Diff for /imach/src/imach.c between versions 1.48 and 1.133

version 1.48, 2002/06/10 13:12:49 version 1.133, 2009/07/06 10:21:25
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.133  2009/07/06 10:21:25  brouard
      just nforces
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.132  2009/07/06 08:22:05  brouard
   first survey ("cross") where individuals from different ages are    Many tings
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.131  2009/06/20 16:22:47  brouard
   second wave of interviews ("longitudinal") which measure each change    Some dimensions resccaled
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.130  2009/05/26 06:44:34  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): Max Covariate is now set to 20 instead of 8. A
   Maximum Likelihood of the parameters involved in the model.  The    lot of cleaning with variables initialized to 0. Trying to make
   simplest model is the multinomial logistic model where pij is the    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.129  2007/08/31 13:49:27  lievre
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.128  2006/06/30 13:02:05  brouard
   where the markup *Covariates have to be included here again* invites    (Module): Clarifications on computing e.j
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
   The advantage of this computer programme, compared to a simple    imach-114 because nhstepm was no more computed in the age
   multinomial logistic model, is clear when the delay between waves is not    loop. Now we define nhstepma in the age loop.
   identical for each individual. Also, if a individual missed an    (Module): In order to speed up (in case of numerous covariates) we
   intermediate interview, the information is lost, but taken into    compute health expectancies (without variances) in a first step
   account using an interpolation or extrapolation.      and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
   hPijx is the probability to be observed in state i at age x+h    computation.
   conditional to the observed state i at age x. The delay 'h' can be    In the future we should be able to stop the program is only health
   split into an exact number (nh*stepm) of unobserved intermediate    expectancies and graph are needed without standard deviations.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.126  2006/04/28 17:23:28  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Yes the sum of survivors was wrong since
   and the contribution of each individual to the likelihood is simply    imach-114 because nhstepm was no more computed in the age
   hPijx.    loop. Now we define nhstepma in the age loop.
     Version 0.98h
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.125  2006/04/04 15:20:31  lievre
      Errors in calculation of health expectancies. Age was not initialized.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Forecasting file added.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.124  2006/03/22 17:13:53  lievre
   from the European Union.    Parameters are printed with %lf instead of %f (more numbers after the comma).
   It is copyrighted identically to a GNU software product, ie programme and    The log-likelihood is printed in the log file
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.123  2006/03/20 10:52:43  brouard
   **********************************************************************/    * imach.c (Module): <title> changed, corresponds to .htm file
      name. <head> headers where missing.
 #include <math.h>  
 #include <stdio.h>    * imach.c (Module): Weights can have a decimal point as for
 #include <stdlib.h>    English (a comma might work with a correct LC_NUMERIC environment,
 #include <unistd.h>    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 #define MAXLINE 256    1.
 #define GNUPLOTPROGRAM "gnuplot"    Version 0.98g
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.122  2006/03/20 09:45:41  brouard
 /*#define DEBUG*/    (Module): Weights can have a decimal point as for
 #define windows    English (a comma might work with a correct LC_NUMERIC environment,
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    otherwise the weight is truncated).
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Modification of warning when the covariates values are not 0 or
     1.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Version 0.98g
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.121  2006/03/16 17:45:01  lievre
 #define NINTERVMAX 8    * imach.c (Module): Comments concerning covariates added
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Module): refinements in the computation of lli if
 #define NCOVMAX 8 /* Maximum number of covariates */    status=-2 in order to have more reliable computation if stepm is
 #define MAXN 20000    not 1 month. Version 0.98f
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.120  2006/03/16 15:10:38  lievre
 #define AGEBASE 40    (Module): refinements in the computation of lli if
 #ifdef windows    status=-2 in order to have more reliable computation if stepm is
 #define DIRSEPARATOR '\\'    not 1 month. Version 0.98f
 #else  
 #define DIRSEPARATOR '/'    Revision 1.119  2006/03/15 17:42:26  brouard
 #endif    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.118  2006/03/14 18:20:07  brouard
 int nvar;    (Module): varevsij Comments added explaining the second
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    table of variances if popbased=1 .
 int npar=NPARMAX;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int nlstate=2; /* Number of live states */    (Module): Function pstamp added
 int ndeath=1; /* Number of dead states */    (Module): Version 0.98d
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 int *wav; /* Number of waves for this individuual 0 is possible */    table of variances if popbased=1 .
 int maxwav; /* Maxim number of waves */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Function pstamp added
 int mle, weightopt;    (Module): Version 0.98d
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.116  2006/03/06 10:29:27  brouard
 double jmean; /* Mean space between 2 waves */    (Module): Variance-covariance wrong links and
 double **oldm, **newm, **savm; /* Working pointers to matrices */    varian-covariance of ej. is needed (Saito).
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.115  2006/02/27 12:17:45  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): One freematrix added in mlikeli! 0.98c
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.114  2006/02/26 12:57:58  brouard
 char filerese[FILENAMELENGTH];    (Module): Some improvements in processing parameter
 FILE  *ficresvij;    filename with strsep.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.113  2006/02/24 14:20:24  brouard
 char fileresvpl[FILENAMELENGTH];    (Module): Memory leaks checks with valgrind and:
 char title[MAXLINE];    datafile was not closed, some imatrix were not freed and on matrix
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    allocation too.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.112  2006/01/30 09:55:26  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 char filerest[FILENAMELENGTH];    Revision 1.111  2006/01/25 20:38:18  brouard
 char fileregp[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
 char popfile[FILENAMELENGTH];    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.110  2006/01/25 00:51:50  brouard
 #define NR_END 1    (Module): Lots of cleaning and bugs added (Gompertz)
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 #define NRANSI  
 #define ITMAX 200    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 #define TOL 2.0e-4    To be fixed
   
 #define CGOLD 0.3819660    Revision 1.107  2006/01/19 16:20:37  brouard
 #define ZEPS 1.0e-10    Test existence of gnuplot in imach path
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.106  2006/01/19 13:24:36  brouard
 #define GOLD 1.618034    Some cleaning and links added in html output
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.104  2005/09/30 16:11:43  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): sump fixed, loop imx fixed, and simplifications.
      (Module): If the status is missing at the last wave but we know
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    that the person is alive, then we can code his/her status as -2
 #define rint(a) floor(a+0.5)    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 static double sqrarg;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    the healthy state at last known wave). Version is 0.98
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.103  2005/09/30 15:54:49  lievre
 int imx;    (Module): sump fixed, loop imx fixed, and simplifications.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.100  2004/07/12 18:29:06  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Add version for Mac OS X. Just define UNIX in Makefile
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 double *weight;  
 int **s; /* Status */    Revision 1.98  2004/05/16 15:05:56  brouard
 double *agedc, **covar, idx;    New version 0.97 . First attempt to estimate force of mortality
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    This is the basic analysis of mortality and should be done before any
 double ftolhess; /* Tolerance for computing hessian */    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 /**************** split *************************/    from other sources like vital statistic data.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    The same imach parameter file can be used but the option for mle should be -3.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    The output is very simple: only an estimate of the intercept and of
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    the slope with 95% confident intervals.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Current limitations:
       extern char       *getwd( );    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
       if ( getwd( dirc ) == NULL ) {    B) There is no computation of Life Expectancy nor Life Table.
 #else  
       extern char       *getcwd( );    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    suppressed.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.96  2003/07/15 15:38:55  brouard
       }    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       strcpy( name, path );             /* we've got it */    rewritten within the same printf. Workaround: many printfs.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.95  2003/07/08 07:54:34  brouard
       l2 = strlen( s );                 /* length of filename */    * imach.c (Repository):
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Repository): Using imachwizard code to output a more meaningful covariance
       strcpy( name, s );                /* save file name */    matrix (cov(a12,c31) instead of numbers.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.94  2003/06/27 13:00:02  brouard
    }    Just cleaning
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.93  2003/06/25 16:33:55  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): On windows (cygwin) function asctime_r doesn't
 #else    exist so I changed back to asctime which exists.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): Version 0.96b
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.92  2003/06/25 16:30:45  brouard
    s++;    (Module): On windows (cygwin) function asctime_r doesn't
    strcpy(ext,s);                       /* save extension */    exist so I changed back to asctime which exists.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.91  2003/06/25 15:30:29  brouard
    strncpy( finame, name, l1-l2);    * imach.c (Repository): Duplicated warning errors corrected.
    finame[l1-l2]= 0;    (Repository): Elapsed time after each iteration is now output. It
    return( 0 );                         /* we're done */    helps to forecast when convergence will be reached. Elapsed time
 }    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
   
 /******************************************/    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 void replace(char *s, char*t)    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   int i;  
   int lg=20;    Revision 1.89  2003/06/24 12:30:52  brouard
   i=0;    (Module): Some bugs corrected for windows. Also, when
   lg=strlen(t);    mle=-1 a template is output in file "or"mypar.txt with the design
   for(i=0; i<= lg; i++) {    of the covariance matrix to be input.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.88  2003/06/23 17:54:56  brouard
   }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 }  
     Revision 1.87  2003/06/18 12:26:01  brouard
 int nbocc(char *s, char occ)    Version 0.96
 {  
   int i,j=0;    Revision 1.86  2003/06/17 20:04:08  brouard
   int lg=20;    (Module): Change position of html and gnuplot routines and added
   i=0;    routine fileappend.
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.85  2003/06/17 13:12:43  brouard
   if  (s[i] == occ ) j++;    * imach.c (Repository): Check when date of death was earlier that
   }    current date of interview. It may happen when the death was just
   return j;    prior to the death. In this case, dh was negative and likelihood
 }    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 void cutv(char *u,char *v, char*t, char occ)    interview.
 {    (Repository): Because some people have very long ID (first column)
   int i,lg,j,p=0;    we changed int to long in num[] and we added a new lvector for
   i=0;    memory allocation. But we also truncated to 8 characters (left
   for(j=0; j<=strlen(t)-1; j++) {    truncation)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Repository): No more line truncation errors.
   }  
     Revision 1.84  2003/06/13 21:44:43  brouard
   lg=strlen(t);    * imach.c (Repository): Replace "freqsummary" at a correct
   for(j=0; j<p; j++) {    place. It differs from routine "prevalence" which may be called
     (u[j] = t[j]);    many times. Probs is memory consuming and must be used with
   }    parcimony.
      u[p]='\0';    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
    for(j=0; j<= lg; j++) {    Revision 1.83  2003/06/10 13:39:11  lievre
     if (j>=(p+1))(v[j-p-1] = t[j]);    *** empty log message ***
   }  
 }    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 /********************** nrerror ********************/  
   */
 void nrerror(char error_text[])  /*
 {     Interpolated Markov Chain
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Short summary of the programme:
   exit(1);    
 }    This program computes Healthy Life Expectancies from
 /*********************** vector *******************/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 double *vector(int nl, int nh)    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   double *v;    case of a health survey which is our main interest) -2- at least a
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    second wave of interviews ("longitudinal") which measure each change
   if (!v) nrerror("allocation failure in vector");    (if any) in individual health status.  Health expectancies are
   return v-nl+NR_END;    computed from the time spent in each health state according to a
 }    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 /************************ free vector ******************/    simplest model is the multinomial logistic model where pij is the
 void free_vector(double*v, int nl, int nh)    probability to be observed in state j at the second wave
 {    conditional to be observed in state i at the first wave. Therefore
   free((FREE_ARG)(v+nl-NR_END));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /************************ivector *******************************/    where the markup *Covariates have to be included here again* invites
 int *ivector(long nl,long nh)    you to do it.  More covariates you add, slower the
 {    convergence.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    The advantage of this computer programme, compared to a simple
   if (!v) nrerror("allocation failure in ivector");    multinomial logistic model, is clear when the delay between waves is not
   return v-nl+NR_END;    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   free((FREE_ARG)(v+nl-NR_END));    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /******************* imatrix *******************************/    matrix is simply the matrix product of nh*stepm elementary matrices
 int **imatrix(long nrl, long nrh, long ncl, long nch)    and the contribution of each individual to the likelihood is simply
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    hPijx.
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Also this programme outputs the covariance matrix of the parameters but also
   int **m;    of the life expectancies. It also computes the period (stable) prevalence. 
      
