n", fileresprob);  #endif
   }    }
   strcpy(fileresprobcov,"probcov");    return res;
   strcat(fileresprobcov,fileres);  }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcov);  /************** Inverse of matrix **************/
   }  void ludcmp(double **a, int n, int *indx, double *d) 
   strcpy(fileresprobcor,"probcor");  { 
   strcat(fileresprobcor,fileres);    int i,imax,j,k; 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    double big,dum,sum,temp; 
     printf("Problem with resultfile: %s\n", fileresprobcor);    double *vv; 
   }   
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    vv=vector(1,n); 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    *d=1.0; 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    for (i=1;i<=n;i++) { 
        big=0.0; 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      for (j=1;j<=n;j++) 
   fprintf(ficresprob,"# Age");        if ((temp=fabs(a[i][j])) > big) big=temp; 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   fprintf(ficresprobcov,"# Age");      vv[i]=1.0/big; 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    } 
   fprintf(ficresprobcov,"# Age");    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
         sum=a[i][j]; 
   for(i=1; i<=nlstate;i++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for(j=1; j<=(nlstate+ndeath);j++){        a[i][j]=sum; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      } 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      big=0.0; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      for (i=j;i<=n;i++) { 
     }          sum=a[i][j]; 
   fprintf(ficresprob,"\n");        for (k=1;k<j;k++) 
   fprintf(ficresprobcov,"\n");          sum -= a[i][k]*a[k][j]; 
   fprintf(ficresprobcor,"\n");        a[i][j]=sum; 
   xp=vector(1,npar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          big=dum; 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          imax=i; 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        } 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      } 
   first=1;      if (j != imax) { 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for (k=1;k<=n;k++) { 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          dum=a[imax][k]; 
     exit(0);          a[imax][k]=a[j][k]; 
   }          a[j][k]=dum; 
   else{        } 
     fprintf(ficgp,"\n# Routine varprob");        *d = -(*d); 
   }        vv[imax]=vv[j]; 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      } 
     printf("Problem with html file: %s\n", optionfilehtm);      indx[j]=imax; 
     exit(0);      if (a[j][j] == 0.0) a[j][j]=TINY; 
   }      if (j != n) { 
   else{        dum=1.0/(a[j][j]); 
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      } 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    } 
     free_vector(vv,1,n);  /* Doesn't work */
   }  ;
   cov[1]=1;  } 
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  void lubksb(double **a, int n, int *indx, double b[]) 
   j1=0;  { 
   for(k1=1; k1<=1;k1++){    int i,ii=0,ip,j; 
     for(i1=1; i1<=ncodemax[k1];i1++){    double sum; 
     j1++;   
     for (i=1;i<=n;i++) { 
     if  (cptcovn>0) {      ip=indx[i]; 
       fprintf(ficresprob, "\n#********** Variable ");      sum=b[ip]; 
       fprintf(ficresprobcov, "\n#********** Variable ");      b[ip]=b[i]; 
       fprintf(ficgp, "\n#********** Variable ");      if (ii) 
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficresprobcor, "\n#********** Variable ");      else if (sum) ii=i; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      b[i]=sum; 
       fprintf(ficresprob, "**********\n#");    } 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=n;i>=1;i--) { 
       fprintf(ficresprobcov, "**********\n#");      sum=b[i]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficgp, "**********\n#");      b[i]=sum/a[i][i]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } 
       fprintf(ficgp, "**********\n#");  } 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(fichtm, "**********\n#");  void pstamp(FILE *fichier)
     }  {
        fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       for (age=bage; age<=fage; age ++){  }
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {  /************ Frequencies ********************/
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         }  {  /* Some frequencies */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
         for (k=1; k<=cptcovprod;k++)    int i, m, jk, k1,i1, j1, bool, z1,j;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int first;
            double ***freq; /* Frequencies */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    double *pp, **prop;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         gp=vector(1,(nlstate)*(nlstate+ndeath));    char fileresp[FILENAMELENGTH];
         gm=vector(1,(nlstate)*(nlstate+ndeath));    
        pp=vector(1,nlstate);
         for(theta=1; theta <=npar; theta++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
           for(i=1; i<=npar; i++)    strcpy(fileresp,"p");
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    strcat(fileresp,fileres);
              if((ficresp=fopen(fileresp,"w"))==NULL) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
                fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           k=0;      exit(0);
           for(i=1; i<= (nlstate); i++){    }
             for(j=1; j<=(nlstate+ndeath);j++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
               k=k+1;    j1=0;
               gp[k]=pmmij[i][j];    
             }    j=cptcoveff;
           }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
            
           for(i=1; i<=npar; i++)    first=1;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
        for(k1=1; k1<=j;k1++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
           k=0;        j1++;
           for(i=1; i<=(nlstate); i++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             for(j=1; j<=(nlstate+ndeath);j++){          scanf("%d", i);*/
               k=k+1;        for (i=-5; i<=nlstate+ndeath; i++)  
               gm[k]=pmmij[i][j];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             }            for(m=iagemin; m <= iagemax+3; m++)
           }              freq[i][jk][m]=0;
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      for (i=1; i<=nlstate; i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          for(m=iagemin; m <= iagemax+3; m++)
         }          prop[i][m]=0;
         
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        dateintsum=0;
           for(theta=1; theta <=npar; theta++)        k2cpt=0;
             trgradg[j][theta]=gradg[theta][j];        for (i=1; i<=imx; i++) {
                  bool=1;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          if  (cptcovn>0) {
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            for (z1=1; z1<=cptcoveff; z1++) 
                      if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         pmij(pmmij,cov,ncovmodel,x,nlstate);                bool=0;
                  }
         k=0;          if (bool==1){
         for(i=1; i<=(nlstate); i++){            for(m=firstpass; m<=lastpass; m++){
           for(j=1; j<=(nlstate+ndeath);j++){              k2=anint[m][i]+(mint[m][i]/12.);
             k=k+1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             mu[k][(int) age]=pmmij[i][j];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                if (m<lastpass) {
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             varpij[i][j][(int)age] = doldm[i][j];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
         /*printf("\n%d ",(int)age);                
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                  dateintsum=dateintsum+k2;
      }*/                  k2cpt++;
                 }
         fprintf(ficresprob,"\n%d ",(int)age);                /*}*/
         fprintf(ficresprobcov,"\n%d ",(int)age);            }
         fprintf(ficresprobcor,"\n%d ",(int)age);          }
         }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)         
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        pstamp(ficresp);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        if  (cptcovn>0) {
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          fprintf(ficresp, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         i=0;          fprintf(ficresp, "**********\n#");
         for (k=1; k<=(nlstate);k++){        }
           for (l=1; l<=(nlstate+ndeath);l++){        for(i=1; i<=nlstate;i++) 
             i=i++;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        fprintf(ficresp, "\n");
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        
             for (j=1; j<=i;j++){        for(i=iagemin; i <= iagemax+3; i++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          if(i==iagemax+3){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            fprintf(ficlog,"Total");
             }          }else{
           }            if(first==1){
         }/* end of loop for state */              first=0;
       } /* end of loop for age */              printf("See log file for details...\n");
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            }
       for (k1=1; k1<=(nlstate);k1++){            fprintf(ficlog,"Age %d", i);
         for (l1=1; l1<=(nlstate+ndeath);l1++){          }
           if(l1==k1) continue;          for(jk=1; jk <=nlstate ; jk++){
           i=(k1-1)*(nlstate+ndeath)+l1;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           for (k2=1; k2<=(nlstate);k2++){              pp[jk] += freq[jk][m][i]; 
             for (l2=1; l2<=(nlstate+ndeath);l2++){          }
               if(l2==k2) continue;          for(jk=1; jk <=nlstate ; jk++){
               j=(k2-1)*(nlstate+ndeath)+l2;            for(m=-1, pos=0; m <=0 ; m++)
               if(j<=i) continue;              pos += freq[jk][m][i];
               for (age=bage; age<=fage; age ++){            if(pp[jk]>=1.e-10){
                 if ((int)age %5==0){              if(first==1){
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   mu1=mu[i][(int) age]/stepm*YEARM ;            }else{
                   mu2=mu[j][(int) age]/stepm*YEARM;              if(first==1)
                   /* Computing eigen value of matrix of covariance */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            }
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          }
                   /* Eigen vectors */  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          for(jk=1; jk <=nlstate ; jk++){
                   v21=sqrt(1.-v11*v11);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   v12=-v21;              pp[jk] += freq[jk][m][i];
                   v22=v11;          }       
                   /*printf(fignu*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            pos += pp[jk];
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            posprop += prop[jk][i];
                   if(first==1){          }
                     first=0;          for(jk=1; jk <=nlstate ; jk++){
                     fprintf(ficgp,"\nset parametric;set nolabel");            if(pos>=1.e-5){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);              if(first==1)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);            }else{
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);              if(first==1)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            if( i <= iagemax){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              if(pos>=1.e-5){
                   }else{                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                     first=0;                /*probs[i][jk][j1]= pp[jk]/pos;*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              else
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);            }
                   }/* if first */          }
                 } /* age mod 5 */          
               } /* end loop age */          for(jk=-1; jk <=nlstate+ndeath; jk++)
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);            for(m=-1; m <=nlstate+ndeath; m++)
               first=1;              if(freq[jk][m][i] !=0 ) {
             } /*l12 */              if(first==1)
           } /* k12 */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         } /*l1 */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       }/* k1 */              }
     } /* loop covariates */          if(i <= iagemax)
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);            fprintf(ficresp,"\n");
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          if(first==1)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            printf("Others in log...\n");
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          fprintf(ficlog,"\n");
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }
   }    }
   free_vector(xp,1,npar);    dateintmean=dateintsum/k2cpt; 
   fclose(ficresprob);   
   fclose(ficresprobcov);    fclose(ficresp);
   fclose(ficresprobcor);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   fclose(ficgp);    free_vector(pp,1,nlstate);
   fclose(fichtm);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 }    /* End of Freq */
   }
   
