Diff for /imach/src/imach.c between versions 1.48 and 1.171

version 1.48, 2002/06/10 13:12:49 version 1.171, 2014/12/23 13:26:59
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.171  2014/12/23 13:26:59  brouard
      Summary: Back from Visual C
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Still problem with utsname.h on Windows
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.170  2014/12/23 11:17:12  brouard
   case of a health survey which is our main interest) -2- at least a    Summary: Cleaning some \%% back to %%
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.169  2014/12/22 23:08:31  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: 0.98p
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.168  2014/12/22 15:17:42  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Summary: update
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.167  2014/12/22 13:50:56  brouard
   you to do it.  More covariates you add, slower the    Summary: Testing uname and compiler version and if compiled 32 or 64
   convergence.  
     Testing on Linux 64
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.166  2014/12/22 11:40:47  brouard
   identical for each individual. Also, if a individual missed an    *** empty log message ***
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    * imach.c (Module): Merging 1.61 to 1.162
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.164  2014/12/16 10:52:11  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    * imach.c (Module): Merging 1.61 to 1.162
   hPijx.  
     Revision 1.163  2014/12/16 10:30:11  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Module): Merging 1.61 to 1.162
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.162  2014/09/25 11:43:39  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: temporary backup 0.99!
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.1  2014/09/16 11:06:58  brouard
   from the European Union.    Summary: With some code (wrong) for nlopt
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Author:
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.161  2014/09/15 20:41:41  brouard
      Summary: Problem with macro SQR on Intel compiler
 #include <math.h>  
 #include <stdio.h>    Revision 1.160  2014/09/02 09:24:05  brouard
 #include <stdlib.h>    *** empty log message ***
 #include <unistd.h>  
     Revision 1.159  2014/09/01 10:34:10  brouard
 #define MAXLINE 256    Summary: WIN32
 #define GNUPLOTPROGRAM "gnuplot"    Author: Brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.158  2014/08/27 17:11:51  brouard
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.157  2014/08/27 16:26:55  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: Preparing windows Visual studio version
     Author: Brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
 #define NINTERVMAX 8    just make the differences in raw time format (time(&now).
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Trying to suppress #ifdef LINUX
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add xdg-open for __linux in order to open default browser.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.156  2014/08/25 20:10:10  brouard
 #define YEARM 12. /* Number of months per year */    *** empty log message ***
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.155  2014/08/25 18:32:34  brouard
 #ifdef windows    Summary: New compile, minor changes
 #define DIRSEPARATOR '\\'    Author: Brouard
 #else  
 #define DIRSEPARATOR '/'    Revision 1.154  2014/06/20 17:32:08  brouard
 #endif    Summary: Outputs now all graphs of convergence to period prevalence
   
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Revision 1.153  2014/06/20 16:45:46  brouard
 int erreur; /* Error number */    Summary: If 3 live state, convergence to period prevalence on same graph
 int nvar;    Author: Brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.152  2014/06/18 17:54:09  brouard
 int nlstate=2; /* Number of live states */    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.151  2014/06/18 16:43:30  brouard
 int popbased=0;    *** empty log message ***
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.150  2014/06/18 16:42:35  brouard
 int maxwav; /* Maxim number of waves */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 int jmin, jmax; /* min, max spacing between 2 waves */    Author: brouard
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.149  2014/06/18 15:51:14  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Summary: Some fixes in parameter files errors
 double jmean; /* Mean space between 2 waves */    Author: Nicolas Brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.148  2014/06/17 17:38:48  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Summary: Nothing new
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Author: Brouard
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Just a new packaging for OS/X version 0.98nS
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.147  2014/06/16 10:33:11  brouard
 char fileresv[FILENAMELENGTH];    *** empty log message ***
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.146  2014/06/16 10:20:28  brouard
 char title[MAXLINE];    Summary: Merge
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Author: Brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Merge, before building revised version.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
     Revision 1.145  2014/06/10 21:23:15  brouard
 char filerest[FILENAMELENGTH];    Summary: Debugging with valgrind
 char fileregp[FILENAMELENGTH];    Author: Nicolas Brouard
 char popfile[FILENAMELENGTH];  
     Lot of changes in order to output the results with some covariates
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
 #define NR_END 1    No more memory valgrind error but a lot has to be done in order to
 #define FREE_ARG char*    continue the work of splitting the code into subroutines.
 #define FTOL 1.0e-10    Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
 #define NRANSI    the source code.
 #define ITMAX 200  
     Revision 1.143  2014/01/26 09:45:38  brouard
 #define TOL 2.0e-4    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
 #define CGOLD 0.3819660    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define ZEPS 1.0e-10    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.142  2014/01/26 03:57:36  brouard
 #define GOLD 1.618034    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 static double maxarg1,maxarg2;    Revision 1.141  2014/01/26 02:42:01  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.140  2011/09/02 10:37:54  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Summary: times.h is ok with mingw32 now.
 #define rint(a) floor(a+0.5)  
     Revision 1.139  2010/06/14 07:50:17  brouard
 static double sqrarg;    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.138  2010/04/30 18:19:40  brouard
 int imx;    *** empty log message ***
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
 int estepm;    than V1+V2. A lot of change to be done. Unstable.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.136  2010/04/26 20:30:53  brouard
 int m,nb;    (Module): merging some libgsl code. Fixing computation
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    of likelione (using inter/intrapolation if mle = 0) in order to
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    get same likelihood as if mle=1.
 double **pmmij, ***probs, ***mobaverage;    Some cleaning of code and comments added.
 double dateintmean=0;  
     Revision 1.135  2009/10/29 15:33:14  brouard
 double *weight;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.134  2009/10/29 13:18:53  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.133  2009/07/06 10:21:25  brouard
 double ftolhess; /* Tolerance for computing hessian */    just nforces
   
 /**************** split *************************/    Revision 1.132  2009/07/06 08:22:05  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Many tings
 {  
    char *s;                             /* pointer */    Revision 1.131  2009/06/20 16:22:47  brouard
    int  l1, l2;                         /* length counters */    Some dimensions resccaled
   
    l1 = strlen( path );                 /* length of path */    Revision 1.130  2009/05/26 06:44:34  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Max Covariate is now set to 20 instead of 8. A
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    lot of cleaning with variables initialized to 0. Trying to make
    if ( s == NULL ) {                   /* no directory, so use current */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.128  2006/06/30 13:02:05  brouard
       extern char       *getcwd( );    (Module): Clarifications on computing e.j
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.127  2006/04/28 18:11:50  brouard
 #endif    (Module): Yes the sum of survivors was wrong since
          return( GLOCK_ERROR_GETCWD );    imach-114 because nhstepm was no more computed in the age
       }    loop. Now we define nhstepma in the age loop.
       strcpy( name, path );             /* we've got it */    (Module): In order to speed up (in case of numerous covariates) we
    } else {                             /* strip direcotry from path */    compute health expectancies (without variances) in a first step
       s++;                              /* after this, the filename */    and then all the health expectancies with variances or standard
       l2 = strlen( s );                 /* length of filename */    deviation (needs data from the Hessian matrices) which slows the
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    computation.
       strcpy( name, s );                /* save file name */    In the future we should be able to stop the program is only health
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    expectancies and graph are needed without standard deviations.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.126  2006/04/28 17:23:28  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): Yes the sum of survivors was wrong since
 #ifdef windows    imach-114 because nhstepm was no more computed in the age
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    loop. Now we define nhstepma in the age loop.
 #else    Version 0.98h
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.125  2006/04/04 15:20:31  lievre
    s = strrchr( name, '.' );            /* find last / */    Errors in calculation of health expectancies. Age was not initialized.
    s++;    Forecasting file added.
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.124  2006/03/22 17:13:53  lievre
    l2= strlen( s)+1;    Parameters are printed with %lf instead of %f (more numbers after the comma).
    strncpy( finame, name, l1-l2);    The log-likelihood is printed in the log file
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.123  2006/03/20 10:52:43  brouard
 }    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
   
 /******************************************/    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 void replace(char *s, char*t)    otherwise the weight is truncated).
 {    Modification of warning when the covariates values are not 0 or
   int i;    1.
   int lg=20;    Version 0.98g
   i=0;  
   lg=strlen(t);    Revision 1.122  2006/03/20 09:45:41  brouard
   for(i=0; i<= lg; i++) {    (Module): Weights can have a decimal point as for
     (s[i] = t[i]);    English (a comma might work with a correct LC_NUMERIC environment,
     if (t[i]== '\\') s[i]='/';    otherwise the weight is truncated).
   }    Modification of warning when the covariates values are not 0 or
 }    1.
     Version 0.98g
 int nbocc(char *s, char occ)  
 {    Revision 1.121  2006/03/16 17:45:01  lievre
   int i,j=0;    * imach.c (Module): Comments concerning covariates added
   int lg=20;  
   i=0;    * imach.c (Module): refinements in the computation of lli if
   lg=strlen(s);    status=-2 in order to have more reliable computation if stepm is
   for(i=0; i<= lg; i++) {    not 1 month. Version 0.98f
   if  (s[i] == occ ) j++;  
   }    Revision 1.120  2006/03/16 15:10:38  lievre
   return j;    (Module): refinements in the computation of lli if
 }    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.119  2006/03/15 17:42:26  brouard
   int i,lg,j,p=0;    (Module): Bug if status = -2, the loglikelihood was
   i=0;    computed as likelihood omitting the logarithm. Version O.98e
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.118  2006/03/14 18:20:07  brouard
   }    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   lg=strlen(t);    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   for(j=0; j<p; j++) {    (Module): Function pstamp added
     (u[j] = t[j]);    (Module): Version 0.98d
   }  
      u[p]='\0';    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
    for(j=0; j<= lg; j++) {    table of variances if popbased=1 .
     if (j>=(p+1))(v[j-p-1] = t[j]);    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   }    (Module): Function pstamp added
 }    (Module): Version 0.98d
   
 /********************** nrerror ********************/    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 void nrerror(char error_text[])    varian-covariance of ej. is needed (Saito).
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.115  2006/02/27 12:17:45  brouard
   fprintf(stderr,"%s\n",error_text);    (Module): One freematrix added in mlikeli! 0.98c
   exit(1);  
 }    Revision 1.114  2006/02/26 12:57:58  brouard
 /*********************** vector *******************/    (Module): Some improvements in processing parameter
 double *vector(int nl, int nh)    filename with strsep.
 {  
   double *v;    Revision 1.113  2006/02/24 14:20:24  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): Memory leaks checks with valgrind and:
   if (!v) nrerror("allocation failure in vector");    datafile was not closed, some imatrix were not freed and on matrix
   return v-nl+NR_END;    allocation too.
 }  
     Revision 1.112  2006/01/30 09:55:26  brouard
 /************************ free vector ******************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.111  2006/01/25 20:38:18  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Lots of cleaning and bugs added (Gompertz)
 }    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.110  2006/01/25 00:51:50  brouard
 {    (Module): Lots of cleaning and bugs added (Gompertz)
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.109  2006/01/24 19:37:15  brouard
   if (!v) nrerror("allocation failure in ivector");    (Module): Comments (lines starting with a #) are allowed in data.
   return v-nl+NR_END;  
 }    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 /******************free ivector **************************/    To be fixed
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.107  2006/01/19 16:20:37  brouard
   free((FREE_ARG)(v+nl-NR_END));    Test existence of gnuplot in imach path
 }  
     Revision 1.106  2006/01/19 13:24:36  brouard
 /******************* imatrix *******************************/    Some cleaning and links added in html output
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.105  2006/01/05 20:23:19  lievre
 {    *** empty log message ***
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.104  2005/09/30 16:11:43  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
   /* allocate pointers to rows */    (Module): If the status is missing at the last wave but we know
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    that the person is alive, then we can code his/her status as -2
   if (!m) nrerror("allocation failure 1 in matrix()");    (instead of missing=-1 in earlier versions) and his/her
   m += NR_END;    contributions to the likelihood is 1 - Prob of dying from last
   m -= nrl;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
      the healthy state at last known wave). Version is 0.98
    
   /* allocate rows and set pointers to them */    Revision 1.103  2005/09/30 15:54:49  lievre
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): sump fixed, loop imx fixed, and simplifications.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.102  2004/09/15 17:31:30  brouard
   m[nrl] -= ncl;    Add the possibility to read data file including tab characters.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.101  2004/09/15 10:38:38  brouard
      Fix on curr_time
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.100  2004/07/12 18:29:06  brouard
 }    Add version for Mac OS X. Just define UNIX in Makefile
   