   /* allocate pointers to rows */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));             Institut national d'études démographiques, Paris.
   if (!m) nrerror("allocation failure 1 in matrix()");    This software have been partly granted by Euro-REVES, a concerted action
   m += NR_END;    from the European Union.
   m -= nrl;    It is copyrighted identically to a GNU software product, ie programme and
      software can be distributed freely for non commercial use. Latest version
      can be accessed at http://euroreves.ined.fr/imach .
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m[nrl] += NR_END;    
   m[nrl] -= ncl;    **********************************************************************/
    /*
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    main
      read parameterfile
   /* return pointer to array of pointers to rows */    read datafile
   return m;    concatwav
 }    freqsummary
     if (mle >= 1)
 /****************** free_imatrix *************************/      mlikeli
 void free_imatrix(m,nrl,nrh,ncl,nch)    print results files
       int **m;    if mle==1 
       long nch,ncl,nrh,nrl;       computes hessian
      /* free an int matrix allocated by imatrix() */    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    open gnuplot file
   free((FREE_ARG) (m+nrl-NR_END));    open html file
 }    period (stable) prevalence
      for age prevalim()
 /******************* matrix *******************************/    h Pij x
 double **matrix(long nrl, long nrh, long ncl, long nch)    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    health expectancies
   double **m;    Variance-covariance of DFLE
     prevalence()
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));     movingaverage()
   if (!m) nrerror("allocation failure 1 in matrix()");    varevsij() 
   m += NR_END;    if popbased==1 varevsij(,popbased)
   m -= nrl;    total life expectancies
     Variance of period (stable) prevalence
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));   end
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;   
   return m;  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /*************************free matrix ************************/  #include <string.h>
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #include <unistd.h>
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <limits.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include <sys/types.h>
 }  #include <sys/stat.h>
   #include <errno.h>
 /******************* ma3x *******************************/  extern int errno;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  /* #include <sys/time.h> */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #include <time.h>
   double ***m;  #include "timeval.h"
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /* #include <libintl.h> */
   if (!m) nrerror("allocation failure 1 in matrix()");  /* #define _(String) gettext (String) */
   m += NR_END;  
   m -= nrl;  #define MAXLINE 256
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define GNUPLOTPROGRAM "gnuplot"
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m[nrl] += NR_END;  #define FILENAMELENGTH 132
   m[nrl] -= ncl;  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define NINTERVMAX 8
   for (j=ncl+1; j<=nch; j++)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
     m[nrl][j]=m[nrl][j-1]+nlay;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 20 /* Maximum number of covariates */
   for (i=nrl+1; i<=nrh; i++) {  #define MAXN 20000
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define YEARM 12. /* Number of months per year */
     for (j=ncl+1; j<=nch; j++)  #define AGESUP 130
       m[i][j]=m[i][j-1]+nlay;  #define AGEBASE 40
   }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   return m;  #ifdef UNIX
 }  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
 /*************************free ma3x ************************/  #define ODIRSEPARATOR '\\'
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #else
 {  #define DIRSEPARATOR '\\'
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define CHARSEPARATOR "\\"
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define ODIRSEPARATOR '/'
   free((FREE_ARG)(m+nrl-NR_END));  #endif
 }  
   /* $Id$ */
 /***************** f1dim *************************/  /* $State$ */
 extern int ncom;  
 extern double *pcom,*xicom;  char version[]="Imach version 0.98k, June 2009, INED-EUROREVES-Institut de longevite ";
 extern double (*nrfunc)(double []);  char fullversion[]="$Revision$ $Date$"; 
    char strstart[80];
 double f1dim(double x)  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 {  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int j;  int nvar=0, nforce=0; /* Number of variables, number of forces */
   double f;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
   double *xt;  int npar=NPARMAX;
    int nlstate=2; /* Number of live states */
   xt=vector(1,ncom);  int ndeath=1; /* Number of dead states */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   f=(*nrfunc)(xt);  int popbased=0;
   free_vector(xt,1,ncom);  
   return f;  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav=0; /* Maxim number of waves */
   int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 /*****************brent *************************/  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   int iter;  int mle=1, weightopt=0;
   double a,b,d,etemp;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   double fu,fv,fw,fx;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   double ftemp;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double p,q,r,tol1,tol2,u,v,w,x,xm;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double e=0.0;  double jmean=1; /* Mean space between 2 waves */
    double **oldm, **newm, **savm; /* Working pointers to matrices */
   a=(ax < cx ? ax : cx);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   b=(ax > cx ? ax : cx);  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   x=w=v=bx;  FILE *ficlog, *ficrespow;
   fw=fv=fx=(*f)(x);  int globpr=0; /* Global variable for printing or not */
   for (iter=1;iter<=ITMAX;iter++) {  double fretone; /* Only one call to likelihood */
     xm=0.5*(a+b);  long ipmx=0; /* Number of contributions */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  double sw; /* Sum of weights */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char filerespow[FILENAMELENGTH];
     printf(".");fflush(stdout);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #ifdef DEBUG  FILE *ficresilk;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  FILE *ficresprobmorprev;
 #endif  FILE *fichtm, *fichtmcov; /* Html File */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  FILE *ficreseij;
       *xmin=x;  char filerese[FILENAMELENGTH];
       return fx;  FILE *ficresstdeij;
     }  char fileresstde[FILENAMELENGTH];
     ftemp=fu;  FILE *ficrescveij;
     if (fabs(e) > tol1) {  char filerescve[FILENAMELENGTH];
       r=(x-w)*(fx-fv);  FILE  *ficresvij;
       q=(x-v)*(fx-fw);  char fileresv[FILENAMELENGTH];
       p=(x-v)*q-(x-w)*r;  FILE  *ficresvpl;
       q=2.0*(q-r);  char fileresvpl[FILENAMELENGTH];
       if (q > 0.0) p = -p;  char title[MAXLINE];
       q=fabs(q);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       etemp=e;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       e=d;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char command[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int  outcmd=0;
       else {  
         d=p/q;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  char filelog[FILENAMELENGTH]; /* Log file */
           d=SIGN(tol1,xm-x);  char filerest[FILENAMELENGTH];
       }  char fileregp[FILENAMELENGTH];
     } else {  char popfile[FILENAMELENGTH];
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     if (fu <= fx) {  struct timezone tzp;
       if (u >= x) a=x; else b=x;  extern int gettimeofday();
       SHFT(v,w,x,u)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
         SHFT(fv,fw,fx,fu)  long time_value;
         } else {  extern long time();
           if (u < x) a=u; else b=u;  char strcurr[80], strfor[80];
           if (fu <= fw || w == x) {  
             v=w;  char *endptr;
             w=u;  long lval;
             fv=fw;  double dval;
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  #define NR_END 1
             v=u;  #define FREE_ARG char*
             fv=fu;  #define FTOL 1.0e-10
           }  
         }  #define NRANSI 
   }  #define ITMAX 200 
   nrerror("Too many iterations in brent");  
   *xmin=x;  #define TOL 2.0e-4 
   return fx;  
 }  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /****************** mnbrak ***********************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define GOLD 1.618034 
             double (*func)(double))  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   double ulim,u,r,q, dum;  
   double fu;  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   *fa=(*func)(*ax);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   *fb=(*func)(*bx);    
   if (*fb > *fa) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     SHFT(dum,*ax,*bx,dum)  #define rint(a) floor(a+0.5)
       SHFT(dum,*fb,*fa,dum)  
       }  static double sqrarg;
   *cx=(*bx)+GOLD*(*bx-*ax);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   *fc=(*func)(*cx);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   while (*fb > *fc) {  int agegomp= AGEGOMP;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  int imx; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int stepm=1;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  /* Stepm, step in month: minimum step interpolation*/
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  int estepm;
       fu=(*func)(u);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  int m,nb;
       if (fu < *fc) {  long *num;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
           SHFT(*fb,*fc,fu,(*func)(u))  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
           }  double **pmmij, ***probs;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double *ageexmed,*agecens;
       u=ulim;  double dateintmean=0;
       fu=(*func)(u);  
     } else {  double *weight;
       u=(*cx)+GOLD*(*cx-*bx);  int **s; /* Status */
       fu=(*func)(u);  double *agedc, **covar, idx;
     }  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     SHFT(*ax,*bx,*cx,u)  double *lsurv, *lpop, *tpop;
       SHFT(*fa,*fb,*fc,fu)  
       }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /*************** linmin ************************/  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 int ncom;  {
 double *pcom,*xicom;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 double (*nrfunc)(double []);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
      */ 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    l1 = strlen(path );                   /* length of path */
   double f1dim(double x);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
               double *fc, double (*func)(double));    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   int j;      strcpy( name, path );               /* we got the fullname name because no directory */
   double xx,xmin,bx,ax;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double fx,fb,fa;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
        /* get current working directory */
   ncom=n;      /*    extern  char* getcwd ( char *buf , int len);*/
   pcom=vector(1,n);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   xicom=vector(1,n);        return( GLOCK_ERROR_GETCWD );
   nrfunc=func;      }
   for (j=1;j<=n;j++) {      /* got dirc from getcwd*/
     pcom[j]=p[j];      printf(" DIRC = %s \n",dirc);
     xicom[j]=xi[j];    } else {                              /* strip direcotry from path */
   }      ss++;                               /* after this, the filename */
   ax=0.0;      l2 = strlen( ss );                  /* length of filename */
   xx=1.0;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      strcpy( name, ss );         /* save file name */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 #ifdef DEBUG      dirc[l1-l2] = 0;                    /* add zero */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      printf(" DIRC2 = %s \n",dirc);
 #endif    }
   for (j=1;j<=n;j++) {    /* We add a separator at the end of dirc if not exists */
     xi[j] *= xmin;    l1 = strlen( dirc );                  /* length of directory */
     p[j] += xi[j];    if( dirc[l1-1] != DIRSEPARATOR ){
   }      dirc[l1] =  DIRSEPARATOR;
   free_vector(xicom,1,n);      dirc[l1+1] = 0; 
   free_vector(pcom,1,n);      printf(" DIRC3 = %s \n",dirc);
 }    }
     ss = strrchr( name, '.' );            /* find last / */
 /*************** powell ************************/    if (ss >0){
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      ss++;
             double (*func)(double []))      strcpy(ext,ss);                     /* save extension */
 {      l1= strlen( name);
   void linmin(double p[], double xi[], int n, double *fret,      l2= strlen(ss)+1;
               double (*func)(double []));      strncpy( finame, name, l1-l2);
   int i,ibig,j;      finame[l1-l2]= 0;
   double del,t,*pt,*ptt,*xit;    }
   double fp,fptt;  
   double *xits;    return( 0 );                          /* we're done */
   pt=vector(1,n);  }
   ptt=vector(1,n);  
   xit=vector(1,n);  
   xits=vector(1,n);  /******************************************/
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  void replace_back_to_slash(char *s, char*t)
   for (*iter=1;;++(*iter)) {  {
     fp=(*fret);    int i;
     ibig=0;    int lg=0;
     del=0.0;    i=0;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    lg=strlen(t);
     for (i=1;i<=n;i++)    for(i=0; i<= lg; i++) {
       printf(" %d %.12f",i, p[i]);      (s[i] = t[i]);
     printf("\n");      if (t[i]== '\\') s[i]='/';
     for (i=1;i<=n;i++) {    }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  char *trimbb(char *out, char *in)
       printf("fret=%lf \n",*fret);  { /* Trim multiple blanks in line */
 #endif    char *s;
       printf("%d",i);fflush(stdout);    s=out;
       linmin(p,xit,n,fret,func);    while (*in != '\0'){
       if (fabs(fptt-(*fret)) > del) {      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
         del=fabs(fptt-(*fret));        in++;
         ibig=i;      }
       }      *out++ = *in++;
 #ifdef DEBUG    }
       printf("%d %.12e",i,(*fret));    *out='\0';
       for (j=1;j<=n;j++) {    return s;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  }
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  int nbocc(char *s, char occ)
       for(j=1;j<=n;j++)  {
         printf(" p=%.12e",p[j]);    int i,j=0;
       printf("\n");    int lg=20;
 #endif    i=0;
     }    lg=strlen(s);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    for(i=0; i<= lg; i++) {
 #ifdef DEBUG    if  (s[i] == occ ) j++;
       int k[2],l;    }
       k[0]=1;    return j;
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  void cutv(char *u,char *v, char*t, char occ)
         printf(" %.12e",p[j]);  {
       printf("\n");    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       for(l=0;l<=1;l++) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         for (j=1;j<=n;j++) {       gives u="abcedf" and v="ghi2j" */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int i,lg,j,p=0;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    i=0;
         }    for(j=0; j<=strlen(t)-1; j++) {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       }    }
 #endif  
     lg=strlen(t);
     for(j=0; j<p; j++) {
       free_vector(xit,1,n);      (u[j] = t[j]);
       free_vector(xits,1,n);    }
       free_vector(ptt,1,n);       u[p]='\0';
       free_vector(pt,1,n);  
       return;     for(j=0; j<= lg; j++) {
     }      if (j>=(p+1))(v[j-p-1] = t[j]);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    }
     for (j=1;j<=n;j++) {  }
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  /********************** nrerror ********************/
       pt[j]=p[j];  
     }  void nrerror(char error_text[])
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    fprintf(stderr,"ERREUR ...\n");
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    fprintf(stderr,"%s\n",error_text);
       if (t < 0.0) {    exit(EXIT_FAILURE);
         linmin(p,xit,n,fret,func);  }
         for (j=1;j<=n;j++) {  /*********************** vector *******************/
           xi[j][ibig]=xi[j][n];  double *vector(int nl, int nh)
           xi[j][n]=xit[j];  {
         }    double *v;
 #ifdef DEBUG    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (!v) nrerror("allocation failure in vector");
         for(j=1;j<=n;j++)    return v-nl+NR_END;
           printf(" %.12e",xit[j]);  }
         printf("\n");  
 #endif  /************************ free vector ******************/
       }  void free_vector(double*v, int nl, int nh)
     }  {
   }    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /**** Prevalence limit ****************/  /************************ivector *******************************/
   int *ivector(long nl,long nh)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    int *v;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      matrix by transitions matrix until convergence is reached */    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /******************free ivector **************************/
   double **out, cov[NCOVMAX], **pmij();  void free_ivector(int *v, long nl, long nh)
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */    free((FREE_ARG)(v+nl-NR_END));
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /************************lvector *******************************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  long *lvector(long nl,long nh)
     }  {
     long *v;
    cov[1]=1.;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      if (!v) nrerror("allocation failure in ivector");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return v-nl+NR_END;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  
     /* Covariates have to be included here again */  /******************free lvector **************************/
      cov[2]=agefin;  void free_lvector(long *v, long nl, long nh)
    {
       for (k=1; k<=cptcovn;k++) {    free((FREE_ARG)(v+nl-NR_END));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  /******************* imatrix *******************************/
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       for (k=1; k<=cptcovprod;k++)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    int **m; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    /* allocate pointers to rows */ 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
     savm=oldm;    m += NR_END; 
     oldm=newm;    m -= nrl; 
     maxmax=0.;    
     for(j=1;j<=nlstate;j++){    
       min=1.;    /* allocate rows and set pointers to them */ 
       max=0.;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       for(i=1; i<=nlstate; i++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         sumnew=0;    m[nrl] += NR_END; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m[nrl] -= ncl; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    
         max=FMAX(max,prlim[i][j]);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         min=FMIN(min,prlim[i][j]);    
       }    /* return pointer to array of pointers to rows */ 
       maxmin=max-min;    return m; 
       maxmax=FMAX(maxmax,maxmin);  } 
     }  
     if(maxmax < ftolpl){  /****************** free_imatrix *************************/
       return prlim;  void free_imatrix(m,nrl,nrh,ncl,nch)
     }        int **m;
   }        long nch,ncl,nrh,nrl; 
 }       /* free an int matrix allocated by imatrix() */ 
   { 
 /*************** transition probabilities ***************/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  } 
 {  
   double s1, s2;  /******************* matrix *******************************/
   /*double t34;*/  double **matrix(long nrl, long nrh, long ncl, long nch)
   int i,j,j1, nc, ii, jj;  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for(i=1; i<= nlstate; i++){    double **m;
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         /*s2 += param[i][j][nc]*cov[nc];*/    if (!m) nrerror("allocation failure 1 in matrix()");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m += NR_END;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m -= nrl;
       }  
       ps[i][j]=s2;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     for(j=i+1; j<=nlstate+ndeath;j++){    m[nrl] -= ncl;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       ps[i][j]=s2;     */
     }  }
   }  
     /*ps[3][2]=1;*/  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for(i=1; i<= nlstate; i++){  {
      s1=0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(j=1; j<i; j++)    free((FREE_ARG)(m+nrl-NR_END));
       s1+=exp(ps[i][j]);  }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  /******************* ma3x *******************************/
     ps[i][i]=1./(s1+1.);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     for(j=1; j<i; j++)  {
       ps[i][j]= exp(ps[i][j])*ps[i][i];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(j=i+1; j<=nlstate+ndeath; j++)    double ***m;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   } /* end i */    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    m -= nrl;
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       ps[ii][ii]=1;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      printf("%lf ",ps[ii][jj]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
    }    m[nrl][ncl] += NR_END;
     printf("\n ");    m[nrl][ncl] -= nll;
     }    for (j=ncl+1; j<=nch; j++) 
     printf("\n ");printf("%lf ",cov[2]);*/      m[nrl][j]=m[nrl][j-1]+nlay;
 /*    
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    for (i=nrl+1; i<=nrh; i++) {
   goto end;*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     return ps;      for (j=ncl+1; j<=nch; j++) 
 }        m[i][j]=m[i][j-1]+nlay;
     }
 /**************** Product of 2 matrices ******************/    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 {    */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /*************************free ma3x ************************/
      before: only the contents of out is modified. The function returns  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      a pointer to pointers identical to out */  {
   long i, j, k;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for(i=nrl; i<= nrh; i++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(k=ncolol; k<=ncoloh; k++)    free((FREE_ARG)(m+nrl-NR_END));
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   /*************** function subdirf ***********/
   return out;  char *subdirf(char fileres[])
 }  {
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /************* Higher Matrix Product ***************/    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    return tmpout;
 {  }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  /*************** function subdirf2 ***********/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  char *subdirf2(char fileres[], char *preop)
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  {
      (typically every 2 years instead of every month which is too big).    
      Model is determined by parameters x and covariates have to be    /* Caution optionfilefiname is hidden */
      included manually here.    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
      */    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   int i, j, d, h, k;    return tmpout;
   double **out, cov[NCOVMAX];  }
   double **newm;  
   /*************** function subdirf3 ***********/
   /* Hstepm could be zero and should return the unit matrix */  char *subdirf3(char fileres[], char *preop, char *preop2)
   for (i=1;i<=nlstate+ndeath;i++)  {
     for (j=1;j<=nlstate+ndeath;j++){    
       oldm[i][j]=(i==j ? 1.0 : 0.0);    /* Caution optionfilefiname is hidden */
       po[i][j][0]=(i==j ? 1.0 : 0.0);    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,preop);
   for(h=1; h <=nhstepm; h++){    strcat(tmpout,preop2);
     for(d=1; d <=hstepm; d++){    strcat(tmpout,fileres);
       newm=savm;    return tmpout;
       /* Covariates have to be included here again */  }
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /***************** f1dim *************************/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  extern int ncom; 
       for (k=1; k<=cptcovage;k++)  extern double *pcom,*xicom;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  extern double (*nrfunc)(double []); 
       for (k=1; k<=cptcovprod;k++)   
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double f1dim(double x) 
   { 
     int j; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double f;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double *xt; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    xt=vector(1,ncom); 
       savm=oldm;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       oldm=newm;    f=(*nrfunc)(xt); 
     }    free_vector(xt,1,ncom); 
     for(i=1; i<=nlstate+ndeath; i++)    return f; 
       for(j=1;j<=nlstate+ndeath;j++) {  } 
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /*****************brent *************************/
          */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       }  { 
   } /* end h */    int iter; 
   return po;    double a,b,d,etemp;
 }    double fu,fv,fw,fx;
     double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
 /*************** log-likelihood *************/    double e=0.0; 
 double func( double *x)   
 {    a=(ax < cx ? ax : cx); 
   int i, ii, j, k, mi, d, kk;    b=(ax > cx ? ax : cx); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    x=w=v=bx; 
   double **out;    fw=fv=fx=(*f)(x); 
   double sw; /* Sum of weights */    for (iter=1;iter<=ITMAX;iter++) { 
   double lli; /* Individual log likelihood */      xm=0.5*(a+b); 
   long ipmx;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   /*extern weight */      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   /* We are differentiating ll according to initial status */      printf(".");fflush(stdout);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      fprintf(ficlog,".");fflush(ficlog);
   /*for(i=1;i<imx;i++)  #ifdef DEBUG
     printf(" %d\n",s[4][i]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   cov[1]=1.;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   for(k=1; k<=nlstate; k++) ll[k]=0.;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        *xmin=x; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        return fx; 
     for(mi=1; mi<= wav[i]-1; mi++){      } 
       for (ii=1;ii<=nlstate+ndeath;ii++)      ftemp=fu;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if (fabs(e) > tol1) { 
       for(d=0; d<dh[mi][i]; d++){        r=(x-w)*(fx-fv); 
         newm=savm;        q=(x-v)*(fx-fw); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        p=(x-v)*q-(x-w)*r; 
         for (kk=1; kk<=cptcovage;kk++) {        q=2.0*(q-r); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        if (q > 0.0) p = -p; 
         }        q=fabs(q); 
                etemp=e; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        e=d; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         savm=oldm;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         oldm=newm;        else { 
                  d=p/q; 
                  u=x+d; 
       } /* end mult */          if (u-a < tol2 || b-u < tol2) 
                  d=SIGN(tol1,xm-x); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      } else { 
       ipmx +=1;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       sw += weight[i];      } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     } /* end of wave */      fu=(*f)(u); 
   } /* end of individual */      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        SHFT(v,w,x,u) 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          SHFT(fv,fw,fx,fu) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          } else { 
   return -l;            if (u < x) a=u; else b=u; 
 }            if (fu <= fw || w == x) { 
               v=w; 
               w=u; 
 /*********** Maximum Likelihood Estimation ***************/              fv=fw; 
               fw=fu; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            } else if (fu <= fv || v == x || v == w) { 
 {              v=u; 
   int i,j, iter;              fv=fu; 
   double **xi,*delti;            } 
   double fret;          } 
   xi=matrix(1,npar,1,npar);    } 
   for (i=1;i<=npar;i++)    nrerror("Too many iterations in brent"); 
     for (j=1;j<=npar;j++)    *xmin=x; 
       xi[i][j]=(i==j ? 1.0 : 0.0);    return fx; 
   printf("Powell\n");  } 
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   /****************** mnbrak ***********************/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
 }  { 
     double ulim,u,r,q, dum;
 /**** Computes Hessian and covariance matrix ***/    double fu; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))   
 {    *fa=(*func)(*ax); 
   double  **a,**y,*x,pd;    *fb=(*func)(*bx); 
   double **hess;    if (*fb > *fa) { 
   int i, j,jk;      SHFT(dum,*ax,*bx,dum) 
   int *indx;        SHFT(dum,*fb,*fa,dum) 
         } 
   double hessii(double p[], double delta, int theta, double delti[]);    *cx=(*bx)+GOLD*(*bx-*ax); 
   double hessij(double p[], double delti[], int i, int j);    *fc=(*func)(*cx); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    while (*fb > *fc) { 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
   hess=matrix(1,npar,1,npar);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   printf("\nCalculation of the hessian matrix. Wait...\n");      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for (i=1;i<=npar;i++){      if ((*bx-u)*(u-*cx) > 0.0) { 
     printf("%d",i);fflush(stdout);        fu=(*func)(u); 
     hess[i][i]=hessii(p,ftolhess,i,delti);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     /*printf(" %f ",p[i]);*/        fu=(*func)(u); 
     /*printf(" %lf ",hess[i][i]);*/        if (fu < *fc) { 
   }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
              SHFT(*fb,*fc,fu,(*func)(u)) 
   for (i=1;i<=npar;i++) {            } 
     for (j=1;j<=npar;j++)  {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       if (j>i) {        u=ulim; 
         printf(".%d%d",i,j);fflush(stdout);        fu=(*func)(u); 
         hess[i][j]=hessij(p,delti,i,j);      } else { 
         hess[j][i]=hess[i][j];            u=(*cx)+GOLD*(*cx-*bx); 
         /*printf(" %lf ",hess[i][j]);*/        fu=(*func)(u); 
       }      } 
     }      SHFT(*ax,*bx,*cx,u) 
   }        SHFT(*fa,*fb,*fc,fu) 
   printf("\n");        } 
   } 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
    /*************** linmin ************************/
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  int ncom; 
   x=vector(1,npar);  double *pcom,*xicom;
   indx=ivector(1,npar);  double (*nrfunc)(double []); 
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   ludcmp(a,npar,indx,&pd);  { 
     double brent(double ax, double bx, double cx, 
   for (j=1;j<=npar;j++) {                 double (*f)(double), double tol, double *xmin); 
     for (i=1;i<=npar;i++) x[i]=0;    double f1dim(double x); 
     x[j]=1;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     lubksb(a,npar,indx,x);                double *fc, double (*func)(double)); 
     for (i=1;i<=npar;i++){    int j; 
       matcov[i][j]=x[i];    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
   }   
     ncom=n; 
   printf("\n#Hessian matrix#\n");    pcom=vector(1,n); 
   for (i=1;i<=npar;i++) {    xicom=vector(1,n); 
     for (j=1;j<=npar;j++) {    nrfunc=func; 
       printf("%.3e ",hess[i][j]);    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
     printf("\n");      xicom[j]=xi[j]; 
   }    } 
     ax=0.0; 
   /* Recompute Inverse */    xx=1.0; 
   for (i=1;i<=npar;i++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   ludcmp(a,npar,indx,&pd);  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /*  printf("\n#Hessian matrix recomputed#\n");    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   for (j=1;j<=npar;j++) {    for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++) x[i]=0;      xi[j] *= xmin; 
     x[j]=1;      p[j] += xi[j]; 
     lubksb(a,npar,indx,x);    } 
     for (i=1;i<=npar;i++){    free_vector(xicom,1,n); 
       y[i][j]=x[i];    free_vector(pcom,1,n); 
       printf("%.3e ",y[i][j]);  } 
     }  
     printf("\n");  char *asc_diff_time(long time_sec, char ascdiff[])
   }  {
   */    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   free_matrix(a,1,npar,1,npar);    sec_left = (time_sec) % (60*60*24);
   free_matrix(y,1,npar,1,npar);    hours = (sec_left) / (60*60) ;
   free_vector(x,1,npar);    sec_left = (sec_left) %(60*60);
   free_ivector(indx,1,npar);    minutes = (sec_left) /60;
   free_matrix(hess,1,npar,1,npar);    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
 }  }
   