 /******************* Printing html file ***********/  /************ Prevalence ********************/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                   int lastpass, int stepm, int weightopt, char model[],\  {  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   int popforecast, int estepm ,\       in each health status at the date of interview (if between dateprev1 and dateprev2).
                   double jprev1, double mprev1,double anprev1, \       We still use firstpass and lastpass as another selection.
                   double jprev2, double mprev2,double anprev2){    */
   int jj1, k1, i1, cpt;   
   /*char optionfilehtm[FILENAMELENGTH];*/    int i, m, jk, k1, i1, j1, bool, z1,j;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    double ***freq; /* Frequencies */
     printf("Problem with %s \n",optionfilehtm), exit(0);    double *pp, **prop;
   }    double pos,posprop; 
     double  y2; /* in fractional years */
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    int iagemin, iagemax;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    iagemin= (int) agemin;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    iagemax= (int) agemax;
  - Life expectancies by age and initial health status (estepm=%2d months):    /*pp=vector(1,nlstate);*/
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    j=cptcoveff;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    for(k1=1; k1<=j;k1++){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      for(i1=1; i1<=ncodemax[k1];i1++){
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        j1++;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        
         for (i=1; i<=nlstate; i++)  
  if(popforecast==1) fprintf(fichtm,"\n          for(m=iagemin; m <= iagemax+3; m++)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            prop[i][m]=0.0;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n       
         <br>",fileres,fileres,fileres,fileres);        for (i=1; i<=imx; i++) { /* Each individual */
  else          bool=1;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          if  (cptcovn>0) {
 fprintf(fichtm," <li>Graphs</li><p>");            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  m=cptcoveff;                bool=0;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          } 
           if (bool==1) { 
  jj1=0;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  for(k1=1; k1<=m;k1++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
    for(i1=1; i1<=ncodemax[k1];i1++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
      jj1++;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      if (cptcovn > 0) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
        for (cpt=1; cpt<=cptcoveff;cpt++)                if (s[m][i]>0 && s[m][i]<=nlstate) { 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
      }                  prop[s[m][i]][iagemax+3] += weight[i]; 
      /* Pij */                } 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>              }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                } /* end selection of waves */
      /* Quasi-incidences */          }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(i=iagemin; i <= iagemax+3; i++){  
        /* Stable prevalence in each health state */          
        for(cpt=1; cpt<nlstate;cpt++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>            posprop += prop[jk][i]; 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          } 
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {          for(jk=1; jk <=nlstate ; jk++){     
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            if( i <=  iagemax){ 
 interval) in state (%d): v%s%d%d.png <br>              if(posprop>=1.e-5){ 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  probs[i][jk][j1]= prop[jk][i]/posprop;
      }              } else
      for(cpt=1; cpt<=nlstate;cpt++) {                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>            } 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }/* end jk */ 
      }        }/* end i */ 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      } /* end i1 */
 health expectancies in states (1) and (2): e%s%d.png<br>    } /* end k1 */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    
    }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
  }    /*free_vector(pp,1,nlstate);*/
 fclose(fichtm);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 }  }  /* End of prevalence */
   
