Diff for /imach/src/imach.c between versions 1.48 and 1.135

version 1.48, 2002/06/10 13:12:49 version 1.135, 2009/10/29 15:33:14
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.135  2009/10/29 15:33:14  brouard
      (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.134  2009/10/29 13:18:53  brouard
   first survey ("cross") where individuals from different ages are    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.133  2009/07/06 10:21:25  brouard
   second wave of interviews ("longitudinal") which measure each change    just nforces
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.132  2009/07/06 08:22:05  brouard
   model. More health states you consider, more time is necessary to reach the    Many tings
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.131  2009/06/20 16:22:47  brouard
   probability to be observed in state j at the second wave    Some dimensions resccaled
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.130  2009/05/26 06:44:34  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Max Covariate is now set to 20 instead of 8. A
   complex model than "constant and age", you should modify the program    lot of cleaning with variables initialized to 0. Trying to make
   where the markup *Covariates have to be included here again* invites    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.128  2006/06/30 13:02:05  brouard
   identical for each individual. Also, if a individual missed an    (Module): Clarifications on computing e.j
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
   hPijx is the probability to be observed in state i at age x+h    imach-114 because nhstepm was no more computed in the age
   conditional to the observed state i at age x. The delay 'h' can be    loop. Now we define nhstepma in the age loop.
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): In order to speed up (in case of numerous covariates) we
   states. This elementary transition (by month or quarter trimester,    compute health expectancies (without variances) in a first step
   semester or year) is model as a multinomial logistic.  The hPx    and then all the health expectancies with variances or standard
   matrix is simply the matrix product of nh*stepm elementary matrices    deviation (needs data from the Hessian matrices) which slows the
   and the contribution of each individual to the likelihood is simply    computation.
   hPijx.    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.126  2006/04/28 17:23:28  brouard
      (Module): Yes the sum of survivors was wrong since
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    imach-114 because nhstepm was no more computed in the age
            Institut national d'études démographiques, Paris.    loop. Now we define nhstepma in the age loop.
   This software have been partly granted by Euro-REVES, a concerted action    Version 0.98h
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.125  2006/04/04 15:20:31  lievre
   software can be distributed freely for non commercial use. Latest version    Errors in calculation of health expectancies. Age was not initialized.
   can be accessed at http://euroreves.ined.fr/imach .    Forecasting file added.
   **********************************************************************/  
      Revision 1.124  2006/03/22 17:13:53  lievre
 #include <math.h>    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #include <stdio.h>    The log-likelihood is printed in the log file
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 #define MAXLINE 256    name. <head> headers where missing.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    * imach.c (Module): Weights can have a decimal point as for
 #define FILENAMELENGTH 80    English (a comma might work with a correct LC_NUMERIC environment,
 /*#define DEBUG*/    otherwise the weight is truncated).
 #define windows    Modification of warning when the covariates values are not 0 or
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    1.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Version 0.98g
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.122  2006/03/20 09:45:41  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define NINTERVMAX 8    otherwise the weight is truncated).
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Modification of warning when the covariates values are not 0 or
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    1.
 #define NCOVMAX 8 /* Maximum number of covariates */    Version 0.98g
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.121  2006/03/16 17:45:01  lievre
 #define AGESUP 130    * imach.c (Module): Comments concerning covariates added
 #define AGEBASE 40  
 #ifdef windows    * imach.c (Module): refinements in the computation of lli if
 #define DIRSEPARATOR '\\'    status=-2 in order to have more reliable computation if stepm is
 #else    not 1 month. Version 0.98f
 #define DIRSEPARATOR '/'  
 #endif    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    status=-2 in order to have more reliable computation if stepm is
 int erreur; /* Error number */    not 1 month. Version 0.98f
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.119  2006/03/15 17:42:26  brouard
 int npar=NPARMAX;    (Module): Bug if status = -2, the loglikelihood was
 int nlstate=2; /* Number of live states */    computed as likelihood omitting the logarithm. Version O.98e
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.118  2006/03/14 18:20:07  brouard
 int popbased=0;    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int maxwav; /* Maxim number of waves */    (Module): Function pstamp added
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Version 0.98d
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.117  2006/03/14 17:16:22  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): varevsij Comments added explaining the second
 double jmean; /* Mean space between 2 waves */    table of variances if popbased=1 .
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Function pstamp added
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Version 0.98d
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *fichtm; /* Html File */    Revision 1.116  2006/03/06 10:29:27  brouard
 FILE *ficreseij;    (Module): Variance-covariance wrong links and
 char filerese[FILENAMELENGTH];    varian-covariance of ej. is needed (Saito).
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.115  2006/02/27 12:17:45  brouard
 FILE  *ficresvpl;    (Module): One freematrix added in mlikeli! 0.98c
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.114  2006/02/26 12:57:58  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    (Module): Some improvements in processing parameter
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    filename with strsep.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 char filerest[FILENAMELENGTH];    datafile was not closed, some imatrix were not freed and on matrix
 char fileregp[FILENAMELENGTH];    allocation too.
 char popfile[FILENAMELENGTH];  
     Revision 1.112  2006/01/30 09:55:26  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 #define NR_END 1    Revision 1.111  2006/01/25 20:38:18  brouard
 #define FREE_ARG char*    (Module): Lots of cleaning and bugs added (Gompertz)
 #define FTOL 1.0e-10    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 #define NRANSI  
 #define ITMAX 200    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define TOL 2.0e-4  
     Revision 1.109  2006/01/24 19:37:15  brouard
 #define CGOLD 0.3819660    (Module): Comments (lines starting with a #) are allowed in data.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 #define GOLD 1.618034    To be fixed
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.106  2006/01/19 13:24:36  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Some cleaning and links added in html output
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.105  2006/01/05 20:23:19  lievre
 #define rint(a) floor(a+0.5)    *** empty log message ***
   
 static double sqrarg;    Revision 1.104  2005/09/30 16:11:43  lievre
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): sump fixed, loop imx fixed, and simplifications.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 int imx;    (instead of missing=-1 in earlier versions) and his/her
 int stepm;    contributions to the likelihood is 1 - Prob of dying from last
 /* Stepm, step in month: minimum step interpolation*/    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.102  2004/09/15 17:31:30  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Add the possibility to read data file including tab characters.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 double *weight;  
 int **s; /* Status */    Revision 1.100  2004/07/12 18:29:06  brouard
 double *agedc, **covar, idx;    Add version for Mac OS X. Just define UNIX in Makefile
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.99  2004/06/05 08:57:40  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    *** empty log message ***
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.98  2004/05/16 15:05:56  brouard
 /**************** split *************************/    New version 0.97 . First attempt to estimate force of mortality
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    directly from the data i.e. without the need of knowing the health
 {    state at each age, but using a Gompertz model: log u =a + b*age .
    char *s;                             /* pointer */    This is the basic analysis of mortality and should be done before any
    int  l1, l2;                         /* length counters */    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
    l1 = strlen( path );                 /* length of path */    from other sources like vital statistic data.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    The same imach parameter file can be used but the option for mle should be -3.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Agnès, who wrote this part of the code, tried to keep most of the
       extern char       *getwd( );    former routines in order to include the new code within the former code.
   
       if ( getwd( dirc ) == NULL ) {    The output is very simple: only an estimate of the intercept and of
 #else    the slope with 95% confident intervals.
       extern char       *getcwd( );  
     Current limitations:
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    A) Even if you enter covariates, i.e. with the
 #endif    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
          return( GLOCK_ERROR_GETCWD );    B) There is no computation of Life Expectancy nor Life Table.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.97  2004/02/20 13:25:42  lievre
    } else {                             /* strip direcotry from path */    Version 0.96d. Population forecasting command line is (temporarily)
       s++;                              /* after this, the filename */    suppressed.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.96  2003/07/15 15:38:55  brouard
       strcpy( name, s );                /* save file name */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    rewritten within the same printf. Workaround: many printfs.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.95  2003/07/08 07:54:34  brouard
    l1 = strlen( dirc );                 /* length of directory */    * imach.c (Repository):
 #ifdef windows    (Repository): Using imachwizard code to output a more meaningful covariance
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    matrix (cov(a12,c31) instead of numbers.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.94  2003/06/27 13:00:02  brouard
 #endif    Just cleaning
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.93  2003/06/25 16:33:55  brouard
    strcpy(ext,s);                       /* save extension */    (Module): On windows (cygwin) function asctime_r doesn't
    l1= strlen( name);    exist so I changed back to asctime which exists.
    l2= strlen( s)+1;    (Module): Version 0.96b
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.92  2003/06/25 16:30:45  brouard
    return( 0 );                         /* we're done */    (Module): On windows (cygwin) function asctime_r doesn't
 }    exist so I changed back to asctime which exists.
   
     Revision 1.91  2003/06/25 15:30:29  brouard
 /******************************************/    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 void replace(char *s, char*t)    helps to forecast when convergence will be reached. Elapsed time
 {    is stamped in powell.  We created a new html file for the graphs
   int i;    concerning matrix of covariance. It has extension -cov.htm.
   int lg=20;  
   i=0;    Revision 1.90  2003/06/24 12:34:15  brouard
   lg=strlen(t);    (Module): Some bugs corrected for windows. Also, when
   for(i=0; i<= lg; i++) {    mle=-1 a template is output in file "or"mypar.txt with the design
     (s[i] = t[i]);    of the covariance matrix to be input.
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.89  2003/06/24 12:30:52  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int nbocc(char *s, char occ)    of the covariance matrix to be input.
 {  
   int i,j=0;    Revision 1.88  2003/06/23 17:54:56  brouard
   int lg=20;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   i=0;  
   lg=strlen(s);    Revision 1.87  2003/06/18 12:26:01  brouard
   for(i=0; i<= lg; i++) {    Version 0.96
   if  (s[i] == occ ) j++;  
   }    Revision 1.86  2003/06/17 20:04:08  brouard
   return j;    (Module): Change position of html and gnuplot routines and added
 }    routine fileappend.
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.85  2003/06/17 13:12:43  brouard
 {    * imach.c (Repository): Check when date of death was earlier that
   int i,lg,j,p=0;    current date of interview. It may happen when the death was just
   i=0;    prior to the death. In this case, dh was negative and likelihood
   for(j=0; j<=strlen(t)-1; j++) {    was wrong (infinity). We still send an "Error" but patch by
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    assuming that the date of death was just one stepm after the
   }    interview.
     (Repository): Because some people have very long ID (first column)
   lg=strlen(t);    we changed int to long in num[] and we added a new lvector for
   for(j=0; j<p; j++) {    memory allocation. But we also truncated to 8 characters (left
     (u[j] = t[j]);    truncation)
   }    (Repository): No more line truncation errors.
      u[p]='\0';  
     Revision 1.84  2003/06/13 21:44:43  brouard
    for(j=0; j<= lg; j++) {    * imach.c (Repository): Replace "freqsummary" at a correct
     if (j>=(p+1))(v[j-p-1] = t[j]);    place. It differs from routine "prevalence" which may be called
   }    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /********************** nrerror ********************/  
     Revision 1.83  2003/06/10 13:39:11  lievre
 void nrerror(char error_text[])    *** empty log message ***
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.82  2003/06/05 15:57:20  brouard
   fprintf(stderr,"%s\n",error_text);    Add log in  imach.c and  fullversion number is now printed.
   exit(1);  
 }  */
 /*********************** vector *******************/  /*
 double *vector(int nl, int nh)     Interpolated Markov Chain
 {  
   double *v;    Short summary of the programme:
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    
   if (!v) nrerror("allocation failure in vector");    This program computes Healthy Life Expectancies from
   return v-nl+NR_END;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /************************ free vector ******************/    case of a health survey which is our main interest) -2- at least a
 void free_vector(double*v, int nl, int nh)    second wave of interviews ("longitudinal") which measure each change
 {    (if any) in individual health status.  Health expectancies are
   free((FREE_ARG)(v+nl-NR_END));    computed from the time spent in each health state according to a
 }    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 /************************ivector *******************************/    simplest model is the multinomial logistic model where pij is the
 int *ivector(long nl,long nh)    probability to be observed in state j at the second wave
 {    conditional to be observed in state i at the first wave. Therefore
   int *v;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    'age' is age and 'sex' is a covariate. If you want to have a more
   if (!v) nrerror("allocation failure in ivector");    complex model than "constant and age", you should modify the program
   return v-nl+NR_END;    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    The advantage of this computer programme, compared to a simple
 {    multinomial logistic model, is clear when the delay between waves is not
   free((FREE_ARG)(v+nl-NR_END));    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    hPijx is the probability to be observed in state i at age x+h
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    states. This elementary transition (by month, quarter,
   int **m;    semester or year) is modelled as a multinomial logistic.  The hPx
      matrix is simply the matrix product of nh*stepm elementary matrices
   /* allocate pointers to rows */    and the contribution of each individual to the likelihood is simply
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    hPijx.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Also this programme outputs the covariance matrix of the parameters but also
   m -= nrl;    of the life expectancies. It also computes the period (stable) prevalence. 
      
      Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   /* allocate rows and set pointers to them */             Institut national d'études démographiques, Paris.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    This software have been partly granted by Euro-REVES, a concerted action
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    from the European Union.
   m[nrl] += NR_END;    It is copyrighted identically to a GNU software product, ie programme and
   m[nrl] -= ncl;    software can be distributed freely for non commercial use. Latest version
      can be accessed at http://euroreves.ined.fr/imach .
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   /* return pointer to array of pointers to rows */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   return m;    
 }    **********************************************************************/
   /*
 /****************** free_imatrix *************************/    main
 void free_imatrix(m,nrl,nrh,ncl,nch)    read parameterfile
       int **m;    read datafile
       long nch,ncl,nrh,nrl;    concatwav
      /* free an int matrix allocated by imatrix() */    freqsummary
 {    if (mle >= 1)
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      mlikeli
   free((FREE_ARG) (m+nrl-NR_END));    print results files
 }    if mle==1 
        computes hessian
 /******************* matrix *******************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 double **matrix(long nrl, long nrh, long ncl, long nch)        begin-prev-date,...
 {    open gnuplot file
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    open html file
   double **m;    period (stable) prevalence
      for age prevalim()
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    h Pij x
   if (!m) nrerror("allocation failure 1 in matrix()");    variance of p varprob
   m += NR_END;    forecasting if prevfcast==1 prevforecast call prevalence()
   m -= nrl;    health expectancies
     Variance-covariance of DFLE
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    prevalence()
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");     movingaverage()
   m[nrl] += NR_END;    varevsij() 
   m[nrl] -= ncl;    if popbased==1 varevsij(,popbased)
     total life expectancies
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Variance of period (stable) prevalence
   return m;   end
 }  */
   
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {   
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <math.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include <stdio.h>
 }  #include <stdlib.h>
   #include <string.h>
 /******************* ma3x *******************************/  #include <unistd.h>
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #include <limits.h>
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #include <sys/types.h>
   double ***m;  #include <sys/stat.h>
   #include <errno.h>
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  extern int errno;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /* #include <sys/time.h> */
   m -= nrl;  #include <time.h>
   #include "timeval.h"
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* #include <libintl.h> */
   m[nrl] += NR_END;  /* #define _(String) gettext (String) */
   m[nrl] -= ncl;  
   #define MAXLINE 256
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   #define GNUPLOTPROGRAM "gnuplot"
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define FILENAMELENGTH 132
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for (j=ncl+1; j<=nch; j++)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   for (i=nrl+1; i<=nrh; i++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define NINTERVMAX 8
       m[i][j]=m[i][j-1]+nlay;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   return m;  #define NCOVMAX 20 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /*************************free ma3x ************************/  #define AGESUP 130
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #ifdef UNIX
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define DIRSEPARATOR '/'
   free((FREE_ARG)(m+nrl-NR_END));  #define CHARSEPARATOR "/"
 }  #define ODIRSEPARATOR '\\'
   #else
 /***************** f1dim *************************/  #define DIRSEPARATOR '\\'
 extern int ncom;  #define CHARSEPARATOR "\\"
 extern double *pcom,*xicom;  #define ODIRSEPARATOR '/'
 extern double (*nrfunc)(double []);  #endif
    