 /*************** hessian matrix ****************/  /*************** powell ************************/
 double hessii( double x[], double delta, int theta, double delti[])  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 {              double (*func)(double [])) 
   int i;  { 
   int l=1, lmax=20;    void linmin(double p[], double xi[], int n, double *fret, 
   double k1,k2;                double (*func)(double [])); 
   double p2[NPARMAX+1];    int i,ibig,j; 
   double res;    double del,t,*pt,*ptt,*xit;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double fp,fptt;
   double fx;    double *xits;
   int k=0,kmax=10;    int niterf, itmp;
   double l1;  
     pt=vector(1,n); 
   fx=func(x);    ptt=vector(1,n); 
   for (i=1;i<=npar;i++) p2[i]=x[i];    xit=vector(1,n); 
   for(l=0 ; l <=lmax; l++){    xits=vector(1,n); 
     l1=pow(10,l);    *fret=(*func)(p); 
     delts=delt;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for(k=1 ; k <kmax; k=k+1){    for (*iter=1;;++(*iter)) { 
       delt = delta*(l1*k);      fp=(*fret); 
       p2[theta]=x[theta] +delt;      ibig=0; 
       k1=func(p2)-fx;      del=0.0; 
       p2[theta]=x[theta]-delt;      last_time=curr_time;
       k2=func(p2)-fx;      (void) gettimeofday(&curr_time,&tzp);
       /*res= (k1-2.0*fx+k2)/delt/delt; */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
        /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 #ifdef DEBUG     for (i=1;i<=n;i++) {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        printf(" %d %.12f",i, p[i]);
 #endif        fprintf(ficlog," %d %.12lf",i, p[i]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        fprintf(ficrespow," %.12lf", p[i]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;      printf("\n");
       }      fprintf(ficlog,"\n");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      fprintf(ficrespow,"\n");fflush(ficrespow);
         k=kmax; l=lmax*10.;      if(*iter <=3){
       }        tm = *localtime(&curr_time.tv_sec);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        strcpy(strcurr,asctime(&tm));
         delts=delt;  /*       asctime_r(&tm,strcurr); */
       }        forecast_time=curr_time; 
     }        itmp = strlen(strcurr);
   }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   delti[theta]=delts;          strcurr[itmp-1]='\0';
   return res;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 }        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 double hessij( double x[], double delti[], int thetai,int thetaj)          tmf = *localtime(&forecast_time.tv_sec);
 {  /*      asctime_r(&tmf,strfor); */
   int i;          strcpy(strfor,asctime(&tmf));
   int l=1, l1, lmax=20;          itmp = strlen(strfor);
   double k1,k2,k3,k4,res,fx;          if(strfor[itmp-1]=='\n')
   double p2[NPARMAX+1];          strfor[itmp-1]='\0';
   int k;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   fx=func(x);        }
   for (k=1; k<=2; k++) {      }
     for (i=1;i<=npar;i++) p2[i]=x[i];      for (i=1;i<=n;i++) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fptt=(*fret); 
     k1=func(p2)-fx;  #ifdef DEBUG
          printf("fret=%lf \n",*fret);
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog,"fret=%lf \n",*fret);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #endif
     k2=func(p2)-fx;        printf("%d",i);fflush(stdout);
          fprintf(ficlog,"%d",i);fflush(ficlog);
     p2[thetai]=x[thetai]-delti[thetai]/k;        linmin(p,xit,n,fret,func); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        if (fabs(fptt-(*fret)) > del) { 
     k3=func(p2)-fx;          del=fabs(fptt-(*fret)); 
            ibig=i; 
     p2[thetai]=x[thetai]-delti[thetai]/k;        } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #ifdef DEBUG
     k4=func(p2)-fx;        printf("%d %.12e",i,(*fret));
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        fprintf(ficlog,"%d %.12e",i,(*fret));
 #ifdef DEBUG        for (j=1;j<=n;j++) {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 #endif          printf(" x(%d)=%.12e",j,xit[j]);
   }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   return res;        }
 }        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
 /************** Inverse of matrix **************/          fprintf(ficlog," p=%.12e",p[j]);
 void ludcmp(double **a, int n, int *indx, double *d)        }
 {        printf("\n");
   int i,imax,j,k;        fprintf(ficlog,"\n");
   double big,dum,sum,temp;  #endif
   double *vv;      } 
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   vv=vector(1,n);  #ifdef DEBUG
   *d=1.0;        int k[2],l;
   for (i=1;i<=n;i++) {        k[0]=1;
     big=0.0;        k[1]=-1;
     for (j=1;j<=n;j++)        printf("Max: %.12e",(*func)(p));
       if ((temp=fabs(a[i][j])) > big) big=temp;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for (j=1;j<=n;j++) {
     vv[i]=1.0/big;          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
   for (j=1;j<=n;j++) {        }
     for (i=1;i<j;i++) {        printf("\n");
       sum=a[i][j];        fprintf(ficlog,"\n");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for(l=0;l<=1;l++) {
       a[i][j]=sum;          for (j=1;j<=n;j++) {
     }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     big=0.0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (i=j;i<=n;i++) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       sum=a[i][j];          }
       for (k=1;k<j;k++)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         sum -= a[i][k]*a[k][j];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       a[i][j]=sum;        }
       if ( (dum=vv[i]*fabs(sum)) >= big) {  #endif
         big=dum;  
         imax=i;  
       }        free_vector(xit,1,n); 
     }        free_vector(xits,1,n); 
     if (j != imax) {        free_vector(ptt,1,n); 
       for (k=1;k<=n;k++) {        free_vector(pt,1,n); 
         dum=a[imax][k];        return; 
         a[imax][k]=a[j][k];      } 
         a[j][k]=dum;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { 
       *d = -(*d);        ptt[j]=2.0*p[j]-pt[j]; 
       vv[imax]=vv[j];        xit[j]=p[j]-pt[j]; 
     }        pt[j]=p[j]; 
     indx[j]=imax;      } 
     if (a[j][j] == 0.0) a[j][j]=TINY;      fptt=(*func)(ptt); 
     if (j != n) {      if (fptt < fp) { 
       dum=1.0/(a[j][j]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        if (t < 0.0) { 
     }          linmin(p,xit,n,fret,func); 
   }          for (j=1;j<=n;j++) { 
   free_vector(vv,1,n);  /* Doesn't work */            xi[j][ibig]=xi[j][n]; 
 ;            xi[j][n]=xit[j]; 
 }          }
   #ifdef DEBUG
 void lubksb(double **a, int n, int *indx, double b[])          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i,ii=0,ip,j;          for(j=1;j<=n;j++){
   double sum;            printf(" %.12e",xit[j]);
              fprintf(ficlog," %.12e",xit[j]);
   for (i=1;i<=n;i++) {          }
     ip=indx[i];          printf("\n");
     sum=b[ip];          fprintf(ficlog,"\n");
     b[ip]=b[i];  #endif
     if (ii)        }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      } 
     else if (sum) ii=i;    } 
     b[i]=sum;  } 
   }  
   for (i=n;i>=1;i--) {  /**** Prevalence limit (stable or period prevalence)  ****************/
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     b[i]=sum/a[i][i];  {
   }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 }       matrix by transitions matrix until convergence is reached */
   
 /************ Frequencies ********************/    int i, ii,j,k;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double min, max, maxmin, maxmax,sumnew=0.;
 {  /* Some frequencies */    double **matprod2();
      double **out, cov[NCOVMAX+1], **pmij();
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double **newm;
   double ***freq; /* Frequencies */    double agefin, delaymax=50 ; /* Max number of years to converge */
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;    for (ii=1;ii<=nlstate+ndeath;ii++)
   FILE *ficresp;      for (j=1;j<=nlstate+ndeath;j++){
   char fileresp[FILENAMELENGTH];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        }
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);     cov[1]=1.;
   strcpy(fileresp,"p");   
   strcat(fileresp,fileres);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   if((ficresp=fopen(fileresp,"w"))==NULL) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     printf("Problem with prevalence resultfile: %s\n", fileresp);      newm=savm;
     exit(0);      /* Covariates have to be included here again */
   }       cov[2]=agefin;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    
   j1=0;        for (k=1; k<=cptcovn;k++) {
            cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   j=cptcoveff;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovprod;k++)
     for(i1=1; i1<=ncodemax[k1];i1++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         scanf("%d", i);*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for (i=-1; i<=nlstate+ndeath; i++)          /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         for (jk=-1; jk<=nlstate+ndeath; jk++)        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;      savm=oldm;
            oldm=newm;
       dateintsum=0;      maxmax=0.;
       k2cpt=0;      for(j=1;j<=nlstate;j++){
       for (i=1; i<=imx; i++) {        min=1.;
         bool=1;        max=0.;
         if  (cptcovn>0) {        for(i=1; i<=nlstate; i++) {
           for (z1=1; z1<=cptcoveff; z1++)          sumnew=0;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
               bool=0;          prlim[i][j]= newm[i][j]/(1-sumnew);
         }          max=FMAX(max,prlim[i][j]);
         if (bool==1) {          min=FMIN(min,prlim[i][j]);
           for(m=firstpass; m<=lastpass; m++){        }
             k2=anint[m][i]+(mint[m][i]/12.);        maxmin=max-min;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        maxmax=FMAX(maxmax,maxmin);
               if(agev[m][i]==0) agev[m][i]=agemax+1;      }
               if(agev[m][i]==1) agev[m][i]=agemax+2;      if(maxmax < ftolpl){
               if (m<lastpass) {        return prlim;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    }
               }  }
                
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  /*************** transition probabilities ***************/ 
                 dateintsum=dateintsum+k2;  
                 k2cpt++;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
               }  {
             }    double s1, s2;
           }    /*double t34;*/
         }    int i,j,j1, nc, ii, jj;
       }  
              for(i=1; i<= nlstate; i++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       if  (cptcovn>0) {            /*s2 += param[i][j][nc]*cov[nc];*/
         fprintf(ficresp, "\n#********** Variable ");            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         fprintf(ficresp, "**********\n#");          }
       }          ps[i][j]=s2;
       for(i=1; i<=nlstate;i++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        }
       fprintf(ficresp, "\n");        for(j=i+1; j<=nlstate+ndeath;j++){
                for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         if(i==(int)agemax+3)  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           printf("Total");          }
         else          ps[i][j]=s2;
           printf("Age %d", i);        }
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      /*ps[3][2]=1;*/
             pp[jk] += freq[jk][m][i];      
         }      for(i=1; i<= nlstate; i++){
         for(jk=1; jk <=nlstate ; jk++){        s1=0;
           for(m=-1, pos=0; m <=0 ; m++)        for(j=1; j<i; j++){
             pos += freq[jk][m][i];          s1+=exp(ps[i][j]);
           if(pp[jk]>=1.e-10)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
           else        for(j=i+1; j<=nlstate+ndeath; j++){
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          s1+=exp(ps[i][j]);
         }          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
         for(jk=1; jk <=nlstate ; jk++){        ps[i][i]=1./(s1+1.);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(j=1; j<i; j++)
             pp[jk] += freq[jk][m][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
         }        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(jk=1,pos=0; jk <=nlstate ; jk++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           pos += pp[jk];      } /* end i */
         for(jk=1; jk <=nlstate ; jk++){      
           if(pos>=1.e-5)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(jj=1; jj<= nlstate+ndeath; jj++){
           else          ps[ii][jj]=0;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ps[ii][ii]=1;
           if( i <= (int) agemax){        }
             if(pos>=1.e-5){      }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      
               probs[i][jk][j1]= pp[jk]/pos;  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
             }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
             else  /*         printf("ddd %lf ",ps[ii][jj]); */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*       } */
           }  /*       printf("\n "); */
         }  /*        } */
          /*        printf("\n ");printf("%lf ",cov[2]); */
         for(jk=-1; jk <=nlstate+ndeath; jk++)         /*
           for(m=-1; m <=nlstate+ndeath; m++)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        goto end;*/
         if(i <= (int) agemax)      return ps;
           fprintf(ficresp,"\n");  }
         printf("\n");  
       }  /**************** Product of 2 matrices ******************/
     }  
   }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   dateintmean=dateintsum/k2cpt;  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   fclose(ficresp);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /* in, b, out are matrice of pointers which should have been initialized 
   free_vector(pp,1,nlstate);       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
   /* End of Freq */    long i, j, k;
 }    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
 /************ Prevalence ********************/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          out[i][k] +=in[i][j]*b[j][k];
 {  /* Some frequencies */  
      return out;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  }
   double ***freq; /* Frequencies */  
   double *pp;  
   double pos, k2;  /************* Higher Matrix Product ***************/
   
   pp=vector(1,nlstate);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
      /* Computes the transition matrix starting at age 'age' over 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       'nhstepm*hstepm*stepm' months (i.e. until
   j1=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
   j=cptcoveff;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       (typically every 2 years instead of every month which is too big 
         for the memory).
   for(k1=1; k1<=j;k1++){       Model is determined by parameters x and covariates have to be 
     for(i1=1; i1<=ncodemax[k1];i1++){       included manually here. 
       j1++;  
             */
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)      int i, j, d, h, k;
           for(m=agemin; m <= agemax+3; m++)    double **out, cov[NCOVMAX+1];
             freq[i][jk][m]=0;    double **newm;
        
       for (i=1; i<=imx; i++) {    /* Hstepm could be zero and should return the unit matrix */
         bool=1;    for (i=1;i<=nlstate+ndeath;i++)
         if  (cptcovn>0) {      for (j=1;j<=nlstate+ndeath;j++){
           for (z1=1; z1<=cptcoveff; z1++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        po[i][j][0]=(i==j ? 1.0 : 0.0);
               bool=0;      }
         }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         if (bool==1) {    for(h=1; h <=nhstepm; h++){
           for(m=firstpass; m<=lastpass; m++){      for(d=1; d <=hstepm; d++){
             k2=anint[m][i]+(mint[m][i]/12.);        newm=savm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        /* Covariates have to be included here again */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        cov[1]=1.;
               if(agev[m][i]==1) agev[m][i]=agemax+2;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
               if (m<lastpass) {        for (k=1; k<=cptcovn;k++) 
                 if (calagedate>0)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        for (k=1; k<=cptcovage;k++)
                 else          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for (k=1; k<=cptcovprod;k++)
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
               }  
             }  
           }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for(i=(int)agemin; i <= (int)agemax+3; i++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){        savm=oldm;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        oldm=newm;
             pp[jk] += freq[jk][m][i];      }
         }      for(i=1; i<=nlstate+ndeath; i++)
         for(jk=1; jk <=nlstate ; jk++){        for(j=1;j<=nlstate+ndeath;j++) {
           for(m=-1, pos=0; m <=0 ; m++)          po[i][j][h]=newm[i][j];
             pos += freq[jk][m][i];          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }        }
              /*printf("h=%d ",h);*/
         for(jk=1; jk <=nlstate ; jk++){    } /* end h */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*     printf("\n H=%d \n",h); */
             pp[jk] += freq[jk][m][i];    return po;
         }  }
          