 /****************** free_imatrix *************************/    Revision 1.99  2004/06/05 08:57:40  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    *** empty log message ***
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.98  2004/05/16 15:05:56  brouard
      /* free an int matrix allocated by imatrix() */    New version 0.97 . First attempt to estimate force of mortality
 {    directly from the data i.e. without the need of knowing the health
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    state at each age, but using a Gompertz model: log u =a + b*age .
   free((FREE_ARG) (m+nrl-NR_END));    This is the basic analysis of mortality and should be done before any
 }    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 /******************* matrix *******************************/    from other sources like vital statistic data.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    The same imach parameter file can be used but the option for mle should be -3.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    The output is very simple: only an estimate of the intercept and of
   m += NR_END;    the slope with 95% confident intervals.
   m -= nrl;  
     Current limitations:
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    A) Even if you enter covariates, i.e. with the
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   m[nrl] += NR_END;    B) There is no computation of Life Expectancy nor Life Table.
   m[nrl] -= ncl;  
     Revision 1.97  2004/02/20 13:25:42  lievre
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Version 0.96d. Population forecasting command line is (temporarily)
   return m;    suppressed.
 }  
     Revision 1.96  2003/07/15 15:38:55  brouard
 /*************************free matrix ************************/    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    rewritten within the same printf. Workaround: many printfs.
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.95  2003/07/08 07:54:34  brouard
   free((FREE_ARG)(m+nrl-NR_END));    * imach.c (Repository):
 }    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.94  2003/06/27 13:00:02  brouard
 {    Just cleaning
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    exist so I changed back to asctime which exists.
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Version 0.96b
   m += NR_END;  
   m -= nrl;    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    exist so I changed back to asctime which exists.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.91  2003/06/25 15:30:29  brouard
   m[nrl] -= ncl;    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    concerning matrix of covariance. It has extension -cov.htm.
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    Revision 1.90  2003/06/24 12:34:15  brouard
   m[nrl][ncl] -= nll;    (Module): Some bugs corrected for windows. Also, when
   for (j=ncl+1; j<=nch; j++)    mle=-1 a template is output in file "or"mypar.txt with the design
     m[nrl][j]=m[nrl][j-1]+nlay;    of the covariance matrix to be input.
    
   for (i=nrl+1; i<=nrh; i++) {    Revision 1.89  2003/06/24 12:30:52  brouard
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    (Module): Some bugs corrected for windows. Also, when
     for (j=ncl+1; j<=nch; j++)    mle=-1 a template is output in file "or"mypar.txt with the design
       m[i][j]=m[i][j-1]+nlay;    of the covariance matrix to be input.
   }  
   return m;    Revision 1.88  2003/06/23 17:54:56  brouard
 }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 /*************************free ma3x ************************/    Revision 1.87  2003/06/18 12:26:01  brouard
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Version 0.96
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.86  2003/06/17 20:04:08  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): Change position of html and gnuplot routines and added
   free((FREE_ARG)(m+nrl-NR_END));    routine fileappend.
 }  
     Revision 1.85  2003/06/17 13:12:43  brouard
 /***************** f1dim *************************/    * imach.c (Repository): Check when date of death was earlier that
 extern int ncom;    current date of interview. It may happen when the death was just
 extern double *pcom,*xicom;    prior to the death. In this case, dh was negative and likelihood
 extern double (*nrfunc)(double []);    was wrong (infinity). We still send an "Error" but patch by
      assuming that the date of death was just one stepm after the
 double f1dim(double x)    interview.
 {    (Repository): Because some people have very long ID (first column)
   int j;    we changed int to long in num[] and we added a new lvector for
   double f;    memory allocation. But we also truncated to 8 characters (left
   double *xt;    truncation)
      (Repository): No more line truncation errors.
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.84  2003/06/13 21:44:43  brouard
   f=(*nrfunc)(xt);    * imach.c (Repository): Replace "freqsummary" at a correct
   free_vector(xt,1,ncom);    place. It differs from routine "prevalence" which may be called
   return f;    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Revision 1.83  2003/06/10 13:39:11  lievre
 {    *** empty log message ***
   int iter;  
   double a,b,d,etemp;    Revision 1.82  2003/06/05 15:57:20  brouard
   double fu,fv,fw,fx;    Add log in  imach.c and  fullversion number is now printed.
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  */
   double e=0.0;  /*
       Interpolated Markov Chain
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    Short summary of the programme:
   x=w=v=bx;    
   fw=fv=fx=(*f)(x);    This program computes Healthy Life Expectancies from
   for (iter=1;iter<=ITMAX;iter++) {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     xm=0.5*(a+b);    first survey ("cross") where individuals from different ages are
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    interviewed on their health status or degree of disability (in the
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    case of a health survey which is our main interest) -2- at least a
     printf(".");fflush(stdout);    second wave of interviews ("longitudinal") which measure each change
 #ifdef DEBUG    (if any) in individual health status.  Health expectancies are
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    computed from the time spent in each health state according to a
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    model. More health states you consider, more time is necessary to reach the
 #endif    Maximum Likelihood of the parameters involved in the model.  The
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    simplest model is the multinomial logistic model where pij is the
       *xmin=x;    probability to be observed in state j at the second wave
       return fx;    conditional to be observed in state i at the first wave. Therefore
     }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     ftemp=fu;    'age' is age and 'sex' is a covariate. If you want to have a more
     if (fabs(e) > tol1) {    complex model than "constant and age", you should modify the program
       r=(x-w)*(fx-fv);    where the markup *Covariates have to be included here again* invites
       q=(x-v)*(fx-fw);    you to do it.  More covariates you add, slower the
       p=(x-v)*q-(x-w)*r;    convergence.
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    The advantage of this computer programme, compared to a simple
       q=fabs(q);    multinomial logistic model, is clear when the delay between waves is not
       etemp=e;    identical for each individual. Also, if a individual missed an
       e=d;    intermediate interview, the information is lost, but taken into
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    account using an interpolation or extrapolation.  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    hPijx is the probability to be observed in state i at age x+h
         d=p/q;    conditional to the observed state i at age x. The delay 'h' can be
         u=x+d;    split into an exact number (nh*stepm) of unobserved intermediate
         if (u-a < tol2 || b-u < tol2)    states. This elementary transition (by month, quarter,
           d=SIGN(tol1,xm-x);    semester or year) is modelled as a multinomial logistic.  The hPx
       }    matrix is simply the matrix product of nh*stepm elementary matrices
     } else {    and the contribution of each individual to the likelihood is simply
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    hPijx.
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    Also this programme outputs the covariance matrix of the parameters but also
     fu=(*f)(u);    of the life expectancies. It also computes the period (stable) prevalence. 
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       SHFT(v,w,x,u)             Institut national d'études démographiques, Paris.
         SHFT(fv,fw,fx,fu)    This software have been partly granted by Euro-REVES, a concerted action
         } else {    from the European Union.
           if (u < x) a=u; else b=u;    It is copyrighted identically to a GNU software product, ie programme and
           if (fu <= fw || w == x) {    software can be distributed freely for non commercial use. Latest version
             v=w;    can be accessed at http://euroreves.ined.fr/imach .
             w=u;  
             fv=fw;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
             fw=fu;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
           } else if (fu <= fv || v == x || v == w) {    
             v=u;    **********************************************************************/
             fv=fu;  /*
           }    main
         }    read parameterfile
   }    read datafile
   nrerror("Too many iterations in brent");    concatwav
   *xmin=x;    freqsummary
   return fx;    if (mle >= 1)
 }      mlikeli
     print results files
 /****************** mnbrak ***********************/    if mle==1 
        computes hessian
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    read end of parameter file: agemin, agemax, bage, fage, estepm
             double (*func)(double))        begin-prev-date,...
 {    open gnuplot file
   double ulim,u,r,q, dum;    open html file
   double fu;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   *fa=(*func)(*ax);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   *fb=(*func)(*bx);      freexexit2 possible for memory heap.
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    h Pij x                         | pij_nom  ficrestpij
       SHFT(dum,*fb,*fa,dum)     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       }         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   *cx=(*bx)+GOLD*(*bx-*ax);         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   *fc=(*func)(*cx);  
   while (*fb > *fc) {         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
     r=(*bx-*ax)*(*fb-*fc);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     q=(*bx-*cx)*(*fb-*fa);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    forecasting if prevfcast==1 prevforecast call prevalence()
       fu=(*func)(u);    health expectancies
     } else if ((*cx-u)*(u-ulim) > 0.0) {    Variance-covariance of DFLE
       fu=(*func)(u);    prevalence()
       if (fu < *fc) {     movingaverage()
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    varevsij() 
           SHFT(*fb,*fc,fu,(*func)(u))    if popbased==1 varevsij(,popbased)
           }    total life expectancies
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    Variance of period (stable) prevalence
       u=ulim;   end
       fu=(*func)(u);  */
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  #define POWELL /* Instead of NLOPT */
       fu=(*func)(u);  
     }  #include <math.h>
     SHFT(*ax,*bx,*cx,u)  #include <stdio.h>
       SHFT(*fa,*fb,*fc,fu)  #include <stdlib.h>
       }  #include <string.h>
 }  
   #ifdef _WIN32
 /*************** linmin ************************/  #include <io.h>
   #else
 int ncom;  #include <unistd.h>
 double *pcom,*xicom;  #endif
 double (*nrfunc)(double []);  
    #include <limits.h>
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #include <sys/types.h>
 {  
   double brent(double ax, double bx, double cx,  #if defined(__GNUC__)
                double (*f)(double), double tol, double *xmin);  #include <sys/utsname.h> /* Doesn't work on Windows */
   double f1dim(double x);  #endif
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  #include <sys/stat.h>
   int j;  #include <errno.h>
   double xx,xmin,bx,ax;  /* extern int errno; */
   double fx,fb,fa;  
    /* #ifdef LINUX */
   ncom=n;  /* #include <time.h> */
   pcom=vector(1,n);  /* #include "timeval.h" */
   xicom=vector(1,n);  /* #else */
   nrfunc=func;  /* #include <sys/time.h> */
   for (j=1;j<=n;j++) {  /* #endif */
     pcom[j]=p[j];  
     xicom[j]=xi[j];  #include <time.h>
   }  
   ax=0.0;  #ifdef GSL
   xx=1.0;  #include <gsl/gsl_errno.h>
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #include <gsl/gsl_multimin.h>
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #endif
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  #ifdef NLOPT
   for (j=1;j<=n;j++) {  #include <nlopt.h>
     xi[j] *= xmin;  typedef struct {
     p[j] += xi[j];    double (* function)(double [] );
   }  } myfunc_data ;
   free_vector(xicom,1,n);  #endif
   free_vector(pcom,1,n);  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
             double (*func)(double []))  
 {  #define GNUPLOTPROGRAM "gnuplot"
   void linmin(double p[], double xi[], int n, double *fret,  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
               double (*func)(double []));  #define FILENAMELENGTH 132
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double fp,fptt;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double *xits;  
   pt=vector(1,n);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   ptt=vector(1,n);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   xit=vector(1,n);  
   xits=vector(1,n);  #define NINTERVMAX 8
   *fret=(*func)(p);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   for (j=1;j<=n;j++) pt[j]=p[j];  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   for (*iter=1;;++(*iter)) {  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     fp=(*fret);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
     ibig=0;  #define MAXN 20000
     del=0.0;  #define YEARM 12. /**< Number of months per year */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #define AGESUP 130
     for (i=1;i<=n;i++)  #define AGEBASE 40
       printf(" %d %.12f",i, p[i]);  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
     printf("\n");  #ifdef _WIN32
     for (i=1;i<=n;i++) {  #define DIRSEPARATOR '\\'
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #define CHARSEPARATOR "\\"
       fptt=(*fret);  #define ODIRSEPARATOR '/'
 #ifdef DEBUG  #else
       printf("fret=%lf \n",*fret);  #define DIRSEPARATOR '/'
 #endif  #define CHARSEPARATOR "/"
       printf("%d",i);fflush(stdout);  #define ODIRSEPARATOR '\\'
       linmin(p,xit,n,fret,func);  #endif
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  /* $Id$ */
         ibig=i;  /* $State$ */
       }  
 #ifdef DEBUG  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       printf("%d %.12e",i,(*fret));  char fullversion[]="$Revision$ $Date$"; 
       for (j=1;j<=n;j++) {  char strstart[80];
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         printf(" x(%d)=%.12e",j,xit[j]);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       }  int nvar=0, nforce=0; /* Number of variables, number of forces */
       for(j=1;j<=n;j++)  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
         printf(" p=%.12e",p[j]);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       printf("\n");  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 #endif  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     }  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 #ifdef DEBUG  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       int k[2],l;  int cptcov=0; /* Working variable */
       k[0]=1;  int npar=NPARMAX;
       k[1]=-1;  int nlstate=2; /* Number of live states */
       printf("Max: %.12e",(*func)(p));  int ndeath=1; /* Number of dead states */
       for (j=1;j<=n;j++)  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
         printf(" %.12e",p[j]);  int popbased=0;
       printf("\n");  
       for(l=0;l<=1;l++) {  int *wav; /* Number of waves for this individuual 0 is possible */
         for (j=1;j<=n;j++) {  int maxwav=0; /* Maxim number of waves */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
         }  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));                     to the likelihood and the sum of weights (done by funcone)*/
       }  int mle=1, weightopt=0;
 #endif  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       free_vector(xit,1,n);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       free_vector(xits,1,n);  int countcallfunc=0;  /* Count the number of calls to func */
       free_vector(ptt,1,n);  double jmean=1; /* Mean space between 2 waves */
       free_vector(pt,1,n);  double **matprod2(); /* test */
       return;  double **oldm, **newm, **savm; /* Working pointers to matrices */
     }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /*FILE *fic ; */ /* Used in readdata only */
     for (j=1;j<=n;j++) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       ptt[j]=2.0*p[j]-pt[j];  FILE *ficlog, *ficrespow;
       xit[j]=p[j]-pt[j];  int globpr=0; /* Global variable for printing or not */
       pt[j]=p[j];  double fretone; /* Only one call to likelihood */
     }  long ipmx=0; /* Number of contributions */
     fptt=(*func)(ptt);  double sw; /* Sum of weights */
     if (fptt < fp) {  char filerespow[FILENAMELENGTH];
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       if (t < 0.0) {  FILE *ficresilk;
         linmin(p,xit,n,fret,func);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
         for (j=1;j<=n;j++) {  FILE *ficresprobmorprev;
           xi[j][ibig]=xi[j][n];  FILE *fichtm, *fichtmcov; /* Html File */
           xi[j][n]=xit[j];  FILE *ficreseij;
         }  char filerese[FILENAMELENGTH];
 #ifdef DEBUG  FILE *ficresstdeij;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  char fileresstde[FILENAMELENGTH];
         for(j=1;j<=n;j++)  FILE *ficrescveij;
           printf(" %.12e",xit[j]);  char filerescve[FILENAMELENGTH];
         printf("\n");  FILE  *ficresvij;
 #endif  char fileresv[FILENAMELENGTH];
       }  FILE  *ficresvpl;
     }  char fileresvpl[FILENAMELENGTH];
   }  char title[MAXLINE];
 }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 /**** Prevalence limit ****************/  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  int  outcmd=0;
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
      matrix by transitions matrix until convergence is reached */  
   char filelog[FILENAMELENGTH]; /* Log file */
   int i, ii,j,k;  char filerest[FILENAMELENGTH];
   double min, max, maxmin, maxmax,sumnew=0.;  char fileregp[FILENAMELENGTH];
   double **matprod2();  char popfile[FILENAMELENGTH];
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   for (ii=1;ii<=nlstate+ndeath;ii++)  /* struct timezone tzp; */
     for (j=1;j<=nlstate+ndeath;j++){  /* extern int gettimeofday(); */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  struct tm tml, *gmtime(), *localtime();
     }  
   extern time_t time();
    cov[1]=1.;  
    struct tm start_time, end_time, curr_time, last_time, forecast_time;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  struct tm tm;
     newm=savm;  
     /* Covariates have to be included here again */  char strcurr[80], strfor[80];
      cov[2]=agefin;  
    char *endptr;
       for (k=1; k<=cptcovn;k++) {  long lval;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double dval;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  #define NR_END 1
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #define FREE_ARG char*
       for (k=1; k<=cptcovprod;k++)  #define FTOL 1.0e-10
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   #define NRANSI 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #define ITMAX 200 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #define TOL 2.0e-4 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   #define CGOLD 0.3819660 
     savm=oldm;  #define ZEPS 1.0e-10 
     oldm=newm;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  #define GOLD 1.618034 
       min=1.;  #define GLIMIT 100.0 
       max=0.;  #define TINY 1.0e-20 
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  static double maxarg1,maxarg2;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         prlim[i][j]= newm[i][j]/(1-sumnew);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         max=FMAX(max,prlim[i][j]);    
         min=FMIN(min,prlim[i][j]);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       }  #define rint(a) floor(a+0.5)
       maxmin=max-min;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
       maxmax=FMAX(maxmax,maxmin);  /* #define mytinydouble 1.0e-16 */
     }  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     if(maxmax < ftolpl){  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
       return prlim;  /* static double dsqrarg; */
     }  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   }  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /*************** transition probabilities ***************/  int agegomp= AGEGOMP;
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  int imx; 
 {  int stepm=1;
   double s1, s2;  /* Stepm, step in month: minimum step interpolation*/
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  int m,nb;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  long *num;
         /*s2 += param[i][j][nc]*cov[nc];*/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  double **pmmij, ***probs;
       }  double *ageexmed,*agecens;
       ps[i][j]=s2;  double dateintmean=0;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  double *weight;
     for(j=i+1; j<=nlstate+ndeath;j++){  int **s; /* Status */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double *agedc;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/                    * covar=matrix(0,NCOVMAX,1,n); 
       }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       ps[i][j]=s2;  double  idx; 
     }  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   }  int *Ndum; /** Freq of modality (tricode */
     /*ps[3][2]=1;*/  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for(i=1; i<= nlstate; i++){  double *lsurv, *lpop, *tpop;
      s1=0;  
     for(j=1; j<i; j++)  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       s1+=exp(ps[i][j]);  double ftolhess; /**< Tolerance for computing hessian */
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  /**************** split *************************/
     ps[i][i]=1./(s1+1.);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     for(j=1; j<i; j++)  {
       ps[i][j]= exp(ps[i][j])*ps[i][i];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     for(j=i+1; j<=nlstate+ndeath; j++)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       ps[i][j]= exp(ps[i][j])*ps[i][i];    */ 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    char  *ss;                            /* pointer */
   } /* end i */    int   l1, l2;                         /* length counters */
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    l1 = strlen(path );                   /* length of path */
     for(jj=1; jj<= nlstate+ndeath; jj++){    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       ps[ii][jj]=0;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       ps[ii][ii]=1;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     }      strcpy( name, path );               /* we got the fullname name because no directory */
   }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      /*    extern  char* getcwd ( char *buf , int len);*/
     for(jj=1; jj<= nlstate+ndeath; jj++){      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
      printf("%lf ",ps[ii][jj]);        return( GLOCK_ERROR_GETCWD );
    }      }
     printf("\n ");      /* got dirc from getcwd*/
     }      printf(" DIRC = %s \n",dirc);
     printf("\n ");printf("%lf ",cov[2]);*/    } else {                              /* strip direcotry from path */
 /*      ss++;                               /* after this, the filename */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      l2 = strlen( ss );                  /* length of filename */
   goto end;*/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     return ps;      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /**************** Product of 2 matrices ******************/      printf(" DIRC2 = %s \n",dirc);
     }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    /* We add a separator at the end of dirc if not exists */
 {    l1 = strlen( dirc );                  /* length of directory */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    if( dirc[l1-1] != DIRSEPARATOR ){
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      dirc[l1] =  DIRSEPARATOR;
   /* in, b, out are matrice of pointers which should have been initialized      dirc[l1+1] = 0; 
      before: only the contents of out is modified. The function returns      printf(" DIRC3 = %s \n",dirc);
      a pointer to pointers identical to out */    }
   long i, j, k;    ss = strrchr( name, '.' );            /* find last / */
   for(i=nrl; i<= nrh; i++)    if (ss >0){
     for(k=ncolol; k<=ncoloh; k++)      ss++;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      strcpy(ext,ss);                     /* save extension */
         out[i][k] +=in[i][j]*b[j][k];      l1= strlen( name);
       l2= strlen(ss)+1;
   return out;      strncpy( finame, name, l1-l2);
 }      finame[l1-l2]= 0;
     }
   