 double f1dim(double x)  /* $Id$ */
 {  /* $State$ */
   int j;  
   double f;  char version[]="Imach version 0.98l, October 2009, INED-EUROREVES-Institut de longevite ";
   double *xt;  char fullversion[]="$Revision$ $Date$"; 
    char strstart[80];
   xt=vector(1,ncom);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   f=(*nrfunc)(xt);  int nvar=0, nforce=0; /* Number of variables, number of forces */
   free_vector(xt,1,ncom);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
   return f;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /*****************brent *************************/  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int popbased=0;
 {  
   int iter;  int *wav; /* Number of waves for this individuual 0 is possible */
   double a,b,d,etemp;  int maxwav=0; /* Maxim number of waves */
   double fu,fv,fw,fx;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   double ftemp;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double e=0.0;                     to the likelihood and the sum of weights (done by funcone)*/
    int mle=1, weightopt=0;
   a=(ax < cx ? ax : cx);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   b=(ax > cx ? ax : cx);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   x=w=v=bx;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   fw=fv=fx=(*f)(x);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for (iter=1;iter<=ITMAX;iter++) {  double jmean=1; /* Mean space between 2 waves */
     xm=0.5*(a+b);  double **oldm, **newm, **savm; /* Working pointers to matrices */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     printf(".");fflush(stdout);  FILE *ficlog, *ficrespow;
 #ifdef DEBUG  int globpr=0; /* Global variable for printing or not */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double fretone; /* Only one call to likelihood */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  long ipmx=0; /* Number of contributions */
 #endif  double sw; /* Sum of weights */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char filerespow[FILENAMELENGTH];
       *xmin=x;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       return fx;  FILE *ficresilk;
     }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     ftemp=fu;  FILE *ficresprobmorprev;
     if (fabs(e) > tol1) {  FILE *fichtm, *fichtmcov; /* Html File */
       r=(x-w)*(fx-fv);  FILE *ficreseij;
       q=(x-v)*(fx-fw);  char filerese[FILENAMELENGTH];
       p=(x-v)*q-(x-w)*r;  FILE *ficresstdeij;
       q=2.0*(q-r);  char fileresstde[FILENAMELENGTH];
       if (q > 0.0) p = -p;  FILE *ficrescveij;
       q=fabs(q);  char filerescve[FILENAMELENGTH];
       etemp=e;  FILE  *ficresvij;
       e=d;  char fileresv[FILENAMELENGTH];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  FILE  *ficresvpl;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char fileresvpl[FILENAMELENGTH];
       else {  char title[MAXLINE];
         d=p/q;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         u=x+d;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         if (u-a < tol2 || b-u < tol2)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
           d=SIGN(tol1,xm-x);  char command[FILENAMELENGTH];
       }  int  outcmd=0;
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char filelog[FILENAMELENGTH]; /* Log file */
     fu=(*f)(u);  char filerest[FILENAMELENGTH];
     if (fu <= fx) {  char fileregp[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  char popfile[FILENAMELENGTH];
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         } else {  
           if (u < x) a=u; else b=u;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
           if (fu <= fw || w == x) {  struct timezone tzp;
             v=w;  extern int gettimeofday();
             w=u;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
             fv=fw;  long time_value;
             fw=fu;  extern long time();
           } else if (fu <= fv || v == x || v == w) {  char strcurr[80], strfor[80];
             v=u;  
             fv=fu;  char *endptr;
           }  long lval;
         }  double dval;
   }  
   nrerror("Too many iterations in brent");  #define NR_END 1
   *xmin=x;  #define FREE_ARG char*
   return fx;  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /****************** mnbrak ***********************/  #define ITMAX 200 
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define TOL 2.0e-4 
             double (*func)(double))  
 {  #define CGOLD 0.3819660 
   double ulim,u,r,q, dum;  #define ZEPS 1.0e-10 
   double fu;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    
   *fa=(*func)(*ax);  #define GOLD 1.618034 
   *fb=(*func)(*bx);  #define GLIMIT 100.0 
   if (*fb > *fa) {  #define TINY 1.0e-20 
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  static double maxarg1,maxarg2;
       }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   *cx=(*bx)+GOLD*(*bx-*ax);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   *fc=(*func)(*cx);    
   while (*fb > *fc) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     r=(*bx-*ax)*(*fb-*fc);  #define rint(a) floor(a+0.5)
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  static double sqrarg;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     if ((*bx-u)*(u-*cx) > 0.0) {  int agegomp= AGEGOMP;
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int imx; 
       fu=(*func)(u);  int stepm=1;
       if (fu < *fc) {  /* Stepm, step in month: minimum step interpolation*/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  int estepm;
           }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  int m,nb;
       fu=(*func)(u);  long *num;
     } else {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       u=(*cx)+GOLD*(*cx-*bx);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       fu=(*func)(u);  double **pmmij, ***probs;
     }  double *ageexmed,*agecens;
     SHFT(*ax,*bx,*cx,u)  double dateintmean=0;
       SHFT(*fa,*fb,*fc,fu)  
       }  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /*************** linmin ************************/  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 int ncom;  
 double *pcom,*xicom;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double (*nrfunc)(double []);  double ftolhess; /* Tolerance for computing hessian */
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double f1dim(double x);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    */ 
               double *fc, double (*func)(double));    char  *ss;                            /* pointer */
   int j;    int   l1, l2;                         /* length counters */
   double xx,xmin,bx,ax;  
   double fx,fb,fa;    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   ncom=n;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   pcom=vector(1,n);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   xicom=vector(1,n);      strcpy( name, path );               /* we got the fullname name because no directory */
   nrfunc=func;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for (j=1;j<=n;j++) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     pcom[j]=p[j];      /* get current working directory */
     xicom[j]=xi[j];      /*    extern  char* getcwd ( char *buf , int len);*/
   }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   ax=0.0;        return( GLOCK_ERROR_GETCWD );
   xx=1.0;      }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      /* got dirc from getcwd*/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      printf(" DIRC = %s \n",dirc);
 #ifdef DEBUG    } else {                              /* strip direcotry from path */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      ss++;                               /* after this, the filename */
 #endif      l2 = strlen( ss );                  /* length of filename */
   for (j=1;j<=n;j++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     xi[j] *= xmin;      strcpy( name, ss );         /* save file name */
     p[j] += xi[j];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
   free_vector(xicom,1,n);      printf(" DIRC2 = %s \n",dirc);
   free_vector(pcom,1,n);    }
 }    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
 /*************** powell ************************/    if( dirc[l1-1] != DIRSEPARATOR ){
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      dirc[l1] =  DIRSEPARATOR;
             double (*func)(double []))      dirc[l1+1] = 0; 
 {      printf(" DIRC3 = %s \n",dirc);
   void linmin(double p[], double xi[], int n, double *fret,    }
               double (*func)(double []));    ss = strrchr( name, '.' );            /* find last / */
   int i,ibig,j;    if (ss >0){
   double del,t,*pt,*ptt,*xit;      ss++;
   double fp,fptt;      strcpy(ext,ss);                     /* save extension */
   double *xits;      l1= strlen( name);
   pt=vector(1,n);      l2= strlen(ss)+1;
   ptt=vector(1,n);      strncpy( finame, name, l1-l2);
   xit=vector(1,n);      finame[l1-l2]= 0;
   xits=vector(1,n);    }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    return( 0 );                          /* we're done */
   for (*iter=1;;++(*iter)) {  }
     fp=(*fret);  
     ibig=0;  
     del=0.0;  /******************************************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  void replace_back_to_slash(char *s, char*t)
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    int i;
     for (i=1;i<=n;i++) {    int lg=0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    i=0;
       fptt=(*fret);    lg=strlen(t);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
       printf("fret=%lf \n",*fret);      (s[i] = t[i]);
 #endif      if (t[i]== '\\') s[i]='/';
       printf("%d",i);fflush(stdout);    }
       linmin(p,xit,n,fret,func);  }
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  char *trimbb(char *out, char *in)
         ibig=i;  { /* Trim multiple blanks in line */
       }    char *s;
 #ifdef DEBUG    s=out;
       printf("%d %.12e",i,(*fret));    while (*in != '\0'){
       for (j=1;j<=n;j++) {      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        in++;
         printf(" x(%d)=%.12e",j,xit[j]);      }
       }      *out++ = *in++;
       for(j=1;j<=n;j++)    }
         printf(" p=%.12e",p[j]);    *out='\0';
       printf("\n");    return s;
 #endif  }
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int nbocc(char *s, char occ)
 #ifdef DEBUG  {
       int k[2],l;    int i,j=0;
       k[0]=1;    int lg=20;
       k[1]=-1;    i=0;
       printf("Max: %.12e",(*func)(p));    lg=strlen(s);
       for (j=1;j<=n;j++)    for(i=0; i<= lg; i++) {
         printf(" %.12e",p[j]);    if  (s[i] == occ ) j++;
       printf("\n");    }
       for(l=0;l<=1;l++) {    return j;
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void cutv(char *u,char *v, char*t, char occ)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 #endif       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
     i=0;
       free_vector(xit,1,n);    for(j=0; j<=strlen(t)-1; j++) {
       free_vector(xits,1,n);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       free_vector(ptt,1,n);    }
       free_vector(pt,1,n);  
       return;    lg=strlen(t);
     }    for(j=0; j<p; j++) {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      (u[j] = t[j]);
     for (j=1;j<=n;j++) {    }
       ptt[j]=2.0*p[j]-pt[j];       u[p]='\0';
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];     for(j=0; j<= lg; j++) {
     }      if (j>=(p+1))(v[j-p-1] = t[j]);
     fptt=(*func)(ptt);    }
     if (fptt < fp) {  }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /********************** nrerror ********************/
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  void nrerror(char error_text[])
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    fprintf(stderr,"ERREUR ...\n");
         }    fprintf(stderr,"%s\n",error_text);
 #ifdef DEBUG    exit(EXIT_FAILURE);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++)  /*********************** vector *******************/
           printf(" %.12e",xit[j]);  double *vector(int nl, int nh)
         printf("\n");  {
 #endif    double *v;
       }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     }    if (!v) nrerror("allocation failure in vector");
   }    return v-nl+NR_END;
 }  }
   
 /**** Prevalence limit ****************/  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  }
      matrix by transitions matrix until convergence is reached */  
   /************************ivector *******************************/
   int i, ii,j,k;  int *ivector(long nl,long nh)
   double min, max, maxmin, maxmax,sumnew=0.;  {
   double **matprod2();    int *v;
   double **out, cov[NCOVMAX], **pmij();    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double **newm;    if (!v) nrerror("allocation failure in ivector");
   double agefin, delaymax=50 ; /* Max number of years to converge */    return v-nl+NR_END;
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /******************free ivector **************************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void free_ivector(int *v, long nl, long nh)
     }  {
     free((FREE_ARG)(v+nl-NR_END));
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /************************lvector *******************************/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  long *lvector(long nl,long nh)
     newm=savm;  {
     /* Covariates have to be included here again */    long *v;
      cov[2]=agefin;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      if (!v) nrerror("allocation failure in ivector");
       for (k=1; k<=cptcovn;k++) {    return v-nl+NR_END;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  /******************free lvector **************************/
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  void free_lvector(long *v, long nl, long nh)
       for (k=1; k<=cptcovprod;k++)  {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free((FREE_ARG)(v+nl-NR_END));
   }
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /******************* imatrix *******************************/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
     savm=oldm;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     oldm=newm;    int **m; 
     maxmax=0.;    
     for(j=1;j<=nlstate;j++){    /* allocate pointers to rows */ 
       min=1.;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       max=0.;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       for(i=1; i<=nlstate; i++) {    m += NR_END; 
         sumnew=0;    m -= nrl; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    
         prlim[i][j]= newm[i][j]/(1-sumnew);    
         max=FMAX(max,prlim[i][j]);    /* allocate rows and set pointers to them */ 
         min=FMIN(min,prlim[i][j]);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       maxmin=max-min;    m[nrl] += NR_END; 
       maxmax=FMAX(maxmax,maxmin);    m[nrl] -= ncl; 
     }    
     if(maxmax < ftolpl){    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       return prlim;    
     }    /* return pointer to array of pointers to rows */ 
   }    return m; 
 }  } 
   
 /*************** transition probabilities ***************/  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        int **m;
 {        long nch,ncl,nrh,nrl; 
   double s1, s2;       /* free an int matrix allocated by imatrix() */ 
   /*double t34;*/  { 
   int i,j,j1, nc, ii, jj;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
     for(i=1; i<= nlstate; i++){  } 
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /******************* matrix *******************************/
         /*s2 += param[i][j][nc]*cov[nc];*/  double **matrix(long nrl, long nrh, long ncl, long nch)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
     for(j=i+1; j<=nlstate+ndeath;j++){    m += NR_END;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m -= nrl;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ps[i][j]=s2;    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   }  
     /*ps[3][2]=1;*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
   for(i=1; i<= nlstate; i++){    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      s1=0;     */
     for(j=1; j<i; j++)  }
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /*************************free matrix ************************/
       s1+=exp(ps[i][j]);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     ps[i][i]=1./(s1+1.);  {
     for(j=1; j<i; j++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free((FREE_ARG)(m+nrl-NR_END));
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /******************* ma3x *******************************/
   } /* end i */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double ***m;
       ps[ii][jj]=0;  
       ps[ii][ii]=1;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
     m -= nrl;
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(jj=1; jj<= nlstate+ndeath; jj++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      printf("%lf ",ps[ii][jj]);    m[nrl] += NR_END;
    }    m[nrl] -= ncl;
     printf("\n ");  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   goto end;*/    m[nrl][ncl] += NR_END;
     return ps;    m[nrl][ncl] -= nll;
 }    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
 /**************** Product of 2 matrices ******************/    
     for (i=nrl+1; i<=nrh; i++) {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 {      for (j=ncl+1; j<=nch; j++) 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        m[i][j]=m[i][j-1]+nlay;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    }
   /* in, b, out are matrice of pointers which should have been initialized    return m; 
      before: only the contents of out is modified. The function returns    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
      a pointer to pointers identical to out */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   long i, j, k;    */
   for(i=nrl; i<= nrh; i++)  }
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  /*************************free ma3x ************************/
         out[i][k] +=in[i][j]*b[j][k];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
   return out;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   }
 /************* Higher Matrix Product ***************/  
   /*************** function subdirf ***********/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  char *subdirf(char fileres[])
 {  {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    /* Caution optionfilefiname is hidden */
      duration (i.e. until    strcpy(tmpout,optionfilefiname);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    strcat(tmpout,"/"); /* Add to the right */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    strcat(tmpout,fileres);
      (typically every 2 years instead of every month which is too big).    return tmpout;
      Model is determined by parameters x and covariates have to be  }
      included manually here.  
   /*************** function subdirf2 ***********/
      */  char *subdirf2(char fileres[], char *preop)
   {
   int i, j, d, h, k;    
   double **out, cov[NCOVMAX];    /* Caution optionfilefiname is hidden */
   double **newm;    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   /* Hstepm could be zero and should return the unit matrix */    strcat(tmpout,preop);
   for (i=1;i<=nlstate+ndeath;i++)    strcat(tmpout,fileres);
     for (j=1;j<=nlstate+ndeath;j++){    return tmpout;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  }
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  /*************** function subdirf3 ***********/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char *subdirf3(char fileres[], char *preop, char *preop2)
   for(h=1; h <=nhstepm; h++){  {
     for(d=1; d <=hstepm; d++){    
       newm=savm;    /* Caution optionfilefiname is hidden */
       /* Covariates have to be included here again */    strcpy(tmpout,optionfilefiname);
       cov[1]=1.;    strcat(tmpout,"/");
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    strcat(tmpout,preop);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,preop2);
       for (k=1; k<=cptcovage;k++)    strcat(tmpout,fileres);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return tmpout;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /***************** f1dim *************************/
   extern int ncom; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  extern double *pcom,*xicom;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  extern double (*nrfunc)(double []); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  double f1dim(double x) 
       savm=oldm;  { 
       oldm=newm;    int j; 
     }    double f;
     for(i=1; i<=nlstate+ndeath; i++)    double *xt; 
       for(j=1;j<=nlstate+ndeath;j++) {   
         po[i][j][h]=newm[i][j];    xt=vector(1,ncom); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
          */    f=(*nrfunc)(xt); 
       }    free_vector(xt,1,ncom); 
   } /* end h */    return f; 
   return po;  } 
 }  
   /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /*************** log-likelihood *************/  { 
 double func( double *x)    int iter; 
 {    double a,b,d,etemp;
   int i, ii, j, k, mi, d, kk;    double fu,fv,fw,fx;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double ftemp;
   double **out;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double sw; /* Sum of weights */    double e=0.0; 
   double lli; /* Individual log likelihood */   
   long ipmx;    a=(ax < cx ? ax : cx); 
   /*extern weight */    b=(ax > cx ? ax : cx); 
   /* We are differentiating ll according to initial status */    x=w=v=bx; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    fw=fv=fx=(*f)(x); 
   /*for(i=1;i<imx;i++)    for (iter=1;iter<=ITMAX;iter++) { 
     printf(" %d\n",s[4][i]);      xm=0.5*(a+b); 
   */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   cov[1]=1.;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
   for(k=1; k<=nlstate; k++) ll[k]=0.;      fprintf(ficlog,".");fflush(ficlog);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #ifdef DEBUG
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(mi=1; mi<= wav[i]-1; mi++){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (ii=1;ii<=nlstate+ndeath;ii++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
       for(d=0; d<dh[mi][i]; d++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         newm=savm;        *xmin=x; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        return fx; 
         for (kk=1; kk<=cptcovage;kk++) {      } 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      ftemp=fu;
         }      if (fabs(e) > tol1) { 
                r=(x-w)*(fx-fv); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        q=(x-v)*(fx-fw); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        p=(x-v)*q-(x-w)*r; 
         savm=oldm;        q=2.0*(q-r); 
         oldm=newm;        if (q > 0.0) p = -p; 
                q=fabs(q); 
                etemp=e; 
       } /* end mult */        e=d; 
              if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        else { 
       ipmx +=1;          d=p/q; 
       sw += weight[i];          u=x+d; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          if (u-a < tol2 || b-u < tol2) 
     } /* end of wave */            d=SIGN(tol1,xm-x); 
   } /* end of individual */        } 
       } else { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      } 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   return -l;      fu=(*f)(u); 
 }      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
 /*********** Maximum Likelihood Estimation ***************/          SHFT(fv,fw,fx,fu) 
           } else { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            if (u < x) a=u; else b=u; 
 {            if (fu <= fw || w == x) { 
   int i,j, iter;              v=w; 
   double **xi,*delti;              w=u; 
   double fret;              fv=fw; 
   xi=matrix(1,npar,1,npar);              fw=fu; 
   for (i=1;i<=npar;i++)            } else if (fu <= fv || v == x || v == w) { 
     for (j=1;j<=npar;j++)              v=u; 
       xi[i][j]=(i==j ? 1.0 : 0.0);              fv=fu; 
   printf("Powell\n");            } 
   powell(p,xi,npar,ftol,&iter,&fret,func);          } 
     } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    nrerror("Too many iterations in brent"); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    *xmin=x; 
     return fx; 
 }  } 
   