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  
          /*************** log-likelihood *************/
         for(jk=1; jk <=nlstate ; jk++){      double func( double *x)
           if( i <= (int) agemax){  {
             if(pos>=1.e-5){    int i, ii, j, k, mi, d, kk;
               probs[i][jk][j1]= pp[jk]/pos;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
             }    double **out;
           }    double sw; /* Sum of weights */
         }    double lli; /* Individual log likelihood */
            int s1, s2;
       }    double bbh, survp;
     }    long ipmx;
   }    /*extern weight */
     /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /*for(i=1;i<imx;i++) 
   free_vector(pp,1,nlstate);      printf(" %d\n",s[4][i]);
      */
 }  /* End of Freq */    cov[1]=1.;
   
 /************* Waves Concatenation ***************/    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    if(mle==1){
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      Death is a valid wave (if date is known).        for(mi=1; mi<= wav[i]-1; mi++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          for (ii=1;ii<=nlstate+ndeath;ii++)
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            for (j=1;j<=nlstate+ndeath;j++){
      and mw[mi+1][i]. dh depends on stepm.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   int i, mi, m;          for(d=0; d<dh[mi][i]; d++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            newm=savm;
      double sum=0., jmean=0.;*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   int j, k=0,jk, ju, jl;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double sum=0.;            }
   jmin=1e+5;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmax=-1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmean=0.;            savm=oldm;
   for(i=1; i<=imx; i++){            oldm=newm;
     mi=0;          } /* end mult */
     m=firstpass;        
     while(s[m][i] <= nlstate){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       if(s[m][i]>=1)          /* But now since version 0.9 we anticipate for bias at large stepm.
         mw[++mi][i]=m;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       if(m >=lastpass)           * (in months) between two waves is not a multiple of stepm, we rounded to 
         break;           * the nearest (and in case of equal distance, to the lowest) interval but now
       else           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         m++;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     }/* end while */           * probability in order to take into account the bias as a fraction of the way
     if (s[m][i] > nlstate){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       mi++;     /* Death is another wave */           * -stepm/2 to stepm/2 .
       /* if(mi==0)  never been interviewed correctly before death */           * For stepm=1 the results are the same as for previous versions of Imach.
          /* Only death is a correct wave */           * For stepm > 1 the results are less biased than in previous versions. 
       mw[mi][i]=m;           */
     }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     wav[i]=mi;          bbh=(double)bh[mi][i]/(double)stepm; 
     if(mi==0)          /* bias bh is positive if real duration
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);           * is higher than the multiple of stepm and negative otherwise.
   }           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for(i=1; i<=imx; i++){          if( s2 > nlstate){ 
     for(mi=1; mi<wav[i];mi++){            /* i.e. if s2 is a death state and if the date of death is known 
       if (stepm <=0)               then the contribution to the likelihood is the probability to 
         dh[mi][i]=1;               die between last step unit time and current  step unit time, 
       else{               which is also equal to probability to die before dh 
         if (s[mw[mi+1][i]][i] > nlstate) {               minus probability to die before dh-stepm . 
           if (agedc[i] < 2*AGESUP) {               In version up to 0.92 likelihood was computed
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          as if date of death was unknown. Death was treated as any other
           if(j==0) j=1;  /* Survives at least one month after exam */          health state: the date of the interview describes the actual state
           k=k+1;          and not the date of a change in health state. The former idea was
           if (j >= jmax) jmax=j;          to consider that at each interview the state was recorded
           if (j <= jmin) jmin=j;          (healthy, disable or death) and IMaCh was corrected; but when we
           sum=sum+j;          introduced the exact date of death then we should have modified
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          the contribution of an exact death to the likelihood. This new
           }          contribution is smaller and very dependent of the step unit
         }          stepm. It is no more the probability to die between last interview
         else{          and month of death but the probability to survive from last
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          interview up to one month before death multiplied by the
           k=k+1;          probability to die within a month. Thanks to Chris
           if (j >= jmax) jmax=j;          Jackson for correcting this bug.  Former versions increased
           else if (j <= jmin)jmin=j;          mortality artificially. The bad side is that we add another loop
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          which slows down the processing. The difference can be up to 10%
           sum=sum+j;          lower mortality.
         }            */
         jk= j/stepm;            lli=log(out[s1][s2] - savm[s1][s2]);
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;  
         if(jl <= -ju)          } else if  (s2==-2) {
           dh[mi][i]=jk;            for (j=1,survp=0. ; j<=nlstate; j++) 
         else              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           dh[mi][i]=jk+1;            /*survp += out[s1][j]; */
         if(dh[mi][i]==0)            lli= log(survp);
           dh[mi][i]=1; /* At least one step */          }
       }          
     }          else if  (s2==-4) { 
   }            for (j=3,survp=0. ; j<=nlstate; j++)  
   jmean=sum/k;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            lli= log(survp); 
  }          } 
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)          else if  (s2==-5) { 
 {            for (j=1,survp=0. ; j<=2; j++)  
   int Ndum[20],ij=1, k, j, i;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int cptcode=0;            lli= log(survp); 
   cptcoveff=0;          } 
            
   for (k=0; k<19; k++) Ndum[k]=0;          else{
   for (k=1; k<=7; k++) ncodemax[k]=0;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          } 
     for (i=1; i<=imx; i++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       ij=(int)(covar[Tvar[j]][i]);          /*if(lli ==000.0)*/
       Ndum[ij]++;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          ipmx +=1;
       if (ij > cptcode) cptcode=ij;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     for (i=0; i<=cptcode; i++) {      } /* end of individual */
       if(Ndum[i]!=0) ncodemax[j]++;    }  else if(mle==2){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     ij=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1; i<=ncodemax[j]; i++) {            for (j=1;j<=nlstate+ndeath;j++){
       for (k=0; k<=19; k++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (Ndum[k] != 0) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           nbcode[Tvar[j]][ij]=k;            }
                    for(d=0; d<=dh[mi][i]; d++){
           ij++;            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (ij > ncodemax[j]) break;            for (kk=1; kk<=cptcovage;kk++) {
       }                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (k=0; k<19; k++) Ndum[k]=0;            savm=oldm;
             oldm=newm;
  for (i=1; i<=ncovmodel-2; i++) {          } /* end mult */
       ij=Tvar[i];        
       Ndum[ij]++;          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
  ij=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  for (i=1; i<=10; i++) {          ipmx +=1;
    if((Ndum[i]!=0) && (i<=ncovcol)){          sw += weight[i];
      Tvaraff[ij]=i;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      ij++;        } /* end of wave */
    }      } /* end of individual */
  }    }  else if(mle==3){  /* exponential inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     cptcoveff=ij-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /*********** Health Expectancies ****************/            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 {          for(d=0; d<dh[mi][i]; d++){
   /* Health expectancies */            newm=savm;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double age, agelim, hf;            for (kk=1; kk<=cptcovage;kk++) {
   double ***p3mat,***varhe;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **dnewm,**doldm;            }
   double *xp;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **gp, **gm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***gradg, ***trgradg;            savm=oldm;
   int theta;            oldm=newm;
           } /* end mult */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        
   xp=vector(1,npar);          s1=s[mw[mi][i]][i];
   dnewm=matrix(1,nlstate*2,1,npar);          s2=s[mw[mi+1][i]][i];
   doldm=matrix(1,nlstate*2,1,nlstate*2);          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fprintf(ficreseij,"# Health expectancies\n");          ipmx +=1;
   fprintf(ficreseij,"# Age");          sw += weight[i];
   for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(j=1; j<=nlstate;j++)        } /* end of wave */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      } /* end of individual */
   fprintf(ficreseij,"\n");    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if(estepm < stepm){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf ("Problem %d lower than %d\n",estepm, stepm);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   else  hstepm=estepm;              for (j=1;j<=nlstate+ndeath;j++){
   /* We compute the life expectancy from trapezoids spaced every estepm months              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * This is mainly to measure the difference between two models: for example              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * if stepm=24 months pijx are given only every 2 years and by summing them            }
    * we are calculating an estimate of the Life Expectancy assuming a linear          for(d=0; d<dh[mi][i]; d++){
    * progression inbetween and thus overestimating or underestimating according            newm=savm;
    * to the curvature of the survival function. If, for the same date, we            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            for (kk=1; kk<=cptcovage;kk++) {
    * to compare the new estimate of Life expectancy with the same linear              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * hypothesis. A more precise result, taking into account a more precise            }
    * curvature will be obtained if estepm is as small as stepm. */          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* For example we decided to compute the life expectancy with the smallest unit */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            savm=oldm;
      nhstepm is the number of hstepm from age to agelim            oldm=newm;
      nstepm is the number of stepm from age to agelin.          } /* end mult */
      Look at hpijx to understand the reason of that which relies in memory size        
      and note for a fixed period like estepm months */          s1=s[mw[mi][i]][i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          s2=s[mw[mi+1][i]][i];
      survival function given by stepm (the optimization length). Unfortunately it          if( s2 > nlstate){ 
      means that if the survival funtion is printed only each two years of age and if            lli=log(out[s1][s2] - savm[s1][s2]);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          }else{
      results. So we changed our mind and took the option of the best precision.            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          ipmx +=1;
           sw += weight[i];
   agelim=AGESUP;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     /* nhstepm age range expressed in number of stepm */        } /* end of wave */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      } /* end of individual */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     /* if (stepm >= YEARM) hstepm=1;*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(mi=1; mi<= wav[i]-1; mi++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          for (ii=1;ii<=nlstate+ndeath;ii++)
     gp=matrix(0,nhstepm,1,nlstate*2);            for (j=1;j<=nlstate+ndeath;j++){
     gm=matrix(0,nhstepm,1,nlstate*2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          for(d=0; d<dh[mi][i]; d++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     /* Computing Variances of health expectancies */          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      for(theta=1; theta <=npar; theta++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=npar; i++){            savm=oldm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            oldm=newm;
       }          } /* end mult */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          
            s1=s[mw[mi][i]][i];
       cptj=0;          s2=s[mw[mi+1][i]][i];
       for(j=1; j<= nlstate; j++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for(i=1; i<=nlstate; i++){          ipmx +=1;
           cptj=cptj+1;          sw += weight[i];
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           }        } /* end of wave */
         }      } /* end of individual */
       }    } /* End of if */
          for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
          /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(i=1; i<=npar; i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    return -l;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }
        
       cptj=0;  /*************** log-likelihood *************/
       for(j=1; j<= nlstate; j++){  double funcone( double *x)
         for(i=1;i<=nlstate;i++){  {
           cptj=cptj+1;    /* Same as likeli but slower because of a lot of printf and if */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    int i, ii, j, k, mi, d, kk;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           }    double **out;
         }    double lli; /* Individual log likelihood */
       }    double llt;
       for(j=1; j<= nlstate*2; j++)    int s1, s2;
         for(h=0; h<=nhstepm-1; h++){    double bbh, survp;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /*extern weight */
         }    /* We are differentiating ll according to initial status */
      }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
        /*for(i=1;i<imx;i++) 
 /* End theta */      printf(" %d\n",s[4][i]);
     */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    cov[1]=1.;
   
      for(h=0; h<=nhstepm-1; h++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           trgradg[h][j][theta]=gradg[h][theta][j];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
      for(i=1;i<=nlstate*2;i++)          for (j=1;j<=nlstate+ndeath;j++){
       for(j=1;j<=nlstate*2;j++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         varhe[i][j][(int)age] =0.;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
      printf("%d|",(int)age);fflush(stdout);        for(d=0; d<dh[mi][i]; d++){
      for(h=0;h<=nhstepm-1;h++){          newm=savm;
       for(k=0;k<=nhstepm-1;k++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          for (kk=1; kk<=cptcovage;kk++) {
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(i=1;i<=nlstate*2;i++)          }
           for(j=1;j<=nlstate*2;j++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }          savm=oldm;
     }          oldm=newm;
     /* Computing expectancies */        } /* end mult */
     for(i=1; i<=nlstate;i++)        
       for(j=1; j<=nlstate;j++)        s1=s[mw[mi][i]][i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        s2=s[mw[mi+1][i]][i];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        bbh=(double)bh[mi][i]/(double)stepm; 
                  /* bias is positive if real duration
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/         * is higher than the multiple of stepm and negative otherwise.
          */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
     fprintf(ficreseij,"%3.0f",age );        } else if  (s2==-2) {
     cptj=0;          for (j=1,survp=0. ; j<=nlstate; j++) 
     for(i=1; i<=nlstate;i++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1; j<=nlstate;j++){          lli= log(survp);
         cptj++;        }else if (mle==1){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }        } else if(mle==2){
     fprintf(ficreseij,"\n");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            } else if(mle==3){  /* exponential inter-extrapolation */
     free_matrix(gm,0,nhstepm,1,nlstate*2);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     free_matrix(gp,0,nhstepm,1,nlstate*2);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          lli=log(out[s1][s2]); /* Original formula */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli=log(out[s1][s2]); /* Original formula */
   }        } /* End of if */
   printf("\n");        ipmx +=1;
         sw += weight[i];
   free_vector(xp,1,npar);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_matrix(dnewm,1,nlstate*2,1,npar);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        if(globpr){
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 }   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 /************ Variance ******************/                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 {            llt +=ll[k]*gipmx/gsw;
   /* Variance of health expectancies */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          }
   double **newm;          fprintf(ficresilk," %10.6f\n", -llt);
   double **dnewm,**doldm;        }
   int i, j, nhstepm, hstepm, h, nstepm ;      } /* end of wave */
   int k, cptcode;    } /* end of individual */
   double *xp;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double **gp, **gm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double ***gradg, ***trgradg;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double ***p3mat;    if(globpr==0){ /* First time we count the contributions and weights */
   double age,agelim, hf;      gipmx=ipmx;
   int theta;      gsw=sw;
     }
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    return -l;
   fprintf(ficresvij,"# Age");  }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  /*************** function likelione ***********/
   fprintf(ficresvij,"\n");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
   xp=vector(1,npar);    /* This routine should help understanding what is done with 
   dnewm=matrix(1,nlstate,1,npar);       the selection of individuals/waves and
   doldm=matrix(1,nlstate,1,nlstate);       to check the exact contribution to the likelihood.
         Plotting could be done.
   if(estepm < stepm){     */
     printf ("Problem %d lower than %d\n",estepm, stepm);    int k;
   }  
   else  hstepm=estepm;      if(*globpri !=0){ /* Just counts and sums, no printings */
   /* For example we decided to compute the life expectancy with the smallest unit */      strcpy(fileresilk,"ilk"); 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      strcat(fileresilk,fileres);
      nhstepm is the number of hstepm from age to agelim      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      nstepm is the number of stepm from age to agelin.        printf("Problem with resultfile: %s\n", fileresilk);
      Look at hpijx to understand the reason of that which relies in memory size        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      and note for a fixed period like k years */      }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      survival function given by stepm (the optimization length). Unfortunately it      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      means that if the survival funtion is printed only each two years of age and if      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for(k=1; k<=nlstate; k++) 
      results. So we changed our mind and took the option of the best precision.        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    }
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    *fretone=(*funcone)(p);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if(*globpri !=0){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      fclose(ficresilk);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      fflush(fichtm); 
     gp=matrix(0,nhstepm,1,nlstate);    } 
     gm=matrix(0,nhstepm,1,nlstate);    return;
   }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /*********** Maximum Likelihood Estimation ***************/
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
     int i,j, iter;
       if (popbased==1) {    double **xi;
         for(i=1; i<=nlstate;i++)    double fret;
           prlim[i][i]=probs[(int)age][i][ij];    double fretone; /* Only one call to likelihood */
       }    /*  char filerespow[FILENAMELENGTH];*/
      xi=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate; j++){    for (i=1;i<=npar;i++)
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++)
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         }    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
        if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(i=1; i<=npar; i++) /* Computes gradient */      printf("Problem with resultfile: %s\n", filerespow);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for (i=1;i<=nlstate;i++)
       if (popbased==1) {      for(j=1;j<=nlstate+ndeath;j++)
         for(i=1; i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficrespow,"\n");
       }  
     powell(p,xi,npar,ftol,&iter,&fret,func);
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    free_matrix(xi,1,npar,1,npar);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    fclose(ficrespow);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
       for(j=1; j<= nlstate; j++)  }
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  /**** Computes Hessian and covariance matrix ***/
         }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     } /* End theta */  {
     double  **a,**y,*x,pd;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double **hess;
     int i, j,jk;
     for(h=0; h<=nhstepm; h++)    int *indx;
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           trgradg[h][j][theta]=gradg[h][theta][j];    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    void ludcmp(double **a, int npar, int *indx, double *d) ;
     for(i=1;i<=nlstate;i++)    double gompertz(double p[]);
       for(j=1;j<=nlstate;j++)    hess=matrix(1,npar,1,npar);
         vareij[i][j][(int)age] =0.;  
     printf("\nCalculation of the hessian matrix. Wait...\n");
     for(h=0;h<=nhstepm;h++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(k=0;k<=nhstepm;k++){    for (i=1;i<=npar;i++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      printf("%d",i);fflush(stdout);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      fprintf(ficlog,"%d",i);fflush(ficlog);
         for(i=1;i<=nlstate;i++)     
           for(j=1;j<=nlstate;j++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      
       }      /*  printf(" %f ",p[i]);
     }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
     fprintf(ficresvij,"%.0f ",age );    
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) {
       for(j=1; j<=nlstate;j++){      for (j=1;j<=npar;j++)  {
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        if (j>i) { 
       }          printf(".%d%d",i,j);fflush(stdout);
     fprintf(ficresvij,"\n");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     free_matrix(gp,0,nhstepm,1,nlstate);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     free_matrix(gm,0,nhstepm,1,nlstate);          
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          hess[j][i]=hess[i][j];    
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          /*printf(" %lf ",hess[i][j]);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   } /* End age */      }
      }
   free_vector(xp,1,npar);    printf("\n");
   free_matrix(doldm,1,nlstate,1,npar);    fprintf(ficlog,"\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
 /************ Variance of prevlim ******************/    a=matrix(1,npar,1,npar);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    y=matrix(1,npar,1,npar);
 {    x=vector(1,npar);
   /* Variance of prevalence limit */    indx=ivector(1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (i=1;i<=npar;i++)
   double **newm;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double **dnewm,**doldm;    ludcmp(a,npar,indx,&pd);
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    for (j=1;j<=npar;j++) {
   double *xp;      for (i=1;i<=npar;i++) x[i]=0;
   double *gp, *gm;      x[j]=1;
   double **gradg, **trgradg;      lubksb(a,npar,indx,x);
   double age,agelim;      for (i=1;i<=npar;i++){ 
   int theta;        matcov[i][j]=x[i];
          }
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    }
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
       fprintf(ficresvpl," %1d-%1d",i,i);    fprintf(ficlog,"\n#Hessian matrix#\n");
   fprintf(ficresvpl,"\n");    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   xp=vector(1,npar);        printf("%.3e ",hess[i][j]);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficlog,"%.3e ",hess[i][j]);
   doldm=matrix(1,nlstate,1,nlstate);      }
        printf("\n");
   hstepm=1*YEARM; /* Every year of age */      fprintf(ficlog,"\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    }
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* Recompute Inverse */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (i=1;i<=npar;i++)
     if (stepm >= YEARM) hstepm=1;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    ludcmp(a,npar,indx,&pd);
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);    /*  printf("\n#Hessian matrix recomputed#\n");
     gm=vector(1,nlstate);  
     for (j=1;j<=npar;j++) {
     for(theta=1; theta <=npar; theta++){      for (i=1;i<=npar;i++) x[i]=0;
       for(i=1; i<=npar; i++){ /* Computes gradient */      x[j]=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        y[i][j]=x[i];
       for(i=1;i<=nlstate;i++)        printf("%.3e ",y[i][j]);
         gp[i] = prlim[i][i];        fprintf(ficlog,"%.3e ",y[i][j]);
          }
       for(i=1; i<=npar; i++) /* Computes gradient */      printf("\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficlog,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(i=1;i<=nlstate;i++)    */
         gm[i] = prlim[i][i];  
     free_matrix(a,1,npar,1,npar);
       for(i=1;i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    free_vector(x,1,npar);
     } /* End theta */    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
     trgradg =matrix(1,nlstate,1,npar);  
   