 /************* Higher Matrix Product ***************/    return( 0 );                          /* we're done */
   }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /******************************************/
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  void replace_back_to_slash(char *s, char*t)
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  {
      (typically every 2 years instead of every month which is too big).    int i;
      Model is determined by parameters x and covariates have to be    int lg=0;
      included manually here.    i=0;
     lg=strlen(t);
      */    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
   int i, j, d, h, k;      if (t[i]== '\\') s[i]='/';
   double **out, cov[NCOVMAX];    }
   double **newm;  }
   
   /* Hstepm could be zero and should return the unit matrix */  char *trimbb(char *out, char *in)
   for (i=1;i<=nlstate+ndeath;i++)  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     for (j=1;j<=nlstate+ndeath;j++){    char *s;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    s=out;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    while (*in != '\0'){
     }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        in++;
   for(h=1; h <=nhstepm; h++){      }
     for(d=1; d <=hstepm; d++){      *out++ = *in++;
       newm=savm;    }
       /* Covariates have to be included here again */    *out='\0';
       cov[1]=1.;    return s;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  char *cutl(char *blocc, char *alocc, char *in, char occ)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns blocc
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    char *s, *t;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    t=in;s=in;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    while ((*in != occ) && (*in != '\0')){
       savm=oldm;      *alocc++ = *in++;
       oldm=newm;    }
     }    if( *in == occ){
     for(i=1; i<=nlstate+ndeath; i++)      *(alocc)='\0';
       for(j=1;j<=nlstate+ndeath;j++) {      s=++in;
         po[i][j][h]=newm[i][j];    }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);   
          */    if (s == t) {/* occ not found */
       }      *(alocc-(in-s))='\0';
   } /* end h */      in=s;
   return po;    }
 }    while ( *in != '\0'){
       *blocc++ = *in++;
     }
 /*************** log-likelihood *************/  
 double func( double *x)    *blocc='\0';
 {    return t;
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  char *cutv(char *blocc, char *alocc, char *in, char occ)
   double **out;  {
   double sw; /* Sum of weights */    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   double lli; /* Individual log likelihood */       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   long ipmx;       gives blocc="abcdef2ghi" and alocc="j".
   /*extern weight */       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   /* We are differentiating ll according to initial status */    */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    char *s, *t;
   /*for(i=1;i<imx;i++)    t=in;s=in;
     printf(" %d\n",s[4][i]);    while (*in != '\0'){
   */      while( *in == occ){
   cov[1]=1.;        *blocc++ = *in++;
         s=in;
   for(k=1; k<=nlstate; k++) ll[k]=0.;      }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      *blocc++ = *in++;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    }
     for(mi=1; mi<= wav[i]-1; mi++){    if (s == t) /* occ not found */
       for (ii=1;ii<=nlstate+ndeath;ii++)      *(blocc-(in-s))='\0';
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    else
       for(d=0; d<dh[mi][i]; d++){      *(blocc-(in-s)-1)='\0';
         newm=savm;    in=s;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    while ( *in != '\0'){
         for (kk=1; kk<=cptcovage;kk++) {      *alocc++ = *in++;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    }
         }  
            *alocc='\0';
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    return s;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  }
         savm=oldm;  
         oldm=newm;  int nbocc(char *s, char occ)
          {
            int i,j=0;
       } /* end mult */    int lg=20;
          i=0;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    lg=strlen(s);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    for(i=0; i<= lg; i++) {
       ipmx +=1;    if  (s[i] == occ ) j++;
       sw += weight[i];    }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    return j;
     } /* end of wave */  }
   } /* end of individual */  
   /* void cutv(char *u,char *v, char*t, char occ) */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /* { */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   return -l;  /*      gives u="abcdef2ghi" and v="j" *\/ */
 }  /*   int i,lg,j,p=0; */
   /*   i=0; */
   /*   lg=strlen(t); */
 /*********** Maximum Likelihood Estimation ***************/  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*   } */
 {  
   int i,j, iter;  /*   for(j=0; j<p; j++) { */
   double **xi,*delti;  /*     (u[j] = t[j]); */
   double fret;  /*   } */
   xi=matrix(1,npar,1,npar);  /*      u[p]='\0'; */
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  /*    for(j=0; j<= lg; j++) { */
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   printf("Powell\n");  /*   } */
   powell(p,xi,npar,ftol,&iter,&fret,func);  /* } */
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  #ifdef _WIN32
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  char * strsep(char **pp, const char *delim)
   {
 }    char *p, *q;
            
 /**** Computes Hessian and covariance matrix ***/    if ((p = *pp) == NULL)
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      return 0;
 {    if ((q = strpbrk (p, delim)) != NULL)
   double  **a,**y,*x,pd;    {
   double **hess;      *pp = q + 1;
   int i, j,jk;      *q = '\0';
   int *indx;    }
     else
   double hessii(double p[], double delta, int theta, double delti[]);      *pp = 0;
   double hessij(double p[], double delti[], int i, int j);    return p;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  #endif
   
   hess=matrix(1,npar,1,npar);  /********************** nrerror ********************/
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  void nrerror(char error_text[])
   for (i=1;i<=npar;i++){  {
     printf("%d",i);fflush(stdout);    fprintf(stderr,"ERREUR ...\n");
     hess[i][i]=hessii(p,ftolhess,i,delti);    fprintf(stderr,"%s\n",error_text);
     /*printf(" %f ",p[i]);*/    exit(EXIT_FAILURE);
     /*printf(" %lf ",hess[i][i]);*/  }
   }  /*********************** vector *******************/
    double *vector(int nl, int nh)
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++)  {    double *v;
       if (j>i) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         printf(".%d%d",i,j);fflush(stdout);    if (!v) nrerror("allocation failure in vector");
         hess[i][j]=hessij(p,delti,i,j);    return v-nl+NR_END;
         hess[j][i]=hess[i][j];      }
         /*printf(" %lf ",hess[i][j]);*/  
       }  /************************ free vector ******************/
     }  void free_vector(double*v, int nl, int nh)
   }  {
   printf("\n");    free((FREE_ARG)(v+nl-NR_END));
   }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
    /************************ivector *******************************/
   a=matrix(1,npar,1,npar);  int *ivector(long nl,long nh)
   y=matrix(1,npar,1,npar);  {
   x=vector(1,npar);    int *v;
   indx=ivector(1,npar);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (i=1;i<=npar;i++)    if (!v) nrerror("allocation failure in ivector");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    return v-nl+NR_END;
   ludcmp(a,npar,indx,&pd);  }
   