 /******************* Gnuplot file **************/  /************* Waves Concatenation ***************/
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  {
   int ng;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       Death is a valid wave (if date is known).
     printf("Problem with file %s",optionfilegnuplot);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
 #ifdef windows       */
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif    int i, mi, m;
 m=pow(2,cptcoveff);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
  /* 1eme*/    int first;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    int j, k=0,jk, ju, jl;
    for (k1=1; k1<= m ; k1 ++) {    double sum=0.;
     first=0;
 #ifdef windows    jmin=1e+5;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    jmax=-1;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    jmean=0.;
 #endif    for(i=1; i<=imx; i++){
 #ifdef unix      mi=0;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      m=firstpass;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      while(s[m][i] <= nlstate){
 #endif        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
 for (i=1; i<= nlstate ; i ++) {        if(m >=lastpass)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          break;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        else
 }          m++;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      }/* end while */
     for (i=1; i<= nlstate ; i ++) {      if (s[m][i] > nlstate){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        mi++;     /* Death is another wave */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        /* if(mi==0)  never been interviewed correctly before death */
 }           /* Only death is a correct wave */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        mw[mi][i]=m;
      for (i=1; i<= nlstate ; i ++) {      }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      wav[i]=mi;
 }        if(mi==0){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        nbwarn++;
 #ifdef unix        if(first==0){
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 #endif          first=1;
    }        }
   }        if(first==1){
   /*2 eme*/          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
   for (k1=1; k1<= m ; k1 ++) {      } /* end mi==0 */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    } /* End individuals */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  
        for(i=1; i<=imx; i++){
     for (i=1; i<= nlstate+1 ; i ++) {      for(mi=1; mi<wav[i];mi++){
       k=2*i;        if (stepm <=0)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          dh[mi][i]=1;
       for (j=1; j<= nlstate+1 ; j ++) {        else{
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if (agedc[i] < 2*AGESUP) {
 }                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              if(j==0) j=1;  /* Survives at least one month after exam */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              else if(j<0){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                nberr++;
       for (j=1; j<= nlstate+1 ; j ++) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                j=1; /* Temporary Dangerous patch */
         else fprintf(ficgp," \%%*lf (\%%*lf)");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 }                  fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"\" t\"\" w l 0,");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              }
       for (j=1; j<= nlstate+1 ; j ++) {              k=k+1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if (j >= jmax){
   else fprintf(ficgp," \%%*lf (\%%*lf)");                jmax=j;
 }                  ijmax=i;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              }
       else fprintf(ficgp,"\" t\"\" w l 0,");              if (j <= jmin){
     }                jmin=j;
   }                ijmin=i;
                }
   /*3eme*/              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   for (k1=1; k1<= m ; k1 ++) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {            }
       k=2+nlstate*(2*cpt-2);          }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          else{
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            k=k+1;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            if (j >= jmax) {
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              jmax=j;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              ijmax=i;
             }
 */            else if (j <= jmin){
       for (i=1; i< nlstate ; i ++) {              jmin=j;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              ijmin=i;
             }
       }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   }            if(j<0){
                nberr++;
   /* CV preval stat */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (k1=1; k1<= m ; k1 ++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (cpt=1; cpt<nlstate ; cpt ++) {            }
       k=3;            sum=sum+j;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          jk= j/stepm;
           jl= j -jk*stepm;
       for (i=1; i< nlstate ; i ++)          ju= j -(jk+1)*stepm;
         fprintf(ficgp,"+$%d",k+i+1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            if(jl==0){
                    dh[mi][i]=jk;
       l=3+(nlstate+ndeath)*cpt;              bh[mi][i]=0;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }else{ /* We want a negative bias in order to only have interpolation ie
       for (i=1; i< nlstate ; i ++) {                    * at the price of an extra matrix product in likelihood */
         l=3+(nlstate+ndeath)*cpt;              dh[mi][i]=jk+1;
         fprintf(ficgp,"+$%d",l+i+1);              bh[mi][i]=ju;
       }            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            }else{
     }            if(jl <= -ju){
   }                dh[mi][i]=jk;
                bh[mi][i]=jl;       /* bias is positive if real duration
   /* proba elementaires */                                   * is higher than the multiple of stepm and negative otherwise.
    for(i=1,jk=1; i <=nlstate; i++){                                   */
     for(k=1; k <=(nlstate+ndeath); k++){            }
       if (k != i) {            else{
         for(j=1; j <=ncovmodel; j++){              dh[mi][i]=jk+1;
                      bh[mi][i]=ju;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            }
           jk++;            if(dh[mi][i]==0){
           fprintf(ficgp,"\n");              dh[mi][i]=1; /* At least one step */
         }              bh[mi][i]=ju; /* At least one step */
       }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     }            }
    }          } /* end if mle */
         }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      } /* end wave */
      for(jk=1; jk <=m; jk++) {    }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    jmean=sum/k;
        if (ng==2)    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
        else   }
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  /*********** Tricode ****************************/
        i=1;  void tricode(int *Tvar, int **nbcode, int imx)
        for(k2=1; k2<=nlstate; k2++) {  {
          k3=i;    
          for(k=1; k<=(nlstate+ndeath); k++) {    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
            if (k != k2){  
              if(ng==2)    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=19;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    int cptcode=0;
              else    cptcoveff=0; 
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   
              ij=1;    for (k=0; k<maxncov; k++) Ndum[k]=0;
              for(j=3; j <=ncovmodel; j++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
                  ij++;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                }                                 modality*/ 
                else        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        Ndum[ij]++; /*store the modality */
              }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
              fprintf(ficgp,")/(1");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                                       Tvar[j]. If V=sex and male is 0 and 
              for(k1=1; k1 <=nlstate; k1++){                                           female is 1, then  cptcode=1.*/
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      }
                ij=1;  
                for(j=3; j <=ncovmodel; j++){      for (i=0; i<=cptcode; i++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }
                    ij++;  
                  }      ij=1; 
                  else      for (i=1; i<=ncodemax[j]; i++) {
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for (k=0; k<= maxncov; k++) {
                }          if (Ndum[k] != 0) {
                fprintf(ficgp,")");            nbcode[Tvar[j]][ij]=k; 
              }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);            
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            ij++;
              i=i+ncovmodel;          }
            }          if (ij > ncodemax[j]) break; 
          }        }  
        }      } 
      }    }  
    }  
    fclose(ficgp);   for (k=0; k< maxncov; k++) Ndum[k]=0;
 }  /* end gnuplot */  
    for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 /*************** Moving average **************/     ij=Tvar[i];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){     Ndum[ij]++;
    }
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)   ij=1;
       for (i=1; i<=nlstate;i++)   for (i=1; i<= maxncov; i++) {
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)     if((Ndum[i]!=0) && (i<=ncovcol)){
           mobaverage[(int)agedeb][i][cptcod]=0.;       Tvaraff[ij]=i; /*For printing */
           ij++;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){     }
       for (i=1; i<=nlstate;i++){   }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   
           for (cpt=0;cpt<=4;cpt++){   cptcoveff=ij-1; /*Number of simple covariates*/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  }
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  /*********** Health Expectancies ****************/
         }  
       }  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     }  
      {
 }    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
 /************** Forecasting ******************/    double age, agelim, hf;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    double ***p3mat;
      double eip;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;    pstamp(ficreseij);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   double *popeffectif,*popcount;    fprintf(ficreseij,"# Age");
   double ***p3mat;    for(i=1; i<=nlstate;i++){
   char fileresf[FILENAMELENGTH];      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
  agelim=AGESUP;      }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      fprintf(ficreseij," e%1d. ",i);
     }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficreseij,"\n");
    
      
   strcpy(fileresf,"f");    if(estepm < stepm){
   strcat(fileresf,fileres);      printf ("Problem %d lower than %d\n",estepm, stepm);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    }
     printf("Problem with forecast resultfile: %s\n", fileresf);    else  hstepm=estepm;   
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
   printf("Computing forecasting: result on file '%s' \n", fileresf);     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   if (mobilav==1) {     * to the curvature of the survival function. If, for the same date, we 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     movingaverage(agedeb, fage, ageminpar, mobaverage);     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   agelim=AGESUP;       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   hstepm=1;       Look at hpijx to understand the reason of that which relies in memory size
   hstepm=hstepm/stepm;       and note for a fixed period like estepm months */
   yp1=modf(dateintmean,&yp);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   anprojmean=yp;       survival function given by stepm (the optimization length). Unfortunately it
   yp2=modf((yp1*12),&yp);       means that if the survival funtion is printed only each two years of age and if
   mprojmean=yp;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   yp1=modf((yp2*30.5),&yp);       results. So we changed our mind and took the option of the best precision.
   jprojmean=yp;    */
   if(jprojmean==0) jprojmean=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if(mprojmean==0) jprojmean=1;  
      agelim=AGESUP;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    /* If stepm=6 months */
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
   for(cptcov=1;cptcov<=i2;cptcov++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      
       k=k+1;  /* nhstepm age range expressed in number of stepm */
       fprintf(ficresf,"\n#******");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       for(j=1;j<=cptcoveff;j++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* if (stepm >= YEARM) hstepm=1;*/
       }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficresf,"******\n");    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    for (age=bage; age<=fage; age ++){ 
            nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
            /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficresf,"\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
       /* If stepm=6 months */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           nhstepm = nhstepm/hstepm;      
                hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
           oldm=oldms;savm=savms;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        
              printf("%d|",(int)age);fflush(stdout);
           for (h=0; h<=nhstepm; h++){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             if (h==(int) (calagedate+YEARM*cpt)) {      
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      /* Computing expectancies */
             }      for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1; j<=nlstate;j++)
               kk1=0.;kk2=0;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               for(i=1; i<=nlstate;i++) {                          eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                 if (mobilav==1)            
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          }
                 }  
                      fprintf(ficreseij,"%3.0f",age );
               }      for(i=1; i<=nlstate;i++){
               if (h==(int)(calagedate+12*cpt)){        eip=0;
                 fprintf(ficresf," %.3f", kk1);        for(j=1; j<=nlstate;j++){
                                  eip +=eij[i][j][(int)age];
               }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
             }        }
           }        fprintf(ficreseij,"%9.4f", eip );
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
         }      fprintf(ficreseij,"\n");
       }      
     }    }
   }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            printf("\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"\n");
     
   fclose(ficresf);  }
 }  
 /************** Forecasting ******************/  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
    {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    /* Covariances of health expectancies eij and of total life expectancies according
   int *popage;     to initial status i, ei. .
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    */
   double *popeffectif,*popcount;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   double ***p3mat,***tabpop,***tabpopprev;    int nhstepma, nstepma; /* Decreasing with age */
   char filerespop[FILENAMELENGTH];    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **dnewm,**doldm;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *xp, *xm;
   agelim=AGESUP;    double **gp, **gm;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    double ***gradg, ***trgradg;
      int theta;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      double eip, vip;
    