     for(j=1; j<=nlstate;j++)  }
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] =0.;    int i;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    int l=1, lmax=20;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double k1,k2;
     for(i=1;i<=nlstate;i++)    double p2[MAXPARM+1]; /* identical to x */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     fprintf(ficresvpl,"%.0f ",age );    double fx;
     for(i=1; i<=nlstate;i++)    int k=0,kmax=10;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double l1;
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    fx=func(x);
     free_vector(gm,1,nlstate);    for (i=1;i<=npar;i++) p2[i]=x[i];
     free_matrix(gradg,1,npar,1,nlstate);    for(l=0 ; l <=lmax; l++){
     free_matrix(trgradg,1,nlstate,1,npar);      l1=pow(10,l);
   } /* End age */      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
   free_vector(xp,1,npar);        delt = delta*(l1*k);
   free_matrix(doldm,1,nlstate,1,npar);        p2[theta]=x[theta] +delt;
   free_matrix(dnewm,1,nlstate,1,nlstate);        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
 }        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
 /************ Variance of one-step probabilities  ******************/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        
 {  #ifdef DEBUGHESS
   int i, j,  i1, k1, l1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int k2, l2, j1,  z1;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int k=0,l, cptcode;  #endif
   int first=1;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double **dnewm,**doldm;          k=kmax;
   double *xp;        }
   double *gp, *gm;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double **gradg, **trgradg;          k=kmax; l=lmax*10.;
   double **mu;        }
   double age,agelim, cov[NCOVMAX];        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          delts=delt;
   int theta;        }
   char fileresprob[FILENAMELENGTH];      }
   char fileresprobcov[FILENAMELENGTH];    }
   char fileresprobcor[FILENAMELENGTH];    delti[theta]=delts;
     return res; 
   double ***varpij;    
   }
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  {
     printf("Problem with resultfile: %s\n", fileresprob);    int i;
   }    int l=1, l1, lmax=20;
   strcpy(fileresprobcov,"probcov");    double k1,k2,k3,k4,res,fx;
   strcat(fileresprobcov,fileres);    double p2[MAXPARM+1];
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    int k;
     printf("Problem with resultfile: %s\n", fileresprobcov);  
   }    fx=func(x);
   strcpy(fileresprobcor,"probcor");    for (k=1; k<=2; k++) {
   strcat(fileresprobcor,fileres);      for (i=1;i<=npar;i++) p2[i]=x[i];
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      p2[thetai]=x[thetai]+delti[thetai]/k;
     printf("Problem with resultfile: %s\n", fileresprobcor);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k1=func(p2)-fx;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      p2[thetai]=x[thetai]+delti[thetai]/k;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k2=func(p2)-fx;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    
   fprintf(ficresprob,"# Age");      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficresprobcov,"# Age");      k3=func(p2)-fx;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    
   fprintf(ficresprobcov,"# Age");      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
   for(i=1; i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(j=1; j<=(nlstate+ndeath);j++){  #ifdef DEBUG
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  #endif
     }      }
   fprintf(ficresprob,"\n");    return res;
   fprintf(ficresprobcov,"\n");  }
   fprintf(ficresprobcor,"\n");  
   xp=vector(1,npar);  /************** Inverse of matrix **************/
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  void ludcmp(double **a, int n, int *indx, double *d) 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  { 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    int i,imax,j,k; 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    double big,dum,sum,temp; 
   first=1;    double *vv; 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {   
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    vv=vector(1,n); 
     exit(0);    *d=1.0; 
   }    for (i=1;i<=n;i++) { 
   else{      big=0.0; 
     fprintf(ficgp,"\n# Routine varprob");      for (j=1;j<=n;j++) 
   }        if ((temp=fabs(a[i][j])) > big) big=temp; 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     printf("Problem with html file: %s\n", optionfilehtm);      vv[i]=1.0/big; 
     exit(0);    } 
   }    for (j=1;j<=n;j++) { 
   else{      for (i=1;i<j;i++) { 
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");        sum=a[i][j]; 
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        a[i][j]=sum; 
       } 
   }      big=0.0; 
   cov[1]=1;      for (i=j;i<=n;i++) { 
   j=cptcoveff;        sum=a[i][j]; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1;k<j;k++) 
   j1=0;          sum -= a[i][k]*a[k][j]; 
   for(k1=1; k1<=1;k1++){        a[i][j]=sum; 
     for(i1=1; i1<=ncodemax[k1];i1++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     j1++;          big=dum; 
           imax=i; 
     if  (cptcovn>0) {        } 
       fprintf(ficresprob, "\n#********** Variable ");      } 
       fprintf(ficresprobcov, "\n#********** Variable ");      if (j != imax) { 
       fprintf(ficgp, "\n#********** Variable ");        for (k=1;k<=n;k++) { 
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");          dum=a[imax][k]; 
       fprintf(ficresprobcor, "\n#********** Variable ");          a[imax][k]=a[j][k]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          a[j][k]=dum; 
       fprintf(ficresprob, "**********\n#");        } 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        *d = -(*d); 
       fprintf(ficresprobcov, "**********\n#");        vv[imax]=vv[j]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      } 
       fprintf(ficgp, "**********\n#");      indx[j]=imax; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       fprintf(ficgp, "**********\n#");      if (j != n) { 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        dum=1.0/(a[j][j]); 
       fprintf(fichtm, "**********\n#");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     }      } 
        } 
       for (age=bage; age<=fage; age ++){    free_vector(vv,1,n);  /* Doesn't work */
         cov[2]=age;  ;
         for (k=1; k<=cptcovn;k++) {  } 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }  void lubksb(double **a, int n, int *indx, double b[]) 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  { 
         for (k=1; k<=cptcovprod;k++)    int i,ii=0,ip,j; 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double sum; 
           
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    for (i=1;i<=n;i++) { 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      ip=indx[i]; 
         gp=vector(1,(nlstate)*(nlstate+ndeath));      sum=b[ip]; 
         gm=vector(1,(nlstate)*(nlstate+ndeath));      b[ip]=b[i]; 
          if (ii) 
         for(theta=1; theta <=npar; theta++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           for(i=1; i<=npar; i++)      else if (sum) ii=i; 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      b[i]=sum; 
              } 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    for (i=n;i>=1;i--) { 
                sum=b[i]; 
           k=0;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           for(i=1; i<= (nlstate); i++){      b[i]=sum/a[i][i]; 
             for(j=1; j<=(nlstate+ndeath);j++){    } 
               k=k+1;  } 
               gp[k]=pmmij[i][j];  
             }  void pstamp(FILE *fichier)
           }  {
              fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           for(i=1; i<=npar; i++)  }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
      /************ Frequencies ********************/
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           k=0;  {  /* Some frequencies */
           for(i=1; i<=(nlstate); i++){    
             for(j=1; j<=(nlstate+ndeath);j++){    int i, m, jk, k1,i1, j1, bool, z1,j;
               k=k+1;    int first;
               gm[k]=pmmij[i][j];    double ***freq; /* Frequencies */
             }    double *pp, **prop;
           }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
          char fileresp[FILENAMELENGTH];
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      pp=vector(1,nlstate);
         }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    strcat(fileresp,fileres);
           for(theta=1; theta <=npar; theta++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
             trgradg[j][theta]=gradg[theta][j];      printf("Problem with prevalence resultfile: %s\n", fileresp);
              fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      exit(0);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    }
            freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         pmij(pmmij,cov,ncovmodel,x,nlstate);    j1=0;
            
         k=0;    j=cptcoveff;
         for(i=1; i<=(nlstate); i++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;    first=1;
             mu[k][(int) age]=pmmij[i][j];  
           }    for(k1=1; k1<=j;k1++){
         }      for(i1=1; i1<=ncodemax[k1];i1++){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        j1++;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             varpij[i][j][(int)age] = doldm[i][j];          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
         /*printf("\n%d ",(int)age);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            for(m=iagemin; m <= iagemax+3; m++)
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              freq[i][jk][m]=0;
      }*/  
       for (i=1; i<=nlstate; i++)  
         fprintf(ficresprob,"\n%d ",(int)age);        for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficresprobcov,"\n%d ",(int)age);          prop[i][m]=0;
         fprintf(ficresprobcor,"\n%d ",(int)age);        
         dateintsum=0;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        k2cpt=0;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        for (i=1; i<=imx; i++) {
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          bool=1;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          if  (cptcovn>0) {
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         i=0;                bool=0;
         for (k=1; k<=(nlstate);k++){          }
           for (l=1; l<=(nlstate+ndeath);l++){          if (bool==1){
             i=i++;            for(m=firstpass; m<=lastpass; m++){
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              k2=anint[m][i]+(mint[m][i]/12.);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             for (j=1; j<=i;j++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
             }                if (m<lastpass) {
           }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         }/* end of loop for state */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       } /* end of loop for age */                }
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/                
       for (k1=1; k1<=(nlstate);k1++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         for (l1=1; l1<=(nlstate+ndeath);l1++){                  dateintsum=dateintsum+k2;
           if(l1==k1) continue;                  k2cpt++;
           i=(k1-1)*(nlstate+ndeath)+l1;                }
           for (k2=1; k2<=(nlstate);k2++){                /*}*/
             for (l2=1; l2<=(nlstate+ndeath);l2++){            }
               if(l2==k2) continue;          }
               j=(k2-1)*(nlstate+ndeath)+l2;        }
               if(j<=i) continue;         
               for (age=bage; age<=fage; age ++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                 if ((int)age %5==0){        pstamp(ficresp);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        if  (cptcovn>0) {
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          fprintf(ficresp, "\n#********** Variable "); 
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   mu1=mu[i][(int) age]/stepm*YEARM ;          fprintf(ficresp, "**********\n#");
                   mu2=mu[j][(int) age]/stepm*YEARM;        }
                   /* Computing eigen value of matrix of covariance */        for(i=1; i<=nlstate;i++) 
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));        fprintf(ficresp, "\n");
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);        
                   /* Eigen vectors */        for(i=iagemin; i <= iagemax+3; i++){
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          if(i==iagemax+3){
                   v21=sqrt(1.-v11*v11);            fprintf(ficlog,"Total");
                   v12=-v21;          }else{
                   v22=v11;            if(first==1){
                   /*printf(fignu*/              first=0;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              printf("See log file for details...\n");
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            }
                   if(first==1){            fprintf(ficlog,"Age %d", i);
                     first=0;          }
                     fprintf(ficgp,"\nset parametric;set nolabel");          for(jk=1; jk <=nlstate ; jk++){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              pp[jk] += freq[jk][m][i]; 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);          }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);          for(jk=1; jk <=nlstate ; jk++){
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);            for(m=-1, pos=0; m <=0 ; m++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              pos += freq[jk][m][i];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            if(pp[jk]>=1.e-10){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              if(first==1){
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              }
                   }else{              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                     first=0;            }else{
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);              if(first==1)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          }
                   }/* if first */  
                 } /* age mod 5 */          for(jk=1; jk <=nlstate ; jk++){
               } /* end loop age */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);              pp[jk] += freq[jk][m][i];
               first=1;          }       
             } /*l12 */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           } /* k12 */            pos += pp[jk];
         } /*l1 */            posprop += prop[jk][i];
       }/* k1 */          }
     } /* loop covariates */          for(jk=1; jk <=nlstate ; jk++){
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);            if(pos>=1.e-5){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              if(first==1)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            }else{
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_vector(xp,1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fclose(ficresprob);            }
   fclose(ficresprobcov);            if( i <= iagemax){
   fclose(ficresprobcor);              if(pos>=1.e-5){
   fclose(ficgp);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fclose(fichtm);                /*probs[i][jk][j1]= pp[jk]/pos;*/
 }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
               else
 /******************* Printing html file ***********/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \            }
                   int lastpass, int stepm, int weightopt, char model[],\          }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          
                   int popforecast, int estepm ,\          for(jk=-1; jk <=nlstate+ndeath; jk++)
                   double jprev1, double mprev1,double anprev1, \            for(m=-1; m <=nlstate+ndeath; m++)
                   double jprev2, double mprev2,double anprev2){              if(freq[jk][m][i] !=0 ) {
   int jj1, k1, i1, cpt;              if(first==1)
   /*char optionfilehtm[FILENAMELENGTH];*/                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     printf("Problem with %s \n",optionfilehtm), exit(0);              }
   }          if(i <= iagemax)
             fprintf(ficresp,"\n");
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n          if(first==1)
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n            printf("Others in log...\n");
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          fprintf(ficlog,"\n");
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        }
  - Life expectancies by age and initial health status (estepm=%2d months):      }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    dateintmean=dateintsum/k2cpt; 
    