   for (j=1;j<=npar;j++) {  /******************free ivector **************************/
     for (i=1;i<=npar;i++) x[i]=0;  void free_ivector(int *v, long nl, long nh)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=npar;i++){  }
       matcov[i][j]=x[i];  
     }  /************************lvector *******************************/
   }  long *lvector(long nl,long nh)
   {
   printf("\n#Hessian matrix#\n");    long *v;
   for (i=1;i<=npar;i++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     for (j=1;j<=npar;j++) {    if (!v) nrerror("allocation failure in ivector");
       printf("%.3e ",hess[i][j]);    return v-nl+NR_END;
     }  }
     printf("\n");  
   }  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
   /* Recompute Inverse */  {
   for (i=1;i<=npar;i++)    free((FREE_ARG)(v+nl-NR_END));
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   /******************* imatrix *******************************/
   /*  printf("\n#Hessian matrix recomputed#\n");  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (j=1;j<=npar;j++) {  { 
     for (i=1;i<=npar;i++) x[i]=0;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     x[j]=1;    int **m; 
     lubksb(a,npar,indx,x);    
     for (i=1;i<=npar;i++){    /* allocate pointers to rows */ 
       y[i][j]=x[i];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       printf("%.3e ",y[i][j]);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     }    m += NR_END; 
     printf("\n");    m -= nrl; 
   }    
   */    
     /* allocate rows and set pointers to them */ 
   free_matrix(a,1,npar,1,npar);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   free_matrix(y,1,npar,1,npar);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   free_vector(x,1,npar);    m[nrl] += NR_END; 
   free_ivector(indx,1,npar);    m[nrl] -= ncl; 
   free_matrix(hess,1,npar,1,npar);    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 }    /* return pointer to array of pointers to rows */ 
     return m; 
 /*************** hessian matrix ****************/  } 
 double hessii( double x[], double delta, int theta, double delti[])  
 {  /****************** free_imatrix *************************/
   int i;  void free_imatrix(m,nrl,nrh,ncl,nch)
   int l=1, lmax=20;        int **m;
   double k1,k2;        long nch,ncl,nrh,nrl; 
   double p2[NPARMAX+1];       /* free an int matrix allocated by imatrix() */ 
   double res;  { 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double fx;    free((FREE_ARG) (m+nrl-NR_END)); 
   int k=0,kmax=10;  } 
   double l1;  
   /******************* matrix *******************************/
   fx=func(x);  double **matrix(long nrl, long nrh, long ncl, long nch)
   for (i=1;i<=npar;i++) p2[i]=x[i];  {
   for(l=0 ; l <=lmax; l++){    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     l1=pow(10,l);    double **m;
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       delt = delta*(l1*k);    if (!m) nrerror("allocation failure 1 in matrix()");
       p2[theta]=x[theta] +delt;    m += NR_END;
       k1=func(p2)-fx;    m -= nrl;
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       /*res= (k1-2.0*fx+k2)/delt/delt; */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    m[nrl] += NR_END;
          m[nrl] -= ncl;
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif    return m;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
         k=kmax;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       }     */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  }
         k=kmax; l=lmax*10.;  
       }  /*************************free matrix ************************/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         delts=delt;  {
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   delti[theta]=delts;  
   return res;  /******************* ma3x *******************************/
    double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 }  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 double hessij( double x[], double delti[], int thetai,int thetaj)    double ***m;
 {  
   int i;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int l=1, l1, lmax=20;    if (!m) nrerror("allocation failure 1 in matrix()");
   double k1,k2,k3,k4,res,fx;    m += NR_END;
   double p2[NPARMAX+1];    m -= nrl;
   int k;  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   fx=func(x);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (k=1; k<=2; k++) {    m[nrl] += NR_END;
     for (i=1;i<=npar;i++) p2[i]=x[i];    m[nrl] -= ncl;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     k1=func(p2)-fx;  
      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     p2[thetai]=x[thetai]+delti[thetai]/k;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    m[nrl][ncl] += NR_END;
     k2=func(p2)-fx;    m[nrl][ncl] -= nll;
      for (j=ncl+1; j<=nch; j++) 
     p2[thetai]=x[thetai]-delti[thetai]/k;      m[nrl][j]=m[nrl][j-1]+nlay;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    
     k3=func(p2)-fx;    for (i=nrl+1; i<=nrh; i++) {
        m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     p2[thetai]=x[thetai]-delti[thetai]/k;      for (j=ncl+1; j<=nch; j++) 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        m[i][j]=m[i][j-1]+nlay;
     k4=func(p2)-fx;    }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    return m; 
 #ifdef DEBUG    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 #endif    */
   }  }
   return res;  
 }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 /************** Inverse of matrix **************/  {
 void ludcmp(double **a, int n, int *indx, double *d)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   int i,imax,j,k;    free((FREE_ARG)(m+nrl-NR_END));
   double big,dum,sum,temp;  }
   double *vv;  
    /*************** function subdirf ***********/
   vv=vector(1,n);  char *subdirf(char fileres[])
   *d=1.0;  {
   for (i=1;i<=n;i++) {    /* Caution optionfilefiname is hidden */
     big=0.0;    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=n;j++)    strcat(tmpout,"/"); /* Add to the right */
       if ((temp=fabs(a[i][j])) > big) big=temp;    strcat(tmpout,fileres);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    return tmpout;
     vv[i]=1.0/big;  }
   }  
   for (j=1;j<=n;j++) {  /*************** function subdirf2 ***********/
     for (i=1;i<j;i++) {  char *subdirf2(char fileres[], char *preop)
       sum=a[i][j];  {
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    
       a[i][j]=sum;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     big=0.0;    strcat(tmpout,"/");
     for (i=j;i<=n;i++) {    strcat(tmpout,preop);
       sum=a[i][j];    strcat(tmpout,fileres);
       for (k=1;k<j;k++)    return tmpout;
         sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /*************** function subdirf3 ***********/
         big=dum;  char *subdirf3(char fileres[], char *preop, char *preop2)
         imax=i;  {
       }    
     }    /* Caution optionfilefiname is hidden */
     if (j != imax) {    strcpy(tmpout,optionfilefiname);
       for (k=1;k<=n;k++) {    strcat(tmpout,"/");
         dum=a[imax][k];    strcat(tmpout,preop);
         a[imax][k]=a[j][k];    strcat(tmpout,preop2);
         a[j][k]=dum;    strcat(tmpout,fileres);
       }    return tmpout;
       *d = -(*d);  }
       vv[imax]=vv[j];  
     }  char *asc_diff_time(long time_sec, char ascdiff[])
     indx[j]=imax;  {
     if (a[j][j] == 0.0) a[j][j]=TINY;    long sec_left, days, hours, minutes;
     if (j != n) {    days = (time_sec) / (60*60*24);
       dum=1.0/(a[j][j]);    sec_left = (time_sec) % (60*60*24);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    hours = (sec_left) / (60*60) ;
     }    sec_left = (sec_left) %(60*60);
   }    minutes = (sec_left) /60;
   free_vector(vv,1,n);  /* Doesn't work */    sec_left = (sec_left) % (60);
 ;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 }    return ascdiff;
   }
 void lubksb(double **a, int n, int *indx, double b[])  
 {  /***************** f1dim *************************/
   int i,ii=0,ip,j;  extern int ncom; 
   double sum;  extern double *pcom,*xicom;
    extern double (*nrfunc)(double []); 
   for (i=1;i<=n;i++) {   
     ip=indx[i];  double f1dim(double x) 
     sum=b[ip];  { 
     b[ip]=b[i];    int j; 
     if (ii)    double f;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double *xt; 
     else if (sum) ii=i;   
     b[i]=sum;    xt=vector(1,ncom); 
   }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for (i=n;i>=1;i--) {    f=(*nrfunc)(xt); 
     sum=b[i];    free_vector(xt,1,ncom); 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    return f; 
     b[i]=sum/a[i][i];  } 
   }  
 }  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /************ Frequencies ********************/  { 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    int iter; 
 {  /* Some frequencies */    double a,b,d,etemp;
      double fu=0,fv,fw,fx;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double ftemp=0.;
   double ***freq; /* Frequencies */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double *pp;    double e=0.0; 
   double pos, k2, dateintsum=0,k2cpt=0;   
   FILE *ficresp;    a=(ax < cx ? ax : cx); 
   char fileresp[FILENAMELENGTH];    b=(ax > cx ? ax : cx); 
      x=w=v=bx; 
   pp=vector(1,nlstate);    fw=fv=fx=(*f)(x); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (iter=1;iter<=ITMAX;iter++) { 
   strcpy(fileresp,"p");      xm=0.5*(a+b); 
   strcat(fileresp,fileres);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     printf("Problem with prevalence resultfile: %s\n", fileresp);      printf(".");fflush(stdout);
     exit(0);      fprintf(ficlog,".");fflush(ficlog);
   }  #ifdef DEBUGBRENT
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   j1=0;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   j=cptcoveff;  #endif
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
          *xmin=x; 
   for(k1=1; k1<=j;k1++){        return fx; 
     for(i1=1; i1<=ncodemax[k1];i1++){      } 
       j1++;      ftemp=fu;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      if (fabs(e) > tol1) { 
         scanf("%d", i);*/        r=(x-w)*(fx-fv); 
       for (i=-1; i<=nlstate+ndeath; i++)          q=(x-v)*(fx-fw); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)          p=(x-v)*q-(x-w)*r; 
           for(m=agemin; m <= agemax+3; m++)        q=2.0*(q-r); 
             freq[i][jk][m]=0;        if (q > 0.0) p = -p; 
              q=fabs(q); 
       dateintsum=0;        etemp=e; 
       k2cpt=0;        e=d; 
       for (i=1; i<=imx; i++) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         bool=1;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         if  (cptcovn>0) {        else { 
           for (z1=1; z1<=cptcoveff; z1++)          d=p/q; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          u=x+d; 
               bool=0;          if (u-a < tol2 || b-u < tol2) 
         }            d=SIGN(tol1,xm-x); 
         if (bool==1) {        } 
           for(m=firstpass; m<=lastpass; m++){      } else { 
             k2=anint[m][i]+(mint[m][i]/12.);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } 
               if(agev[m][i]==0) agev[m][i]=agemax+1;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      fu=(*f)(u); 
               if (m<lastpass) {      if (fu <= fx) { 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        if (u >= x) a=x; else b=x; 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        SHFT(v,w,x,u) 
               }          SHFT(fv,fw,fx,fu) 
                        } else { 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            if (u < x) a=u; else b=u; 
                 dateintsum=dateintsum+k2;            if (fu <= fw || w == x) { 
                 k2cpt++;              v=w; 
               }              w=u; 
             }              fv=fw; 
           }              fw=fu; 
         }            } else if (fu <= fv || v == x || v == w) { 
       }              v=u; 
                      fv=fu; 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            } 
           } 
       if  (cptcovn>0) {    } 
         fprintf(ficresp, "\n#********** Variable ");    nrerror("Too many iterations in brent"); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    *xmin=x; 
         fprintf(ficresp, "**********\n#");    return fx; 
       }  } 
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  /****************** mnbrak ***********************/
       fprintf(ficresp, "\n");  
        void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for(i=(int)agemin; i <= (int)agemax+3; i++){              double (*func)(double)) 
         if(i==(int)agemax+3)  { 
           printf("Total");    double ulim,u,r,q, dum;
         else    double fu; 
           printf("Age %d", i);   
         for(jk=1; jk <=nlstate ; jk++){    *fa=(*func)(*ax); 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    *fb=(*func)(*bx); 
             pp[jk] += freq[jk][m][i];    if (*fb > *fa) { 
         }      SHFT(dum,*ax,*bx,dum) 
         for(jk=1; jk <=nlstate ; jk++){        SHFT(dum,*fb,*fa,dum) 
           for(m=-1, pos=0; m <=0 ; m++)        } 
             pos += freq[jk][m][i];    *cx=(*bx)+GOLD*(*bx-*ax); 
           if(pp[jk]>=1.e-10)    *fc=(*func)(*cx); 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    while (*fb > *fc) { /* Declining fa, fb, fc */
           else      r=(*bx-*ax)*(*fb-*fc); 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      q=(*bx-*cx)*(*fb-*fa); 
         }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
         for(jk=1; jk <=nlstate ; jk++){      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
             pp[jk] += freq[jk][m][i];        fu=(*func)(u); 
         }  #ifdef DEBUG
         /* f(x)=A(x-u)**2+f(u) */
         for(jk=1,pos=0; jk <=nlstate ; jk++)        double A, fparabu; 
           pos += pp[jk];        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         for(jk=1; jk <=nlstate ; jk++){        fparabu= *fa - A*(*ax-u)*(*ax-u);
           if(pos>=1.e-5)        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           else  #endif 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
           if( i <= (int) agemax){        fu=(*func)(u); 
             if(pos>=1.e-5){        if (fu < *fc) { 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
               probs[i][jk][j1]= pp[jk]/pos;            SHFT(*fb,*fc,fu,(*func)(u)) 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            } 
             }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
             else        u=ulim; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        fu=(*func)(u); 
           }      } else { 
         }        u=(*cx)+GOLD*(*cx-*bx); 
                fu=(*func)(u); 
         for(jk=-1; jk <=nlstate+ndeath; jk++)      } 
           for(m=-1; m <=nlstate+ndeath; m++)      SHFT(*ax,*bx,*cx,u) 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        SHFT(*fa,*fb,*fc,fu) 
         if(i <= (int) agemax)        } 
           fprintf(ficresp,"\n");  } 
         printf("\n");  
       }  /*************** linmin ************************/
     }  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
   }  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   dateintmean=dateintsum/k2cpt;  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
    the value of func at the returned location p . This is actually all accomplished by calling the
   fclose(ficresp);  routines mnbrak and brent .*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  int ncom; 
   free_vector(pp,1,nlstate);  double *pcom,*xicom;
    double (*nrfunc)(double []); 
   /* End of Freq */   
 }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 /************ Prevalence ********************/    double brent(double ax, double bx, double cx, 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)                 double (*f)(double), double tol, double *xmin); 
 {  /* Some frequencies */    double f1dim(double x); 
      void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;                double *fc, double (*func)(double)); 
   double ***freq; /* Frequencies */    int j; 
   double *pp;    double xx,xmin,bx,ax; 
   double pos, k2;    double fx,fb,fa;
    