   strcpy(filerespop,"pop");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   strcat(filerespop,fileres);    xp=vector(1,npar);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    xm=vector(1,npar);
     printf("Problem with forecast resultfile: %s\n", filerespop);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    
     pstamp(ficresstdeij);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
   if (mobilav==1) {    for(i=1; i<=nlstate;i++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=1; j<=nlstate;j++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   }      fprintf(ficresstdeij," e%1d. ",i);
     }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficresstdeij,"\n");
   if (stepm<=12) stepsize=1;  
      pstamp(ficrescveij);
   agelim=AGESUP;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      fprintf(ficrescveij,"# Age");
   hstepm=1;    for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm;      for(j=1; j<=nlstate;j++){
          cptj= (j-1)*nlstate+i;
   if (popforecast==1) {        for(i2=1; i2<=nlstate;i2++)
     if((ficpop=fopen(popfile,"r"))==NULL) {          for(j2=1; j2<=nlstate;j2++){
       printf("Problem with population file : %s\n",popfile);exit(0);            cptj2= (j2-1)*nlstate+i2;
     }            if(cptj2 <= cptj)
     popage=ivector(0,AGESUP);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     popeffectif=vector(0,AGESUP);          }
     popcount=vector(0,AGESUP);      }
        fprintf(ficrescveij,"\n");
     i=1;      
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
     imx=i;    }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    else  hstepm=estepm;   
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   for(cptcov=1;cptcov<=i2;cptcov++){     * if stepm=24 months pijx are given only every 2 years and by summing them
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
       k=k+1;     * progression in between and thus overestimating or underestimating according
       fprintf(ficrespop,"\n#******");     * to the curvature of the survival function. If, for the same date, we 
       for(j=1;j<=cptcoveff;j++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * to compare the new estimate of Life expectancy with the same linear 
       }     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficrespop,"******\n");     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    /* For example we decided to compute the life expectancy with the smallest unit */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             nhstepm is the number of hstepm from age to agelim 
       for (cpt=0; cpt<=0;cpt++) {       nstepm is the number of stepm from age to agelin. 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         Look at hpijx to understand the reason of that which relies in memory size
               and note for a fixed period like estepm months */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       survival function given by stepm (the optimization length). Unfortunately it
           nhstepm = nhstepm/hstepm;       means that if the survival funtion is printed only each two years of age and if
                 you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
           oldm=oldms;savm=savms;    */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          
           for (h=0; h<=nhstepm; h++){    /* If stepm=6 months */
             if (h==(int) (calagedate+YEARM*cpt)) {    /* nhstepm age range expressed in number of stepm */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    agelim=AGESUP;
             }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
             for(j=1; j<=nlstate+ndeath;j++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               kk1=0.;kk2=0;    /* if (stepm >= YEARM) hstepm=1;*/
               for(i=1; i<=nlstate;i++) {                  nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                 if (mobilav==1)    
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 else {    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                 }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
               if (h==(int)(calagedate+12*cpt)){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);    for (age=bage; age<=fage; age ++){ 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
               }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             }      /* if (stepm >= YEARM) hstepm=1;*/
             for(i=1; i<=nlstate;i++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){      /* If stepm=6 months */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                 }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      
             }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      /* Computing  Variances of health expectancies */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           }         decrease memory allocation */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ 
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            xm[i] = x[i] - (i==theta ?delti[theta]:0);
   /******/        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(j=1; j<= nlstate; j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(i=1; i<=nlstate; i++){
           nhstepm = nhstepm/hstepm;            for(h=0; h<=nhstepm-1; h++){
                        gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {       
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(ij=1; ij<= nlstate*nlstate; ij++)
             }          for(h=0; h<=nhstepm-1; h++){
             for(j=1; j<=nlstate+ndeath;j++) {            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
               kk1=0.;kk2=0;          }
               for(i=1; i<=nlstate;i++) {                    }/* End theta */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          
               }      
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      for(h=0; h<=nhstepm-1; h++)
             }        for(j=1; j<=nlstate*nlstate;j++)
           }          for(theta=1; theta <=npar; theta++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            trgradg[h][j][theta]=gradg[h][theta][j];
         }      
       }  
    }       for(ij=1;ij<=nlstate*nlstate;ij++)
   }        for(ji=1;ji<=nlstate*nlstate;ji++)
            varhe[ij][ji][(int)age] =0.;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
        printf("%d|",(int)age);fflush(stdout);
   if (popforecast==1) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     free_ivector(popage,0,AGESUP);       for(h=0;h<=nhstepm-1;h++){
     free_vector(popeffectif,0,AGESUP);        for(k=0;k<=nhstepm-1;k++){
     free_vector(popcount,0,AGESUP);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(ij=1;ij<=nlstate*nlstate;ij++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(ji=1;ji<=nlstate*nlstate;ji++)
   fclose(ficrespop);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 }        }
       }
 /***********************************************/  
 /**************** Main Program *****************/      /* Computing expectancies */
 /***********************************************/      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
 int main(int argc, char *argv[])        for(j=1; j<=nlstate;j++)
 {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            
   double agedeb, agefin,hf;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
           }
   double fret;  
   double **xi,tmp,delta;      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   double dum; /* Dummy variable */        eip=0.;
   double ***p3mat;        vip=0.;
   int *indx;        for(j=1; j<=nlstate;j++){
   char line[MAXLINE], linepar[MAXLINE];          eip += eij[i][j][(int)age];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   int firstobs=1, lastobs=10;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   int sdeb, sfin; /* Status at beginning and end */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   int c,  h , cpt,l;        }
   int ju,jl, mi;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      fprintf(ficresstdeij,"\n");
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;      fprintf(ficrescveij,"%3.0f",age );
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   double bage, fage, age, agelim, agebase;          cptj= (j-1)*nlstate+i;
   double ftolpl=FTOL;          for(i2=1; i2<=nlstate;i2++)
   double **prlim;            for(j2=1; j2<=nlstate;j2++){
   double *severity;              cptj2= (j2-1)*nlstate+i2;
   double ***param; /* Matrix of parameters */              if(cptj2 <= cptj)
   double  *p;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   double **matcov; /* Matrix of covariance */            }
   double ***delti3; /* Scale */        }
   double *delti; /* Scale */      fprintf(ficrescveij,"\n");
   double ***eij, ***vareij;     
   double **varpl; /* Variances of prevalence limits by age */    }
   double *epj, vepp;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   double kk1, kk2;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   char z[1]="c", occ;  
 #include <sys/time.h>    free_vector(xm,1,npar);
 #include <time.h>    free_vector(xp,1,npar);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /* long total_usecs;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   struct timeval start_time, end_time;  }
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  /************ Variance ******************/
   getcwd(pathcd, size);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   printf("\n%s",version);    /* Variance of health expectancies */
   if(argc <=1){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     printf("\nEnter the parameter file name: ");    /* double **newm;*/
     scanf("%s",pathtot);    double **dnewm,**doldm;
   }    double **dnewmp,**doldmp;
   else{    int i, j, nhstepm, hstepm, h, nstepm ;
     strcpy(pathtot,argv[1]);    int k, cptcode;
   }    double *xp;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    double **gp, **gm;  /* for var eij */
   /*cygwin_split_path(pathtot,path,optionfile);    double ***gradg, ***trgradg; /*for var eij */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double **gradgp, **trgradgp; /* for var p point j */
   /* cutv(path,optionfile,pathtot,'\\');*/    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double ***p3mat;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double age,agelim, hf;
   chdir(path);    double ***mobaverage;
   replace(pathc,path);    int theta;
     char digit[4];
 /*-------- arguments in the command line --------*/    char digitp[25];
   