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    fclose(ficresp);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    free_vector(pp,1,nlstate);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    /* End of Freq */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
  if(popforecast==1) fprintf(fichtm,"\n  {  
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n       in each health status at the date of interview (if between dateprev1 and dateprev2).
         <br>",fileres,fileres,fileres,fileres);       We still use firstpass and lastpass as another selection.
  else    */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);   
 fprintf(fichtm," <li>Graphs</li><p>");    int i, m, jk, k1, i1, j1, bool, z1,j;
     double ***freq; /* Frequencies */
  m=cptcoveff;    double *pp, **prop;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double pos,posprop; 
     double  y2; /* in fractional years */
  jj1=0;    int iagemin, iagemax;
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    iagemin= (int) agemin;
      jj1++;    iagemax= (int) agemax;
      if (cptcovn > 0) {    /*pp=vector(1,nlstate);*/
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        for (cpt=1; cpt<=cptcoveff;cpt++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    j1=0;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    
      }    j=cptcoveff;
      /* Pij */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(k1=1; k1<=j;k1++){
      /* Quasi-incidences */      for(i1=1; i1<=ncodemax[k1];i1++){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        j1++;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        
        /* Stable prevalence in each health state */        for (i=1; i<=nlstate; i++)  
        for(cpt=1; cpt<nlstate;cpt++){          for(m=iagemin; m <= iagemax+3; m++)
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>            prop[i][m]=0.0;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       
        }        for (i=1; i<=imx; i++) { /* Each individual */
     for(cpt=1; cpt<=nlstate;cpt++) {          bool=1;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          if  (cptcovn>0) {
 interval) in state (%d): v%s%d%d.png <br>            for (z1=1; z1<=cptcoveff; z1++) 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      }                bool=0;
      for(cpt=1; cpt<=nlstate;cpt++) {          } 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          if (bool==1) { 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 health expectancies in states (1) and (2): e%s%d.png<br>                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
  }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 fclose(fichtm);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
 /******************* Gnuplot file **************/                } 
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              }
             } /* end selection of waves */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          }
   int ng;        }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for(i=iagemin; i <= iagemax+3; i++){  
     printf("Problem with file %s",optionfilegnuplot);          
   }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
 #ifdef windows          } 
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif          for(jk=1; jk <=nlstate ; jk++){     
 m=pow(2,cptcoveff);            if( i <=  iagemax){ 
                if(posprop>=1.e-5){ 
  /* 1eme*/                probs[i][jk][j1]= prop[jk][i]/posprop;
   for (cpt=1; cpt<= nlstate ; cpt ++) {              } else
    for (k1=1; k1<= m ; k1 ++) {                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
             } 
 #ifdef windows          }/* end jk */ 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        }/* end i */ 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      } /* end i1 */
 #endif    } /* end k1 */
 #ifdef unix    
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    /*free_vector(pp,1,nlstate);*/
 #endif    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /************* Waves Concatenation ***************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  {
     for (i=1; i<= nlstate ; i ++) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       Death is a valid wave (if date is known).
   else fprintf(ficgp," \%%*lf (\%%*lf)");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       and mw[mi+1][i]. dh depends on stepm.
      for (i=1; i<= nlstate ; i ++) {       */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int i, mi, m;
 }      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));       double sum=0., jmean=0.;*/
 #ifdef unix    int first;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    int j, k=0,jk, ju, jl;
 #endif    double sum=0.;
    }    first=0;
   }    jmin=1e+5;
   /*2 eme*/    jmax=-1;
     jmean=0.;
   for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=imx; i++){
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      mi=0;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      m=firstpass;
          while(s[m][i] <= nlstate){
     for (i=1; i<= nlstate+1 ; i ++) {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       k=2*i;          mw[++mi][i]=m;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        if(m >=lastpass)
       for (j=1; j<= nlstate+1 ; j ++) {          break;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        else
   else fprintf(ficgp," \%%*lf (\%%*lf)");          m++;
 }        }/* end while */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      if (s[m][i] > nlstate){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        mi++;     /* Death is another wave */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        /* if(mi==0)  never been interviewed correctly before death */
       for (j=1; j<= nlstate+1 ; j ++) {           /* Only death is a correct wave */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        mw[mi][i]=m;
         else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");      wav[i]=mi;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      if(mi==0){
       for (j=1; j<= nlstate+1 ; j ++) {        nbwarn++;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        if(first==0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 }            first=1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        }
       else fprintf(ficgp,"\" t\"\" w l 0,");        if(first==1){
     }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   }        }
        } /* end mi==0 */
   /*3eme*/    } /* End individuals */
   
   for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=imx; i++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for(mi=1; mi<wav[i];mi++){
       k=2+nlstate*(2*cpt-2);        if (stepm <=0)
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          dh[mi][i]=1;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        else{
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            if (agedc[i] < 2*AGESUP) {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              if(j==0) j=1;  /* Survives at least one month after exam */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              else if(j<0){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 */                j=1; /* Temporary Dangerous patch */
       for (i=1; i< nlstate ; i ++) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       }              }
     }              k=k+1;
   }              if (j >= jmax){
                  jmax=j;
   /* CV preval stat */                ijmax=i;
     for (k1=1; k1<= m ; k1 ++) {              }
     for (cpt=1; cpt<nlstate ; cpt ++) {              if (j <= jmin){
       k=3;                jmin=j;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                ijmin=i;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              }
               sum=sum+j;
       for (i=1; i< nlstate ; i ++)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         fprintf(ficgp,"+$%d",k+i+1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            }
                }
       l=3+(nlstate+ndeath)*cpt;          else{
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       for (i=1; i< nlstate ; i ++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);            k=k+1;
       }            if (j >= jmax) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                jmax=j;
     }              ijmax=i;
   }              }
              else if (j <= jmin){
   /* proba elementaires */              jmin=j;
    for(i=1,jk=1; i <=nlstate; i++){              ijmin=i;
     for(k=1; k <=(nlstate+ndeath); k++){            }
       if (k != i) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for(j=1; j <=ncovmodel; j++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                    if(j<0){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              nberr++;
           jk++;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,"\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
       }            sum=sum+j;
     }          }
    }          jk= j/stepm;
           jl= j -jk*stepm;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          ju= j -(jk+1)*stepm;
      for(jk=1; jk <=m; jk++) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            if(jl==0){
        if (ng==2)              dh[mi][i]=jk;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");              bh[mi][i]=0;
        else            }else{ /* We want a negative bias in order to only have interpolation ie
          fprintf(ficgp,"\nset title \"Probability\"\n");                    * at the price of an extra matrix product in likelihood */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              dh[mi][i]=jk+1;
        i=1;              bh[mi][i]=ju;
        for(k2=1; k2<=nlstate; k2++) {            }
          k3=i;          }else{
          for(k=1; k<=(nlstate+ndeath); k++) {            if(jl <= -ju){
            if (k != k2){              dh[mi][i]=jk;
              if(ng==2)              bh[mi][i]=jl;       /* bias is positive if real duration
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                                   * is higher than the multiple of stepm and negative otherwise.
              else                                   */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            }
              ij=1;            else{
              for(j=3; j <=ncovmodel; j++) {              dh[mi][i]=jk+1;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              bh[mi][i]=ju;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }
                  ij++;            if(dh[mi][i]==0){
                }              dh[mi][i]=1; /* At least one step */
                else              bh[mi][i]=ju; /* At least one step */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              }            }
              fprintf(ficgp,")/(1");          } /* end if mle */
                      }
              for(k1=1; k1 <=nlstate; k1++){        } /* end wave */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    }
                ij=1;    jmean=sum/k;
                for(j=3; j <=ncovmodel; j++){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);   }
                    ij++;  
                  }  /*********** Tricode ****************************/
                  else  void tricode(int *Tvar, int **nbcode, int imx)
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  {
                }    
                fprintf(ficgp,")");    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    int cptcode=0;
              i=i+ncovmodel;    cptcoveff=0; 
            }   
          }    for (k=0; k<maxncov; k++) Ndum[k]=0;
        }    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
      }  
    }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
    fclose(ficgp);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 }  /* end gnuplot */                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
         Ndum[ij]++; /*counts the occurence of this modality */
 /*************** Moving average **************/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
                                          Tvar[j]. If V=sex and male is 0 and 
   int i, cpt, cptcod;                                         female is 1, then  cptcode=1.*/
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      }
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
           mobaverage[(int)agedeb][i][cptcod]=0.;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
                                             th covariate. In fact
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                                         ncodemax[j]=2
       for (i=1; i<=nlstate;i++){                                         (dichotom. variables only) but
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                         it can be more */
           for (cpt=0;cpt<=4;cpt++){      } /* Ndum[-1] number of undefined modalities */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }      ij=1; 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
         }        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
       }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
     }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                           k is a modality. If we have model=V1+V1*sex 
 }                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             ij++;
           }
 /************** Forecasting ******************/          if (ij > ncodemax[j]) break; 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }  
        } 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }  
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   double *popeffectif,*popcount;  
   double ***p3mat;   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
   char fileresf[FILENAMELENGTH];     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
  agelim=AGESUP;     Ndum[ij]++;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;   }
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   ij=1;
     for (i=1; i<= maxncov; i++) {
       if((Ndum[i]!=0) && (i<=ncovcol)){
   strcpy(fileresf,"f");       Tvaraff[ij]=i; /*For printing */
   strcat(fileresf,fileres);       ij++;
   if((ficresf=fopen(fileresf,"w"))==NULL) {     }
     printf("Problem with forecast resultfile: %s\n", fileresf);   }
   }   ij--;
   printf("Computing forecasting: result on file '%s' \n", fileresf);   cptcoveff=ij; /*Number of simple covariates*/
   }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   /*********** Health Expectancies ****************/
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }  {
     /* Health expectancies, no variances */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   if (stepm<=12) stepsize=1;    int nhstepma, nstepma; /* Decreasing with age */
      double age, agelim, hf;
   agelim=AGESUP;    double ***p3mat;
      double eip;
   hstepm=1;  
   hstepm=hstepm/stepm;    pstamp(ficreseij);
   yp1=modf(dateintmean,&yp);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   anprojmean=yp;    fprintf(ficreseij,"# Age");
   yp2=modf((yp1*12),&yp);    for(i=1; i<=nlstate;i++){
   mprojmean=yp;      for(j=1; j<=nlstate;j++){
   yp1=modf((yp2*30.5),&yp);        fprintf(ficreseij," e%1d%1d ",i,j);
   jprojmean=yp;      }
   if(jprojmean==0) jprojmean=1;      fprintf(ficreseij," e%1d. ",i);
   if(mprojmean==0) jprojmean=1;    }
      fprintf(ficreseij,"\n");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
      
   for(cptcov=1;cptcov<=i2;cptcov++){    if(estepm < stepm){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       k=k+1;    }
       fprintf(ficresf,"\n#******");    else  hstepm=estepm;   
       for(j=1;j<=cptcoveff;j++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * This is mainly to measure the difference between two models: for example
       }     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficresf,"******\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficresf,"# StartingAge FinalAge");     * progression in between and thus overestimating or underestimating according
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);     * to the curvature of the survival function. If, for the same date, we 
           * estimate the model with stepm=1 month, we can keep estepm to 24 months
           * to compare the new estimate of Life expectancy with the same linear 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {     * hypothesis. A more precise result, taking into account a more precise
         fprintf(ficresf,"\n");     * curvature will be obtained if estepm is as small as stepm. */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
     /* For example we decided to compute the life expectancy with the smallest unit */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       nhstepm is the number of hstepm from age to agelim 
           nhstepm = nhstepm/hstepm;       nstepm is the number of stepm from age to agelin. 
                 Look at hpijx to understand the reason of that which relies in memory size
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like estepm months */
           oldm=oldms;savm=savms;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         survival function given by stepm (the optimization length). Unfortunately it
               means that if the survival funtion is printed only each two years of age and if
           for (h=0; h<=nhstepm; h++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             if (h==(int) (calagedate+YEARM*cpt)) {       results. So we changed our mind and took the option of the best precision.
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    */
             }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    agelim=AGESUP;
               for(i=1; i<=nlstate;i++) {                  /* If stepm=6 months */
                 if (mobilav==1)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                 else {      
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  /* nhstepm age range expressed in number of stepm */
                 }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               }    /* if (stepm >= YEARM) hstepm=1;*/
               if (h==(int)(calagedate+12*cpt)){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                 fprintf(ficresf," %.3f", kk1);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                          
               }    for (age=bage; age<=fage; age ++){ 
             }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* if (stepm >= YEARM) hstepm=1;*/
         }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       }  
     }      /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                 in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fclose(ficresf);      
 }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 /************** Forecasting ******************/      
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      
   int *popage;      /* Computing expectancies */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      for(i=1; i<=nlstate;i++)
   double *popeffectif,*popcount;        for(j=1; j<=nlstate;j++)
   double ***p3mat,***tabpop,***tabpopprev;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   char filerespop[FILENAMELENGTH];            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;          }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
        fprintf(ficreseij,"%3.0f",age );
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(i=1; i<=nlstate;i++){
          eip=0;
          for(j=1; j<=nlstate;j++){
   strcpy(filerespop,"pop");          eip +=eij[i][j][(int)age];
   strcat(filerespop,fileres);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", filerespop);        fprintf(ficreseij,"%9.4f", eip );
   }      }
   printf("Computing forecasting: result on file '%s' \n", filerespop);      fprintf(ficreseij,"\n");
       
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (mobilav==1) {    printf("\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"\n");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    
   }  }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   if (stepm<=12) stepsize=1;  
    {
   agelim=AGESUP;    /* Covariances of health expectancies eij and of total life expectancies according
       to initial status i, ei. .
   hstepm=1;    */
   hstepm=hstepm/stepm;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
      int nhstepma, nstepma; /* Decreasing with age */
   if (popforecast==1) {    double age, agelim, hf;
     if((ficpop=fopen(popfile,"r"))==NULL) {    double ***p3matp, ***p3matm, ***varhe;
       printf("Problem with population file : %s\n",popfile);exit(0);    double **dnewm,**doldm;
     }    double *xp, *xm;
     popage=ivector(0,AGESUP);    double **gp, **gm;
     popeffectif=vector(0,AGESUP);    double ***gradg, ***trgradg;
     popcount=vector(0,AGESUP);    int theta;
      
     i=1;      double eip, vip;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
        varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     imx=i;    xp=vector(1,npar);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    xm=vector(1,npar);
   }    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   for(cptcov=1;cptcov<=i2;cptcov++){    
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    pstamp(ficresstdeij);
       k=k+1;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       fprintf(ficrespop,"\n#******");    fprintf(ficresstdeij,"# Age");
       for(j=1;j<=cptcoveff;j++) {    for(i=1; i<=nlstate;i++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=1; j<=nlstate;j++)
       }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficrespop,"******\n");      fprintf(ficresstdeij," e%1d. ",i);
       fprintf(ficrespop,"# Age");    }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    fprintf(ficresstdeij,"\n");
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
          pstamp(ficrescveij);
       for (cpt=0; cpt<=0;cpt++) {    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficrescveij,"# Age");
            for(i=1; i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(j=1; j<=nlstate;j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        cptj= (j-1)*nlstate+i;
           nhstepm = nhstepm/hstepm;        for(i2=1; i2<=nlstate;i2++)
                    for(j2=1; j2<=nlstate;j2++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            cptj2= (j2-1)*nlstate+i2;
           oldm=oldms;savm=savms;            if(cptj2 <= cptj)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                  }
           for (h=0; h<=nhstepm; h++){      }
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficrescveij,"\n");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    
             }    if(estepm < stepm){
             for(j=1; j<=nlstate+ndeath;j++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
               kk1=0.;kk2=0;    }
               for(i=1; i<=nlstate;i++) {                  else  hstepm=estepm;   
                 if (mobilav==1)    /* We compute the life expectancy from trapezoids spaced every estepm months
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     * This is mainly to measure the difference between two models: for example
                 else {     * if stepm=24 months pijx are given only every 2 years and by summing them
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     * we are calculating an estimate of the Life Expectancy assuming a linear 
                 }     * progression in between and thus overestimating or underestimating according
               }     * to the curvature of the survival function. If, for the same date, we 
               if (h==(int)(calagedate+12*cpt)){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;     * to compare the new estimate of Life expectancy with the same linear 
                   /*fprintf(ficrespop," %.3f", kk1);     * hypothesis. A more precise result, taking into account a more precise
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/     * curvature will be obtained if estepm is as small as stepm. */
               }  
             }    /* For example we decided to compute the life expectancy with the smallest unit */
             for(i=1; i<=nlstate;i++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               kk1=0.;       nhstepm is the number of hstepm from age to agelim 
                 for(j=1; j<=nlstate;j++){       nstepm is the number of stepm from age to agelin. 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];       Look at hpijx to understand the reason of that which relies in memory size
                 }       and note for a fixed period like estepm months */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             }       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);       results. So we changed our mind and took the option of the best precision.
           }    */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         }  
       }    /* If stepm=6 months */
      /* nhstepm age range expressed in number of stepm */
   /******/    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* if (stepm >= YEARM) hstepm=1;*/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           oldm=oldms;savm=savms;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           for (h=0; h<=nhstepm; h++){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    for (age=bage; age<=fage; age ++){ 
             }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
             for(j=1; j<=nlstate+ndeath;j++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               kk1=0.;kk2=0;      /* if (stepm >= YEARM) hstepm=1;*/
               for(i=1; i<=nlstate;i++) {                    nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }      /* If stepm=6 months */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           }      
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         }  
       }      /* Computing  Variances of health expectancies */
    }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   }         decrease memory allocation */
        for(theta=1; theta <=npar; theta++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if (popforecast==1) {          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     free_ivector(popage,0,AGESUP);        }
     free_vector(popeffectif,0,AGESUP);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     free_vector(popcount,0,AGESUP);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   }    
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<= nlstate; j++){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1; i<=nlstate; i++){
   fclose(ficrespop);            for(h=0; h<=nhstepm-1; h++){
 }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 /***********************************************/            }
 /**************** Main Program *****************/          }
 /***********************************************/        }
        