 /**** Computes Hessian and covariance matrix ***/  /****************** mnbrak ***********************/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double  **a,**y,*x,pd;              double (*func)(double)) 
   double **hess;  { 
   int i, j,jk;    double ulim,u,r,q, dum;
   int *indx;    double fu; 
    
   double hessii(double p[], double delta, int theta, double delti[]);    *fa=(*func)(*ax); 
   double hessij(double p[], double delti[], int i, int j);    *fb=(*func)(*bx); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    if (*fb > *fa) { 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
   hess=matrix(1,npar,1,npar);        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    *fc=(*func)(*cx); 
   for (i=1;i<=npar;i++){    while (*fb > *fc) { 
     printf("%d",i);fflush(stdout);      r=(*bx-*ax)*(*fb-*fc); 
     hess[i][i]=hessii(p,ftolhess,i,delti);      q=(*bx-*cx)*(*fb-*fa); 
     /*printf(" %f ",p[i]);*/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     /*printf(" %lf ",hess[i][i]);*/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
        if ((*bx-u)*(u-*cx) > 0.0) { 
   for (i=1;i<=npar;i++) {        fu=(*func)(u); 
     for (j=1;j<=npar;j++)  {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       if (j>i) {        fu=(*func)(u); 
         printf(".%d%d",i,j);fflush(stdout);        if (fu < *fc) { 
         hess[i][j]=hessij(p,delti,i,j);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         hess[j][i]=hess[i][j];                SHFT(*fb,*fc,fu,(*func)(u)) 
         /*printf(" %lf ",hess[i][j]);*/            } 
       }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
   }        fu=(*func)(u); 
   printf("\n");      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fu=(*func)(u); 
        } 
   a=matrix(1,npar,1,npar);      SHFT(*ax,*bx,*cx,u) 
   y=matrix(1,npar,1,npar);        SHFT(*fa,*fb,*fc,fu) 
   x=vector(1,npar);        } 
   indx=ivector(1,npar);  } 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /*************** linmin ************************/
   ludcmp(a,npar,indx,&pd);  
   int ncom; 
   for (j=1;j<=npar;j++) {  double *pcom,*xicom;
     for (i=1;i<=npar;i++) x[i]=0;  double (*nrfunc)(double []); 
     x[j]=1;   
     lubksb(a,npar,indx,x);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for (i=1;i<=npar;i++){  { 
       matcov[i][j]=x[i];    double brent(double ax, double bx, double cx, 
     }                 double (*f)(double), double tol, double *xmin); 
   }    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   printf("\n#Hessian matrix#\n");                double *fc, double (*func)(double)); 
   for (i=1;i<=npar;i++) {    int j; 
     for (j=1;j<=npar;j++) {    double xx,xmin,bx,ax; 
       printf("%.3e ",hess[i][j]);    double fx,fb,fa;
     }   
     printf("\n");    ncom=n; 
   }    pcom=vector(1,n); 
     xicom=vector(1,n); 
   /* Recompute Inverse */    nrfunc=func; 
   for (i=1;i<=npar;i++)    for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      pcom[j]=p[j]; 
   ludcmp(a,npar,indx,&pd);      xicom[j]=xi[j]; 
     } 
   /*  printf("\n#Hessian matrix recomputed#\n");    ax=0.0; 
     xx=1.0; 
   for (j=1;j<=npar;j++) {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (i=1;i<=npar;i++) x[i]=0;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     x[j]=1;  #ifdef DEBUG
     lubksb(a,npar,indx,x);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (i=1;i<=npar;i++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       y[i][j]=x[i];  #endif
       printf("%.3e ",y[i][j]);    for (j=1;j<=n;j++) { 
     }      xi[j] *= xmin; 
     printf("\n");      p[j] += xi[j]; 
   }    } 
   */    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
   free_matrix(a,1,npar,1,npar);  } 
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  char *asc_diff_time(long time_sec, char ascdiff[])
   free_ivector(indx,1,npar);  {
   free_matrix(hess,1,npar,1,npar);    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
 }    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
 /*************** hessian matrix ****************/    minutes = (sec_left) /60;
 double hessii( double x[], double delta, int theta, double delti[])    sec_left = (sec_left) % (60);
 {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   int i;    return ascdiff;
   int l=1, lmax=20;  }
   double k1,k2;  
   double p2[NPARMAX+1];  /*************** powell ************************/
   double res;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;              double (*func)(double [])) 
   double fx;  { 
   int k=0,kmax=10;    void linmin(double p[], double xi[], int n, double *fret, 
   double l1;                double (*func)(double [])); 
     int i,ibig,j; 
   fx=func(x);    double del,t,*pt,*ptt,*xit;
   for (i=1;i<=npar;i++) p2[i]=x[i];    double fp,fptt;
   for(l=0 ; l <=lmax; l++){    double *xits;
     l1=pow(10,l);    int niterf, itmp;
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){    pt=vector(1,n); 
       delt = delta*(l1*k);    ptt=vector(1,n); 
       p2[theta]=x[theta] +delt;    xit=vector(1,n); 
       k1=func(p2)-fx;    xits=vector(1,n); 
       p2[theta]=x[theta]-delt;    *fret=(*func)(p); 
       k2=func(p2)-fx;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    for (*iter=1;;++(*iter)) { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      fp=(*fret); 
            ibig=0; 
 #ifdef DEBUG      del=0.0; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      last_time=curr_time;
 #endif      (void) gettimeofday(&curr_time,&tzp);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         k=kmax;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       }     for (i=1;i<=n;i++) {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        printf(" %d %.12f",i, p[i]);
         k=kmax; l=lmax*10.;        fprintf(ficlog," %d %.12lf",i, p[i]);
       }        fprintf(ficrespow," %.12lf", p[i]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      }
         delts=delt;      printf("\n");
       }      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");fflush(ficrespow);
   }      if(*iter <=3){
   delti[theta]=delts;        tm = *localtime(&curr_time.tv_sec);
   return res;        strcpy(strcurr,asctime(&tm));
    /*       asctime_r(&tm,strcurr); */
 }        forecast_time=curr_time; 
         itmp = strlen(strcurr);
 double hessij( double x[], double delti[], int thetai,int thetaj)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 {          strcurr[itmp-1]='\0';
   int i;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   int l=1, l1, lmax=20;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double k1,k2,k3,k4,res,fx;        for(niterf=10;niterf<=30;niterf+=10){
   double p2[NPARMAX+1];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   int k;          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   fx=func(x);          strcpy(strfor,asctime(&tmf));
   for (k=1; k<=2; k++) {          itmp = strlen(strfor);
     for (i=1;i<=npar;i++) p2[i]=x[i];          if(strfor[itmp-1]=='\n')
     p2[thetai]=x[thetai]+delti[thetai]/k;          strfor[itmp-1]='\0';
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     k1=func(p2)-fx;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
          }
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for (i=1;i<=n;i++) { 
     k2=func(p2)-fx;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
          fptt=(*fret); 
     p2[thetai]=x[thetai]-delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        printf("fret=%lf \n",*fret);
     k3=func(p2)-fx;        fprintf(ficlog,"fret=%lf \n",*fret);
    #endif
     p2[thetai]=x[thetai]-delti[thetai]/k;        printf("%d",i);fflush(stdout);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        fprintf(ficlog,"%d",i);fflush(ficlog);
     k4=func(p2)-fx;        linmin(p,xit,n,fret,func); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        if (fabs(fptt-(*fret)) > del) { 
 #ifdef DEBUG          del=fabs(fptt-(*fret)); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          ibig=i; 
 #endif        } 
   }  #ifdef DEBUG
   return res;        printf("%d %.12e",i,(*fret));
 }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 /************** Inverse of matrix **************/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 void ludcmp(double **a, int n, int *indx, double *d)          printf(" x(%d)=%.12e",j,xit[j]);
 {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   int i,imax,j,k;        }
   double big,dum,sum,temp;        for(j=1;j<=n;j++) {
   double *vv;          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
   vv=vector(1,n);        }
   *d=1.0;        printf("\n");
   for (i=1;i<=n;i++) {        fprintf(ficlog,"\n");
     big=0.0;  #endif
     for (j=1;j<=n;j++)      } 
       if ((temp=fabs(a[i][j])) > big) big=temp;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  #ifdef DEBUG
     vv[i]=1.0/big;        int k[2],l;
   }        k[0]=1;
   for (j=1;j<=n;j++) {        k[1]=-1;
     for (i=1;i<j;i++) {        printf("Max: %.12e",(*func)(p));
       sum=a[i][j];        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for (j=1;j<=n;j++) {
       a[i][j]=sum;          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
     big=0.0;        }
     for (i=j;i<=n;i++) {        printf("\n");
       sum=a[i][j];        fprintf(ficlog,"\n");
       for (k=1;k<j;k++)        for(l=0;l<=1;l++) {
         sum -= a[i][k]*a[k][j];          for (j=1;j<=n;j++) {
       a[i][j]=sum;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       if ( (dum=vv[i]*fabs(sum)) >= big) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         big=dum;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         imax=i;          }
       }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     if (j != imax) {        }
       for (k=1;k<=n;k++) {  #endif
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  
         a[j][k]=dum;        free_vector(xit,1,n); 
       }        free_vector(xits,1,n); 
       *d = -(*d);        free_vector(ptt,1,n); 
       vv[imax]=vv[j];        free_vector(pt,1,n); 
     }        return; 
     indx[j]=imax;      } 
     if (a[j][j] == 0.0) a[j][j]=TINY;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     if (j != n) {      for (j=1;j<=n;j++) { 
       dum=1.0/(a[j][j]);        ptt[j]=2.0*p[j]-pt[j]; 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        xit[j]=p[j]-pt[j]; 
     }        pt[j]=p[j]; 
   }      } 
   free_vector(vv,1,n);  /* Doesn't work */      fptt=(*func)(ptt); 
 ;      if (fptt < fp) { 
 }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
 void lubksb(double **a, int n, int *indx, double b[])          linmin(p,xit,n,fret,func); 
 {          for (j=1;j<=n;j++) { 
   int i,ii=0,ip,j;            xi[j][ibig]=xi[j][n]; 
   double sum;            xi[j][n]=xit[j]; 
            }
   for (i=1;i<=n;i++) {  #ifdef DEBUG
     ip=indx[i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     sum=b[ip];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     b[ip]=b[i];          for(j=1;j<=n;j++){
     if (ii)            printf(" %.12e",xit[j]);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            fprintf(ficlog," %.12e",xit[j]);
     else if (sum) ii=i;          }
     b[i]=sum;          printf("\n");
   }          fprintf(ficlog,"\n");
   for (i=n;i>=1;i--) {  #endif
     sum=b[i];        }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      } 
     b[i]=sum/a[i][i];    } 
   }  } 
 }  
   /**** Prevalence limit (stable or period prevalence)  ****************/
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  /* Some frequencies */  {
      /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       matrix by transitions matrix until convergence is reached */
   double ***freq; /* Frequencies */  
   double *pp;    int i, ii,j,k;
   double pos, k2, dateintsum=0,k2cpt=0;    double min, max, maxmin, maxmax,sumnew=0.;
   FILE *ficresp;    double **matprod2();
   char fileresp[FILENAMELENGTH];    double **out, cov[NCOVMAX+1], **pmij();
      double **newm;
   pp=vector(1,nlstate);    double agefin, delaymax=50 ; /* Max number of years to converge */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");    for (ii=1;ii<=nlstate+ndeath;ii++)
   strcat(fileresp,fileres);      for (j=1;j<=nlstate+ndeath;j++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("Problem with prevalence resultfile: %s\n", fileresp);      }
     exit(0);  
   }     cov[1]=1.;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);   
   j1=0;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   j=cptcoveff;      newm=savm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      /* Covariates have to be included here again */
         cov[2]=agefin;
   for(k1=1; k1<=j;k1++){    
     for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovn;k++) {
       j1++;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         scanf("%d", i);*/        }
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for (k=1; k<=cptcovprod;k++)
           for(m=agemin; m <= agemax+3; m++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             freq[i][jk][m]=0;  
              /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       dateintsum=0;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       k2cpt=0;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for (i=1; i<=imx; i++) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         bool=1;  
         if  (cptcovn>0) {      savm=oldm;
           for (z1=1; z1<=cptcoveff; z1++)      oldm=newm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      maxmax=0.;
               bool=0;      for(j=1;j<=nlstate;j++){
         }        min=1.;
         if (bool==1) {        max=0.;
           for(m=firstpass; m<=lastpass; m++){        for(i=1; i<=nlstate; i++) {
             k2=anint[m][i]+(mint[m][i]/12.);          sumnew=0;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          prlim[i][j]= newm[i][j]/(1-sumnew);
               if(agev[m][i]==1) agev[m][i]=agemax+2;          max=FMAX(max,prlim[i][j]);
               if (m<lastpass) {          min=FMIN(min,prlim[i][j]);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        maxmin=max-min;
               }        maxmax=FMAX(maxmax,maxmin);
                    }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      if(maxmax < ftolpl){
                 dateintsum=dateintsum+k2;        return prlim;
                 k2cpt++;      }
               }    }
             }  }
           }  
         }  /*************** transition probabilities ***************/ 
       }  
          double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  {
     double s1, s2;
       if  (cptcovn>0) {    /*double t34;*/
         fprintf(ficresp, "\n#********** Variable ");    int i,j,j1, nc, ii, jj;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");      for(i=1; i<= nlstate; i++){
       }        for(j=1; j<i;j++){
       for(i=1; i<=nlstate;i++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            /*s2 += param[i][j][nc]*cov[nc];*/
       fprintf(ficresp, "\n");            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
        /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for(i=(int)agemin; i <= (int)agemax+3; i++){          }
         if(i==(int)agemax+3)          ps[i][j]=s2;
           printf("Total");  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         else        }
           printf("Age %d", i);        for(j=i+1; j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
             pp[jk] += freq[jk][m][i];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         }          }
         for(jk=1; jk <=nlstate ; jk++){          ps[i][j]=s2;
           for(m=-1, pos=0; m <=0 ; m++)        }
             pos += freq[jk][m][i];      }
           if(pp[jk]>=1.e-10)      /*ps[3][2]=1;*/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      
           else      for(i=1; i<= nlstate; i++){
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        s1=0;
         }        for(j=1; j<i; j++){
           s1+=exp(ps[i][j]);
         for(jk=1; jk <=nlstate ; jk++){          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        }
             pp[jk] += freq[jk][m][i];        for(j=i+1; j<=nlstate+ndeath; j++){
         }          s1+=exp(ps[i][j]);
           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         for(jk=1,pos=0; jk <=nlstate ; jk++)        }
           pos += pp[jk];        ps[i][i]=1./(s1+1.);
         for(jk=1; jk <=nlstate ; jk++){        for(j=1; j<i; j++)
           if(pos>=1.e-5)          ps[i][j]= exp(ps[i][j])*ps[i][i];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(j=i+1; j<=nlstate+ndeath; j++)
           else          ps[i][j]= exp(ps[i][j])*ps[i][i];
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           if( i <= (int) agemax){      } /* end i */
             if(pos>=1.e-5){      
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
               probs[i][jk][j1]= pp[jk]/pos;        for(jj=1; jj<= nlstate+ndeath; jj++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          ps[ii][jj]=0;
             }          ps[ii][ii]=1;
             else        }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      }
           }      
         }  
          /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         for(jk=-1; jk <=nlstate+ndeath; jk++)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
           for(m=-1; m <=nlstate+ndeath; m++)  /*         printf("ddd %lf ",ps[ii][jj]); */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  /*       } */
         if(i <= (int) agemax)  /*       printf("\n "); */
           fprintf(ficresp,"\n");  /*        } */
         printf("\n");  /*        printf("\n ");printf("%lf ",cov[2]); */
       }         /*
     }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   }        goto end;*/
   dateintmean=dateintsum/k2cpt;      return ps;
    }
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /**************** Product of 2 matrices ******************/
   free_vector(pp,1,nlstate);  
    double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   /* End of Freq */  {
 }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 /************ Prevalence ********************/    /* in, b, out are matrice of pointers which should have been initialized 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)       before: only the contents of out is modified. The function returns
 {  /* Some frequencies */       a pointer to pointers identical to out */
      long i, j, k;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    for(i=nrl; i<= nrh; i++)
   double ***freq; /* Frequencies */      for(k=ncolol; k<=ncoloh; k++)
   double *pp;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double pos, k2;          out[i][k] +=in[i][j]*b[j][k];
   
   pp=vector(1,nlstate);    return out;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /************* Higher Matrix Product ***************/
    
   j=cptcoveff;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  {
      /* Computes the transition matrix starting at age 'age' over 
   for(k1=1; k1<=j;k1++){       'nhstepm*hstepm*stepm' months (i.e. until
     for(i1=1; i1<=ncodemax[k1];i1++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       j1++;       nhstepm*hstepm matrices. 
             Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       for (i=-1; i<=nlstate+ndeath; i++)         (typically every 2 years instead of every month which is too big 
         for (jk=-1; jk<=nlstate+ndeath; jk++)         for the memory).
           for(m=agemin; m <= agemax+3; m++)       Model is determined by parameters x and covariates have to be 
             freq[i][jk][m]=0;       included manually here. 
        