   pp=vector(1,nlstate);    ncom=n; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    pcom=vector(1,n); 
      xicom=vector(1,n); 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    nrfunc=func; 
   j1=0;    for (j=1;j<=n;j++) { 
        pcom[j]=p[j]; 
   j=cptcoveff;      xicom[j]=xi[j]; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    } 
      ax=0.0; 
   for(k1=1; k1<=j;k1++){    xx=1.0; 
     for(i1=1; i1<=ncodemax[k1];i1++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
       j1++;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
        #ifdef DEBUG
       for (i=-1; i<=nlstate+ndeath; i++)      printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           for(m=agemin; m <= agemax+3; m++)  #endif
             freq[i][jk][m]=0;    for (j=1;j<=n;j++) { 
            xi[j] *= xmin; 
       for (i=1; i<=imx; i++) {      p[j] += xi[j]; 
         bool=1;    } 
         if  (cptcovn>0) {    free_vector(xicom,1,n); 
           for (z1=1; z1<=cptcoveff; z1++)    free_vector(pcom,1,n); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  } 
               bool=0;  
         }  
         if (bool==1) {  /*************** powell ************************/
           for(m=firstpass; m<=lastpass; m++){  /*
             k2=anint[m][i]+(mint[m][i]/12.);  Minimization of a function func of n variables. Input consists of an initial starting point
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
               if(agev[m][i]==0) agev[m][i]=agemax+1;  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
               if(agev[m][i]==1) agev[m][i]=agemax+2;  such that failure to decrease by more than this amount on one iteration signals doneness. On
               if (m<lastpass) {  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
                 if (calagedate>0)  function value at p , and iter is the number of iterations taken. The routine linmin is used.
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];   */
                 else  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              double (*func)(double [])) 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  { 
               }    void linmin(double p[], double xi[], int n, double *fret, 
             }                double (*func)(double [])); 
           }    int i,ibig,j; 
         }    double del,t,*pt,*ptt,*xit;
       }    double fp,fptt;
       for(i=(int)agemin; i <= (int)agemax+3; i++){    double *xits;
         for(jk=1; jk <=nlstate ; jk++){    int niterf, itmp;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];    pt=vector(1,n); 
         }    ptt=vector(1,n); 
         for(jk=1; jk <=nlstate ; jk++){    xit=vector(1,n); 
           for(m=-1, pos=0; m <=0 ; m++)    xits=vector(1,n); 
             pos += freq[jk][m][i];    *fret=(*func)(p); 
         }    for (j=1;j<=n;j++) pt[j]=p[j]; 
              rcurr_time = time(NULL);  
         for(jk=1; jk <=nlstate ; jk++){    for (*iter=1;;++(*iter)) { 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      fp=(*fret); 
             pp[jk] += freq[jk][m][i];      ibig=0; 
         }      del=0.0; 
              rlast_time=rcurr_time;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      /* (void) gettimeofday(&curr_time,&tzp); */
              rcurr_time = time(NULL);  
         for(jk=1; jk <=nlstate ; jk++){          curr_time = *localtime(&rcurr_time);
           if( i <= (int) agemax){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
             if(pos>=1.e-5){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
               probs[i][jk][j1]= pp[jk]/pos;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
             }     for (i=1;i<=n;i++) {
           }        printf(" %d %.12f",i, p[i]);
         }        fprintf(ficlog," %d %.12lf",i, p[i]);
                fprintf(ficrespow," %.12lf", p[i]);
       }      }
     }      printf("\n");
   }      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
        if(*iter <=3){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        tml = *localtime(&rcurr_time);
   free_vector(pp,1,nlstate);        strcpy(strcurr,asctime(&tml));
          rforecast_time=rcurr_time; 
 }  /* End of Freq */        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 /************* Waves Concatenation ***************/          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 {        for(niterf=10;niterf<=30;niterf+=10){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
      Death is a valid wave (if date is known).          forecast_time = *localtime(&rforecast_time);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          strcpy(strfor,asctime(&forecast_time));
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          itmp = strlen(strfor);
      and mw[mi+1][i]. dh depends on stepm.          if(strfor[itmp-1]=='\n')
      */          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   int i, mi, m;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        }
      double sum=0., jmean=0.;*/      }
       for (i=1;i<=n;i++) { 
   int j, k=0,jk, ju, jl;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double sum=0.;        fptt=(*fret); 
   jmin=1e+5;  #ifdef DEBUG
   jmax=-1;            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   jmean=0.;            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   for(i=1; i<=imx; i++){  #endif
     mi=0;        printf("%d",i);fflush(stdout);
     m=firstpass;        fprintf(ficlog,"%d",i);fflush(ficlog);
     while(s[m][i] <= nlstate){        linmin(p,xit,n,fret,func); 
       if(s[m][i]>=1)        if (fabs(fptt-(*fret)) > del) { 
         mw[++mi][i]=m;          del=fabs(fptt-(*fret)); 
       if(m >=lastpass)          ibig=i; 
         break;        } 
       else  #ifdef DEBUG
         m++;        printf("%d %.12e",i,(*fret));
     }/* end while */        fprintf(ficlog,"%d %.12e",i,(*fret));
     if (s[m][i] > nlstate){        for (j=1;j<=n;j++) {
       mi++;     /* Death is another wave */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       /* if(mi==0)  never been interviewed correctly before death */          printf(" x(%d)=%.12e",j,xit[j]);
          /* Only death is a correct wave */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       mw[mi][i]=m;        }
     }        for(j=1;j<=n;j++) {
           printf(" p(%d)=%.12e",j,p[j]);
     wav[i]=mi;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
     if(mi==0)        }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        printf("\n");
   }        fprintf(ficlog,"\n");
   #endif
   for(i=1; i<=imx; i++){      } /* end i */
     for(mi=1; mi<wav[i];mi++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       if (stepm <=0)  #ifdef DEBUG
         dh[mi][i]=1;        int k[2],l;
       else{        k[0]=1;
         if (s[mw[mi+1][i]][i] > nlstate) {        k[1]=-1;
           if (agedc[i] < 2*AGESUP) {        printf("Max: %.12e",(*func)(p));
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        fprintf(ficlog,"Max: %.12e",(*func)(p));
           if(j==0) j=1;  /* Survives at least one month after exam */        for (j=1;j<=n;j++) {
           k=k+1;          printf(" %.12e",p[j]);
           if (j >= jmax) jmax=j;          fprintf(ficlog," %.12e",p[j]);
           if (j <= jmin) jmin=j;        }
           sum=sum+j;        printf("\n");
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        fprintf(ficlog,"\n");
           }        for(l=0;l<=1;l++) {
         }          for (j=1;j<=n;j++) {
         else{            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           k=k+1;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           if (j >= jmax) jmax=j;          }
           else if (j <= jmin)jmin=j;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           sum=sum+j;        }
         }  #endif
         jk= j/stepm;  
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;        free_vector(xit,1,n); 
         if(jl <= -ju)        free_vector(xits,1,n); 
           dh[mi][i]=jk;        free_vector(ptt,1,n); 
         else        free_vector(pt,1,n); 
           dh[mi][i]=jk+1;        return; 
         if(dh[mi][i]==0)      } 
           dh[mi][i]=1; /* At least one step */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
     }        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
   jmean=sum/k;        pt[j]=p[j]; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      } 
  }      fptt=(*func)(ptt); 
 /*********** Tricode ****************************/      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 void tricode(int *Tvar, int **nbcode, int imx)        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
 {        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   int Ndum[20],ij=1, k, j, i;        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
   int cptcode=0;        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   cptcoveff=0;        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
          /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
   for (k=0; k<19; k++) Ndum[k]=0;        /* Thus we compare delta(2h) with observed f1-f3 */
   for (k=1; k<=7; k++) ncodemax[k]=0;        /* or best gain on one ancient line 'del' with total  */
         /* gain f1-f2 = f1 - f2 - 'del' with del  */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
       Ndum[ij]++;        t= t- del*SQR(fp-fptt);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
       if (ij > cptcode) cptcode=ij;        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
     }  #ifdef DEBUG
         printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     for (i=0; i<=cptcode; i++) {               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       if(Ndum[i]!=0) ncodemax[j]++;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     }               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     ij=1;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   #endif
     for (i=1; i<=ncodemax[j]; i++) {        if (t < 0.0) { /* Then we use it for last direction */
       for (k=0; k<=19; k++) {          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
         if (Ndum[k] != 0) {          for (j=1;j<=n;j++) { 
           nbcode[Tvar[j]][ij]=k;            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
                      xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
           ij++;          }
         }          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         if (ij > ncodemax[j]) break;          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       }    
     }  #ifdef DEBUG
   }            printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  for (k=0; k<19; k++) Ndum[k]=0;          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
  for (i=1; i<=ncovmodel-2; i++) {            fprintf(ficlog," %.12e",xit[j]);
       ij=Tvar[i];          }
       Ndum[ij]++;          printf("\n");
     }          fprintf(ficlog,"\n");
   #endif
  ij=1;        } /* end of t negative */
  for (i=1; i<=10; i++) {      } /* end if (fptt < fp)  */
    if((Ndum[i]!=0) && (i<=ncovcol)){    } 
      Tvaraff[ij]=i;  } 
      ij++;  
    }  /**** Prevalence limit (stable or period prevalence)  ****************/
  }  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     cptcoveff=ij-1;  {
 }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
 /*********** Health Expectancies ****************/    
     int i, ii,j,k;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    double min, max, maxmin, maxmax,sumnew=0.;
     /* double **matprod2(); */ /* test */
 {    double **out, cov[NCOVMAX+1], **pmij();
   /* Health expectancies */    double **newm;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double agefin, delaymax=50 ; /* Max number of years to converge */
   double age, agelim, hf;    
   double ***p3mat,***varhe;    for (ii=1;ii<=nlstate+ndeath;ii++)
   double **dnewm,**doldm;      for (j=1;j<=nlstate+ndeath;j++){
   double *xp;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **gp, **gm;      }
   double ***gradg, ***trgradg;    
   int theta;    cov[1]=1.;
     
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   xp=vector(1,npar);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   dnewm=matrix(1,nlstate*2,1,npar);      newm=savm;
   doldm=matrix(1,nlstate*2,1,nlstate*2);      /* Covariates have to be included here again */
        cov[2]=agefin;
   fprintf(ficreseij,"# Health expectancies\n");      
   fprintf(ficreseij,"# Age");      for (k=1; k<=cptcovn;k++) {
   for(i=1; i<=nlstate;i++)        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for(j=1; j<=nlstate;j++)        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      }
   fprintf(ficreseij,"\n");      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
   if(estepm < stepm){      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
     printf ("Problem %d lower than %d\n",estepm, stepm);      
   }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   else  hstepm=estepm;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   /* We compute the life expectancy from trapezoids spaced every estepm months      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
    * This is mainly to measure the difference between two models: for example      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
    * if stepm=24 months pijx are given only every 2 years and by summing them      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
    * we are calculating an estimate of the Life Expectancy assuming a linear      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
    * progression inbetween and thus overestimating or underestimating according      
    * to the curvature of the survival function. If, for the same date, we      savm=oldm;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      oldm=newm;
    * to compare the new estimate of Life expectancy with the same linear      maxmax=0.;
    * hypothesis. A more precise result, taking into account a more precise      for(j=1;j<=nlstate;j++){
    * curvature will be obtained if estepm is as small as stepm. */        min=1.;
         max=0.;
   /* For example we decided to compute the life expectancy with the smallest unit */        for(i=1; i<=nlstate; i++) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          sumnew=0;
      nhstepm is the number of hstepm from age to agelim          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
      nstepm is the number of stepm from age to agelin.          prlim[i][j]= newm[i][j]/(1-sumnew);
      Look at hpijx to understand the reason of that which relies in memory size          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
      and note for a fixed period like estepm months */          max=FMAX(max,prlim[i][j]);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          min=FMIN(min,prlim[i][j]);
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed only each two years of age and if        maxmin=max-min;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        maxmax=FMAX(maxmax,maxmin);
      results. So we changed our mind and took the option of the best precision.      } /* j loop */
   */      if(maxmax < ftolpl){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        return prlim;
       }
   agelim=AGESUP;    } /* age loop */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    return prlim; /* should not reach here */
     /* nhstepm age range expressed in number of stepm */  }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  /*************** transition probabilities ***************/ 
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    /* According to parameters values stored in x and the covariate's values stored in cov,
     gp=matrix(0,nhstepm,1,nlstate*2);       computes the probability to be observed in state j being in state i by appying the
     gm=matrix(0,nhstepm,1,nlstate*2);       model to the ncovmodel covariates (including constant and age).
        lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
     /* Computed by stepm unit matrices, product of hstepm matrices, stored       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */       ncth covariate in the global vector x is given by the formula:
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);         j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
        Outputs ps[i][j] the probability to be observed in j being in j according to
     /* Computing Variances of health expectancies */       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
      for(theta=1; theta <=npar; theta++){    double s1, lnpijopii;
       for(i=1; i<=npar; i++){    /*double t34;*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i,j, nc, ii, jj;
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
       cptj=0;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       for(j=1; j<= nlstate; j++){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
         for(i=1; i<=nlstate; i++){            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           cptj=cptj+1;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           }  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }        }
       }        for(j=i+1; j<=nlstate+ndeath;j++){
                for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
       for(i=1; i<=npar; i++)            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
                ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       cptj=0;        }
       for(j=1; j<= nlstate; j++){      }
         for(i=1;i<=nlstate;i++){      
           cptj=cptj+1;      for(i=1; i<= nlstate; i++){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        s1=0;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        for(j=1; j<i; j++){
           }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       }        }
       for(j=1; j<= nlstate*2; j++)        for(j=i+1; j<=nlstate+ndeath; j++){
         for(h=0; h<=nhstepm-1; h++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }        }
      }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
            ps[i][i]=1./(s1+1.);
 /* End theta */        /* Computing other pijs */
         for(j=1; j<i; j++)
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
      for(h=0; h<=nhstepm-1; h++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=1; j<=nlstate*2;j++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         for(theta=1; theta <=npar; theta++)      } /* end i */
           trgradg[h][j][theta]=gradg[h][theta][j];      
            for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
      for(i=1;i<=nlstate*2;i++)          ps[ii][jj]=0;
       for(j=1;j<=nlstate*2;j++)          ps[ii][ii]=1;
         varhe[i][j][(int)age] =0.;        }
       }
      printf("%d|",(int)age);fflush(stdout);      
      for(h=0;h<=nhstepm-1;h++){      
       for(k=0;k<=nhstepm-1;k++){      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         for(i=1;i<=nlstate*2;i++)      /*   } */
           for(j=1;j<=nlstate*2;j++)      /*   printf("\n "); */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      /* } */
       }      /* printf("\n ");printf("%lf ",cov[2]);*/
     }      /*
     /* Computing expectancies */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for(i=1; i<=nlstate;i++)        goto end;*/
       for(j=1; j<=nlstate;j++)      return ps;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
            /**************** Product of 2 matrices ******************/
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
   double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
         }  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     fprintf(ficreseij,"%3.0f",age );       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     cptj=0;    /* in, b, out are matrice of pointers which should have been initialized 
     for(i=1; i<=nlstate;i++)       before: only the contents of out is modified. The function returns
       for(j=1; j<=nlstate;j++){       a pointer to pointers identical to out */
         cptj++;    int i, j, k;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for(i=nrl; i<= nrh; i++)
       }      for(k=ncolol; k<=ncoloh; k++){
     fprintf(ficreseij,"\n");        out[i][k]=0.;
            for(j=ncl; j<=nch; j++)
     free_matrix(gm,0,nhstepm,1,nlstate*2);          out[i][k] +=in[i][j]*b[j][k];
     free_matrix(gp,0,nhstepm,1,nlstate*2);      }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    return out;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }  
   printf("\n");  /************* Higher Matrix Product ***************/
   