   strcpy(fileres,"r");    char fileresprobmorprev[FILENAMELENGTH];
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    if(popbased==1){
       if(mobilav!=0)
   /*---------arguments file --------*/        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    }
     printf("Problem with optionfile %s\n",optionfile);    else 
     goto end;      strcpy(digitp,"-stablbased-");
   }  
     if (mobilav!=0) {
   strcpy(filereso,"o");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(filereso,fileres);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   if((ficparo=fopen(filereso,"w"))==NULL) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
     }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(fileresprobmorprev,"prmorprev"); 
     ungetc(c,ficpar);    sprintf(digit,"%-d",ij);
     fgets(line, MAXLINE, ficpar);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     puts(line);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fputs(line,ficparo);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   }    strcat(fileresprobmorprev,fileres);
   ungetc(c,ficpar);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fgets(line, MAXLINE, ficpar);    pstamp(ficresprobmorprev);
     puts(line);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fputs(line,ficparo);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   ungetc(c,ficpar);      fprintf(ficresprobmorprev," p.%-d SE",j);
        for(i=1; i<=nlstate;i++)
            fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   covar=matrix(0,NCOVMAX,1,n);    }  
   cptcovn=0;    fprintf(ficresprobmorprev,"\n");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   ncovmodel=2+cptcovn;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */
   /* Read guess parameters */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /* Reads comments: lines beginning with '#' */    pstamp(ficresvij);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     ungetc(c,ficpar);    if(popbased==1)
     fgets(line, MAXLINE, ficpar);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     puts(line);    else
     fputs(line,ficparo);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   }    fprintf(ficresvij,"# Age");
   ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     for(i=1; i <=nlstate; i++)    fprintf(ficresvij,"\n");
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    xp=vector(1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    dnewm=matrix(1,nlstate,1,npar);
       printf("%1d%1d",i,j);    doldm=matrix(1,nlstate,1,nlstate);
       for(k=1; k<=ncovmodel;k++){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         fscanf(ficpar," %lf",&param[i][j][k]);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       }    gpp=vector(nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"\n");    gmp=vector(nlstate+1,nlstate+ndeath);
       printf("\n");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficparo,"\n");    
     }    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    }
     else  hstepm=estepm;   
   p=param[1][1];    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /* Reads comments: lines beginning with '#' */       nhstepm is the number of hstepm from age to agelim 
   while((c=getc(ficpar))=='#' && c!= EOF){       nstepm is the number of stepm from age to agelin. 
     ungetc(c,ficpar);       Look at function hpijx to understand why (it is linked to memory size questions) */
     fgets(line, MAXLINE, ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     puts(line);       survival function given by stepm (the optimization length). Unfortunately it
     fputs(line,ficparo);       means that if the survival funtion is printed every two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   ungetc(c,ficpar);       results. So we changed our mind and took the option of the best precision.
     */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    agelim = AGESUP;
   for(i=1; i <=nlstate; i++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(j=1; j <=nlstate+ndeath-1; j++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       printf("%1d%1d",i,j);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficparo,"%1d%1d",i1,j1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       for(k=1; k<=ncovmodel;k++){      gp=matrix(0,nhstepm,1,nlstate);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      gm=matrix(0,nhstepm,1,nlstate);
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }      for(theta=1; theta <=npar; theta++){
       fscanf(ficpar,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       printf("\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficparo,"\n");        }
     }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   delti=delti3[1][1];  
          if (popbased==1) {
   /* Reads comments: lines beginning with '#' */          if(mobilav ==0){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);              prlim[i][i]=probs[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);          }else{ /* mobilav */ 
     puts(line);            for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
   ungetc(c,ficpar);        }
      
   matcov=matrix(1,npar,1,npar);        for(j=1; j<= nlstate; j++){
   for(i=1; i <=npar; i++){          for(h=0; h<=nhstepm; h++){
     fscanf(ficpar,"%s",&str);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     printf("%s",str);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(ficparo,"%s",str);          }
     for(j=1; j <=i; j++){        }
       fscanf(ficpar," %le",&matcov[i][j]);        /* This for computing probability of death (h=1 means
       printf(" %.5le",matcov[i][j]);           computed over hstepm matrices product = hstepm*stepm months) 
       fprintf(ficparo," %.5le",matcov[i][j]);           as a weighted average of prlim.
     }        */
     fscanf(ficpar,"\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     fprintf(ficparo,"\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
   for(i=1; i <=npar; i++)        /* end probability of death */
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
              xp[i] = x[i] - (i==theta ?delti[theta]:0);
   printf("\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
     /*-------- Rewriting paramater file ----------*/        if (popbased==1) {
      strcpy(rfileres,"r");    /* "Rparameterfile */          if(mobilav ==0){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            for(i=1; i<=nlstate;i++)
      strcat(rfileres,".");    /* */              prlim[i][i]=probs[(int)age][i][ij];
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          }else{ /* mobilav */ 
     if((ficres =fopen(rfileres,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              prlim[i][i]=mobaverage[(int)age][i][ij];
     }          }
     fprintf(ficres,"#%s\n",version);        }
      
     /*-------- data file ----------*/        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     if((fic=fopen(datafile,"r"))==NULL)    {          for(h=0; h<=nhstepm; h++){
       printf("Problem with datafile: %s\n", datafile);goto end;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
     n= lastobs;        }
     severity = vector(1,maxwav);        /* This for computing probability of death (h=1 means
     outcome=imatrix(1,maxwav+1,1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     num=ivector(1,n);           as a weighted average of prlim.
     moisnais=vector(1,n);        */
     annais=vector(1,n);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     moisdc=vector(1,n);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     andc=vector(1,n);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     agedc=vector(1,n);        }    
     cod=ivector(1,n);        /* end probability of death */
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for(j=1; j<= nlstate; j++) /* vareij */
     mint=matrix(1,maxwav,1,n);          for(h=0; h<=nhstepm; h++){
     anint=matrix(1,maxwav,1,n);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     s=imatrix(1,maxwav+1,1,n);          }
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     ncodemax=ivector(1,8);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {      } /* End theta */
       if ((i >= firstobs) && (i <=lastobs)) {  
              trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      for(h=0; h<=nhstepm; h++) /* veij */
           strcpy(line,stra);        for(j=1; j<=nlstate;j++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(theta=1; theta <=npar; theta++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            trgradg[h][j][theta]=gradg[h][theta][j];
         }  
              for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(theta=1; theta <=npar; theta++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          trgradgp[j][theta]=gradgp[theta][j];
     