       for (i=1; i<=imx; i++) {       */
         bool=1;  
         if  (cptcovn>0) {    int i, j, d, h, k;
           for (z1=1; z1<=cptcoveff; z1++)    double **out, cov[NCOVMAX+1];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double **newm;
               bool=0;  
         }    /* Hstepm could be zero and should return the unit matrix */
         if (bool==1) {    for (i=1;i<=nlstate+ndeath;i++)
           for(m=firstpass; m<=lastpass; m++){      for (j=1;j<=nlstate+ndeath;j++){
             k2=anint[m][i]+(mint[m][i]/12.);        oldm[i][j]=(i==j ? 1.0 : 0.0);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;      }
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               if (m<lastpass) {    for(h=1; h <=nhstepm; h++){
                 if (calagedate>0)      for(d=1; d <=hstepm; d++){
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        newm=savm;
                 else        /* Covariates have to be included here again */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        cov[1]=1.;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
               }        for (k=1; k<=cptcovn;k++) 
             }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           }        for (k=1; k<=cptcovage;k++)
         }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
       for(i=(int)agemin; i <= (int)agemax+3; i++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for(jk=1; jk <=nlstate ; jk++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           for(m=-1, pos=0; m <=0 ; m++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             pos += freq[jk][m][i];        savm=oldm;
         }        oldm=newm;
              }
         for(jk=1; jk <=nlstate ; jk++){      for(i=1; i<=nlstate+ndeath; i++)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(j=1;j<=nlstate+ndeath;j++) {
             pp[jk] += freq[jk][m][i];          po[i][j][h]=newm[i][j];
         }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
                }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      /*printf("h=%d ",h);*/
            } /* end h */
         for(jk=1; jk <=nlstate ; jk++){      /*     printf("\n H=%d \n",h); */
           if( i <= (int) agemax){    return po;
             if(pos>=1.e-5){  }
               probs[i][jk][j1]= pp[jk]/pos;  
             }  
           }  /*************** log-likelihood *************/
         }  double func( double *x)
          {
       }    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   }    double **out;
     double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    int s1, s2;
   free_vector(pp,1,nlstate);    double bbh, survp;
      long ipmx;
 }  /* End of Freq */    /*extern weight */
     /* We are differentiating ll according to initial status */
 /************* Waves Concatenation ***************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      printf(" %d\n",s[4][i]);
 {    */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    cov[1]=1.;
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    for(k=1; k<=nlstate; k++) ll[k]=0.;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.    if(mle==1){
      */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, mi, m;        for(mi=1; mi<= wav[i]-1; mi++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          for (ii=1;ii<=nlstate+ndeath;ii++)
      double sum=0., jmean=0.;*/            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int j, k=0,jk, ju, jl;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double sum=0.;            }
   jmin=1e+5;          for(d=0; d<dh[mi][i]; d++){
   jmax=-1;            newm=savm;
   jmean=0.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(i=1; i<=imx; i++){            for (kk=1; kk<=cptcovage;kk++) {
     mi=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     m=firstpass;            }
     while(s[m][i] <= nlstate){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(s[m][i]>=1)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         mw[++mi][i]=m;            savm=oldm;
       if(m >=lastpass)            oldm=newm;
         break;          } /* end mult */
       else        
         m++;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     }/* end while */          /* But now since version 0.9 we anticipate for bias at large stepm.
     if (s[m][i] > nlstate){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       mi++;     /* Death is another wave */           * (in months) between two waves is not a multiple of stepm, we rounded to 
       /* if(mi==0)  never been interviewed correctly before death */           * the nearest (and in case of equal distance, to the lowest) interval but now
          /* Only death is a correct wave */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       mw[mi][i]=m;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     wav[i]=mi;           * -stepm/2 to stepm/2 .
     if(mi==0)           * For stepm=1 the results are the same as for previous versions of Imach.
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);           * For stepm > 1 the results are less biased than in previous versions. 
   }           */
           s1=s[mw[mi][i]][i];
   for(i=1; i<=imx; i++){          s2=s[mw[mi+1][i]][i];
     for(mi=1; mi<wav[i];mi++){          bbh=(double)bh[mi][i]/(double)stepm; 
       if (stepm <=0)          /* bias bh is positive if real duration
         dh[mi][i]=1;           * is higher than the multiple of stepm and negative otherwise.
       else{           */
         if (s[mw[mi+1][i]][i] > nlstate) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if (agedc[i] < 2*AGESUP) {          if( s2 > nlstate){ 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            /* i.e. if s2 is a death state and if the date of death is known 
           if(j==0) j=1;  /* Survives at least one month after exam */               then the contribution to the likelihood is the probability to 
           k=k+1;               die between last step unit time and current  step unit time, 
           if (j >= jmax) jmax=j;               which is also equal to probability to die before dh 
           if (j <= jmin) jmin=j;               minus probability to die before dh-stepm . 
           sum=sum+j;               In version up to 0.92 likelihood was computed
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          as if date of death was unknown. Death was treated as any other
           }          health state: the date of the interview describes the actual state
         }          and not the date of a change in health state. The former idea was
         else{          to consider that at each interview the state was recorded
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          (healthy, disable or death) and IMaCh was corrected; but when we
           k=k+1;          introduced the exact date of death then we should have modified
           if (j >= jmax) jmax=j;          the contribution of an exact death to the likelihood. This new
           else if (j <= jmin)jmin=j;          contribution is smaller and very dependent of the step unit
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          stepm. It is no more the probability to die between last interview
           sum=sum+j;          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
         jk= j/stepm;          probability to die within a month. Thanks to Chris
         jl= j -jk*stepm;          Jackson for correcting this bug.  Former versions increased
         ju= j -(jk+1)*stepm;          mortality artificially. The bad side is that we add another loop
         if(jl <= -ju)          which slows down the processing. The difference can be up to 10%
           dh[mi][i]=jk;          lower mortality.
         else            */
           dh[mi][i]=jk+1;            lli=log(out[s1][s2] - savm[s1][s2]);
         if(dh[mi][i]==0)  
           dh[mi][i]=1; /* At least one step */  
       }          } else if  (s2==-2) {
     }            for (j=1,survp=0. ; j<=nlstate; j++) 
   }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   jmean=sum/k;            /*survp += out[s1][j]; */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            lli= log(survp);
  }          }
 /*********** Tricode ****************************/          
 void tricode(int *Tvar, int **nbcode, int imx)          else if  (s2==-4) { 
 {            for (j=3,survp=0. ; j<=nlstate; j++)  
   int Ndum[20],ij=1, k, j, i;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int cptcode=0;            lli= log(survp); 
   cptcoveff=0;          } 
    
   for (k=0; k<19; k++) Ndum[k]=0;          else if  (s2==-5) { 
   for (k=1; k<=7; k++) ncodemax[k]=0;            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            lli= log(survp); 
     for (i=1; i<=imx; i++) {          } 
       ij=(int)(covar[Tvar[j]][i]);          
       Ndum[ij]++;          else{
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       if (ij > cptcode) cptcode=ij;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     }          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for (i=0; i<=cptcode; i++) {          /*if(lli ==000.0)*/
       if(Ndum[i]!=0) ncodemax[j]++;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
     ij=1;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     for (i=1; i<=ncodemax[j]; i++) {      } /* end of individual */
       for (k=0; k<=19; k++) {    }  else if(mle==2){
         if (Ndum[k] != 0) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           nbcode[Tvar[j]][ij]=k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                  for(mi=1; mi<= wav[i]-1; mi++){
           ij++;          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         if (ij > ncodemax[j]) break;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }            for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
  for (k=0; k<19; k++) Ndum[k]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
  for (i=1; i<=ncovmodel-2; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       ij=Tvar[i];            }
       Ndum[ij]++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
  ij=1;            oldm=newm;
  for (i=1; i<=10; i++) {          } /* end mult */
    if((Ndum[i]!=0) && (i<=ncovcol)){        
      Tvaraff[ij]=i;          s1=s[mw[mi][i]][i];
      ij++;          s2=s[mw[mi+1][i]][i];
    }          bbh=(double)bh[mi][i]/(double)stepm; 
  }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            ipmx +=1;
     cptcoveff=ij-1;          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 /*********** Health Expectancies ****************/      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   /* Health expectancies */          for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            for (j=1;j<=nlstate+ndeath;j++){
   double age, agelim, hf;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat,***varhe;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **dnewm,**doldm;            }
   double *xp;          for(d=0; d<dh[mi][i]; d++){
   double **gp, **gm;            newm=savm;
   double ***gradg, ***trgradg;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int theta;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            }
   xp=vector(1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   dnewm=matrix(1,nlstate*2,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   doldm=matrix(1,nlstate*2,1,nlstate*2);            savm=oldm;
              oldm=newm;
   fprintf(ficreseij,"# Health expectancies\n");          } /* end mult */
   fprintf(ficreseij,"# Age");        
   for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
     for(j=1; j<=nlstate;j++)          s2=s[mw[mi+1][i]][i];
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficreseij,"\n");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
   if(estepm < stepm){          sw += weight[i];
     printf ("Problem %d lower than %d\n",estepm, stepm);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   else  hstepm=estepm;        } /* end of individual */
   /* We compute the life expectancy from trapezoids spaced every estepm months    }else if (mle==4){  /* ml=4 no inter-extrapolation */
    * This is mainly to measure the difference between two models: for example      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    * if stepm=24 months pijx are given only every 2 years and by summing them        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    * we are calculating an estimate of the Life Expectancy assuming a linear        for(mi=1; mi<= wav[i]-1; mi++){
    * progression inbetween and thus overestimating or underestimating according          for (ii=1;ii<=nlstate+ndeath;ii++)
    * to the curvature of the survival function. If, for the same date, we            for (j=1;j<=nlstate+ndeath;j++){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * to compare the new estimate of Life expectancy with the same linear              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * hypothesis. A more precise result, taking into account a more precise            }
    * curvature will be obtained if estepm is as small as stepm. */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   /* For example we decided to compute the life expectancy with the smallest unit */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            for (kk=1; kk<=cptcovage;kk++) {
      nhstepm is the number of hstepm from age to agelim              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      nstepm is the number of stepm from age to agelin.            }
      Look at hpijx to understand the reason of that which relies in memory size          
      and note for a fixed period like estepm months */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      survival function given by stepm (the optimization length). Unfortunately it            savm=oldm;
      means that if the survival funtion is printed only each two years of age and if            oldm=newm;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          } /* end mult */
      results. So we changed our mind and took the option of the best precision.        
   */          s1=s[mw[mi][i]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
   agelim=AGESUP;            lli=log(out[s1][s2] - savm[s1][s2]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }else{
     /* nhstepm age range expressed in number of stepm */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          ipmx +=1;
     /* if (stepm >= YEARM) hstepm=1;*/          sw += weight[i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        } /* end of wave */
     gp=matrix(0,nhstepm,1,nlstate*2);      } /* end of individual */
     gm=matrix(0,nhstepm,1,nlstate*2);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for(mi=1; mi<= wav[i]-1; mi++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     /* Computing Variances of health expectancies */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
      for(theta=1; theta <=npar; theta++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=1; i<=npar; i++){            for (kk=1; kk<=cptcovage;kk++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       cptj=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<= nlstate; j++){            savm=oldm;
         for(i=1; i<=nlstate; i++){            oldm=newm;
           cptj=cptj+1;          } /* end mult */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
                sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=npar; i++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } /* end of wave */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } /* end of individual */
          } /* End of if */
       cptj=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<= nlstate; j++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(i=1;i<=nlstate;i++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           cptj=cptj+1;    return -l;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  /*************** log-likelihood *************/
         }  double funcone( double *x)
       }  {
       for(j=1; j<= nlstate*2; j++)    /* Same as likeli but slower because of a lot of printf and if */
         for(h=0; h<=nhstepm-1; h++){    int i, ii, j, k, mi, d, kk;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         }    double **out;
      }    double lli; /* Individual log likelihood */
        double llt;
 /* End theta */    int s1, s2;
     double bbh, survp;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    /*extern weight */
     /* We are differentiating ll according to initial status */
      for(h=0; h<=nhstepm-1; h++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(j=1; j<=nlstate*2;j++)    /*for(i=1;i<imx;i++) 
         for(theta=1; theta <=npar; theta++)      printf(" %d\n",s[4][i]);
           trgradg[h][j][theta]=gradg[h][theta][j];    */
          cov[1]=1.;
   
      for(i=1;i<=nlstate*2;i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      printf("%d|",(int)age);fflush(stdout);      for(mi=1; mi<= wav[i]-1; mi++){
      for(h=0;h<=nhstepm-1;h++){        for (ii=1;ii<=nlstate+ndeath;ii++)
       for(k=0;k<=nhstepm-1;k++){          for (j=1;j<=nlstate+ndeath;j++){
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1;i<=nlstate*2;i++)          }
           for(j=1;j<=nlstate*2;j++)        for(d=0; d<dh[mi][i]; d++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          newm=savm;
       }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }          for (kk=1; kk<=cptcovage;kk++) {
     /* Computing expectancies */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i=1; i<=nlstate;i++)          }
       for(j=1; j<=nlstate;j++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          savm=oldm;
                    oldm=newm;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        } /* end mult */
         
         }        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
     fprintf(ficreseij,"%3.0f",age );        bbh=(double)bh[mi][i]/(double)stepm; 
     cptj=0;        /* bias is positive if real duration
     for(i=1; i<=nlstate;i++)         * is higher than the multiple of stepm and negative otherwise.
       for(j=1; j<=nlstate;j++){         */
         cptj++;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          lli=log(out[s1][s2] - savm[s1][s2]);
       }        } else if  (s2==-2) {
     fprintf(ficreseij,"\n");          for (j=1,survp=0. ; j<=nlstate; j++) 
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     free_matrix(gm,0,nhstepm,1,nlstate*2);          lli= log(survp);
     free_matrix(gp,0,nhstepm,1,nlstate*2);        }else if (mle==1){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        } else if(mle==2){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }        } else if(mle==3){  /* exponential inter-extrapolation */
   printf("\n");          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   free_vector(xp,1,npar);          lli=log(out[s1][s2]); /* Original formula */
   free_matrix(dnewm,1,nlstate*2,1,npar);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          lli=log(out[s1][s2]); /* Original formula */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        } /* End of if */
 }        ipmx +=1;
         sw += weight[i];
 /************ Variance ******************/        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 {        if(globpr){
   /* Variance of health expectancies */          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/   %11.6f %11.6f %11.6f ", \
   double **newm;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double **dnewm,**doldm;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   int i, j, nhstepm, hstepm, h, nstepm ;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   int k, cptcode;            llt +=ll[k]*gipmx/gsw;
   double *xp;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double **gp, **gm;          }
   double ***gradg, ***trgradg;          fprintf(ficresilk," %10.6f\n", -llt);
   double ***p3mat;        }
   double age,agelim, hf;      } /* end of wave */
   int theta;    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficresvij,"# Age");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for(i=1; i<=nlstate;i++)    if(globpr==0){ /* First time we count the contributions and weights */
     for(j=1; j<=nlstate;j++)      gipmx=ipmx;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      gsw=sw;
   fprintf(ficresvij,"\n");    }
     return -l;
   xp=vector(1,npar);  }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  
    /*************** function likelione ***********/
   if(estepm < stepm){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     printf ("Problem %d lower than %d\n",estepm, stepm);  {
   }    /* This routine should help understanding what is done with 
   else  hstepm=estepm;         the selection of individuals/waves and
   /* For example we decided to compute the life expectancy with the smallest unit */       to check the exact contribution to the likelihood.
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       Plotting could be done.
      nhstepm is the number of hstepm from age to agelim     */
      nstepm is the number of stepm from age to agelin.    int k;
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */    if(*globpri !=0){ /* Just counts and sums, no printings */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      strcpy(fileresilk,"ilk"); 
      survival function given by stepm (the optimization length). Unfortunately it      strcat(fileresilk,fileres);
      means that if the survival funtion is printed only each two years of age and if      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        printf("Problem with resultfile: %s\n", fileresilk);
      results. So we changed our mind and took the option of the best precision.        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   agelim = AGESUP;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for(k=1; k<=nlstate; k++) 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    }
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);    *fretone=(*funcone)(p);
     if(*globpri !=0){
     for(theta=1; theta <=npar; theta++){      fclose(ficresilk);
       for(i=1; i<=npar; i++){ /* Computes gradient */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fflush(fichtm); 
       }    } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
   