   free_vector(xp,1,npar);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   free_matrix(dnewm,1,nlstate*2,1,npar);  {
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    /* Computes the transition matrix starting at age 'age' over 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);       'nhstepm*hstepm*stepm' months (i.e. until
 }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
 /************ Variance ******************/       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)       (typically every 2 years instead of every month which is too big 
 {       for the memory).
   /* Variance of health expectancies */       Model is determined by parameters x and covariates have to be 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/       included manually here. 
   double **newm;  
   double **dnewm,**doldm;       */
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;    int i, j, d, h, k;
   double *xp;    double **out, cov[NCOVMAX+1];
   double **gp, **gm;    double **newm;
   double ***gradg, ***trgradg;  
   double ***p3mat;    /* Hstepm could be zero and should return the unit matrix */
   double age,agelim, hf;    for (i=1;i<=nlstate+ndeath;i++)
   int theta;      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        po[i][j][0]=(i==j ? 1.0 : 0.0);
   fprintf(ficresvij,"# Age");      }
   for(i=1; i<=nlstate;i++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(j=1; j<=nlstate;j++)    for(h=1; h <=nhstepm; h++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for(d=1; d <=hstepm; d++){
   fprintf(ficresvij,"\n");        newm=savm;
         /* Covariates have to be included here again */
   xp=vector(1,npar);        cov[1]=1.;
   dnewm=matrix(1,nlstate,1,npar);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   doldm=matrix(1,nlstate,1,nlstate);        for (k=1; k<=cptcovn;k++) 
            cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   if(estepm < stepm){        for (k=1; k<=cptcovage;k++)
     printf ("Problem %d lower than %d\n",estepm, stepm);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   else  hstepm=estepm;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
      nstepm is the number of stepm from age to agelin.        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
      Look at hpijx to understand the reason of that which relies in memory size        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
      and note for a fixed period like k years */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        savm=oldm;
      survival function given by stepm (the optimization length). Unfortunately it        oldm=newm;
      means that if the survival funtion is printed only each two years of age and if      }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for(i=1; i<=nlstate+ndeath; i++)
      results. So we changed our mind and took the option of the best precision.        for(j=1;j<=nlstate+ndeath;j++) {
   */          po[i][j][h]=newm[i][j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      /*printf("h=%d ",h);*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    } /* end h */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  /*     printf("\n H=%d \n",h); */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return po;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  }
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);  #ifdef NLOPT
     double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     for(theta=1; theta <=npar; theta++){    double fret;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double *xt;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int j;
       }    myfunc_data *d2 = (myfunc_data *) pd;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /* xt = (p1-1); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    xt=vector(1,n); 
     for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
           prlim[i][i]=probs[(int)age][i][ij];    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
       }    printf("Function = %.12lf ",fret);
      for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
       for(j=1; j<= nlstate; j++){    printf("\n");
         for(h=0; h<=nhstepm; h++){   free_vector(xt,1,n);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    return fret;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  }
         }  #endif
       }  
      /*************** log-likelihood *************/
       for(i=1; i<=npar; i++) /* Computes gradient */  double func( double *x)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i, ii, j, k, mi, d, kk;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      double **out;
       if (popbased==1) {    double sw; /* Sum of weights */
         for(i=1; i<=nlstate;i++)    double lli; /* Individual log likelihood */
           prlim[i][i]=probs[(int)age][i][ij];    int s1, s2;
       }    double bbh, survp;
     long ipmx;
       for(j=1; j<= nlstate; j++){    /*extern weight */
         for(h=0; h<=nhstepm; h++){    /* We are differentiating ll according to initial status */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
       }    */
   
       for(j=1; j<= nlstate; j++)    ++countcallfunc;
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    cov[1]=1.;
         }  
     } /* End theta */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(h=0; h<=nhstepm; h++)        /* Computes the values of the ncovmodel covariates of the model
       for(j=1; j<=nlstate;j++)           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         for(theta=1; theta <=npar; theta++)           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
           trgradg[h][j][theta]=gradg[h][theta][j];           to be observed in j being in i according to the model.
          */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     for(i=1;i<=nlstate;i++)          cov[2+k]=covar[Tvar[k]][i];
       for(j=1;j<=nlstate;j++)        }
         vareij[i][j][(int)age] =0.;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
     for(h=0;h<=nhstepm;h++){           has been calculated etc */
       for(k=0;k<=nhstepm;k++){        for(mi=1; mi<= wav[i]-1; mi++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          for (ii=1;ii<=nlstate+ndeath;ii++)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            for (j=1;j<=nlstate+ndeath;j++){
         for(i=1;i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(j=1;j<=nlstate;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            }
       }          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficresvij,"%.0f ",age );            for (kk=1; kk<=cptcovage;kk++) {
     for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       for(j=1; j<=nlstate;j++){            }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficresvij,"\n");            savm=oldm;
     free_matrix(gp,0,nhstepm,1,nlstate);            oldm=newm;
     free_matrix(gm,0,nhstepm,1,nlstate);          } /* end mult */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          /* But now since version 0.9 we anticipate for bias at large stepm.
   } /* End age */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   free_vector(xp,1,npar);           * the nearest (and in case of equal distance, to the lowest) interval but now
   free_matrix(doldm,1,nlstate,1,npar);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   free_matrix(dnewm,1,nlstate,1,nlstate);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
 }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 /************ Variance of prevlim ******************/           * For stepm=1 the results are the same as for previous versions of Imach.
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)           * For stepm > 1 the results are less biased than in previous versions. 
 {           */
   /* Variance of prevalence limit */          s1=s[mw[mi][i]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          s2=s[mw[mi+1][i]][i];
   double **newm;          bbh=(double)bh[mi][i]/(double)stepm; 
   double **dnewm,**doldm;          /* bias bh is positive if real duration
   int i, j, nhstepm, hstepm;           * is higher than the multiple of stepm and negative otherwise.
   int k, cptcode;           */
   double *xp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double *gp, *gm;          if( s2 > nlstate){ 
   double **gradg, **trgradg;            /* i.e. if s2 is a death state and if the date of death is known 
   double age,agelim;               then the contribution to the likelihood is the probability to 
   int theta;               die between last step unit time and current  step unit time, 
                   which is also equal to probability to die before dh 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");               minus probability to die before dh-stepm . 
   fprintf(ficresvpl,"# Age");               In version up to 0.92 likelihood was computed
   for(i=1; i<=nlstate;i++)          as if date of death was unknown. Death was treated as any other
       fprintf(ficresvpl," %1d-%1d",i,i);          health state: the date of the interview describes the actual state
   fprintf(ficresvpl,"\n");          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
   xp=vector(1,npar);          (healthy, disable or death) and IMaCh was corrected; but when we
   dnewm=matrix(1,nlstate,1,npar);          introduced the exact date of death then we should have modified
   doldm=matrix(1,nlstate,1,nlstate);          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
   hstepm=1*YEARM; /* Every year of age */          stepm. It is no more the probability to die between last interview
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          and month of death but the probability to survive from last
   agelim = AGESUP;          interview up to one month before death multiplied by the
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          probability to die within a month. Thanks to Chris
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          Jackson for correcting this bug.  Former versions increased
     if (stepm >= YEARM) hstepm=1;          mortality artificially. The bad side is that we add another loop
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          which slows down the processing. The difference can be up to 10%
     gradg=matrix(1,npar,1,nlstate);          lower mortality.
     gp=vector(1,nlstate);            */
     gm=vector(1,nlstate);            lli=log(out[s1][s2] - savm[s1][s2]);
   
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */          } else if  (s2==-2) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for (j=1,survp=0. ; j<=nlstate; j++) 
       }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            /*survp += out[s1][j]; */
       for(i=1;i<=nlstate;i++)            lli= log(survp);
         gp[i] = prlim[i][i];          }
              
       for(i=1; i<=npar; i++) /* Computes gradient */          else if  (s2==-4) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for (j=3,survp=0. ; j<=nlstate; j++)  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(i=1;i<=nlstate;i++)            lli= log(survp); 
         gm[i] = prlim[i][i];          } 
   
       for(i=1;i<=nlstate;i++)          else if  (s2==-5) { 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            for (j=1,survp=0. ; j<=2; j++)  
     } /* End theta */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
     trgradg =matrix(1,nlstate,1,npar);          } 
           