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1;j<=nlstate;j++)
         for (j=ncovcol;j>=1;j--){          vareij[i][j][(int)age] =0.;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }      for(h=0;h<=nhstepm;h++){
         num[i]=atol(stra);        for(k=0;k<=nhstepm;k++){
                  matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
         i=i+1;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       }        }
     }      }
     /* printf("ii=%d", ij);    
        scanf("%d",i);*/      /* pptj */
   imx=i-1; /* Number of individuals */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   /* for (i=1; i<=imx; i++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          varppt[j][i]=doldmp[j][i];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      /* end ppptj */
     }*/      /*  x centered again */
    /*  for (i=1; i<=imx; i++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
      if (s[4][i]==9)  s[4][i]=-1;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/   
        if (popbased==1) {
          if(mobilav ==0){
   /* Calculation of the number of parameter from char model*/          for(i=1; i<=nlstate;i++)
   Tvar=ivector(1,15);            prlim[i][i]=probs[(int)age][i][ij];
   Tprod=ivector(1,15);        }else{ /* mobilav */ 
   Tvaraff=ivector(1,15);          for(i=1; i<=nlstate;i++)
   Tvard=imatrix(1,15,1,2);            prlim[i][i]=mobaverage[(int)age][i][ij];
   Tage=ivector(1,15);              }
          }
   if (strlen(model) >1){               
     j=0, j1=0, k1=1, k2=1;      /* This for computing probability of death (h=1 means
     j=nbocc(model,'+');         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     j1=nbocc(model,'*');         as a weighted average of prlim.
     cptcovn=j+1;      */
     cptcovprod=j1;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     strcpy(modelsav,model);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      }    
       printf("Error. Non available option model=%s ",model);      /* end probability of death */
       goto end;  
     }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
          for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     for(i=(j+1); i>=1;i--){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       cutv(stra,strb,modelsav,'+');        for(i=1; i<=nlstate;i++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        }
       /*scanf("%d",i);*/      } 
       if (strchr(strb,'*')) {      fprintf(ficresprobmorprev,"\n");
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {      fprintf(ficresvij,"%.0f ",age );
           cptcovprod--;      for(i=1; i<=nlstate;i++)
           cutv(strb,stre,strd,'V');        for(j=1; j<=nlstate;j++){
           Tvar[i]=atoi(stre);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           cptcovage++;        }
             Tage[cptcovage]=i;      fprintf(ficresvij,"\n");
             /*printf("stre=%s ", stre);*/      free_matrix(gp,0,nhstepm,1,nlstate);
         }      free_matrix(gm,0,nhstepm,1,nlstate);
         else if (strcmp(strd,"age")==0) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           cptcovprod--;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           cutv(strb,stre,strc,'V');      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvar[i]=atoi(stre);    } /* End age */
           cptcovage++;    free_vector(gpp,nlstate+1,nlstate+ndeath);
           Tage[cptcovage]=i;    free_vector(gmp,nlstate+1,nlstate+ndeath);
         }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         else {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           cutv(strb,stre,strc,'V');    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           Tvar[i]=ncovcol+k1;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           cutv(strb,strc,strd,'V');    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           Tprod[k1]=i;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           Tvard[k1][1]=atoi(strc);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           Tvard[k1][2]=atoi(stre);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           Tvar[cptcovn+k2]=Tvard[k1][1];    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           for (k=1; k<=lastobs;k++)    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           k1++;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           k2=k2+2;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         }  */
       }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       else {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/    free_vector(xp,1,npar);
       cutv(strd,strc,strb,'V');    free_matrix(doldm,1,nlstate,1,nlstate);
       Tvar[i]=atoi(strc);    free_matrix(dnewm,1,nlstate,1,npar);
       }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       strcpy(modelsav,stra);      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         scanf("%d",i);*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }    fclose(ficresprobmorprev);
 }    fflush(ficgp);
      fflush(fichtm); 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  }  /* end varevsij */
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/  /************ Variance of prevlim ******************/
     fclose(fic);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /*  if(mle==1){*/    /* Variance of prevalence limit */
     if (weightopt != 1) { /* Maximisation without weights*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       for(i=1;i<=n;i++) weight[i]=1.0;    double **newm;
     }    double **dnewm,**doldm;
     /*-calculation of age at interview from date of interview and age at death -*/    int i, j, nhstepm, hstepm;
     agev=matrix(1,maxwav,1,imx);    int k, cptcode;
     double *xp;
     for (i=1; i<=imx; i++) {    double *gp, *gm;
       for(m=2; (m<= maxwav); m++) {    double **gradg, **trgradg;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    double age,agelim;
          anint[m][i]=9999;    int theta;
          s[m][i]=-1;    
        }    pstamp(ficresvpl);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       }    fprintf(ficresvpl,"# Age");
     }    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     for (i=1; i<=imx; i++)  {    fprintf(ficresvpl,"\n");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){    xp=vector(1,npar);
         if(s[m][i] >0){    dnewm=matrix(1,nlstate,1,npar);
           if (s[m][i] >= nlstate+1) {    doldm=matrix(1,nlstate,1,nlstate);
             if(agedc[i]>0)    
               if(moisdc[i]!=99 && andc[i]!=9999)    hstepm=1*YEARM; /* Every year of age */
                 agev[m][i]=agedc[i];    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    agelim = AGESUP;
            else {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               if (andc[i]!=9999){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      if (stepm >= YEARM) hstepm=1;
               agev[m][i]=-1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
               }      gradg=matrix(1,npar,1,nlstate);
             }      gp=vector(1,nlstate);
           }      gm=vector(1,nlstate);
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      for(theta=1; theta <=npar; theta++){
             if(mint[m][i]==99 || anint[m][i]==9999)        for(i=1; i<=npar; i++){ /* Computes gradient */
               agev[m][i]=1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             else if(agev[m][i] <agemin){        }
               agemin=agev[m][i];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        for(i=1;i<=nlstate;i++)
             }          gp[i] = prlim[i][i];
             else if(agev[m][i] >agemax){      
               agemax=agev[m][i];        for(i=1; i<=npar; i++) /* Computes gradient */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             /*agev[m][i]=anint[m][i]-annais[i];*/        for(i=1;i<=nlstate;i++)
             /*   agev[m][i] = age[i]+2*m;*/          gm[i] = prlim[i][i];
           }  
           else { /* =9 */        for(i=1;i<=nlstate;i++)
             agev[m][i]=1;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             s[m][i]=-1;      } /* End theta */
           }  
         }      trgradg =matrix(1,nlstate,1,npar);
         else /*= 0 Unknown */  
           agev[m][i]=1;      for(j=1; j<=nlstate;j++)
       }        for(theta=1; theta <=npar; theta++)
              trgradg[j][theta]=gradg[theta][j];
     }  
     for (i=1; i<=imx; i++)  {      for(i=1;i<=nlstate;i++)
       for(m=1; (m<= maxwav); m++){        varpl[i][(int)age] =0.;
         if (s[m][i] > (nlstate+ndeath)) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           printf("Error: Wrong value in nlstate or ndeath\n");        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           goto end;      for(i=1;i<=nlstate;i++)
         }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       }  
     }      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
     free_vector(severity,1,maxwav);      free_vector(gp,1,nlstate);
     free_imatrix(outcome,1,maxwav+1,1,n);      free_vector(gm,1,nlstate);
     free_vector(moisnais,1,n);      free_matrix(gradg,1,npar,1,nlstate);
     free_vector(annais,1,n);      free_matrix(trgradg,1,nlstate,1,npar);
     /* free_matrix(mint,1,maxwav,1,n);    } /* End age */
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);    free_vector(xp,1,npar);
     free_vector(andc,1,n);    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
      