 int main(int argc, char *argv[])        for(ij=1; ij<= nlstate*nlstate; ij++)
 {          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          }
   double agedeb, agefin,hf;      }/* End theta */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      
       
   double fret;      for(h=0; h<=nhstepm-1; h++)
   double **xi,tmp,delta;        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   double dum; /* Dummy variable */            trgradg[h][j][theta]=gradg[h][theta][j];
   double ***p3mat;      
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];       for(ij=1;ij<=nlstate*nlstate;ij++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(ji=1;ji<=nlstate*nlstate;ji++)
   int firstobs=1, lastobs=10;          varhe[ij][ji][(int)age] =0.;
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;       printf("%d|",(int)age);fflush(stdout);
   int ju,jl, mi;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;       for(h=0;h<=nhstepm-1;h++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(k=0;k<=nhstepm-1;k++){
   int mobilav=0,popforecast=0;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   int hstepm, nhstepm;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
   double bage, fage, age, agelim, agebase;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   double ftolpl=FTOL;        }
   double **prlim;      }
   double *severity;  
   double ***param; /* Matrix of parameters */      /* Computing expectancies */
   double  *p;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double **matcov; /* Matrix of covariance */      for(i=1; i<=nlstate;i++)
   double ***delti3; /* Scale */        for(j=1; j<=nlstate;j++)
   double *delti; /* Scale */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double ***eij, ***vareij;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   double **varpl; /* Variances of prevalence limits by age */            
   double *epj, vepp;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          }
    
       fprintf(ficresstdeij,"%3.0f",age );
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
   char z[1]="c", occ;        for(j=1; j<=nlstate;j++){
 #include <sys/time.h>          eip += eij[i][j][(int)age];
 #include <time.h>          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   /* long total_usecs;        }
   struct timeval start_time, end_time;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
        }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      fprintf(ficresstdeij,"\n");
   getcwd(pathcd, size);  
       fprintf(ficrescveij,"%3.0f",age );
   printf("\n%s",version);      for(i=1; i<=nlstate;i++)
   if(argc <=1){        for(j=1; j<=nlstate;j++){
     printf("\nEnter the parameter file name: ");          cptj= (j-1)*nlstate+i;
     scanf("%s",pathtot);          for(i2=1; i2<=nlstate;i2++)
   }            for(j2=1; j2<=nlstate;j2++){
   else{              cptj2= (j2-1)*nlstate+i2;
     strcpy(pathtot,argv[1]);              if(cptj2 <= cptj)
   }                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            }
   /*cygwin_split_path(pathtot,path,optionfile);        }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      fprintf(ficrescveij,"\n");
   /* cutv(path,optionfile,pathtot,'\\');*/     
     }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   chdir(path);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   replace(pathc,path);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*-------- arguments in the command line --------*/    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   strcpy(fileres,"r");    fprintf(ficlog,"\n");
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
   /*---------arguments file --------*/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     printf("Problem with optionfile %s\n",optionfile);  }
     goto end;  
   }  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   strcpy(filereso,"o");  {
   strcat(filereso,fileres);    /* Variance of health expectancies */
   if((ficparo=fopen(filereso,"w"))==NULL) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /* double **newm;*/
   }    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   /* Reads comments: lines beginning with '#' */    int i, j, nhstepm, hstepm, h, nstepm ;
   while((c=getc(ficpar))=='#' && c!= EOF){    int k, cptcode;
     ungetc(c,ficpar);    double *xp;
     fgets(line, MAXLINE, ficpar);    double **gp, **gm;  /* for var eij */
     puts(line);    double ***gradg, ***trgradg; /*for var eij */
     fputs(line,ficparo);    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
   ungetc(c,ficpar);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double age,agelim, hf;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double ***mobaverage;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    int theta;
 while((c=getc(ficpar))=='#' && c!= EOF){    char digit[4];
     ungetc(c,ficpar);    char digitp[25];
     fgets(line, MAXLINE, ficpar);  
     puts(line);    char fileresprobmorprev[FILENAMELENGTH];
     fputs(line,ficparo);  
   }    if(popbased==1){
   ungetc(c,ficpar);      if(mobilav!=0)
          strcpy(digitp,"-populbased-mobilav-");
          else strcpy(digitp,"-populbased-nomobil-");
   covar=matrix(0,NCOVMAX,1,n);    }
   cptcovn=0;    else 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      strcpy(digitp,"-stablbased-");
   
   ncovmodel=2+cptcovn;    if (mobilav!=0) {
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   /* Read guess parameters */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   /* Reads comments: lines beginning with '#' */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);  
     puts(line);    strcpy(fileresprobmorprev,"prmorprev"); 
     fputs(line,ficparo);    sprintf(digit,"%-d",ij);
   }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   ungetc(c,ficpar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    strcat(fileresprobmorprev,fileres);
     for(i=1; i <=nlstate; i++)    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     for(j=1; j <=nlstate+ndeath-1; j++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficparo,"%1d%1d",i1,j1);    }
       printf("%1d%1d",i,j);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(k=1; k<=ncovmodel;k++){   
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         printf(" %lf",param[i][j][k]);    pstamp(ficresprobmorprev);
         fprintf(ficparo," %lf",param[i][j][k]);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fscanf(ficpar,"\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       printf("\n");      fprintf(ficresprobmorprev," p.%-d SE",j);
       fprintf(ficparo,"\n");      for(i=1; i<=nlstate;i++)
     }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
   p=param[1][1];    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   /* Reads comments: lines beginning with '#' */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   while((c=getc(ficpar))=='#' && c!= EOF){  /*   } */
     ungetc(c,ficpar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    pstamp(ficresvij);
     puts(line);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     fputs(line,ficparo);    if(popbased==1)
   }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   ungetc(c,ficpar);    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresvij,"# Age");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    for(i=1; i<=nlstate;i++)
   for(i=1; i <=nlstate; i++){      for(j=1; j<=nlstate;j++)
     for(j=1; j <=nlstate+ndeath-1; j++){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficresvij,"\n");
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);    xp=vector(1,npar);
       for(k=1; k<=ncovmodel;k++){    dnewm=matrix(1,nlstate,1,npar);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    doldm=matrix(1,nlstate,1,nlstate);
         printf(" %le",delti3[i][j][k]);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficparo," %le",delti3[i][j][k]);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }  
       fscanf(ficpar,"\n");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       printf("\n");    gpp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"\n");    gmp=vector(nlstate+1,nlstate+ndeath);
     }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    
   delti=delti3[1][1];    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    else  hstepm=estepm;   
     ungetc(c,ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
     fgets(line, MAXLINE, ficpar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     puts(line);       nhstepm is the number of hstepm from age to agelim 
     fputs(line,ficparo);       nstepm is the number of stepm from age to agelin. 
   }       Look at function hpijx to understand why (it is linked to memory size questions) */
   ungetc(c,ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   matcov=matrix(1,npar,1,npar);       means that if the survival funtion is printed every two years of age and if
   for(i=1; i <=npar; i++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fscanf(ficpar,"%s",&str);       results. So we changed our mind and took the option of the best precision.
     printf("%s",str);    */
     fprintf(ficparo,"%s",str);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for(j=1; j <=i; j++){    agelim = AGESUP;
       fscanf(ficpar," %le",&matcov[i][j]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       printf(" %.5le",matcov[i][j]);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficparo," %.5le",matcov[i][j]);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fscanf(ficpar,"\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     printf("\n");      gp=matrix(0,nhstepm,1,nlstate);
     fprintf(ficparo,"\n");      gm=matrix(0,nhstepm,1,nlstate);
   }  
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)      for(theta=1; theta <=npar; theta++){
       matcov[i][j]=matcov[j][i];        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
   printf("\n");        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */        if (popbased==1) {
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          if(mobilav ==0){
      strcat(rfileres,".");    /* */            for(i=1; i<=nlstate;i++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */              prlim[i][i]=probs[(int)age][i][ij];
     if((ficres =fopen(rfileres,"w"))==NULL) {          }else{ /* mobilav */ 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficres,"#%s\n",version);          }
            }
     /*-------- data file ----------*/    
     if((fic=fopen(datafile,"r"))==NULL)    {        for(j=1; j<= nlstate; j++){
       printf("Problem with datafile: %s\n", datafile);goto end;          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     n= lastobs;          }
     severity = vector(1,maxwav);        }
     outcome=imatrix(1,maxwav+1,1,n);        /* This for computing probability of death (h=1 means
     num=ivector(1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     moisnais=vector(1,n);           as a weighted average of prlim.
     annais=vector(1,n);        */
     moisdc=vector(1,n);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     andc=vector(1,n);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     agedc=vector(1,n);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     cod=ivector(1,n);        }    
     weight=vector(1,n);        /* end probability of death */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     anint=matrix(1,maxwav,1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     s=imatrix(1,maxwav+1,1,n);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     adl=imatrix(1,maxwav+1,1,n);            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     tab=ivector(1,NCOVMAX);   
     ncodemax=ivector(1,8);        if (popbased==1) {
           if(mobilav ==0){
     i=1;            for(i=1; i<=nlstate;i++)
     while (fgets(line, MAXLINE, fic) != NULL)    {              prlim[i][i]=probs[(int)age][i][ij];
       if ((i >= firstobs) && (i <=lastobs)) {          }else{ /* mobilav */ 
                    for(i=1; i<=nlstate;i++)
         for (j=maxwav;j>=1;j--){              prlim[i][i]=mobaverage[(int)age][i][ij];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          }
           strcpy(line,stra);        }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
         }          for(h=0; h<=nhstepm; h++){
                    for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        /* This for computing probability of death (h=1 means
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        */
         for (j=ncovcol;j>=1;j--){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         num[i]=atol(stra);        }    
                /* end probability of death */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
         i=i+1;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       }          }
     }  
     /* printf("ii=%d", ij);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
        scanf("%d",i);*/          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   imx=i-1; /* Number of individuals */        }
   
   /* for (i=1; i<=imx; i++){      } /* End theta */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/      for(h=0; h<=nhstepm; h++) /* veij */
    /*  for (i=1; i<=imx; i++){        for(j=1; j<=nlstate;j++)
      if (s[4][i]==9)  s[4][i]=-1;          for(theta=1; theta <=npar; theta++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            trgradg[h][j][theta]=gradg[h][theta][j];
    
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   /* Calculation of the number of parameter from char model*/        for(theta=1; theta <=npar; theta++)
   Tvar=ivector(1,15);          trgradgp[j][theta]=gradgp[theta][j];
   Tprod=ivector(1,15);    
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   Tage=ivector(1,15);            for(i=1;i<=nlstate;i++)
            for(j=1;j<=nlstate;j++)
   if (strlen(model) >1){          vareij[i][j][(int)age] =0.;
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');      for(h=0;h<=nhstepm;h++){
     j1=nbocc(model,'*');        for(k=0;k<=nhstepm;k++){
     cptcovn=j+1;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     cptcovprod=j1;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
              for(i=1;i<=nlstate;i++)
     strcpy(modelsav,model);            for(j=1;j<=nlstate;j++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       printf("Error. Non available option model=%s ",model);        }
       goto end;      }
     }    
          /* pptj */
     for(i=(j+1); i>=1;i--){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       cutv(stra,strb,modelsav,'+');      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       /*scanf("%d",i);*/          varppt[j][i]=doldmp[j][i];
       if (strchr(strb,'*')) {      /* end ppptj */
         cutv(strd,strc,strb,'*');      /*  x centered again */
         if (strcmp(strc,"age")==0) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           cptcovprod--;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           cutv(strb,stre,strd,'V');   
           Tvar[i]=atoi(stre);      if (popbased==1) {
           cptcovage++;        if(mobilav ==0){
             Tage[cptcovage]=i;          for(i=1; i<=nlstate;i++)
             /*printf("stre=%s ", stre);*/            prlim[i][i]=probs[(int)age][i][ij];
         }        }else{ /* mobilav */ 
         else if (strcmp(strd,"age")==0) {          for(i=1; i<=nlstate;i++)
           cptcovprod--;            prlim[i][i]=mobaverage[(int)age][i][ij];
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=atoi(stre);      }
           cptcovage++;               
           Tage[cptcovage]=i;      /* This for computing probability of death (h=1 means
         }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         else {         as a weighted average of prlim.
           cutv(strb,stre,strc,'V');      */
           Tvar[i]=ncovcol+k1;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           cutv(strb,strc,strd,'V');        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           Tprod[k1]=i;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           Tvard[k1][1]=atoi(strc);      }    
           Tvard[k1][2]=atoi(stre);      /* end probability of death */
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           for (k=1; k<=lastobs;k++)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           k1++;        for(i=1; i<=nlstate;i++){
           k2=k2+2;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }        }
       }      } 
       else {      fprintf(ficresprobmorprev,"\n");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/      fprintf(ficresvij,"%.0f ",age );
       cutv(strd,strc,strb,'V');      for(i=1; i<=nlstate;i++)
       Tvar[i]=atoi(strc);        for(j=1; j<=nlstate;j++){
       }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       strcpy(modelsav,stra);          }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      fprintf(ficresvij,"\n");
         scanf("%d",i);*/      free_matrix(gp,0,nhstepm,1,nlstate);
     }      free_matrix(gm,0,nhstepm,1,nlstate);
 }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("cptcovprod=%d ", cptcovprod);    } /* End age */
   scanf("%d ",i);*/    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fclose(fic);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     /*  if(mle==1){*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
       for(i=1;i<=n;i++) weight[i]=1.0;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     }    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     /*-calculation of age at interview from date of interview and age at death -*/  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     agev=matrix(1,maxwav,1,imx);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     for (i=1; i<=imx; i++) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       for(m=2; (m<= maxwav); m++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
          anint[m][i]=9999;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
          s[m][i]=-1;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  */
       }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     for (i=1; i<=imx; i++)  {    free_vector(xp,1,npar);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    free_matrix(doldm,1,nlstate,1,nlstate);
       for(m=1; (m<= maxwav); m++){    free_matrix(dnewm,1,nlstate,1,npar);
         if(s[m][i] >0){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           if (s[m][i] >= nlstate+1) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             if(agedc[i]>0)    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               if(moisdc[i]!=99 && andc[i]!=9999)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 agev[m][i]=agedc[i];    fclose(ficresprobmorprev);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    fflush(ficgp);
            else {    fflush(fichtm); 
               if (andc[i]!=9999){  }  /* end varevsij */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;  /************ Variance of prevlim ******************/
               }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
             }  {
           }    /* Variance of prevalence limit */
           else if(s[m][i] !=9){ /* Should no more exist */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    double **newm;
             if(mint[m][i]==99 || anint[m][i]==9999)    double **dnewm,**doldm;
               agev[m][i]=1;    int i, j, nhstepm, hstepm;
             else if(agev[m][i] <agemin){    int k, cptcode;
               agemin=agev[m][i];    double *xp;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    double *gp, *gm;
             }    double **gradg, **trgradg;
             else if(agev[m][i] >agemax){    double age,agelim;
               agemax=agev[m][i];    int theta;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    
             }    pstamp(ficresvpl);
             /*agev[m][i]=anint[m][i]-annais[i];*/    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             /*   agev[m][i] = age[i]+2*m;*/    fprintf(ficresvpl,"# Age");
           }    for(i=1; i<=nlstate;i++)
           else { /* =9 */        fprintf(ficresvpl," %1d-%1d",i,i);
             agev[m][i]=1;    fprintf(ficresvpl,"\n");
             s[m][i]=-1;  
           }    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
         else /*= 0 Unknown */    doldm=matrix(1,nlstate,1,nlstate);
           agev[m][i]=1;    
       }    hstepm=1*YEARM; /* Every year of age */
        hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     }    agelim = AGESUP;
     for (i=1; i<=imx; i++)  {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(m=1; (m<= maxwav); m++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         if (s[m][i] > (nlstate+ndeath)) {      if (stepm >= YEARM) hstepm=1;
           printf("Error: Wrong value in nlstate or ndeath\n");        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           goto end;      gradg=matrix(1,npar,1,nlstate);
         }      gp=vector(1,nlstate);
       }      gm=vector(1,nlstate);
     }  
       for(theta=1; theta <=npar; theta++){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_vector(severity,1,maxwav);        }
     free_imatrix(outcome,1,maxwav+1,1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_vector(moisnais,1,n);        for(i=1;i<=nlstate;i++)
     free_vector(annais,1,n);          gp[i] = prlim[i][i];
     /* free_matrix(mint,1,maxwav,1,n);      
        free_matrix(anint,1,maxwav,1,n);*/        for(i=1; i<=npar; i++) /* Computes gradient */
     free_vector(moisdc,1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_vector(andc,1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
              gm[i] = prlim[i][i];
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        for(i=1;i<=nlstate;i++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
          } /* End theta */
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
       Tcode=ivector(1,100);        for(theta=1; theta <=npar; theta++)
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          trgradg[j][theta]=gradg[theta][j];
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      for(i=1;i<=nlstate;i++)
              varpl[i][(int)age] =0.;
    codtab=imatrix(1,100,1,10);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
    h=0;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
    m=pow(2,cptcoveff);      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){      fprintf(ficresvpl,"%.0f ",age );
        for(j=1; j <= ncodemax[k]; j++){      for(i=1; i<=nlstate;i++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
            h++;      fprintf(ficresvpl,"\n");
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      free_vector(gp,1,nlstate);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      free_vector(gm,1,nlstate);
          }      free_matrix(gradg,1,npar,1,nlstate);
        }      free_matrix(trgradg,1,nlstate,1,npar);
      }    } /* End age */
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    free_vector(xp,1,npar);
       codtab[1][2]=1;codtab[2][2]=2; */    free_matrix(doldm,1,nlstate,1,npar);
    /* for(i=1; i <=m ;i++){    free_matrix(dnewm,1,nlstate,1,nlstate);
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  }
       }  
       printf("\n");  /************ Variance of one-step probabilities  ******************/
       }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       scanf("%d",i);*/  {
        int i, j=0,  i1, k1, l1, t, tj;
    /* Calculates basic frequencies. Computes observed prevalence at single age    int k2, l2, j1,  z1;
        and prints on file fileres'p'. */    int k=0,l, cptcode;
     int first=1, first1;
        double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
        double **dnewm,**doldm;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *xp;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *gp, *gm;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **gradg, **trgradg;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **mu;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double age,agelim, cov[NCOVMAX];
          double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     /* For Powell, parameters are in a vector p[] starting at p[1]    int theta;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    char fileresprob[FILENAMELENGTH];
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double ***varpij;
     }  
        strcpy(fileresprob,"prob"); 
     /*--------- results files --------------*/    strcat(fileresprob,fileres);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
    jk=1;    }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcpy(fileresprobcov,"probcov"); 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcat(fileresprobcov,fileres);
    for(i=1,jk=1; i <=nlstate; i++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
      for(k=1; k <=(nlstate+ndeath); k++){      printf("Problem with resultfile: %s\n", fileresprobcov);
        if (k != i)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
          {    }
            printf("%d%d ",i,k);    strcpy(fileresprobcor,"probcor"); 
            fprintf(ficres,"%1d%1d ",i,k);    strcat(fileresprobcor,fileres);
            for(j=1; j <=ncovmodel; j++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
              printf("%f ",p[jk]);      printf("Problem with resultfile: %s\n", fileresprobcor);
              fprintf(ficres,"%f ",p[jk]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
              jk++;    }
            }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            printf("\n");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            fprintf(ficres,"\n");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
          }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
    }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  if(mle==1){    pstamp(ficresprob);
     /* Computing hessian and covariance matrix */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     ftolhess=ftol; /* Usually correct */    fprintf(ficresprob,"# Age");
     hesscov(matcov, p, npar, delti, ftolhess, func);    pstamp(ficresprobcov);
  }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficresprobcov,"# Age");
     printf("# Scales (for hessian or gradient estimation)\n");    pstamp(ficresprobcor);
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficresprobcor,"# Age");
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);    for(i=1; i<=nlstate;i++)
           for(k=1; k<=ncovmodel;k++){      for(j=1; j<=(nlstate+ndeath);j++){
             printf(" %.5e",delti[jk]);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
             fprintf(ficres," %.5e",delti[jk]);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
             jk++;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           }      }  
           printf("\n");   /* fprintf(ficresprob,"\n");
           fprintf(ficres,"\n");    fprintf(ficresprobcov,"\n");
         }    fprintf(ficresprobcor,"\n");
       }   */
      }    xp=vector(1,npar);
        dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     k=1;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     for(i=1;i<=npar;i++){    first=1;
       /*  if (k>nlstate) k=1;    fprintf(ficgp,"\n# Routine varprob");
       i1=(i-1)/(ncovmodel*nlstate)+1;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    fprintf(fichtm,"\n");
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       printf("%3d",i);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       for(j=1; j<=i;j++){    file %s<br>\n",optionfilehtmcov);
         fprintf(ficres," %.5e",matcov[i][j]);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         printf(" %.5e",matcov[i][j]);  and drawn. It helps understanding how is the covariance between two incidences.\
       }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(ficres,"\n");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       printf("\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       k++;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     }  standard deviations wide on each axis. <br>\
       Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     while((c=getc(ficpar))=='#' && c!= EOF){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       ungetc(c,ficpar);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       fgets(line, MAXLINE, ficpar);  
       puts(line);    cov[1]=1;
       fputs(line,ficparo);    tj=cptcoveff;
     }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     ungetc(c,ficpar);    j1=0;
     estepm=0;    for(t=1; t<=tj;t++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      for(i1=1; i1<=ncodemax[t];i1++){ 
     if (estepm==0 || estepm < stepm) estepm=stepm;        j1++;
     if (fage <= 2) {        if  (cptcovn>0) {
       bage = ageminpar;          fprintf(ficresprob, "\n#********** Variable "); 
       fage = agemaxpar;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresprob, "**********\n#\n");
              fprintf(ficresprobcov, "\n#********** Variable "); 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficresprobcov, "**********\n#\n");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          
            fprintf(ficgp, "\n#********** Variable "); 
     while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficgp, "**********\n#\n");
     fgets(line, MAXLINE, ficpar);          
     puts(line);          
     fputs(line,ficparo);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   ungetc(c,ficpar);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          fprintf(ficresprobcor, "\n#********** Variable ");    
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficresprobcor, "**********\n#");    
              }
   while((c=getc(ficpar))=='#' && c!= EOF){        
     ungetc(c,ficpar);        for (age=bage; age<=fage; age ++){ 
     fgets(line, MAXLINE, ficpar);          cov[2]=age;
     puts(line);          for (k=1; k<=cptcovn;k++) {
     fputs(line,ficparo);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   }          }
   ungetc(c,ficpar);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   fscanf(ficpar,"pop_based=%d\n",&popbased);          gp=vector(1,(nlstate)*(nlstate+ndeath));
   fprintf(ficparo,"pop_based=%d\n",popbased);            gm=vector(1,(nlstate)*(nlstate+ndeath));
   fprintf(ficres,"pop_based=%d\n",popbased);        
            for(theta=1; theta <=npar; theta++){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=npar; i++)
     ungetc(c,ficpar);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     fgets(line, MAXLINE, ficpar);            
     puts(line);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fputs(line,ficparo);            
   }            k=0;
   ungetc(c,ficpar);            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                k=k+1;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                gp[k]=pmmij[i][j];
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              }
             }
             