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  /*********** Maximum Likelihood Estimation ***************/
           prlim[i][i]=probs[(int)age][i][ij];  
       }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    {
       for(j=1; j<= nlstate; j++){    int i,j, iter;
         for(h=0; h<=nhstepm; h++){    double **xi;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double fret;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double fretone; /* Only one call to likelihood */
         }    /*  char filerespow[FILENAMELENGTH];*/
       }    xi=matrix(1,npar,1,npar);
        for (i=1;i<=npar;i++)
       for(i=1; i<=npar; i++) /* Computes gradient */      for (j=1;j<=npar;j++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        xi[i][j]=(i==j ? 1.0 : 0.0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    strcpy(filerespow,"pow"); 
      strcat(filerespow,fileres);
       if (popbased==1) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         for(i=1; i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
           prlim[i][i]=probs[(int)age][i][ij];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(j=1; j<= nlstate; j++){    for (i=1;i<=nlstate;i++)
         for(h=0; h<=nhstepm; h++){      for(j=1;j<=nlstate+ndeath;j++)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficrespow,"\n");
         }  
       }    powell(p,xi,npar,ftol,&iter,&fret,func);
   
       for(j=1; j<= nlstate; j++)    free_matrix(xi,1,npar,1,npar);
         for(h=0; h<=nhstepm; h++){    fclose(ficrespow);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     } /* End theta */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  }
   
     for(h=0; h<=nhstepm; h++)  /**** Computes Hessian and covariance matrix ***/
       for(j=1; j<=nlstate;j++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         for(theta=1; theta <=npar; theta++)  {
           trgradg[h][j][theta]=gradg[h][theta][j];    double  **a,**y,*x,pd;
     double **hess;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    int i, j,jk;
     for(i=1;i<=nlstate;i++)    int *indx;
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for(h=0;h<=nhstepm;h++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(k=0;k<=nhstepm;k++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double gompertz(double p[]);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    hess=matrix(1,npar,1,npar);
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)    printf("\nCalculation of the hessian matrix. Wait...\n");
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       }    for (i=1;i<=npar;i++){
     }      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     fprintf(ficresvij,"%.0f ",age );     
     for(i=1; i<=nlstate;i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       for(j=1; j<=nlstate;j++){      
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      /*  printf(" %f ",p[i]);
       }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     fprintf(ficresvij,"\n");    }
     free_matrix(gp,0,nhstepm,1,nlstate);    
     free_matrix(gm,0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      for (j=1;j<=npar;j++)  {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        if (j>i) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf(".%d%d",i,j);fflush(stdout);
   } /* End age */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            hess[i][j]=hessij(p,delti,i,j,func,npar);
   free_vector(xp,1,npar);          
   free_matrix(doldm,1,nlstate,1,npar);          hess[j][i]=hess[i][j];    
   free_matrix(dnewm,1,nlstate,1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
         }
 }      }
     }
 /************ Variance of prevlim ******************/    printf("\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    fprintf(ficlog,"\n");
 {  
   /* Variance of prevalence limit */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   double **newm;    
   double **dnewm,**doldm;    a=matrix(1,npar,1,npar);
   int i, j, nhstepm, hstepm;    y=matrix(1,npar,1,npar);
   int k, cptcode;    x=vector(1,npar);
   double *xp;    indx=ivector(1,npar);
   double *gp, *gm;    for (i=1;i<=npar;i++)
   double **gradg, **trgradg;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double age,agelim;    ludcmp(a,npar,indx,&pd);
   int theta;  
        for (j=1;j<=npar;j++) {
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      for (i=1;i<=npar;i++) x[i]=0;
   fprintf(ficresvpl,"# Age");      x[j]=1;
   for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
       fprintf(ficresvpl," %1d-%1d",i,i);      for (i=1;i<=npar;i++){ 
   fprintf(ficresvpl,"\n");        matcov[i][j]=x[i];
       }
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    printf("\n#Hessian matrix#\n");
      fprintf(ficlog,"\n#Hessian matrix#\n");
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=npar;i++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (j=1;j<=npar;j++) { 
   agelim = AGESUP;        printf("%.3e ",hess[i][j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"%.3e ",hess[i][j]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
     if (stepm >= YEARM) hstepm=1;      printf("\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficlog,"\n");
     gradg=matrix(1,npar,1,nlstate);    }
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
     for(theta=1; theta <=npar; theta++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(i=1; i<=npar; i++){ /* Computes gradient */    ludcmp(a,npar,indx,&pd);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    /*  printf("\n#Hessian matrix recomputed#\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    for (j=1;j<=npar;j++) {
         gp[i] = prlim[i][i];      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
       for(i=1; i<=npar; i++) /* Computes gradient */      lubksb(a,npar,indx,x);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++){ 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        y[i][j]=x[i];
       for(i=1;i<=nlstate;i++)        printf("%.3e ",y[i][j]);
         gm[i] = prlim[i][i];        fprintf(ficlog,"%.3e ",y[i][j]);
       }
       for(i=1;i<=nlstate;i++)      printf("\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      fprintf(ficlog,"\n");
     } /* End theta */    }
     */
     trgradg =matrix(1,nlstate,1,npar);  
     free_matrix(a,1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    free_matrix(y,1,npar,1,npar);
       for(theta=1; theta <=npar; theta++)    free_vector(x,1,npar);
         trgradg[j][theta]=gradg[theta][j];    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)  /*************** hessian matrix ****************/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
     fprintf(ficresvpl,"%.0f ",age );    int i;
     for(i=1; i<=nlstate;i++)    int l=1, lmax=20;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double k1,k2;
     fprintf(ficresvpl,"\n");    double p2[MAXPARM+1]; /* identical to x */
     free_vector(gp,1,nlstate);    double res;
     free_vector(gm,1,nlstate);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     free_matrix(gradg,1,npar,1,nlstate);    double fx;
     free_matrix(trgradg,1,nlstate,1,npar);    int k=0,kmax=10;
   } /* End age */    double l1;
   
   free_vector(xp,1,npar);    fx=func(x);
   free_matrix(doldm,1,nlstate,1,npar);    for (i=1;i<=npar;i++) p2[i]=x[i];
   free_matrix(dnewm,1,nlstate,1,nlstate);    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
 }      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
 /************ Variance of one-step probabilities  ******************/        delt = delta*(l1*k);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        p2[theta]=x[theta] +delt;
 {        k1=func(p2)-fx;
   int i, j,  i1, k1, l1;        p2[theta]=x[theta]-delt;
   int k2, l2, j1,  z1;        k2=func(p2)-fx;
   int k=0,l, cptcode;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int first=1;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        
   double **dnewm,**doldm;  #ifdef DEBUGHESS
   double *xp;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double *gp, *gm;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **gradg, **trgradg;  #endif
   double **mu;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double age,agelim, cov[NCOVMAX];        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          k=kmax;
   int theta;        }
   char fileresprob[FILENAMELENGTH];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   char fileresprobcov[FILENAMELENGTH];          k=kmax; l=lmax*10.;
   char fileresprobcor[FILENAMELENGTH];        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double ***varpij;          delts=delt;
         }
   strcpy(fileresprob,"prob");      }
   strcat(fileresprob,fileres);    }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    delti[theta]=delts;
     printf("Problem with resultfile: %s\n", fileresprob);    return res; 
   }    
   strcpy(fileresprobcov,"probcov");  }
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     printf("Problem with resultfile: %s\n", fileresprobcov);  {
   }    int i;
   strcpy(fileresprobcor,"probcor");    int l=1, l1, lmax=20;
   strcat(fileresprobcor,fileres);    double k1,k2,k3,k4,res,fx;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    double p2[MAXPARM+1];
     printf("Problem with resultfile: %s\n", fileresprobcor);    int k;
   }  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    fx=func(x);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    for (k=1; k<=2; k++) {
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      for (i=1;i<=npar;i++) p2[i]=x[i];
        p2[thetai]=x[thetai]+delti[thetai]/k;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficresprob,"# Age");      k1=func(p2)-fx;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    
   fprintf(ficresprobcov,"# Age");      p2[thetai]=x[thetai]+delti[thetai]/k;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresprobcov,"# Age");      k2=func(p2)-fx;
     
       p2[thetai]=x[thetai]-delti[thetai]/k;
   for(i=1; i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(j=1; j<=(nlstate+ndeath);j++){      k3=func(p2)-fx;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      p2[thetai]=x[thetai]-delti[thetai]/k;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     }        k4=func(p2)-fx;
   fprintf(ficresprob,"\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   fprintf(ficresprobcov,"\n");  #ifdef DEBUG
   fprintf(ficresprobcor,"\n");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   xp=vector(1,npar);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  #endif
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    }
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    return res;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  }
   first=1;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  /************** Inverse of matrix **************/
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  void ludcmp(double **a, int n, int *indx, double *d) 
     exit(0);  { 
   }    int i,imax,j,k; 
   else{    double big,dum,sum,temp; 
     fprintf(ficgp,"\n# Routine varprob");    double *vv; 
   }   
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    vv=vector(1,n); 
     printf("Problem with html file: %s\n", optionfilehtm);    *d=1.0; 
     exit(0);    for (i=1;i<=n;i++) { 
   }      big=0.0; 
   else{      for (j=1;j<=n;j++) 
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");        if ((temp=fabs(a[i][j])) > big) big=temp; 
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      vv[i]=1.0/big; 
     } 
   }    for (j=1;j<=n;j++) { 
   cov[1]=1;      for (i=1;i<j;i++) { 
   j=cptcoveff;        sum=a[i][j]; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   j1=0;        a[i][j]=sum; 
   for(k1=1; k1<=1;k1++){      } 
     for(i1=1; i1<=ncodemax[k1];i1++){      big=0.0; 
     j1++;      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
     if  (cptcovn>0) {        for (k=1;k<j;k++) 
       fprintf(ficresprob, "\n#********** Variable ");          sum -= a[i][k]*a[k][j]; 
       fprintf(ficresprobcov, "\n#********** Variable ");        a[i][j]=sum; 
       fprintf(ficgp, "\n#********** Variable ");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");          big=dum; 
       fprintf(ficresprobcor, "\n#********** Variable ");          imax=i; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        } 
       fprintf(ficresprob, "**********\n#");      } 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if (j != imax) { 
       fprintf(ficresprobcov, "**********\n#");        for (k=1;k<=n;k++) { 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          dum=a[imax][k]; 
       fprintf(ficgp, "**********\n#");          a[imax][k]=a[j][k]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          a[j][k]=dum; 
       fprintf(ficgp, "**********\n#");        } 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        *d = -(*d); 
       fprintf(fichtm, "**********\n#");        vv[imax]=vv[j]; 
     }      } 
          indx[j]=imax; 
       for (age=bage; age<=fage; age ++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
         cov[2]=age;      if (j != n) { 
         for (k=1; k<=cptcovn;k++) {        dum=1.0/(a[j][j]); 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         }      } 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    } 
         for (k=1; k<=cptcovprod;k++)    free_vector(vv,1,n);  /* Doesn't work */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  ;
          } 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  void lubksb(double **a, int n, int *indx, double b[]) 
         gp=vector(1,(nlstate)*(nlstate+ndeath));  { 
         gm=vector(1,(nlstate)*(nlstate+ndeath));    int i,ii=0,ip,j; 
        double sum; 
         for(theta=1; theta <=npar; theta++){   
           for(i=1; i<=npar; i++)    for (i=1;i<=n;i++) { 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      ip=indx[i]; 
                sum=b[ip]; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      b[ip]=b[i]; 
                if (ii) 
           k=0;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           for(i=1; i<= (nlstate); i++){      else if (sum) ii=i; 
             for(j=1; j<=(nlstate+ndeath);j++){      b[i]=sum; 
               k=k+1;    } 
               gp[k]=pmmij[i][j];    for (i=n;i>=1;i--) { 
             }      sum=b[i]; 
           }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                b[i]=sum/a[i][i]; 
           for(i=1; i<=npar; i++)    } 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  } 
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  void pstamp(FILE *fichier)
           k=0;  {
           for(i=1; i<=(nlstate); i++){    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             for(j=1; j<=(nlstate+ndeath);j++){  }
               k=k+1;  
               gm[k]=pmmij[i][j];  /************ Frequencies ********************/
             }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           }  {  /* Some frequencies */
          
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    int i, m, jk, k1,i1, j1, bool, z1,j;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      int first;
         }    double ***freq; /* Frequencies */
     double *pp, **prop;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           for(theta=1; theta <=npar; theta++)    char fileresp[FILENAMELENGTH];
             trgradg[j][theta]=gradg[theta][j];    
            pp=vector(1,nlstate);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    prop=matrix(1,nlstate,iagemin,iagemax+3);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    strcpy(fileresp,"p");
            strcat(fileresp,fileres);
         pmij(pmmij,cov,ncovmodel,x,nlstate);    if((ficresp=fopen(fileresp,"w"))==NULL) {
              printf("Problem with prevalence resultfile: %s\n", fileresp);
         k=0;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         for(i=1; i<=(nlstate); i++){      exit(0);
           for(j=1; j<=(nlstate+ndeath);j++){    }
             k=k+1;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
             mu[k][(int) age]=pmmij[i][j];    j1=0;
           }    
         }    j=cptcoveff;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];    first=1;
   