     for(j=1; j<=nlstate;j++)          else{
       for(theta=1; theta <=npar; theta++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         trgradg[j][theta]=gradg[theta][j];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
     for(i=1;i<=nlstate;i++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       varpl[i][(int)age] =0.;          /*if(lli ==000.0)*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          ipmx +=1;
     for(i=1;i<=nlstate;i++)          sw += weight[i];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     fprintf(ficresvpl,"%.0f ",age );      } /* end of individual */
     for(i=1; i<=nlstate;i++)    }  else if(mle==2){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficresvpl,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_vector(gp,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
     free_vector(gm,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_matrix(gradg,1,npar,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
     free_matrix(trgradg,1,nlstate,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   } /* End age */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   free_vector(xp,1,npar);          for(d=0; d<=dh[mi][i]; d++){
   free_matrix(doldm,1,nlstate,1,npar);            newm=savm;
   free_matrix(dnewm,1,nlstate,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /************ Variance of one-step probabilities  ******************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   int i, j,  i1, k1, l1;            oldm=newm;
   int k2, l2, j1,  z1;          } /* end mult */
   int k=0,l, cptcode;        
   int first=1;          s1=s[mw[mi][i]][i];
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;          s2=s[mw[mi+1][i]][i];
   double **dnewm,**doldm;          bbh=(double)bh[mi][i]/(double)stepm; 
   double *xp;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double *gp, *gm;          ipmx +=1;
   double **gradg, **trgradg;          sw += weight[i];
   double **mu;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double age,agelim, cov[NCOVMAX];        } /* end of wave */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      } /* end of individual */
   int theta;    }  else if(mle==3){  /* exponential inter-extrapolation */
   char fileresprob[FILENAMELENGTH];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char fileresprobcov[FILENAMELENGTH];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   char fileresprobcor[FILENAMELENGTH];        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***varpij;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(fileresprob,"prob");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresprob,fileres);            }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          for(d=0; d<dh[mi][i]; d++){
     printf("Problem with resultfile: %s\n", fileresprob);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcpy(fileresprobcov,"probcov");            for (kk=1; kk<=cptcovage;kk++) {
   strcat(fileresprobcov,fileres);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", fileresprobcov);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcpy(fileresprobcor,"probcor");            savm=oldm;
   strcat(fileresprobcor,fileres);            oldm=newm;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          } /* end mult */
     printf("Problem with resultfile: %s\n", fileresprobcor);        
   }          s1=s[mw[mi][i]][i];
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          s2=s[mw[mi+1][i]][i];
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          bbh=(double)bh[mi][i]/(double)stepm; 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            ipmx +=1;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          sw += weight[i];
   fprintf(ficresprob,"# Age");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        } /* end of wave */
   fprintf(ficresprobcov,"# Age");      } /* end of individual */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   fprintf(ficresprobcov,"# Age");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j<=(nlstate+ndeath);j++){            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            }
     }            for(d=0; d<dh[mi][i]; d++){
   fprintf(ficresprob,"\n");            newm=savm;
   fprintf(ficresprobcov,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficresprobcor,"\n");            for (kk=1; kk<=cptcovage;kk++) {
   xp=vector(1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   first=1;            savm=oldm;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            oldm=newm;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          } /* end mult */
     exit(0);        
   }          s1=s[mw[mi][i]][i];
   else{          s2=s[mw[mi+1][i]][i];
     fprintf(ficgp,"\n# Routine varprob");          if( s2 > nlstate){ 
   }            lli=log(out[s1][s2] - savm[s1][s2]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          }else{
     printf("Problem with html file: %s\n", optionfilehtm);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     exit(0);          }
   }          ipmx +=1;
   else{          sw += weight[i];
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        } /* end of wave */
       } /* end of individual */
   }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   cov[1]=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   j=cptcoveff;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for(mi=1; mi<= wav[i]-1; mi++){
   j1=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
   for(k1=1; k1<=1;k1++){            for (j=1;j<=nlstate+ndeath;j++){
     for(i1=1; i1<=ncodemax[k1];i1++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     j1++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     if  (cptcovn>0) {          for(d=0; d<dh[mi][i]; d++){
       fprintf(ficresprob, "\n#********** Variable ");            newm=savm;
       fprintf(ficresprobcov, "\n#********** Variable ");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficgp, "\n#********** Variable ");            for (kk=1; kk<=cptcovage;kk++) {
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficresprobcor, "\n#********** Variable ");            }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          
       fprintf(ficresprob, "**********\n#");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresprobcov, "**********\n#");            savm=oldm;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            oldm=newm;
       fprintf(ficgp, "**********\n#");          } /* end mult */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        
       fprintf(ficgp, "**********\n#");          s1=s[mw[mi][i]][i];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          s2=s[mw[mi+1][i]][i];
       fprintf(fichtm, "**********\n#");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     }          ipmx +=1;
              sw += weight[i];
       for (age=bage; age<=fage; age ++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         cov[2]=age;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for (k=1; k<=cptcovn;k++) {        } /* end of wave */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      } /* end of individual */
         }    } /* End of if */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for (k=1; k<=cptcovprod;k++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
            return -l;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  }
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
         gp=vector(1,(nlstate)*(nlstate+ndeath));  /*************** log-likelihood *************/
         gm=vector(1,(nlstate)*(nlstate+ndeath));  double funcone( double *x)
      {
         for(theta=1; theta <=npar; theta++){    /* Same as likeli but slower because of a lot of printf and if */
           for(i=1; i<=npar; i++)    int i, ii, j, k, mi, d, kk;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
              double **out;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double lli; /* Individual log likelihood */
              double llt;
           k=0;    int s1, s2;
           for(i=1; i<= (nlstate); i++){    double bbh, survp;
             for(j=1; j<=(nlstate+ndeath);j++){    /*extern weight */
               k=k+1;    /* We are differentiating ll according to initial status */
               gp[k]=pmmij[i][j];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             }    /*for(i=1;i<imx;i++) 
           }      printf(" %d\n",s[4][i]);
              */
           for(i=1; i<=npar; i++)    cov[1]=1.;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
        for(k=1; k<=nlstate; k++) ll[k]=0.;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(i=1; i<=(nlstate); i++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             for(j=1; j<=(nlstate+ndeath);j++){      for(mi=1; mi<= wav[i]-1; mi++){
               k=k+1;        for (ii=1;ii<=nlstate+ndeath;ii++)
               gm[k]=pmmij[i][j];          for (j=1;j<=nlstate+ndeath;j++){
             }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        for(d=0; d<dh[mi][i]; d++){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(theta=1; theta <=npar; theta++)          }
             trgradg[j][theta]=gradg[theta][j];          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                  /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
         pmij(pmmij,cov,ncovmodel,x,nlstate);          savm=oldm;
                  oldm=newm;
         k=0;        } /* end mult */
         for(i=1; i<=(nlstate); i++){        
           for(j=1; j<=(nlstate+ndeath);j++){        s1=s[mw[mi][i]][i];
             k=k+1;        s2=s[mw[mi+1][i]][i];
             mu[k][(int) age]=pmmij[i][j];        bbh=(double)bh[mi][i]/(double)stepm; 
           }        /* bias is positive if real duration
         }         * is higher than the multiple of stepm and negative otherwise.
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)         */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             varpij[i][j][(int)age] = doldm[i][j];          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
         /*printf("\n%d ",(int)age);          for (j=1,survp=0. ; j<=nlstate; j++) 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          lli= log(survp);
      }*/        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         fprintf(ficresprob,"\n%d ",(int)age);        } else if(mle==2){
         fprintf(ficresprobcov,"\n%d ",(int)age);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         fprintf(ficresprobcor,"\n%d ",(int)age);        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          lli=log(out[s1][s2]); /* Original formula */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        } else{  /* mle=0 back to 1 */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          /*lli=log(out[s1][s2]); */ /* Original formula */
         }        } /* End of if */
         i=0;        ipmx +=1;
         for (k=1; k<=(nlstate);k++){        sw += weight[i];
           for (l=1; l<=(nlstate+ndeath);l++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             i=i++;        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        if(globpr){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
             for (j=1; j<=i;j++){   %11.6f %11.6f %11.6f ", \
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
             }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           }            llt +=ll[k]*gipmx/gsw;
         }/* end of loop for state */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       } /* end of loop for age */          }
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          fprintf(ficresilk," %10.6f\n", -llt);
       for (k1=1; k1<=(nlstate);k1++){        }
         for (l1=1; l1<=(nlstate+ndeath);l1++){      } /* end of wave */
           if(l1==k1) continue;    } /* end of individual */
           i=(k1-1)*(nlstate+ndeath)+l1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           for (k2=1; k2<=(nlstate);k2++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             for (l2=1; l2<=(nlstate+ndeath);l2++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               if(l2==k2) continue;    if(globpr==0){ /* First time we count the contributions and weights */
               j=(k2-1)*(nlstate+ndeath)+l2;      gipmx=ipmx;
               if(j<=i) continue;      gsw=sw;
               for (age=bage; age<=fage; age ++){    }
                 if ((int)age %5==0){    return -l;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;  /*************** function likelione ***********/
                   mu2=mu[j][(int) age]/stepm*YEARM;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
                   /* Computing eigen value of matrix of covariance */  {
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    /* This routine should help understanding what is done with 
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));       the selection of individuals/waves and
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);       to check the exact contribution to the likelihood.
                   /* Eigen vectors */       Plotting could be done.
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));     */
                   v21=sqrt(1.-v11*v11);    int k;
                   v12=-v21;  
                   v22=v11;    if(*globpri !=0){ /* Just counts and sums, no printings */
                   /*printf(fignu*/      strcpy(fileresilk,"ilk"); 
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      strcat(fileresilk,fileres);
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                   if(first==1){        printf("Problem with resultfile: %s\n", fileresilk);
                     first=0;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                     fprintf(ficgp,"\nset parametric;set nolabel");      }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);      for(k=1; k<=nlstate; k++) 
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    *fretone=(*funcone)(p);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    if(*globpri !=0){
                   }else{      fclose(ficresilk);
                     first=0;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      fflush(fichtm); 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    } 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    return;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  
                   }/* if first */  
                 } /* age mod 5 */  /*********** Maximum Likelihood Estimation ***************/
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
               first=1;  {
             } /*l12 */    int i,j, iter=0;
           } /* k12 */    double **xi;
         } /*l1 */    double fret;
       }/* k1 */    double fretone; /* Only one call to likelihood */
     } /* loop covariates */    /*  char filerespow[FILENAMELENGTH];*/
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  #ifdef NLOPT
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    int creturn;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    nlopt_opt opt;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double *lb;
   }    double minf; /* the minimum objective value, upon return */
   free_vector(xp,1,npar);    double * p1; /* Shifted parameters from 0 instead of 1 */
   fclose(ficresprob);    myfunc_data dinst, *d = &dinst;
   fclose(ficresprobcov);  #endif
   fclose(ficresprobcor);  
   fclose(ficgp);  
   fclose(fichtm);    xi=matrix(1,npar,1,npar);
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
 /******************* Printing html file ***********/    printf("Powell\n");  fprintf(ficlog,"Powell\n");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    strcpy(filerespow,"pow"); 
                   int lastpass, int stepm, int weightopt, char model[],\    strcat(filerespow,fileres);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   int popforecast, int estepm ,\      printf("Problem with resultfile: %s\n", filerespow);
                   double jprev1, double mprev1,double anprev1, \      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   double jprev2, double mprev2,double anprev2){    }
   int jj1, k1, i1, cpt;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   /*char optionfilehtm[FILENAMELENGTH];*/    for (i=1;i<=nlstate;i++)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      for(j=1;j<=nlstate+ndeath;j++)
     printf("Problem with %s \n",optionfilehtm), exit(0);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   }    fprintf(ficrespow,"\n");
   #ifdef POWELL
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    powell(p,xi,npar,ftol,&iter,&fret,func);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  #endif
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  #ifdef NLOPT
  - Life expectancies by age and initial health status (estepm=%2d months):  #ifdef NEWUOA
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  #else
     opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n  #endif
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    lb=vector(0,npar-1);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    nlopt_set_lower_bounds(opt, lb);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    nlopt_set_initial_step1(opt, 0.1);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    d->function = func;
     printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
  if(popforecast==1) fprintf(fichtm,"\n    nlopt_set_min_objective(opt, myfunc, d);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    nlopt_set_xtol_rel(opt, ftol);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
         <br>",fileres,fileres,fileres,fileres);      printf("nlopt failed! %d\n",creturn); 
  else    }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    else {
 fprintf(fichtm," <li>Graphs</li><p>");      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
  m=cptcoveff;      iter=1; /* not equal */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    }
     nlopt_destroy(opt);
  jj1=0;  #endif
  for(k1=1; k1<=m;k1++){    free_matrix(xi,1,npar,1,npar);
    for(i1=1; i1<=ncodemax[k1];i1++){    fclose(ficrespow);
      jj1++;    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
      if (cptcovn > 0) {    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
        for (cpt=1; cpt<=cptcoveff;cpt++)  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }  /**** Computes Hessian and covariance matrix ***/
      /* Pij */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  {
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        double  **a,**y,*x,pd;
      /* Quasi-incidences */    double **hess;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    int i, j;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    int *indx;
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    void lubksb(double **a, int npar, int *indx, double b[]) ;
        }    void ludcmp(double **a, int npar, int *indx, double *d) ;
     for(cpt=1; cpt<=nlstate;cpt++) {    double gompertz(double p[]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    hess=matrix(1,npar,1,npar);
 interval) in state (%d): v%s%d%d.png <br>  
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      printf("\nCalculation of the hessian matrix. Wait...\n");
      }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      for(cpt=1; cpt<=nlstate;cpt++) {    for (i=1;i<=npar;i++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      printf("%d",i);fflush(stdout);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      fprintf(ficlog,"%d",i);fflush(ficlog);
      }     
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 health expectancies in states (1) and (2): e%s%d.png<br>      
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      /*  printf(" %f ",p[i]);
    }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
  }    }
 fclose(fichtm);    
 }    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
 /******************* Gnuplot file **************/        if (j>i) { 
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   int ng;          
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          hess[j][i]=hess[i][j];    
     printf("Problem with file %s",optionfilegnuplot);          /*printf(" %lf ",hess[i][j]);*/
   }        }
       }
 #ifdef windows    }
     fprintf(ficgp,"cd \"%s\" \n",pathc);    printf("\n");
 #endif    fprintf(ficlog,"\n");
 m=pow(2,cptcoveff);  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  /* 1eme*/    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   for (cpt=1; cpt<= nlstate ; cpt ++) {    
    for (k1=1; k1<= m ; k1 ++) {    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
 #ifdef windows    x=vector(1,npar);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    indx=ivector(1,npar);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    for (i=1;i<=npar;i++)
 #endif      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 #ifdef unix    ludcmp(a,npar,indx,&pd);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    for (j=1;j<=npar;j++) {
 #endif      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
 for (i=1; i<= nlstate ; i ++) {      lubksb(a,npar,indx,x);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1;i<=npar;i++){ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        matcov[i][j]=x[i];
 }      }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    }
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    printf("\n#Hessian matrix#\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficlog,"\n#Hessian matrix#\n");
 }    for (i=1;i<=npar;i++) { 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      for (j=1;j<=npar;j++) { 
      for (i=1; i<= nlstate ; i ++) {        printf("%.3e ",hess[i][j]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficlog,"%.3e ",hess[i][j]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }        printf("\n");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      fprintf(ficlog,"\n");
 #ifdef unix    }
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  
 #endif    /* Recompute Inverse */
    }    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   /*2 eme*/    ludcmp(a,npar,indx,&pd);
   