 while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=npar; i++)
     ungetc(c,ficpar);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     fgets(line, MAXLINE, ficpar);      
     puts(line);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fputs(line,ficparo);            k=0;
   }            for(i=1; i<=(nlstate); i++){
   ungetc(c,ficpar);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                gm[k]=pmmij[i][j];
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            }
        
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 /*------------ gnuplot -------------*/          }
   strcpy(optionfilegnuplot,optionfilefiname);  
   strcat(optionfilegnuplot,".gp");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            for(theta=1; theta <=npar; theta++)
     printf("Problem with file %s",optionfilegnuplot);              trgradg[j][theta]=gradg[theta][j];
   }          
   fclose(ficgp);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 /*--------- index.htm --------*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   strcpy(optionfilehtm,optionfile);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   strcat(optionfilehtm,".htm");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   }          
           k=0;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          for(i=1; i<=(nlstate); i++){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            for(j=1; j<=(nlstate+ndeath);j++){
 \n              k=k+1;
 Total number of observations=%d <br>\n              mu[k][(int) age]=pmmij[i][j];
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            }
 <hr  size=\"2\" color=\"#EC5E5E\">          }
  <ul><li>Parameter files<br>\n          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);              varpij[i][j][(int)age] = doldm[i][j];
   fclose(fichtm);  
           /*printf("\n%d ",(int)age);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 /*------------ free_vector  -------------*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  chdir(path);            }*/
    
  free_ivector(wav,1,imx);          fprintf(ficresprob,"\n%d ",(int)age);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          fprintf(ficresprobcov,"\n%d ",(int)age);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficresprobcor,"\n%d ",(int)age);
  free_ivector(num,1,n);  
  free_vector(agedc,1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
  /*free_matrix(covar,1,NCOVMAX,1,n);*/            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
  fclose(ficparo);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  fclose(ficres);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
   /*--------------- Prevalence limit --------------*/          i=0;
            for (k=1; k<=(nlstate);k++){
   strcpy(filerespl,"pl");            for (l=1; l<=(nlstate+ndeath);l++){ 
   strcat(filerespl,fileres);              i=i++;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   }              for (j=1; j<=i;j++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   fprintf(ficrespl,"#Prevalence limit\n");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   fprintf(ficrespl,"#Age ");              }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            }
   fprintf(ficrespl,"\n");          }/* end of loop for state */
          } /* end of loop for age */
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* Confidence intervalle of pij  */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /*
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\nunset parametric;unset label");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   k=0;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   agebase=ageminpar;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   agelim=agemaxpar;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   ftolpl=1.e-10;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   i1=cptcoveff;        */
   if (cptcovn < 1){i1=1;}  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   for(cptcov=1;cptcov<=i1;cptcov++){        first1=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (k2=1; k2<=(nlstate);k2++){
         k=k+1;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            if(l2==k2) continue;
         fprintf(ficrespl,"\n#******");            j=(k2-1)*(nlstate+ndeath)+l2;
         for(j=1;j<=cptcoveff;j++)            for (k1=1; k1<=(nlstate);k1++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         fprintf(ficrespl,"******\n");                if(l1==k1) continue;
                        i=(k1-1)*(nlstate+ndeath)+l1;
         for (age=agebase; age<=agelim; age++){                if(i<=j) continue;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                for (age=bage; age<=fage; age ++){ 
           fprintf(ficrespl,"%.0f",age );                  if ((int)age %5==0){
           for(i=1; i<=nlstate;i++)                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficrespl," %.5f", prlim[i][i]);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficrespl,"\n");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    mu1=mu[i][(int) age]/stepm*YEARM ;
       }                    mu2=mu[j][(int) age]/stepm*YEARM;
     }                    c12=cv12/sqrt(v1*v2);
   fclose(ficrespl);                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /*------------- h Pij x at various ages ------------*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      /* Eigen vectors */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                    /*v21=sqrt(1.-v11*v11); *//* error */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                    v21=(lc1-v1)/cv12*v11;
   }                    v12=-v21;
   printf("Computing pij: result on file '%s' \n", filerespij);                    v22=v11;
                      tnalp=v21/v11;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    if(first1==1){
   /*if (stepm<=24) stepsize=2;*/                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   agelim=AGESUP;                    }
   hstepm=stepsize*YEARM; /* Every year of age */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                    /*printf(fignu*/
                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   k=0;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   for(cptcov=1;cptcov<=i1;cptcov++){                    if(first==1){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      first=0;
       k=k+1;                      fprintf(ficgp,"\nset parametric;unset label");
         fprintf(ficrespij,"\n#****** ");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         fprintf(ficrespij,"******\n");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
          %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           oldm=oldms;savm=savms;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           fprintf(ficrespij,"# Age");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             for(j=1; j<=nlstate+ndeath;j++)                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
               fprintf(ficrespij," %1d-%1d",i,j);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           fprintf(ficrespij,"\n");                    }else{
            for (h=0; h<=nhstepm; h++){                      first=0;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
             for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
               for(j=1; j<=nlstate+ndeath;j++)                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             fprintf(ficrespij,"\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
              }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    }/* if first */
           fprintf(ficrespij,"\n");                  } /* age mod 5 */
         }                } /* end loop age */
     }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                first=1;
               } /*l12 */
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            } /* k12 */
           } /*l1 */
   fclose(ficrespij);        }/* k1 */
       } /* loop covariates */
     }
   /*---------- Forecasting ------------------*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   if((stepm == 1) && (strcmp(model,".")==0)){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   }    free_vector(xp,1,npar);
   else{    fclose(ficresprob);
     erreur=108;    fclose(ficresprobcov);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    fclose(ficresprobcor);
   }    fflush(ficgp);
      fflush(fichtmcov);
   }
   /*---------- Health expectancies and variances ------------*/  
   
   strcpy(filerest,"t");  /******************* Printing html file ***********/
   strcat(filerest,fileres);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   if((ficrest=fopen(filerest,"w"))==NULL) {                    int lastpass, int stepm, int weightopt, char model[],\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   }                    int popforecast, int estepm ,\
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   strcpy(filerese,"e");  
   strcat(filerese,fileres);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   if((ficreseij=fopen(filerese,"w"))==NULL) {     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  </ul>");
   }     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
  strcpy(fileresv,"v");     fprintf(fichtm,"\
   strcat(fileresv,fileres);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   if((ficresvij=fopen(fileresv,"w"))==NULL) {             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     fprintf(fichtm,"\
   }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   calagedate=-1;     fprintf(fichtm,"\
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
   k=0;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   for(cptcov=1;cptcov<=i1;cptcov++){     fprintf(fichtm,"\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - Population projections by age and states: \
       k=k+1;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)   jj1=0;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   for(k1=1; k1<=m;k1++){
       fprintf(ficreseij,"******\n");     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
       fprintf(ficresvij,"\n#****** ");       if (cptcovn > 0) {
       for(j=1;j<=cptcoveff;j++)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       fprintf(ficresvij,"******\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       }
       oldm=oldms;savm=savms;       /* Pij */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);         fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
    <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       /* Quasi-incidences */
       oldm=oldms;savm=savms;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
      <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
           for(cpt=1; cpt<nlstate;cpt++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       fprintf(ficrest,"\n");         }
        for(cpt=1; cpt<=nlstate;cpt++) {
       epj=vector(1,nlstate+1);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
       for(age=bage; age <=fage ;age++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       }
         if (popbased==1) {     } /* end i1 */
           for(i=1; i<=nlstate;i++)   }/* End k1 */
             prlim[i][i]=probs[(int)age][i][k];   fprintf(fichtm,"</ul>");
         }  
          
         fprintf(ficrest," %4.0f",age);   fprintf(fichtm,"\
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
           epj[nlstate+1] +=epj[j];   fprintf(fichtm,"\
         }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)   fprintf(fichtm,"\
             vepp += vareij[i][j][(int)age];   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
         for(j=1;j <=nlstate;j++){   fprintf(fichtm,"\
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
         }     <a href=\"%s\">%s</a> <br>\n</li>",
         fprintf(ficrest,"\n");             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       }   fprintf(fichtm,"\
     }   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
 free_matrix(mint,1,maxwav,1,n);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   fprintf(fichtm,"\
     free_vector(weight,1,n);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   fclose(ficreseij);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   fclose(ficresvij);   fprintf(fichtm,"\
   fclose(ficrest);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
   fclose(ficpar);           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   free_vector(epj,1,nlstate+1);   fprintf(fichtm,"\
     - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   /*------- Variance limit prevalence------*/             subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   strcpy(fileresvpl,"vpl");  /*  if(popforecast==1) fprintf(fichtm,"\n */
   strcat(fileresvpl,fileres);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  /*      <br>",fileres,fileres,fileres,fileres); */
     exit(0);  /*  else  */
   }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){   m=cptcoveff;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");   jj1=0;
       for(j=1;j<=cptcoveff;j++)   for(k1=1; k1<=m;k1++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficresvpl,"******\n");       jj1++;
             if (cptcovn > 0) {
       varpl=matrix(1,nlstate,(int) bage, (int) fage);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       oldm=oldms;savm=savms;         for (cpt=1; cpt<=cptcoveff;cpt++) 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
  }       }
        for(cpt=1; cpt<=nlstate;cpt++) {
   fclose(ficresvpl);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   /*---------- End : free ----------------*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       }
         fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  true period expectancies (those weighted with period prevalences are also\
     drawn in addition to the population based expectancies computed using\
     observed and cahotic prevalences: %s%d.png<br>\
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);     } /* end i1 */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   }/* End k1 */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);   fprintf(fichtm,"</ul>");
     fflush(fichtm);
   free_matrix(matcov,1,npar,1,npar);  }
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);  /******************* Gnuplot file **************/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   fprintf(fichtm,"\n</body>");    char dirfileres[132],optfileres[132];
   fclose(fichtm);    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
   fclose(ficgp);    int ng=0;
    /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   if(erreur >0)  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     printf("End of Imach with error or warning %d\n",erreur);  /*   } */
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    /*#ifdef windows */
      fprintf(ficgp,"cd \"%s\" \n",pathc);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      /*#endif */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    m=pow(2,cptcoveff);
   /*------ End -----------*/  
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
  end:   /* 1eme*/
 #ifdef windows    for (cpt=1; cpt<= nlstate ; cpt ++) {
   /* chdir(pathcd);*/     for (k1=1; k1<= m ; k1 ++) {
 #endif       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
  /*system("wgnuplot graph.plt");*/       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
  /*system("../gp37mgw/wgnuplot graph.plt");*/       fprintf(ficgp,"set xlabel \"Age\" \n\
  /*system("cd ../gp37mgw");*/  set ylabel \"Probability\" \n\
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  set ter png small\n\
  strcpy(plotcmd,GNUPLOTPROGRAM);  set size 0.65,0.65\n\
  strcat(plotcmd," ");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 #ifdef windows         else        fprintf(ficgp," \%%*lf (\%%*lf)");
   while (z[0] != 'q') {       }
     /* chdir(path); */       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");       for (i=1; i<= nlstate ; i ++) {
     scanf("%s",z);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     if (z[0] == 'c') system("./imach");         else fprintf(ficgp," \%%*lf (\%%*lf)");
     else if (z[0] == 'e') system(optionfilehtm);       } 
     else if (z[0] == 'g') system(plotcmd);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     else if (z[0] == 'q') exit(0);       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 #endif         else fprintf(ficgp," \%%*lf (\%%*lf)");
 }       }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);fflush(ficlog);
           goto end;
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.133


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>