         /*printf("\n%d ",(int)age);    for(k1=1; k1<=j;k1++){
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      for(i1=1; i1<=ncodemax[k1];i1++){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        j1++;
      }*/        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
         fprintf(ficresprob,"\n%d ",(int)age);        for (i=-5; i<=nlstate+ndeath; i++)  
         fprintf(ficresprobcov,"\n%d ",(int)age);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         fprintf(ficresprobcor,"\n%d ",(int)age);            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      for (i=1; i<=nlstate; i++)  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(m=iagemin; m <= iagemax+3; m++)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          prop[i][m]=0;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        
         }        dateintsum=0;
         i=0;        k2cpt=0;
         for (k=1; k<=(nlstate);k++){        for (i=1; i<=imx; i++) {
           for (l=1; l<=(nlstate+ndeath);l++){          bool=1;
             i=i++;          if  (cptcovn>0) {
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            for (z1=1; z1<=cptcoveff; z1++) 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             for (j=1; j<=i;j++){                bool=0;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          if (bool==1){
             }            for(m=firstpass; m<=lastpass; m++){
           }              k2=anint[m][i]+(mint[m][i]/12.);
         }/* end of loop for state */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       } /* end of loop for age */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for (k1=1; k1<=(nlstate);k1++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         for (l1=1; l1<=(nlstate+ndeath);l1++){                if (m<lastpass) {
           if(l1==k1) continue;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           i=(k1-1)*(nlstate+ndeath)+l1;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           for (k2=1; k2<=(nlstate);k2++){                }
             for (l2=1; l2<=(nlstate+ndeath);l2++){                
               if(l2==k2) continue;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
               j=(k2-1)*(nlstate+ndeath)+l2;                  dateintsum=dateintsum+k2;
               if(j<=i) continue;                  k2cpt++;
               for (age=bage; age<=fage; age ++){                }
                 if ((int)age %5==0){                /*}*/
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        }
                   mu1=mu[i][(int) age]/stepm*YEARM ;         
                   mu2=mu[j][(int) age]/stepm*YEARM;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   /* Computing eigen value of matrix of covariance */        pstamp(ficresp);
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));        if  (cptcovn>0) {
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          fprintf(ficresp, "\n#********** Variable "); 
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   /* Eigen vectors */          fprintf(ficresp, "**********\n#");
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        }
                   v21=sqrt(1.-v11*v11);        for(i=1; i<=nlstate;i++) 
                   v12=-v21;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   v22=v11;        fprintf(ficresp, "\n");
                   /*printf(fignu*/        
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        for(i=iagemin; i <= iagemax+3; i++){
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */          if(i==iagemax+3){
                   if(first==1){            fprintf(ficlog,"Total");
                     first=0;          }else{
                     fprintf(ficgp,"\nset parametric;set nolabel");            if(first==1){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);              first=0;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              printf("See log file for details...\n");
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);            }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);            fprintf(ficlog,"Age %d", i);
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);          }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          for(jk=1; jk <=nlstate ; jk++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              pp[jk] += freq[jk][m][i]; 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          for(jk=1; jk <=nlstate ; jk++){
                   }else{            for(m=-1, pos=0; m <=0 ; m++)
                     first=0;              pos += freq[jk][m][i];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            if(pp[jk]>=1.e-10){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              if(first==1){
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   }/* if first */            }else{
                 } /* age mod 5 */              if(first==1)
               } /* end loop age */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               first=1;            }
             } /*l12 */          }
           } /* k12 */  
         } /*l1 */          for(jk=1; jk <=nlstate ; jk++){
       }/* k1 */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     } /* loop covariates */              pp[jk] += freq[jk][m][i];
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          }       
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            pos += pp[jk];
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            posprop += prop[jk][i];
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(jk=1; jk <=nlstate ; jk++){
   }            if(pos>=1.e-5){
   free_vector(xp,1,npar);              if(first==1)
   fclose(ficresprob);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fclose(ficresprobcov);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fclose(ficresprobcor);            }else{
   fclose(ficgp);              if(first==1)
   fclose(fichtm);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
             if( i <= iagemax){
 /******************* Printing html file ***********/              if(pos>=1.e-5){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                   int lastpass, int stepm, int weightopt, char model[],\                /*probs[i][jk][j1]= pp[jk]/pos;*/
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   int popforecast, int estepm ,\              }
                   double jprev1, double mprev1,double anprev1, \              else
                   double jprev2, double mprev2,double anprev2){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   int jj1, k1, i1, cpt;            }
   /*char optionfilehtm[FILENAMELENGTH];*/          }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {          
     printf("Problem with %s \n",optionfilehtm), exit(0);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   }            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n              if(first==1)
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n              }
  - Life expectancies by age and initial health status (estepm=%2d months):          if(i <= iagemax)
    <a href=\"e%s\">e%s</a> <br>\n</li>", \            fprintf(ficresp,"\n");
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          if(first==1)
             printf("Others in log...\n");
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n          fprintf(ficlog,"\n");
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      }
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    }
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    dateintmean=dateintsum/k2cpt; 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n   
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    fclose(ficresp);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
  if(popforecast==1) fprintf(fichtm,"\n    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    /* End of Freq */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  }
         <br>",fileres,fileres,fileres,fileres);  
  else  /************ Prevalence ********************/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 fprintf(fichtm," <li>Graphs</li><p>");  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  m=cptcoveff;       in each health status at the date of interview (if between dateprev1 and dateprev2).
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       We still use firstpass and lastpass as another selection.
     */
  jj1=0;   
  for(k1=1; k1<=m;k1++){    int i, m, jk, k1, i1, j1, bool, z1,j;
    for(i1=1; i1<=ncodemax[k1];i1++){    double ***freq; /* Frequencies */
      jj1++;    double *pp, **prop;
      if (cptcovn > 0) {    double pos,posprop; 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double  y2; /* in fractional years */
        for (cpt=1; cpt<=cptcoveff;cpt++)    int iagemin, iagemax;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    iagemin= (int) agemin;
      }    iagemax= (int) agemax;
      /* Pij */    /*pp=vector(1,nlstate);*/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      /* Quasi-incidences */    j1=0;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    j=cptcoveff;
        /* Stable prevalence in each health state */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        for(cpt=1; cpt<nlstate;cpt++){    
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    for(k1=1; k1<=j;k1++){
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for(i1=1; i1<=ncodemax[k1];i1++){
        }        j1++;
     for(cpt=1; cpt<=nlstate;cpt++) {        
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for (i=1; i<=nlstate; i++)  
 interval) in state (%d): v%s%d%d.png <br>          for(m=iagemin; m <= iagemax+3; m++)
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              prop[i][m]=0.0;
      }       
      for(cpt=1; cpt<=nlstate;cpt++) {        for (i=1; i<=imx; i++) { /* Each individual */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          bool=1;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if  (cptcovn>0) {
      }            for (z1=1; z1<=cptcoveff; z1++) 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 health expectancies in states (1) and (2): e%s%d.png<br>                bool=0;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          } 
    }          if (bool==1) { 
  }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 fclose(fichtm);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
 /******************* Gnuplot file **************/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   int ng;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
     printf("Problem with file %s",optionfilegnuplot);                } 
   }              }
             } /* end selection of waves */
 #ifdef windows          }
     fprintf(ficgp,"cd \"%s\" \n",pathc);        }
 #endif        for(i=iagemin; i <= iagemax+3; i++){  
 m=pow(2,cptcoveff);          
            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
  /* 1eme*/            posprop += prop[jk][i]; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {          } 
    for (k1=1; k1<= m ; k1 ++) {  
           for(jk=1; jk <=nlstate ; jk++){     
 #ifdef windows            if( i <=  iagemax){ 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              if(posprop>=1.e-5){ 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                probs[i][jk][j1]= prop[jk][i]/posprop;
 #endif              } else
 #ifdef unix                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            } 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          }/* end jk */ 
 #endif        }/* end i */ 
       } /* end i1 */
 for (i=1; i<= nlstate ; i ++) {    } /* end k1 */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 }    /*free_vector(pp,1,nlstate);*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     for (i=1; i<= nlstate ; i ++) {  }  /* End of prevalence */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /************* Waves Concatenation ***************/
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      for (i=1; i<= nlstate ; i ++) {  {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Death is a valid wave (if date is known).
 }         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 #ifdef unix       and mw[mi+1][i]. dh depends on stepm.
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");       */
 #endif  
    }    int i, mi, m;
   }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   /*2 eme*/       double sum=0., jmean=0.;*/
     int first;
   for (k1=1; k1<= m ; k1 ++) {    int j, k=0,jk, ju, jl;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    double sum=0.;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    first=0;
        jmin=1e+5;
     for (i=1; i<= nlstate+1 ; i ++) {    jmax=-1;
       k=2*i;    jmean=0.;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    for(i=1; i<=imx; i++){
       for (j=1; j<= nlstate+1 ; j ++) {      mi=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      m=firstpass;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      while(s[m][i] <= nlstate){
 }          if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          mw[++mi][i]=m;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        if(m >=lastpass)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          break;
       for (j=1; j<= nlstate+1 ; j ++) {        else
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          m++;
         else fprintf(ficgp," \%%*lf (\%%*lf)");      }/* end while */
 }        if (s[m][i] > nlstate){
       fprintf(ficgp,"\" t\"\" w l 0,");        mi++;     /* Death is another wave */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        /* if(mi==0)  never been interviewed correctly before death */
       for (j=1; j<= nlstate+1 ; j ++) {           /* Only death is a correct wave */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        mw[mi][i]=m;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      wav[i]=mi;
       else fprintf(ficgp,"\" t\"\" w l 0,");      if(mi==0){
     }        nbwarn++;
   }        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   /*3eme*/          first=1;
         }
   for (k1=1; k1<= m ; k1 ++) {        if(first==1){
     for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       k=2+nlstate*(2*cpt-2);        }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      } /* end mi==0 */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    } /* End individuals */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    for(i=1; i<=imx; i++){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      for(mi=1; mi<wav[i];mi++){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        if (stepm <=0)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          dh[mi][i]=1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 */            if (agedc[i] < 2*AGESUP) {
       for (i=1; i< nlstate ; i ++) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
       }                nberr++;
     }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                j=1; /* Temporary Dangerous patch */
                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   /* CV preval stat */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (k1=1; k1<= m ; k1 ++) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for (cpt=1; cpt<nlstate ; cpt ++) {              }
       k=3;              k=k+1;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              if (j >= jmax){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                jmax=j;
                 ijmax=i;
       for (i=1; i< nlstate ; i ++)              }
         fprintf(ficgp,"+$%d",k+i+1);              if (j <= jmin){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                jmin=j;
                      ijmin=i;
       l=3+(nlstate+ndeath)*cpt;              }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              sum=sum+j;
       for (i=1; i< nlstate ; i ++) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         l=3+(nlstate+ndeath)*cpt;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         fprintf(ficgp,"+$%d",l+i+1);            }
       }          }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            else{
     }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   }    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    
   /* proba elementaires */            k=k+1;
    for(i=1,jk=1; i <=nlstate; i++){            if (j >= jmax) {
     for(k=1; k <=(nlstate+ndeath); k++){              jmax=j;
       if (k != i) {              ijmax=i;
         for(j=1; j <=ncovmodel; j++){            }
                    else if (j <= jmin){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              jmin=j;
           jk++;              ijmin=i;
           fprintf(ficgp,"\n");            }
         }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     }            if(j<0){
    }              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      for(jk=1; jk <=m; jk++) {            }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            sum=sum+j;
        if (ng==2)          }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          jk= j/stepm;
        else          jl= j -jk*stepm;
          fprintf(ficgp,"\nset title \"Probability\"\n");          ju= j -(jk+1)*stepm;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        i=1;            if(jl==0){
        for(k2=1; k2<=nlstate; k2++) {              dh[mi][i]=jk;
          k3=i;              bh[mi][i]=0;
          for(k=1; k<=(nlstate+ndeath); k++) {            }else{ /* We want a negative bias in order to only have interpolation ie
            if (k != k2){                    * at the price of an extra matrix product in likelihood */
              if(ng==2)              dh[mi][i]=jk+1;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);              bh[mi][i]=ju;
              else            }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }else{
              ij=1;            if(jl <= -ju){
              for(j=3; j <=ncovmodel; j++) {              dh[mi][i]=jk;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              bh[mi][i]=jl;       /* bias is positive if real duration
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                                   * is higher than the multiple of stepm and negative otherwise.
                  ij++;                                   */
                }            }
                else            else{
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              dh[mi][i]=jk+1;
              }              bh[mi][i]=ju;
              fprintf(ficgp,")/(1");            }
                          if(dh[mi][i]==0){
              for(k1=1; k1 <=nlstate; k1++){                dh[mi][i]=1; /* At least one step */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              bh[mi][i]=ju; /* At least one step */
                ij=1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                for(j=3; j <=ncovmodel; j++){            }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          } /* end if mle */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                    ij++;      } /* end wave */
                  }    }
                  else    jmean=sum/k;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                fprintf(ficgp,")");   }
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  /*********** Tricode ****************************/
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  void tricode(int *Tvar, int **nbcode, int imx)
              i=i+ncovmodel;  {
            }    
          }    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
        }  
      }    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
    }    int cptcode=0;
    fclose(ficgp);    cptcoveff=0; 
 }  /* end gnuplot */   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   int i, cpt, cptcod;                                 modality*/ 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
       for (i=1; i<=nlstate;i++)        Ndum[ij]++; /*counts the occurence of this modality */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           mobaverage[(int)agedeb][i][cptcod]=0.;        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
                                             Tvar[j]. If V=sex and male is 0 and 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                                         female is 1, then  cptcode=1.*/
       for (i=1; i<=nlstate;i++){      }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
           }                                         th covariate. In fact
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                                         ncodemax[j]=2
         }                                         (dichotom. variables only) but
       }                                         it can be more */
     }      } /* Ndum[-1] number of undefined modalities */
      
 }      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
         for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
 /************** Forecasting ******************/          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                         k is a modality. If we have model=V1+V1*sex 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   int *popage;            ij++;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }
   double *popeffectif,*popcount;          if (ij > ncodemax[j]) break; 
   double ***p3mat;        }  
   char fileresf[FILENAMELENGTH];      } 
     }  
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   strcpy(fileresf,"f");     Ndum[ij]++;
   strcat(fileresf,fileres);   }
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);   ij=1;
   }   for (i=1; i<= maxncov; i++) {
   printf("Computing forecasting: result on file '%s' \n", fileresf);     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       ij++;
      }
   if (mobilav==1) {   }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   ij--;
     movingaverage(agedeb, fage, ageminpar, mobaverage);   cptcoveff=ij; /*Number of simple covariates*/
   }  }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*********** Health Expectancies ****************/
   if (stepm<=12) stepsize=1;  
    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   agelim=AGESUP;  
    {
   hstepm=1;    /* Health expectancies, no variances */
   hstepm=hstepm/stepm;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   yp1=modf(dateintmean,&yp);    int nhstepma, nstepma; /* Decreasing with age */
   anprojmean=yp;    double age, agelim, hf;
   yp2=modf((yp1*12),&yp);    double ***p3mat;
   mprojmean=yp;    double eip;
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;    pstamp(ficreseij);
   if(jprojmean==0) jprojmean=1;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   if(mprojmean==0) jprojmean=1;    fprintf(ficreseij,"# Age");
      for(i=1; i<=nlstate;i++){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      for(j=1; j<=nlstate;j++){
          fprintf(ficreseij," e%1d%1d ",i,j);
   for(cptcov=1;cptcov<=i2;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fprintf(ficreseij," e%1d. ",i);
       k=k+1;    }
       fprintf(ficresf,"\n#******");    fprintf(ficreseij,"\n");
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       }    if(estepm < stepm){
       fprintf(ficresf,"******\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficresf,"# StartingAge FinalAge");    }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    else  hstepm=estepm;   
          /* We compute the life expectancy from trapezoids spaced every estepm months
           * This is mainly to measure the difference between two models: for example
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
         fprintf(ficresf,"\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);       * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * to compare the new estimate of Life expectancy with the same linear 
           nhstepm = nhstepm/hstepm;     * hypothesis. A more precise result, taking into account a more precise
               * curvature will be obtained if estepm is as small as stepm. */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    /* For example we decided to compute the life expectancy with the smallest unit */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               nhstepm is the number of hstepm from age to agelim 
           for (h=0; h<=nhstepm; h++){       nstepm is the number of stepm from age to agelin. 
             if (h==(int) (calagedate+YEARM*cpt)) {       Look at hpijx to understand the reason of that which relies in memory size
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);       and note for a fixed period like estepm months */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             for(j=1; j<=nlstate+ndeath;j++) {       survival function given by stepm (the optimization length). Unfortunately it
               kk1=0.;kk2=0;       means that if the survival funtion is printed only each two years of age and if
               for(i=1; i<=nlstate;i++) {                     you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                 if (mobilav==1)       results. So we changed our mind and took the option of the best precision.
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    */
                 else {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    agelim=AGESUP;
                    /* If stepm=6 months */
               }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               if (h==(int)(calagedate+12*cpt)){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                 fprintf(ficresf," %.3f", kk1);      
                          /* nhstepm age range expressed in number of stepm */
               }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
             }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           }    /* if (stepm >= YEARM) hstepm=1;*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }  
     }    for (age=bage; age<=fage; age ++){ 
   }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
              /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   fclose(ficresf);  
 }      /* If stepm=6 months */
 /************** Forecasting ******************/      /* Computed by stepm unit matrices, product of hstepma matrices, stored
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   int *popage;      
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double *popeffectif,*popcount;      
   double ***p3mat,***tabpop,***tabpopprev;      printf("%d|",(int)age);fflush(stdout);
   char filerespop[FILENAMELENGTH];      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Computing expectancies */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
   agelim=AGESUP;        for(j=1; j<=nlstate;j++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            
              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   strcpy(filerespop,"pop");          }
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      fprintf(ficreseij,"%3.0f",age );
     printf("Problem with forecast resultfile: %s\n", filerespop);      for(i=1; i<=nlstate;i++){
   }        eip=0;
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   if (mobilav==1) {        fprintf(ficreseij,"%9.4f", eip );
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficreseij,"\n");
   }      
     }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (stepm<=12) stepsize=1;    printf("\n");
      fprintf(ficlog,"\n");
   agelim=AGESUP;    
    }
   hstepm=1;  
   hstepm=hstepm/stepm;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
    
   if (popforecast==1) {  {
     if((ficpop=fopen(popfile,"r"))==NULL) {    /* Covariances of health expectancies eij and of total life expectancies according
       printf("Problem with population file : %s\n",popfile);exit(0);     to initial status i, ei. .
     }    */
     popage=ivector(0,AGESUP);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     popeffectif=vector(0,AGESUP);    int nhstepma, nstepma; /* Decreasing with age */
     popcount=vector(0,AGESUP);    double age, agelim, hf;
        double ***p3matp, ***p3matm, ***varhe;
     i=1;      double **dnewm,**doldm;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    double *xp, *xm;
        double **gp, **gm;
     imx=i;    double ***gradg, ***trgradg;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    int theta;
   }  
     double eip, vip;
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       k=k+1;    xp=vector(1,npar);
       fprintf(ficrespop,"\n#******");    xm=vector(1,npar);
       for(j=1;j<=cptcoveff;j++) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       }    
       fprintf(ficrespop,"******\n");    pstamp(ficresstdeij);
       fprintf(ficrespop,"# Age");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    fprintf(ficresstdeij,"# Age");
       if (popforecast==1)  fprintf(ficrespop," [Population]");    for(i=1; i<=nlstate;i++){
            for(j=1; j<=nlstate;j++)
       for (cpt=0; cpt<=0;cpt++) {        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        fprintf(ficresstdeij," e%1d. ",i);
            }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficresstdeij,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    pstamp(ficrescveij);
              fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficrescveij,"# Age");
           oldm=oldms;savm=savms;    for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(j=1; j<=nlstate;j++){
                cptj= (j-1)*nlstate+i;
           for (h=0; h<=nhstepm; h++){        for(i2=1; i2<=nlstate;i2++)
             if (h==(int) (calagedate+YEARM*cpt)) {          for(j2=1; j2<=nlstate;j2++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            cptj2= (j2-1)*nlstate+i2;
             }            if(cptj2 <= cptj)
             for(j=1; j<=nlstate+ndeath;j++) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
               kk1=0.;kk2=0;          }
               for(i=1; i<=nlstate;i++) {                    }
                 if (mobilav==1)    fprintf(ficrescveij,"\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    
                 else {    if(estepm < stepm){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      printf ("Problem %d lower than %d\n",estepm, stepm);
                 }    }
               }    else  hstepm=estepm;   
               if (h==(int)(calagedate+12*cpt)){    /* We compute the life expectancy from trapezoids spaced every estepm months
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;     * This is mainly to measure the difference between two models: for example
                   /*fprintf(ficrespop," %.3f", kk1);     * if stepm=24 months pijx are given only every 2 years and by summing them
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
               }     * progression in between and thus overestimating or underestimating according
             }     * to the curvature of the survival function. If, for the same date, we 
             for(i=1; i<=nlstate;i++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               kk1=0.;     * to compare the new estimate of Life expectancy with the same linear 
                 for(j=1; j<=nlstate;j++){     * hypothesis. A more precise result, taking into account a more precise
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];     * curvature will be obtained if estepm is as small as stepm. */
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /* For example we decided to compute the life expectancy with the smallest unit */
             }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)       nstepm is the number of stepm from age to agelin. 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);       Look at hpijx to understand the reason of that which relies in memory size
           }       and note for a fixed period like estepm months */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /******/       results. So we changed our mind and took the option of the best precision.
     */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* nhstepm age range expressed in number of stepm */
           nhstepm = nhstepm/hstepm;    agelim=AGESUP;
              nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           oldm=oldms;savm=savms;    /* if (stepm >= YEARM) hstepm=1;*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               kk1=0.;kk2=0;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
               for(i=1; i<=nlstate;i++) {                  gm=matrix(0,nhstepm,1,nlstate*nlstate);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }    for (age=bage; age<=fage; age ++){ 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
             }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           }      /* if (stepm >= YEARM) hstepm=1;*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         }  
       }      /* If stepm=6 months */
    }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
   if (popforecast==1) {      /* Computing  Variances of health expectancies */
     free_ivector(popage,0,AGESUP);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     free_vector(popeffectif,0,AGESUP);         decrease memory allocation */
     free_vector(popcount,0,AGESUP);      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   fclose(ficrespop);        }
 }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 /***********************************************/    
 /**************** Main Program *****************/        for(j=1; j<= nlstate; j++){
 /***********************************************/          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
 int main(int argc, char *argv[])              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 {              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          }
   double agedeb, agefin,hf;        }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;       
         for(ij=1; ij<= nlstate*nlstate; ij++)
   double fret;          for(h=0; h<=nhstepm-1; h++){
   double **xi,tmp,delta;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
   double dum; /* Dummy variable */      }/* End theta */
   double ***p3mat;      
   int *indx;      
   char line[MAXLINE], linepar[MAXLINE];      for(h=0; h<=nhstepm-1; h++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(j=1; j<=nlstate*nlstate;j++)
   int firstobs=1, lastobs=10;          for(theta=1; theta <=npar; theta++)
   int sdeb, sfin; /* Status at beginning and end */            trgradg[h][j][theta]=gradg[h][theta][j];
   int c,  h , cpt,l;      
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;       for(ij=1;ij<=nlstate*nlstate;ij++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(ji=1;ji<=nlstate*nlstate;ji++)
   int mobilav=0,popforecast=0;          varhe[ij][ji][(int)age] =0.;
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double bage, fage, age, agelim, agebase;       for(h=0;h<=nhstepm-1;h++){
   double ftolpl=FTOL;        for(k=0;k<=nhstepm-1;k++){
   double **prlim;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   double *severity;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   double ***param; /* Matrix of parameters */          for(ij=1;ij<=nlstate*nlstate;ij++)
   double  *p;            for(ji=1;ji<=nlstate*nlstate;ji++)
   double **matcov; /* Matrix of covariance */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   double ***delti3; /* Scale */        }
   double *delti; /* Scale */      }
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */      /* Computing expectancies */
   double *epj, vepp;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double kk1, kk2;      for(i=1; i<=nlstate;i++)
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   char *alph[]={"a","a","b","c","d","e"}, str[4];            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   char z[1]="c", occ;          }
 #include <sys/time.h>  
 #include <time.h>      fprintf(ficresstdeij,"%3.0f",age );
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      for(i=1; i<=nlstate;i++){
          eip=0.;
   /* long total_usecs;        vip=0.;
   struct timeval start_time, end_time;        for(j=1; j<=nlstate;j++){
            eip += eij[i][j][(int)age];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   getcwd(pathcd, size);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   printf("\n%s",version);        }
   if(argc <=1){        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     printf("\nEnter the parameter file name: ");      }
     scanf("%s",pathtot);      fprintf(ficresstdeij,"\n");
   }  
   else{      fprintf(ficrescveij,"%3.0f",age );
     strcpy(pathtot,argv[1]);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          cptj= (j-1)*nlstate+i;
   /*cygwin_split_path(pathtot,path,optionfile);          for(i2=1; i2<=nlstate;i2++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            for(j2=1; j2<=nlstate;j2++){
   /* cutv(path,optionfile,pathtot,'\\');*/              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            }
   chdir(path);        }
   replace(pathc,path);      fprintf(ficrescveij,"\n");
      