     wav=ivector(1,imx);  }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  /************ Variance of one-step probabilities  ******************/
      void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     /* Concatenates waves */  {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
       Tcode=ivector(1,100);    int first=1, first1;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       ncodemax[1]=1;    double **dnewm,**doldm;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    double *xp;
          double *gp, *gm;
    codtab=imatrix(1,100,1,10);    double **gradg, **trgradg;
    h=0;    double **mu;
    m=pow(2,cptcoveff);    double age,agelim, cov[NCOVMAX];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
    for(k=1;k<=cptcoveff; k++){    int theta;
      for(i=1; i <=(m/pow(2,k));i++){    char fileresprob[FILENAMELENGTH];
        for(j=1; j <= ncodemax[k]; j++){    char fileresprobcov[FILENAMELENGTH];
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    char fileresprobcor[FILENAMELENGTH];
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    double ***varpij;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }    strcpy(fileresprob,"prob"); 
        }    strcat(fileresprob,fileres);
      }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
    }      printf("Problem with resultfile: %s\n", fileresprob);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       codtab[1][2]=1;codtab[2][2]=2; */    }
    /* for(i=1; i <=m ;i++){    strcpy(fileresprobcov,"probcov"); 
       for(k=1; k <=cptcovn; k++){    strcat(fileresprobcov,fileres);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprobcov);
       printf("\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       }    }
       scanf("%d",i);*/    strcpy(fileresprobcor,"probcor"); 
        strcat(fileresprobcor,fileres);
    /* Calculates basic frequencies. Computes observed prevalence at single age    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        and prints on file fileres'p'. */      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
        }
        printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
          pstamp(ficresprob);
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fprintf(ficresprob,"# Age");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     if(mle==1){    fprintf(ficresprobcov,"# Age");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    pstamp(ficresprobcor);
     }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
        fprintf(ficresprobcor,"# Age");
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
    jk=1;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
    for(i=1,jk=1; i <=nlstate; i++){      }  
      for(k=1; k <=(nlstate+ndeath); k++){   /* fprintf(ficresprob,"\n");
        if (k != i)    fprintf(ficresprobcov,"\n");
          {    fprintf(ficresprobcor,"\n");
            printf("%d%d ",i,k);   */
            fprintf(ficres,"%1d%1d ",i,k);   xp=vector(1,npar);
            for(j=1; j <=ncovmodel; j++){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
              printf("%f ",p[jk]);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
              fprintf(ficres,"%f ",p[jk]);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
              jk++;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
            }    first=1;
            printf("\n");    fprintf(ficgp,"\n# Routine varprob");
            fprintf(ficres,"\n");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
          }    fprintf(fichtm,"\n");
      }  
    }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
  if(mle==1){    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     /* Computing hessian and covariance matrix */    file %s<br>\n",optionfilehtmcov);
     ftolhess=ftol; /* Usually correct */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     hesscov(matcov, p, npar, delti, ftolhess, func);  and drawn. It helps understanding how is the covariance between two incidences.\
  }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     printf("# Scales (for hessian or gradient estimation)\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
      for(i=1,jk=1; i <=nlstate; i++){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       for(j=1; j <=nlstate+ndeath; j++){  standard deviations wide on each axis. <br>\
         if (j!=i) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           fprintf(ficres,"%1d%1d",i,j);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           printf("%1d%1d",i,j);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);    cov[1]=1;
             fprintf(ficres," %.5e",delti[jk]);    tj=cptcoveff;
             jk++;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           }    j1=0;
           printf("\n");    for(t=1; t<=tj;t++){
           fprintf(ficres,"\n");      for(i1=1; i1<=ncodemax[t];i1++){ 
         }        j1++;
       }        if  (cptcovn>0) {
      }          fprintf(ficresprob, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     k=1;          fprintf(ficresprob, "**********\n#\n");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficresprobcov, "\n#********** Variable "); 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(i=1;i<=npar;i++){          fprintf(ficresprobcov, "**********\n#\n");
       /*  if (k>nlstate) k=1;          
       i1=(i-1)/(ncovmodel*nlstate)+1;          fprintf(ficgp, "\n#********** Variable "); 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%s%d%d",alph[k],i1,tab[i]);*/          fprintf(ficgp, "**********\n#\n");
       fprintf(ficres,"%3d",i);          
       printf("%3d",i);          
       for(j=1; j<=i;j++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         fprintf(ficres," %.5e",matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         printf(" %.5e",matcov[i][j]);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       }          
       fprintf(ficres,"\n");          fprintf(ficresprobcor, "\n#********** Variable ");    
       printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       k++;          fprintf(ficresprobcor, "**********\n#");    
     }        }
            
     while((c=getc(ficpar))=='#' && c!= EOF){        for (age=bage; age<=fage; age ++){ 
       ungetc(c,ficpar);          cov[2]=age;
       fgets(line, MAXLINE, ficpar);          for (k=1; k<=cptcovn;k++) {
       puts(line);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       fputs(line,ficparo);          }
     }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     ungetc(c,ficpar);          for (k=1; k<=cptcovprod;k++)
     estepm=0;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          
     if (estepm==0 || estepm < stepm) estepm=stepm;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     if (fage <= 2) {          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       bage = ageminpar;          gp=vector(1,(nlstate)*(nlstate+ndeath));
       fage = agemaxpar;          gm=vector(1,(nlstate)*(nlstate+ndeath));
     }      
              for(theta=1; theta <=npar; theta++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            for(i=1; i<=npar; i++)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
     while((c=getc(ficpar))=='#' && c!= EOF){            
     ungetc(c,ficpar);            k=0;
     fgets(line, MAXLINE, ficpar);            for(i=1; i<= (nlstate); i++){
     puts(line);              for(j=1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);                k=k+1;
   }                gp[k]=pmmij[i][j];
   ungetc(c,ficpar);              }
              }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for(i=1; i<=npar; i++)
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
            
   while((c=getc(ficpar))=='#' && c!= EOF){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     ungetc(c,ficpar);            k=0;
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=(nlstate); i++){
     puts(line);              for(j=1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);                k=k+1;
   }                gm[k]=pmmij[i][j];
   ungetc(c,ficpar);              }
              }
        
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   fprintf(ficres,"pop_based=%d\n",popbased);              for(theta=1; theta <=npar; theta++)
                trgradg[j][theta]=gradg[theta][j];
   while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     fgets(line, MAXLINE, ficpar);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     puts(line);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     fputs(line,ficparo);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   ungetc(c,ficpar);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          pmij(pmmij,cov,ncovmodel,x,nlstate);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
 while((c=getc(ficpar))=='#' && c!= EOF){              k=k+1;
     ungetc(c,ficpar);              mu[k][(int) age]=pmmij[i][j];
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          }
     fputs(line,ficparo);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   ungetc(c,ficpar);              varpij[i][j][(int)age] = doldm[i][j];
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          /*printf("\n%d ",(int)age);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            }*/
   
 /*------------ gnuplot -------------*/          fprintf(ficresprob,"\n%d ",(int)age);
   strcpy(optionfilegnuplot,optionfilefiname);          fprintf(ficresprobcov,"\n%d ",(int)age);
   strcat(optionfilegnuplot,".gp");          fprintf(ficresprobcor,"\n%d ",(int)age);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   fclose(ficgp);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 /*--------- index.htm --------*/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
   strcpy(optionfilehtm,optionfile);          i=0;
   strcat(optionfilehtm,".htm");          for (k=1; k<=(nlstate);k++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            for (l=1; l<=(nlstate+ndeath);l++){ 
     printf("Problem with %s \n",optionfilehtm), exit(0);              i=i++;
   }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              for (j=1; j<=i;j++){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 \n                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 Total number of observations=%d <br>\n              }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            }
 <hr  size=\"2\" color=\"#EC5E5E\">          }/* end of loop for state */
  <ul><li>Parameter files<br>\n        } /* end of loop for age */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);        /* Confidence intervalle of pij  */
   fclose(fichtm);        /*
           fprintf(ficgp,"\nset noparametric;unset label");
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 /*------------ free_vector  -------------*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
  chdir(path);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
            fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
  free_ivector(wav,1,imx);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
  free_vector(agedc,1,n);        first1=1;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        for (k2=1; k2<=(nlstate);k2++){
  fclose(ficparo);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
  fclose(ficres);            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
   /*--------------- Prevalence limit --------------*/              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                  if(l1==k1) continue;
   strcpy(filerespl,"pl");                i=(k1-1)*(nlstate+ndeath)+l1;
   strcat(filerespl,fileres);                if(i<=j) continue;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                for (age=bage; age<=fage; age ++){ 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                  if ((int)age %5==0){
   }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fprintf(ficrespl,"#Prevalence limit\n");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fprintf(ficrespl,"#Age ");                    mu1=mu[i][(int) age]/stepm*YEARM ;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    mu2=mu[j][(int) age]/stepm*YEARM;
   fprintf(ficrespl,"\n");                    c12=cv12/sqrt(v1*v2);
                      /* Computing eigen value of matrix of covariance */
   prlim=matrix(1,nlstate,1,nlstate);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* Eigen vectors */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /*v21=sqrt(1.-v11*v11); *//* error */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    v21=(lc1-v1)/cv12*v11;
   k=0;                    v12=-v21;
   agebase=ageminpar;                    v22=v11;
   agelim=agemaxpar;                    tnalp=v21/v11;
   ftolpl=1.e-10;                    if(first1==1){
   i1=cptcoveff;                      first1=0;
   if (cptcovn < 1){i1=1;}                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
   for(cptcov=1;cptcov<=i1;cptcov++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    /*printf(fignu*/
         k=k+1;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         fprintf(ficrespl,"\n#******");                    if(first==1){
         for(j=1;j<=cptcoveff;j++)                      first=0;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficgp,"\nset parametric;unset label");
         fprintf(ficrespl,"******\n");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                              fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         for (age=agebase; age<=agelim; age++){                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           fprintf(ficrespl,"%.0f",age );  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           for(i=1; i<=nlstate;i++)                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           fprintf(ficrespl," %.5f", prlim[i][i]);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           fprintf(ficrespl,"\n");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fclose(ficrespl);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /*------------- h Pij x at various ages ------------*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                    }else{
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                      first=0;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   printf("Computing pij: result on file '%s' \n", filerespij);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                        fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   stepsize=(int) (stepm+YEARM-1)/YEARM;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /*if (stepm<=24) stepsize=2;*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
   agelim=AGESUP;                  } /* age mod 5 */
   hstepm=stepsize*YEARM; /* Every year of age */                } /* end loop age */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                  first=1;
   k=0;              } /*l12 */
   for(cptcov=1;cptcov<=i1;cptcov++){            } /* k12 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          } /*l1 */
       k=k+1;        }/* k1 */
         fprintf(ficrespij,"\n#****** ");      } /* loop covariates */
         for(j=1;j<=cptcoveff;j++)    }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         fprintf(ficrespij,"******\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
            free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_vector(xp,1,npar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fclose(ficresprob);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fclose(ficresprobcov);
           oldm=oldms;savm=savms;    fclose(ficresprobcor);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fflush(ficgp);
           fprintf(ficrespij,"# Age");    fflush(fichtmcov);
           for(i=1; i<=nlstate;i++)  }
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");  /******************* Printing html file ***********/
            for (h=0; h<=nhstepm; h++){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                    int lastpass, int stepm, int weightopt, char model[],\
             for(i=1; i<=nlstate;i++)                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
               for(j=1; j<=nlstate+ndeath;j++)                    int popforecast, int estepm ,\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                    double jprev1, double mprev1,double anprev1, \
             fprintf(ficrespij,"\n");                    double jprev2, double mprev2,double anprev2){
              }    int jj1, k1, i1, cpt;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
         }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     }  </ul>");
   }     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
   fclose(ficrespij);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
   /*---------- Forecasting ------------------*/   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   if((stepm == 1) && (strcmp(model,".")==0)){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);     fprintf(fichtm,"\
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n",
   else{             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     erreur=108;     fprintf(fichtm,"\
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   - Population projections by age and states: \
   }     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
    