 /*-------- arguments in the command line --------*/    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   strcpy(fileres,"r");    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   strcat(fileres, optionfilefiname);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   strcat(fileres,".txt");    /* Other files have txt extension */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*---------arguments file --------*/    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    fprintf(ficlog,"\n");
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;    free_vector(xm,1,npar);
   }    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   strcpy(filereso,"o");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   strcat(filereso,fileres);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   if((ficparo=fopen(filereso,"w"))==NULL) {  }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   /* Reads comments: lines beginning with '#' */  {
   while((c=getc(ficpar))=='#' && c!= EOF){    /* Variance of health expectancies */
     ungetc(c,ficpar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     fgets(line, MAXLINE, ficpar);    /* double **newm;*/
     puts(line);    double **dnewm,**doldm;
     fputs(line,ficparo);    double **dnewmp,**doldmp;
   }    int i, j, nhstepm, hstepm, h, nstepm ;
   ungetc(c,ficpar);    int k, cptcode;
     double *xp;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double **gp, **gm;  /* for var eij */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double ***gradg, ***trgradg; /*for var eij */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double **gradgp, **trgradgp; /* for var p point j */
 while((c=getc(ficpar))=='#' && c!= EOF){    double *gpp, *gmp; /* for var p point j */
     ungetc(c,ficpar);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     fgets(line, MAXLINE, ficpar);    double ***p3mat;
     puts(line);    double age,agelim, hf;
     fputs(line,ficparo);    double ***mobaverage;
   }    int theta;
   ungetc(c,ficpar);    char digit[4];
      char digitp[25];
      
   covar=matrix(0,NCOVMAX,1,n);    char fileresprobmorprev[FILENAMELENGTH];
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    if(popbased==1){
       if(mobilav!=0)
   ncovmodel=2+cptcovn;        strcpy(digitp,"-populbased-mobilav-");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      else strcpy(digitp,"-populbased-nomobil-");
      }
   /* Read guess parameters */    else 
   /* Reads comments: lines beginning with '#' */      strcpy(digitp,"-stablbased-");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    if (mobilav!=0) {
     fgets(line, MAXLINE, ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     puts(line);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     fputs(line,ficparo);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   ungetc(c,ficpar);      }
      }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    strcpy(fileresprobmorprev,"prmorprev"); 
     for(j=1; j <=nlstate+ndeath-1; j++){    sprintf(digit,"%-d",ij);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       fprintf(ficparo,"%1d%1d",i1,j1);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       printf("%1d%1d",i,j);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       for(k=1; k<=ncovmodel;k++){    strcat(fileresprobmorprev,fileres);
         fscanf(ficpar," %lf",&param[i][j][k]);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         printf(" %lf",param[i][j][k]);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficparo," %lf",param[i][j][k]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       }    }
       fscanf(ficpar,"\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       printf("\n");   
       fprintf(ficparo,"\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     }    pstamp(ficresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   p=param[1][1];      fprintf(ficresprobmorprev," p.%-d SE",j);
        for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){    }  
     ungetc(c,ficpar);    fprintf(ficresprobmorprev,"\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"\n# Routine varevsij");
     puts(line);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fputs(line,ficparo);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   ungetc(c,ficpar);  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    pstamp(ficresvij);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   for(i=1; i <=nlstate; i++){    if(popbased==1)
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    else
       printf("%1d%1d",i,j);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficresvij,"# Age");
       for(k=1; k<=ncovmodel;k++){    for(i=1; i<=nlstate;i++)
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for(j=1; j<=nlstate;j++)
         printf(" %le",delti3[i][j][k]);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficresvij,"\n");
       }  
       fscanf(ficpar,"\n");    xp=vector(1,npar);
       printf("\n");    dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficparo,"\n");    doldm=matrix(1,nlstate,1,nlstate);
     }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   delti=delti3[1][1];  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   /* Reads comments: lines beginning with '#' */    gpp=vector(nlstate+1,nlstate+ndeath);
   while((c=getc(ficpar))=='#' && c!= EOF){    gmp=vector(nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fgets(line, MAXLINE, ficpar);    
     puts(line);    if(estepm < stepm){
     fputs(line,ficparo);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   ungetc(c,ficpar);    else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
   matcov=matrix(1,npar,1,npar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   for(i=1; i <=npar; i++){       nhstepm is the number of hstepm from age to agelim 
     fscanf(ficpar,"%s",&str);       nstepm is the number of stepm from age to agelin. 
     printf("%s",str);       Look at function hpijx to understand why (it is linked to memory size questions) */
     fprintf(ficparo,"%s",str);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(j=1; j <=i; j++){       survival function given by stepm (the optimization length). Unfortunately it
       fscanf(ficpar," %le",&matcov[i][j]);       means that if the survival funtion is printed every two years of age and if
       printf(" %.5le",matcov[i][j]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficparo," %.5le",matcov[i][j]);       results. So we changed our mind and took the option of the best precision.
     }    */
     fscanf(ficpar,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("\n");    agelim = AGESUP;
     fprintf(ficparo,"\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   for(i=1; i <=npar; i++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(j=i+1;j<=npar;j++)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       matcov[i][j]=matcov[j][i];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
          gp=matrix(0,nhstepm,1,nlstate);
   printf("\n");      gm=matrix(0,nhstepm,1,nlstate);
   
   
     /*-------- Rewriting paramater file ----------*/      for(theta=1; theta <=npar; theta++){
      strcpy(rfileres,"r");    /* "Rparameterfile */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      strcat(rfileres,".");    /* */        }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     if((ficres =fopen(rfileres,"w"))==NULL) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     }        if (popbased==1) {
     fprintf(ficres,"#%s\n",version);          if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
     /*-------- data file ----------*/              prlim[i][i]=probs[(int)age][i][ij];
     if((fic=fopen(datafile,"r"))==NULL)    {          }else{ /* mobilav */ 
       printf("Problem with datafile: %s\n", datafile);goto end;            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
     n= lastobs;        }
     severity = vector(1,maxwav);    
     outcome=imatrix(1,maxwav+1,1,n);        for(j=1; j<= nlstate; j++){
     num=ivector(1,n);          for(h=0; h<=nhstepm; h++){
     moisnais=vector(1,n);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     annais=vector(1,n);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     moisdc=vector(1,n);          }
     andc=vector(1,n);        }
     agedc=vector(1,n);        /* This for computing probability of death (h=1 means
     cod=ivector(1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     weight=vector(1,n);           as a weighted average of prlim.
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        */
     mint=matrix(1,maxwav,1,n);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     anint=matrix(1,maxwav,1,n);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     s=imatrix(1,maxwav+1,1,n);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     adl=imatrix(1,maxwav+1,1,n);            }    
     tab=ivector(1,NCOVMAX);        /* end probability of death */
     ncodemax=ivector(1,8);  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     i=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     while (fgets(line, MAXLINE, fic) != NULL)    {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       if ((i >= firstobs) && (i <=lastobs)) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           
         for (j=maxwav;j>=1;j--){        if (popbased==1) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          if(mobilav ==0){
           strcpy(line,stra);            for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              prlim[i][i]=probs[(int)age][i][ij];
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }else{ /* mobilav */ 
         }            for(i=1; i<=nlstate;i++)
                      prlim[i][i]=mobaverage[(int)age][i][ij];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         for (j=ncovcol;j>=1;j--){          }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
         }        /* This for computing probability of death (h=1 means
         num[i]=atol(stra);           computed over hstepm matrices product = hstepm*stepm months) 
                   as a weighted average of prlim.
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
         i=i+1;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
     }        /* end probability of death */
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/        for(j=1; j<= nlstate; j++) /* vareij */
   imx=i-1; /* Number of individuals */          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   /* for (i=1; i<=imx; i++){          }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     }*/        }
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;      } /* End theta */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
    
   /* Calculation of the number of parameter from char model*/      for(h=0; h<=nhstepm; h++) /* veij */
   Tvar=ivector(1,15);        for(j=1; j<=nlstate;j++)
   Tprod=ivector(1,15);          for(theta=1; theta <=npar; theta++)
   Tvaraff=ivector(1,15);            trgradg[h][j][theta]=gradg[h][theta][j];
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);            for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
            for(theta=1; theta <=npar; theta++)
   if (strlen(model) >1){          trgradgp[j][theta]=gradgp[theta][j];
     j=0, j1=0, k1=1, k2=1;    
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     cptcovn=j+1;      for(i=1;i<=nlstate;i++)
     cptcovprod=j1;        for(j=1;j<=nlstate;j++)
              vareij[i][j][(int)age] =0.;
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      for(h=0;h<=nhstepm;h++){
       printf("Error. Non available option model=%s ",model);        for(k=0;k<=nhstepm;k++){
       goto end;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
              for(i=1;i<=nlstate;i++)
     for(i=(j+1); i>=1;i--){            for(j=1;j<=nlstate;j++)
       cutv(stra,strb,modelsav,'+');              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      }
       /*scanf("%d",i);*/    
       if (strchr(strb,'*')) {      /* pptj */
         cutv(strd,strc,strb,'*');      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         if (strcmp(strc,"age")==0) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           cptcovprod--;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           cutv(strb,stre,strd,'V');        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           Tvar[i]=atoi(stre);          varppt[j][i]=doldmp[j][i];
           cptcovage++;      /* end ppptj */
             Tage[cptcovage]=i;      /*  x centered again */
             /*printf("stre=%s ", stre);*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         else if (strcmp(strd,"age")==0) {   
           cptcovprod--;      if (popbased==1) {
           cutv(strb,stre,strc,'V');        if(mobilav ==0){
           Tvar[i]=atoi(stre);          for(i=1; i<=nlstate;i++)
           cptcovage++;            prlim[i][i]=probs[(int)age][i][ij];
           Tage[cptcovage]=i;        }else{ /* mobilav */ 
         }          for(i=1; i<=nlstate;i++)
         else {            prlim[i][i]=mobaverage[(int)age][i][ij];
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=ncovcol+k1;      }
           cutv(strb,strc,strd,'V');               
           Tprod[k1]=i;      /* This for computing probability of death (h=1 means
           Tvard[k1][1]=atoi(strc);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           Tvard[k1][2]=atoi(stre);         as a weighted average of prlim.
           Tvar[cptcovn+k2]=Tvard[k1][1];      */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for (k=1; k<=lastobs;k++)        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           k1++;      }    
           k2=k2+2;      /* end probability of death */
         }  
       }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       else {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
        /*  scanf("%d",i);*/        for(i=1; i<=nlstate;i++){
       cutv(strd,strc,strb,'V');          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       Tvar[i]=atoi(strc);        }
       }      } 
       strcpy(modelsav,stra);        fprintf(ficresprobmorprev,"\n");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/      fprintf(ficresvij,"%.0f ",age );
     }      for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        }
   printf("cptcovprod=%d ", cptcovprod);      fprintf(ficresvij,"\n");
   scanf("%d ",i);*/      free_matrix(gp,0,nhstepm,1,nlstate);
     fclose(fic);      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     /*  if(mle==1){*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     if (weightopt != 1) { /* Maximisation without weights*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(i=1;i<=n;i++) weight[i]=1.0;    } /* End age */
     }    free_vector(gpp,nlstate+1,nlstate+ndeath);
     /*-calculation of age at interview from date of interview and age at death -*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
     agev=matrix(1,maxwav,1,imx);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for (i=1; i<=imx; i++) {    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
       for(m=2; (m<= maxwav); m++) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
          anint[m][i]=9999;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
          s[m][i]=-1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
        }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     for (i=1; i<=imx; i++)  {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       for(m=1; (m<= maxwav); m++){  */
         if(s[m][i] >0){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           if (s[m][i] >= nlstate+1) {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)    free_vector(xp,1,npar);
                 agev[m][i]=agedc[i];    free_matrix(doldm,1,nlstate,1,nlstate);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    free_matrix(dnewm,1,nlstate,1,npar);
            else {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               if (andc[i]!=9999){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               agev[m][i]=-1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               }    fclose(ficresprobmorprev);
             }    fflush(ficgp);
           }    fflush(fichtm); 
           else if(s[m][i] !=9){ /* Should no more exist */  }  /* end varevsij */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)  /************ Variance of prevlim ******************/
               agev[m][i]=1;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
             else if(agev[m][i] <agemin){  {
               agemin=agev[m][i];    /* Variance of prevalence limit */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             }    double **newm;
             else if(agev[m][i] >agemax){    double **dnewm,**doldm;
               agemax=agev[m][i];    int i, j, nhstepm, hstepm;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    int k, cptcode;
             }    double *xp;
             /*agev[m][i]=anint[m][i]-annais[i];*/    double *gp, *gm;
             /*   agev[m][i] = age[i]+2*m;*/    double **gradg, **trgradg;
           }    double age,agelim;
           else { /* =9 */    int theta;
             agev[m][i]=1;    
             s[m][i]=-1;    pstamp(ficresvpl);
           }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
         }    fprintf(ficresvpl,"# Age");
         else /*= 0 Unknown */    for(i=1; i<=nlstate;i++)
           agev[m][i]=1;        fprintf(ficresvpl," %1d-%1d",i,i);
       }    fprintf(ficresvpl,"\n");
      
     }    xp=vector(1,npar);
     for (i=1; i<=imx; i++)  {    dnewm=matrix(1,nlstate,1,npar);
       for(m=1; (m<= maxwav); m++){    doldm=matrix(1,nlstate,1,nlstate);
         if (s[m][i] > (nlstate+ndeath)) {    
           printf("Error: Wrong value in nlstate or ndeath\n");      hstepm=1*YEARM; /* Every year of age */
           goto end;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         }    agelim = AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
     free_vector(severity,1,maxwav);      gp=vector(1,nlstate);
     free_imatrix(outcome,1,maxwav+1,1,n);      gm=vector(1,nlstate);
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);      for(theta=1; theta <=npar; theta++){
     /* free_matrix(mint,1,maxwav,1,n);        for(i=1; i<=npar; i++){ /* Computes gradient */
        free_matrix(anint,1,maxwav,1,n);*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_vector(moisdc,1,n);        }
     free_vector(andc,1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
              gp[i] = prlim[i][i];
     wav=ivector(1,imx);      
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        for(i=1; i<=npar; i++) /* Computes gradient */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     /* Concatenates waves */        for(i=1;i<=nlstate;i++)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
       Tcode=ivector(1,100);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      } /* End theta */
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      trgradg =matrix(1,nlstate,1,npar);
        
    codtab=imatrix(1,100,1,10);      for(j=1; j<=nlstate;j++)
    h=0;        for(theta=1; theta <=npar; theta++)
    m=pow(2,cptcoveff);          trgradg[j][theta]=gradg[theta][j];
    
    for(k=1;k<=cptcoveff; k++){      for(i=1;i<=nlstate;i++)
      for(i=1; i <=(m/pow(2,k));i++){        varpl[i][(int)age] =0.;
        for(j=1; j <= ncodemax[k]; j++){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
            h++;      for(i=1;i<=nlstate;i++)
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }      fprintf(ficresvpl,"%.0f ",age );
        }      for(i=1; i<=nlstate;i++)
      }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
    }      fprintf(ficresvpl,"\n");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      free_vector(gp,1,nlstate);
       codtab[1][2]=1;codtab[2][2]=2; */      free_vector(gm,1,nlstate);
    /* for(i=1; i <=m ;i++){      free_matrix(gradg,1,npar,1,nlstate);
       for(k=1; k <=cptcovn; k++){      free_matrix(trgradg,1,nlstate,1,npar);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    } /* End age */
       }  
       printf("\n");    free_vector(xp,1,npar);
       }    free_matrix(doldm,1,nlstate,1,npar);
       scanf("%d",i);*/    free_matrix(dnewm,1,nlstate,1,nlstate);
      
    /* Calculates basic frequencies. Computes observed prevalence at single age  }
        and prints on file fileres'p'. */  
   /************ Variance of one-step probabilities  ******************/
      void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
      {
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, j=0,  i1, k1, l1, t, tj;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int k2, l2, j1,  z1;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int k=0,l, cptcode;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int first=1, first1;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
          double **dnewm,**doldm;
     /* For Powell, parameters are in a vector p[] starting at p[1]    double *xp;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double *gp, *gm;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double **gradg, **trgradg;
     double **mu;
     if(mle==1){    double age,agelim, cov[NCOVMAX];
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     }    int theta;
        char fileresprob[FILENAMELENGTH];
     /*--------- results files --------------*/    char fileresprobcov[FILENAMELENGTH];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    char fileresprobcor[FILENAMELENGTH];
    
     double ***varpij;
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcpy(fileresprob,"prob"); 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcat(fileresprob,fileres);
    for(i=1,jk=1; i <=nlstate; i++){    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
      for(k=1; k <=(nlstate+ndeath); k++){      printf("Problem with resultfile: %s\n", fileresprob);
        if (k != i)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
          {    }
            printf("%d%d ",i,k);    strcpy(fileresprobcov,"probcov"); 
            fprintf(ficres,"%1d%1d ",i,k);    strcat(fileresprobcov,fileres);
            for(j=1; j <=ncovmodel; j++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
              printf("%f ",p[jk]);      printf("Problem with resultfile: %s\n", fileresprobcov);
              fprintf(ficres,"%f ",p[jk]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
              jk++;    }
            }    strcpy(fileresprobcor,"probcor"); 
            printf("\n");    strcat(fileresprobcor,fileres);
            fprintf(ficres,"\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          }      printf("Problem with resultfile: %s\n", fileresprobcor);
      }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
    }    }
  if(mle==1){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     /* Computing hessian and covariance matrix */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     ftolhess=ftol; /* Usually correct */    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     hesscov(matcov, p, npar, delti, ftolhess, func);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     printf("# Scales (for hessian or gradient estimation)\n");    pstamp(ficresprob);
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficresprob,"# Age");
         if (j!=i) {    pstamp(ficresprobcov);
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           printf("%1d%1d",i,j);    fprintf(ficresprobcov,"# Age");
           for(k=1; k<=ncovmodel;k++){    pstamp(ficresprobcor);
             printf(" %.5e",delti[jk]);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             fprintf(ficres," %.5e",delti[jk]);    fprintf(ficresprobcor,"# Age");
             jk++;  
           }  
           printf("\n");    for(i=1; i<=nlstate;i++)
           fprintf(ficres,"\n");      for(j=1; j<=(nlstate+ndeath);j++){
         }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
      }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
          }  
     k=1;   /* fprintf(ficresprob,"\n");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(ficresprobcov,"\n");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(ficresprobcor,"\n");
     for(i=1;i<=npar;i++){   */
       /*  if (k>nlstate) k=1;    xp=vector(1,npar);
       i1=(i-1)/(ncovmodel*nlstate)+1;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       printf("%s%d%d",alph[k],i1,tab[i]);*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficres,"%3d",i);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       printf("%3d",i);    first=1;
       for(j=1; j<=i;j++){    fprintf(ficgp,"\n# Routine varprob");
         fprintf(ficres," %.5e",matcov[i][j]);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         printf(" %.5e",matcov[i][j]);    fprintf(fichtm,"\n");
       }  
       fprintf(ficres,"\n");    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       printf("\n");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       k++;    file %s<br>\n",optionfilehtmcov);
     }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
      and drawn. It helps understanding how is the covariance between two incidences.\
     while((c=getc(ficpar))=='#' && c!= EOF){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       ungetc(c,ficpar);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fgets(line, MAXLINE, ficpar);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       puts(line);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       fputs(line,ficparo);  standard deviations wide on each axis. <br>\
     }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     ungetc(c,ficpar);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     estepm=0;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;    cov[1]=1;
     if (fage <= 2) {    tj=cptcoveff;
       bage = ageminpar;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       fage = agemaxpar;    j1=0;
     }    for(t=1; t<=tj;t++){
          for(i1=1; i1<=ncodemax[t];i1++){ 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        j1++;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        if  (cptcovn>0) {
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficresprob, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprob, "**********\n#\n");
     ungetc(c,ficpar);          fprintf(ficresprobcov, "\n#********** Variable "); 
     fgets(line, MAXLINE, ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     puts(line);          fprintf(ficresprobcov, "**********\n#\n");
     fputs(line,ficparo);          
   }          fprintf(ficgp, "\n#********** Variable "); 
   ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficgp, "**********\n#\n");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     ungetc(c,ficpar);          
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcor, "\n#********** Variable ");    
     puts(line);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fputs(line,ficparo);          fprintf(ficresprobcor, "**********\n#");    
   }        }
   ungetc(c,ficpar);        
          for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          for (k=1; k<=cptcovn;k++) {
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   fscanf(ficpar,"pop_based=%d\n",&popbased);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   fprintf(ficparo,"pop_based=%d\n",popbased);            for (k=1; k<=cptcovprod;k++)
   fprintf(ficres,"pop_based=%d\n",popbased);              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            
   while((c=getc(ficpar))=='#' && c!= EOF){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     ungetc(c,ficpar);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fgets(line, MAXLINE, ficpar);          gp=vector(1,(nlstate)*(nlstate+ndeath));
     puts(line);          gm=vector(1,(nlstate)*(nlstate+ndeath));
     fputs(line,ficparo);      
   }          for(theta=1; theta <=npar; theta++){
   ungetc(c,ficpar);            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            
             k=0;
             for(i=1; i<= (nlstate); i++){
 while((c=getc(ficpar))=='#' && c!= EOF){              for(j=1; j<=(nlstate+ndeath);j++){
     ungetc(c,ficpar);                k=k+1;
     fgets(line, MAXLINE, ficpar);                gp[k]=pmmij[i][j];
     puts(line);              }
     fputs(line,ficparo);            }
   }            
   ungetc(c,ficpar);            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            k=0;
             for(i=1; i<=(nlstate); i++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
 /*------------ gnuplot -------------*/                gm[k]=pmmij[i][j];
   strcpy(optionfilegnuplot,optionfilefiname);              }
   strcat(optionfilegnuplot,".gp");            }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       
     printf("Problem with file %s",optionfilegnuplot);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   fclose(ficgp);          }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  
 /*--------- index.htm --------*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
   strcpy(optionfilehtm,optionfile);              trgradg[j][theta]=gradg[theta][j];
   strcat(optionfilehtm,".htm");          
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     printf("Problem with %s \n",optionfilehtm), exit(0);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 \n  
 Total number of observations=%d <br>\n          pmij(pmmij,cov,ncovmodel,x,nlstate);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          
 <hr  size=\"2\" color=\"#EC5E5E\">          k=0;
  <ul><li>Parameter files<br>\n          for(i=1; i<=(nlstate); i++){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            for(j=1; j<=(nlstate+ndeath);j++){
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);              k=k+1;
   fclose(fichtm);              mu[k][(int) age]=pmmij[i][j];
             }
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          }
            for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 /*------------ free_vector  -------------*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
  chdir(path);              varpij[i][j][(int)age] = doldm[i][j];
    
  free_ivector(wav,1,imx);          /*printf("\n%d ",(int)age);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  free_ivector(num,1,n);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  free_vector(agedc,1,n);            }*/
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);          fprintf(ficresprob,"\n%d ",(int)age);
  fclose(ficres);          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
   /*--------------- Prevalence limit --------------*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   strcpy(filerespl,"pl");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   strcat(filerespl,fileres);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          }
   }          i=0;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for (k=1; k<=(nlstate);k++){
   fprintf(ficrespl,"#Prevalence limit\n");            for (l=1; l<=(nlstate+ndeath);l++){ 
   fprintf(ficrespl,"#Age ");              i=i++;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   fprintf(ficrespl,"\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                for (j=1; j<=i;j++){
   prlim=matrix(1,nlstate,1,nlstate);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }/* end of loop for state */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        } /* end of loop for age */
   k=0;  
   agebase=ageminpar;        /* Confidence intervalle of pij  */
   agelim=agemaxpar;        /*
   ftolpl=1.e-10;          fprintf(ficgp,"\nunset parametric;unset label");
   i1=cptcoveff;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   if (cptcovn < 1){i1=1;}          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         k=k+1;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        */
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        first1=1;
         fprintf(ficrespl,"******\n");        for (k2=1; k2<=(nlstate);k2++){
                  for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         for (age=agebase; age<=agelim; age++){            if(l2==k2) continue;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            j=(k2-1)*(nlstate+ndeath)+l2;
           fprintf(ficrespl,"%.0f",age );            for (k1=1; k1<=(nlstate);k1++){
           for(i=1; i<=nlstate;i++)              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           fprintf(ficrespl," %.5f", prlim[i][i]);                if(l1==k1) continue;
           fprintf(ficrespl,"\n");                i=(k1-1)*(nlstate+ndeath)+l1;
         }                if(i<=j) continue;
       }                for (age=bage; age<=fage; age ++){ 
     }                  if ((int)age %5==0){
   fclose(ficrespl);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /*------------- h Pij x at various ages ------------*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      mu1=mu[i][(int) age]/stepm*YEARM ;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                    mu2=mu[j][(int) age]/stepm*YEARM;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                    c12=cv12/sqrt(v1*v2);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                    /* Computing eigen value of matrix of covariance */
   }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   printf("Computing pij: result on file '%s' \n", filerespij);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      if ((lc2 <0) || (lc1 <0) ){
   stepsize=(int) (stepm+YEARM-1)/YEARM;                      printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
   /*if (stepm<=24) stepsize=2;*/                      fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
   agelim=AGESUP;                      lc2=fabs(lc2);
   hstepm=stepsize*YEARM; /* Every year of age */                    }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
                      /* Eigen vectors */
   k=0;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   for(cptcov=1;cptcov<=i1;cptcov++){                    /*v21=sqrt(1.-v11*v11); *//* error */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    v21=(lc1-v1)/cv12*v11;
       k=k+1;                    v12=-v21;
         fprintf(ficrespij,"\n#****** ");                    v22=v11;
         for(j=1;j<=cptcoveff;j++)                    tnalp=v21/v11;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    if(first1==1){
         fprintf(ficrespij,"******\n");                      first1=0;
                              printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                    /*printf(fignu*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           oldm=oldms;savm=savms;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      if(first==1){
           fprintf(ficrespij,"# Age");                      first=0;
           for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\nset parametric;unset label");
             for(j=1; j<=nlstate+ndeath;j++)                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
               fprintf(ficrespij," %1d-%1d",i,j);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(ficrespij,"\n");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
            for (h=0; h<=nhstepm; h++){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
             for(i=1; i<=nlstate;i++)                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
               for(j=1; j<=nlstate+ndeath;j++)                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             fprintf(ficrespij,"\n");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
              }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           fprintf(ficrespij,"\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                      first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   fclose(ficrespij);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /*---------- Forecasting ------------------*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   if((stepm == 1) && (strcmp(model,".")==0)){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                    }/* if first */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                  } /* age mod 5 */
   }                } /* end loop age */
   else{                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     erreur=108;                first=1;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);              } /*l12 */
   }            } /* k12 */
            } /*l1 */
         }/* k1 */
   /*---------- Health expectancies and variances ------------*/      } /* loop covariates */
     }
   strcpy(filerest,"t");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   strcat(filerest,fileres);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   if((ficrest=fopen(filerest,"w"))==NULL) {    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   }    free_vector(xp,1,npar);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
   strcpy(filerese,"e");    fflush(ficgp);
   strcat(filerese,fileres);    fflush(fichtmcov);
   if((ficreseij=fopen(filerese,"w"))==NULL) {  }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
  strcpy(fileresv,"v");                    int lastpass, int stepm, int weightopt, char model[],\
   strcat(fileresv,fileres);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                    int popforecast, int estepm ,\
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                    double jprev1, double mprev1,double anprev1, \
   }                    double jprev2, double mprev2,double anprev2){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    int jj1, k1, i1, cpt;
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   k=0;  </ul>");
   for(cptcov=1;cptcov<=i1;cptcov++){     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       k=k+1;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       fprintf(ficrest,"\n#****** ");     fprintf(fichtm,"\
       for(j=1;j<=cptcoveff;j++)   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       fprintf(ficrest,"******\n");     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficreseij,"\n#****** ");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       for(j=1;j<=cptcoveff;j++)     fprintf(fichtm,"\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
       fprintf(ficreseij,"******\n");     <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       fprintf(ficresvij,"\n#****** ");     fprintf(fichtm,"\
       for(j=1;j<=cptcoveff;j++)   - Population projections by age and states: \
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
       fprintf(ficresvij,"******\n");  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;   m=cptcoveff;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   jj1=0;
       oldm=oldms;savm=savms;   for(k1=1; k1<=m;k1++){
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);     for(i1=1; i1<=ncodemax[k1];i1++){
           jj1++;
        if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");         for (cpt=1; cpt<=cptcoveff;cpt++) 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficrest,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
       epj=vector(1,nlstate+1);       /* Pij */
       for(age=bage; age <=fage ;age++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         if (popbased==1) {       /* Quasi-incidences */
           for(i=1; i<=nlstate;i++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
             prlim[i][i]=probs[(int)age][i][k];   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
         }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
                 /* Period (stable) prevalence in each health state */
         fprintf(ficrest," %4.0f",age);         for(cpt=1; cpt<nlstate;cpt++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];         }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/       for(cpt=1; cpt<=nlstate;cpt++) {
           }          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
           epj[nlstate+1] +=epj[j];  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         }       }
      } /* end i1 */
         for(i=1, vepp=0.;i <=nlstate;i++)   }/* End k1 */
           for(j=1;j <=nlstate;j++)   fprintf(fichtm,"</ul>");
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){   fprintf(fichtm,"\
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
         }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         fprintf(ficrest,"\n");  
       }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   }   fprintf(fichtm,"\
 free_matrix(mint,1,maxwav,1,n);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     free_vector(weight,1,n);  
   fclose(ficreseij);   fprintf(fichtm,"\
   fclose(ficresvij);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fclose(ficrest);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   fclose(ficpar);   fprintf(fichtm,"\
   free_vector(epj,1,nlstate+1);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
       <a href=\"%s\">%s</a> <br>\n</li>",
   /*------- Variance limit prevalence------*/               estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
   strcpy(fileresvpl,"vpl");   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   strcat(fileresvpl,fileres);     <a href=\"%s\">%s</a> <br>\n</li>",
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   fprintf(fichtm,"\
     exit(0);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);   fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
   k=0;           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   for(cptcov=1;cptcov<=i1;cptcov++){   fprintf(fichtm,"\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       k=k+1;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /*  if(popforecast==1) fprintf(fichtm,"\n */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       fprintf(ficresvpl,"******\n");  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
        /*      <br>",fileres,fileres,fileres,fileres); */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  /*  else  */
       oldm=oldms;savm=savms;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   fflush(fichtm);
     }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
  }  
    m=cptcoveff;
   fclose(ficresvpl);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   /*---------- End : free ----------------*/   jj1=0;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);   for(k1=1; k1<=m;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       jj1++;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   free_matrix(matcov,1,npar,1,npar);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   free_vector(delti,1,npar);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   free_matrix(agev,1,maxwav,1,imx);       }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   fprintf(fichtm,"\n</body>");  true period expectancies (those weighted with period prevalences are also\
   fclose(fichtm);   drawn in addition to the population based expectancies computed using\
   fclose(ficgp);   observed and cahotic prevalences: %s%d.png<br>\
    <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
   if(erreur >0)   }/* End k1 */
     printf("End of Imach with error or warning %d\n",erreur);   fprintf(fichtm,"</ul>");
   else   printf("End of Imach\n");   fflush(fichtm);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  }
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  /******************* Gnuplot file **************/
   /*printf("Total time was %d uSec.\n", total_usecs);*/  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   /*------ End -----------*/  
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
  end:    int ng=0;
 #ifdef windows  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /* chdir(pathcd);*/  /*     printf("Problem with file %s",optionfilegnuplot); */
 #endif  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
  /*system("wgnuplot graph.plt");*/  /*   } */
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/    /*#ifdef windows */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    fprintf(ficgp,"cd \"%s\" \n",pathc);
  strcpy(plotcmd,GNUPLOTPROGRAM);      /*#endif */
  strcat(plotcmd," ");    m=pow(2,cptcoveff);
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
 #ifdef windows   /* 1eme*/
   while (z[0] != 'q') {    for (cpt=1; cpt<= nlstate ; cpt ++) {
     /* chdir(path); */     for (k1=1; k1<= m ; k1 ++) {
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     scanf("%s",z);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     if (z[0] == 'c') system("./imach");       fprintf(ficgp,"set xlabel \"Age\" \n\
     else if (z[0] == 'e') system(optionfilehtm);  set ylabel \"Probability\" \n\
     else if (z[0] == 'g') system(plotcmd);  set ter png small\n\
     else if (z[0] == 'q') exit(0);  set size 0.65,0.65\n\
   }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 #endif  
 }       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.135


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>