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   /*---------- Health expectancies and variances ------------*/  
    m=cptcoveff;
   strcpy(filerest,"t");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {   jj1=0;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   for(k1=1; k1<=m;k1++){
   }     for(i1=1; i1<=ncodemax[k1];i1++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcpy(filerese,"e");         for (cpt=1; cpt<=cptcoveff;cpt++) 
   strcat(filerese,fileres);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   if((ficreseij=fopen(filerese,"w"))==NULL) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       }
   }       /* Pij */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
  strcpy(fileresv,"v");       /* Quasi-incidences */
   strcat(fileresv,fileres);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   }         /* Period (stable) prevalence in each health state */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         for(cpt=1; cpt<nlstate;cpt++){
   calagedate=-1;           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
   k=0;       for(cpt=1; cpt<=nlstate;cpt++) {
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       k=k+1;       }
       fprintf(ficrest,"\n#****** ");     } /* end i1 */
       for(j=1;j<=cptcoveff;j++)   }/* End k1 */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"</ul>");
       fprintf(ficrest,"******\n");  
   
       fprintf(ficreseij,"\n#****** ");   fprintf(fichtm,"\
       for(j=1;j<=cptcoveff;j++)  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       fprintf(ficreseij,"******\n");  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresvij,"\n#****** ");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresvij,"******\n");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   fprintf(fichtm,"\
       oldm=oldms;savm=savms;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);             subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     fprintf(fichtm,"\
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
       oldm=oldms;savm=savms;     <a href=\"%s\">%s</a> <br>\n</li>",
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       <a href=\"%s\">%s</a> <br>\n</li>",
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   fprintf(fichtm,"\
       fprintf(ficrest,"\n");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       epj=vector(1,nlstate+1);   fprintf(fichtm,"\
       for(age=bage; age <=fage ;age++){   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
         if (popbased==1) {   fprintf(fichtm,"\
           for(i=1; i<=nlstate;i++)   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
             prlim[i][i]=probs[(int)age][i][k];           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         }  
          /*  if(popforecast==1) fprintf(fichtm,"\n */
         fprintf(ficrest," %4.0f",age);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  /*      <br>",fileres,fileres,fileres,fileres); */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  /*  else  */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           }   fflush(fichtm);
           epj[nlstate+1] +=epj[j];   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         }  
    m=cptcoveff;
         for(i=1, vepp=0.;i <=nlstate;i++)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];   jj1=0;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));   for(k1=1; k1<=m;k1++){
         for(j=1;j <=nlstate;j++){     for(i1=1; i1<=ncodemax[k1];i1++){
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       jj1++;
         }       if (cptcovn > 0) {
         fprintf(ficrest,"\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       }         for (cpt=1; cpt<=cptcoveff;cpt++) 
     }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 free_matrix(mint,1,maxwav,1,n);       }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);       for(cpt=1; cpt<=nlstate;cpt++) {
     free_vector(weight,1,n);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   fclose(ficreseij);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   fclose(ficresvij);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   fclose(ficrest);       }
   fclose(ficpar);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   free_vector(epj,1,nlstate+1);  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
    true period expectancies (those weighted with period prevalences are also\
   /*------- Variance limit prevalence------*/     drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   strcpy(fileresvpl,"vpl");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   strcat(fileresvpl,fileres);     } /* end i1 */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   }/* End k1 */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   fprintf(fichtm,"</ul>");
     exit(0);   fflush(fichtm);
   }  }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
   /******************* Gnuplot file **************/
   k=0;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    char dirfileres[132],optfileres[132];
       k=k+1;    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
       fprintf(ficresvpl,"\n#****** ");    int ng=0;
       for(j=1;j<=cptcoveff;j++)  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*     printf("Problem with file %s",optionfilegnuplot); */
       fprintf(ficresvpl,"******\n");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
        /*   } */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    /*#ifdef windows */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     }      /*#endif */
  }    m=pow(2,cptcoveff);
   
   fclose(ficresvpl);    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
   /*---------- End : free ----------------*/   /* 1eme*/
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \n\
    set ylabel \"Probability\" \n\
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  set ter png small\n\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  set size 0.65,0.65\n\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
         for (i=1; i<= nlstate ; i ++) {
   free_matrix(matcov,1,npar,1,npar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_vector(delti,1,npar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(agev,1,maxwav,1,imx);       }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
   fprintf(fichtm,"\n</body>");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(fichtm);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   fclose(ficgp);       } 
         fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
   if(erreur >0)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("End of Imach with error or warning %d\n",erreur);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   else   printf("End of Imach\n");       }  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    }
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /*2 eme*/
   /*------ End -----------*/    
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
  end:      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 #ifdef windows      
   /* chdir(pathcd);*/      for (i=1; i<= nlstate+1 ; i ++) {
 #endif        k=2*i;
  /*system("wgnuplot graph.plt");*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        for (j=1; j<= nlstate+1 ; j ++) {
  /*system("cd ../gp37mgw");*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
  strcpy(plotcmd,GNUPLOTPROGRAM);        }   
  strcat(plotcmd," ");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
  strcat(plotcmd,optionfilegnuplot);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
  system(plotcmd);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
 #ifdef windows          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   while (z[0] != 'q') {          else fprintf(ficgp," \%%*lf (\%%*lf)");
     /* chdir(path); */        }   
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        fprintf(ficgp,"\" t\"\" w l 0,");
     scanf("%s",z);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     if (z[0] == 'c') system("./imach");        for (j=1; j<= nlstate+1 ; j ++) {
     else if (z[0] == 'e') system(optionfilehtm);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     else if (z[0] == 'g') system(plotcmd);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     else if (z[0] == 'q') exit(0);        }   
   }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 #endif        else fprintf(ficgp,"\" t\"\" w l 0,");
 }      }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sum the number of covariates including ages as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.130


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>