   for (k1=1; k1<= m ; k1 ++) {    /*  printf("\n#Hessian matrix recomputed#\n");
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    for (j=1;j<=npar;j++) {
          for (i=1;i<=npar;i++) x[i]=0;
     for (i=1; i<= nlstate+1 ; i ++) {      x[j]=1;
       k=2*i;      lubksb(a,npar,indx,x);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      for (i=1;i<=npar;i++){ 
       for (j=1; j<= nlstate+1 ; j ++) {        y[i][j]=x[i];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        printf("%.3e ",y[i][j]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficlog,"%.3e ",y[i][j]);
 }        }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      printf("\n");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      fprintf(ficlog,"\n");
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    free_matrix(a,1,npar,1,npar);
 }      free_matrix(y,1,npar,1,npar);
       fprintf(ficgp,"\" t\"\" w l 0,");    free_vector(x,1,npar);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    free_ivector(indx,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    free_matrix(hess,1,npar,1,npar);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  /*************** hessian matrix ****************/
     }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   }  {
      int i;
   /*3eme*/    int l=1, lmax=20;
     double k1,k2;
   for (k1=1; k1<= m ; k1 ++) {    double p2[MAXPARM+1]; /* identical to x */
     for (cpt=1; cpt<= nlstate ; cpt ++) {    double res;
       k=2+nlstate*(2*cpt-2);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    double fx;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    int k=0,kmax=10;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double l1;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fx=func(x);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    for (i=1;i<=npar;i++) p2[i]=x[i];
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      l1=pow(10,l);
       delts=delt;
 */      for(k=1 ; k <kmax; k=k+1){
       for (i=1; i< nlstate ; i ++) {        delt = delta*(l1*k);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
       }        p2[theta]=x[theta]-delt;
     }        k2=func(p2)-fx;
   }        /*res= (k1-2.0*fx+k2)/delt/delt; */
          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   /* CV preval stat */        
     for (k1=1; k1<= m ; k1 ++) {  #ifdef DEBUGHESS
     for (cpt=1; cpt<nlstate ; cpt ++) {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       k=3;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  #endif
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for (i=1; i< nlstate ; i ++)          k=kmax;
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                k=kmax; l=lmax*10;
       l=3+(nlstate+ndeath)*cpt;        }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for (i=1; i< nlstate ; i ++) {          delts=delt;
         l=3+(nlstate+ndeath)*cpt;        }
         fprintf(ficgp,"+$%d",l+i+1);      }
       }    }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      delti[theta]=delts;
     }    return res; 
   }      
    }
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     for(k=1; k <=(nlstate+ndeath); k++){  {
       if (k != i) {    int i;
         for(j=1; j <=ncovmodel; j++){    int l=1, lmax=20;
            double k1,k2,k3,k4,res,fx;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    double p2[MAXPARM+1];
           jk++;    int k;
           fprintf(ficgp,"\n");  
         }    fx=func(x);
       }    for (k=1; k<=2; k++) {
     }      for (i=1;i<=npar;i++) p2[i]=x[i];
    }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      k1=func(p2)-fx;
      for(jk=1; jk <=m; jk++) {    
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      p2[thetai]=x[thetai]+delti[thetai]/k;
        if (ng==2)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      k2=func(p2)-fx;
        else    
          fprintf(ficgp,"\nset title \"Probability\"\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        i=1;      k3=func(p2)-fx;
        for(k2=1; k2<=nlstate; k2++) {    
          k3=i;      p2[thetai]=x[thetai]-delti[thetai]/k;
          for(k=1; k<=(nlstate+ndeath); k++) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            if (k != k2){      k4=func(p2)-fx;
              if(ng==2)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  #ifdef DEBUG
              else      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
              ij=1;  #endif
              for(j=3; j <=ncovmodel; j++) {    }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    return res;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  }
                  ij++;  
                }  /************** Inverse of matrix **************/
                else  void ludcmp(double **a, int n, int *indx, double *d) 
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  { 
              }    int i,imax,j,k; 
              fprintf(ficgp,")/(1");    double big,dum,sum,temp; 
                  double *vv; 
              for(k1=1; k1 <=nlstate; k1++){     
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    vv=vector(1,n); 
                ij=1;    *d=1.0; 
                for(j=3; j <=ncovmodel; j++){    for (i=1;i<=n;i++) { 
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      big=0.0; 
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for (j=1;j<=n;j++) 
                    ij++;        if ((temp=fabs(a[i][j])) > big) big=temp; 
                  }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
                  else      vv[i]=1.0/big; 
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    } 
                }    for (j=1;j<=n;j++) { 
                fprintf(ficgp,")");      for (i=1;i<j;i++) { 
              }        sum=a[i][j]; 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        a[i][j]=sum; 
              i=i+ncovmodel;      } 
            }      big=0.0; 
          }      for (i=j;i<=n;i++) { 
        }        sum=a[i][j]; 
      }        for (k=1;k<j;k++) 
    }          sum -= a[i][k]*a[k][j]; 
    fclose(ficgp);        a[i][j]=sum; 
 }  /* end gnuplot */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
           imax=i; 
 /*************** Moving average **************/        } 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      } 
       if (j != imax) { 
   int i, cpt, cptcod;        for (k=1;k<=n;k++) { 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          dum=a[imax][k]; 
       for (i=1; i<=nlstate;i++)          a[imax][k]=a[j][k]; 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          a[j][k]=dum; 
           mobaverage[(int)agedeb][i][cptcod]=0.;        } 
            *d = -(*d); 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        vv[imax]=vv[j]; 
       for (i=1; i<=nlstate;i++){      } 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      indx[j]=imax; 
           for (cpt=0;cpt<=4;cpt++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      if (j != n) { 
           }        dum=1.0/(a[j][j]); 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         }      } 
       }    } 
     }    free_vector(vv,1,n);  /* Doesn't work */
      ;
 }  } 
   
   void lubksb(double **a, int n, int *indx, double b[]) 
 /************** Forecasting ******************/  { 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    int i,ii=0,ip,j; 
      double sum; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;   
   int *popage;    for (i=1;i<=n;i++) { 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      ip=indx[i]; 
   double *popeffectif,*popcount;      sum=b[ip]; 
   double ***p3mat;      b[ip]=b[i]; 
   char fileresf[FILENAMELENGTH];      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
  agelim=AGESUP;      else if (sum) ii=i; 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      b[i]=sum; 
     } 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    for (i=n;i>=1;i--) { 
        sum=b[i]; 
        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   strcpy(fileresf,"f");      b[i]=sum/a[i][i]; 
   strcat(fileresf,fileres);    } 
   if((ficresf=fopen(fileresf,"w"))==NULL) {  } 
     printf("Problem with forecast resultfile: %s\n", fileresf);  
   }  void pstamp(FILE *fichier)
   printf("Computing forecasting: result on file '%s' \n", fileresf);  {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  }
   
   if (mobilav==1) {  /************ Frequencies ********************/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     movingaverage(agedeb, fage, ageminpar, mobaverage);  {  /* Some frequencies */
   }    
     int i, m, jk, j1, bool, z1,j;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int first;
   if (stepm<=12) stepsize=1;    double ***freq; /* Frequencies */
      double *pp, **prop;
   agelim=AGESUP;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      char fileresp[FILENAMELENGTH];
   hstepm=1;    
   hstepm=hstepm/stepm;    pp=vector(1,nlstate);
   yp1=modf(dateintmean,&yp);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   anprojmean=yp;    strcpy(fileresp,"p");
   yp2=modf((yp1*12),&yp);    strcat(fileresp,fileres);
   mprojmean=yp;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   yp1=modf((yp2*30.5),&yp);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   jprojmean=yp;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   if(jprojmean==0) jprojmean=1;      exit(0);
   if(mprojmean==0) jprojmean=1;    }
      freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    j1=0;
      
   for(cptcov=1;cptcov<=i2;cptcov++){    j=cptcoveff;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       k=k+1;  
       fprintf(ficresf,"\n#******");    first=1;
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
       }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
       fprintf(ficresf,"******\n");    /*    j1++; */
       fprintf(ficresf,"# StartingAge FinalAge");    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                scanf("%d", i);*/
              for (i=-5; i<=nlstate+ndeath; i++)  
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         fprintf(ficresf,"\n");            for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                freq[i][jk][m]=0;
         
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for (i=1; i<=nlstate; i++)  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(m=iagemin; m <= iagemax+3; m++)
           nhstepm = nhstepm/hstepm;            prop[i][m]=0;
                  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        dateintsum=0;
           oldm=oldms;savm=savms;        k2cpt=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for (i=1; i<=imx; i++) {
                  bool=1;
           for (h=0; h<=nhstepm; h++){          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             if (h==(int) (calagedate+YEARM*cpt)) {            for (z1=1; z1<=cptcoveff; z1++)       
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
             }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
             for(j=1; j<=nlstate+ndeath;j++) {                bool=0;
               kk1=0.;kk2=0;                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
               for(i=1; i<=nlstate;i++) {                                bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                 if (mobilav==1)                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                 else {              } 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          }
                 }   
                          if (bool==1){
               }            for(m=firstpass; m<=lastpass; m++){
               if (h==(int)(calagedate+12*cpt)){              k2=anint[m][i]+(mint[m][i]/12.);
                 fprintf(ficresf," %.3f", kk1);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                                        if(agev[m][i]==0) agev[m][i]=iagemax+1;
               }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                if (m<lastpass) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }                }
     }                
   }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                          dateintsum=dateintsum+k2;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  k2cpt++;
                 }
   fclose(ficresf);                /*}*/
 }            }
 /************** Forecasting ******************/          }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        } /* end i */
           
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   int *popage;        pstamp(ficresp);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        if  (cptcovn>0) {
   double *popeffectif,*popcount;          fprintf(ficresp, "\n#********** Variable "); 
   double ***p3mat,***tabpop,***tabpopprev;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char filerespop[FILENAMELENGTH];          fprintf(ficresp, "**********\n#");
           fprintf(ficlog, "\n#********** Variable "); 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog, "**********\n#");
   agelim=AGESUP;        }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for(i=1; i<=nlstate;i++) 
            fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        fprintf(ficresp, "\n");
          
          for(i=iagemin; i <= iagemax+3; i++){
   strcpy(filerespop,"pop");          if(i==iagemax+3){
   strcat(filerespop,fileres);            fprintf(ficlog,"Total");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          }else{
     printf("Problem with forecast resultfile: %s\n", filerespop);            if(first==1){
   }              first=0;
   printf("Computing forecasting: result on file '%s' \n", filerespop);              printf("See log file for details...\n");
             }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            fprintf(ficlog,"Age %d", i);
           }
   if (mobilav==1) {          for(jk=1; jk <=nlstate ; jk++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);              pp[jk] += freq[jk][m][i]; 
   }          }
           for(jk=1; jk <=nlstate ; jk++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for(m=-1, pos=0; m <=0 ; m++)
   if (stepm<=12) stepsize=1;              pos += freq[jk][m][i];
              if(pp[jk]>=1.e-10){
   agelim=AGESUP;              if(first==1){
                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   hstepm=1;              }
   hstepm=hstepm/stepm;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
              }else{
   if (popforecast==1) {              if(first==1)
     if((ficpop=fopen(popfile,"r"))==NULL) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       printf("Problem with population file : %s\n",popfile);exit(0);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
     popage=ivector(0,AGESUP);          }
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);          for(jk=1; jk <=nlstate ; jk++){
                for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     i=1;                pp[jk] += freq[jk][m][i];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          }       
              for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     imx=i;            pos += pp[jk];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            posprop += prop[jk][i];
   }          }
           for(jk=1; jk <=nlstate ; jk++){
   for(cptcov=1;cptcov<=i2;cptcov++){            if(pos>=1.e-5){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              if(first==1)
       k=k+1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficrespop,"\n#******");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(j=1;j<=cptcoveff;j++) {            }else{
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficrespop,"******\n");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficrespop,"# Age");            }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            if( i <= iagemax){
       if (popforecast==1)  fprintf(ficrespop," [Population]");              if(pos>=1.e-5){
                      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for (cpt=0; cpt<=0;cpt++) {                /*probs[i][jk][j1]= pp[jk]/pos;*/
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                      }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              else
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           nhstepm = nhstepm/hstepm;            }
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
           oldm=oldms;savm=savms;          for(jk=-1; jk <=nlstate+ndeath; jk++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(m=-1; m <=nlstate+ndeath; m++)
                      if(freq[jk][m][i] !=0 ) {
           for (h=0; h<=nhstepm; h++){              if(first==1)
             if (h==(int) (calagedate+YEARM*cpt)) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             }              }
             for(j=1; j<=nlstate+ndeath;j++) {          if(i <= iagemax)
               kk1=0.;kk2=0;            fprintf(ficresp,"\n");
               for(i=1; i<=nlstate;i++) {                        if(first==1)
                 if (mobilav==1)            printf("Others in log...\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          fprintf(ficlog,"\n");
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        /*}*/
                 }    }
               }    dateintmean=dateintsum/k2cpt; 
               if (h==(int)(calagedate+12*cpt)){   
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    fclose(ficresp);
                   /*fprintf(ficrespop," %.3f", kk1);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    free_vector(pp,1,nlstate);
               }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             }    /* End of Freq */
             for(i=1; i<=nlstate;i++){  }
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){  /************ Prevalence ********************/
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                 }  {  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             }       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);   
           }    int i, m, jk, j1, bool, z1,j;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    double **prop;
       }    double posprop; 
      double  y2; /* in fractional years */
   /******/    int iagemin, iagemax;
     int first; /** to stop verbosity which is redirected to log file */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      iagemin= (int) agemin;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    iagemax= (int) agemax;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /*pp=vector(1,nlstate);*/
           nhstepm = nhstepm/hstepm;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
              /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    j1=0;
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /*j=cptcoveff;*/
           for (h=0; h<=nhstepm; h++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             if (h==(int) (calagedate+YEARM*cpt)) {    
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    first=1;
             }    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
             for(j=1; j<=nlstate+ndeath;j++) {      /*for(i1=1; i1<=ncodemax[k1];i1++){
               kk1=0.;kk2=0;        j1++;*/
               for(i=1; i<=nlstate;i++) {                      
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            for (i=1; i<=nlstate; i++)  
               }          for(m=iagemin; m <= iagemax+3; m++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            prop[i][m]=0.0;
             }       
           }        for (i=1; i<=imx; i++) { /* Each individual */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          bool=1;
         }          if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++) 
    }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   }                bool=0;
            } 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   if (popforecast==1) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     free_ivector(popage,0,AGESUP);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     free_vector(popeffectif,0,AGESUP);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     free_vector(popcount,0,AGESUP);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   fclose(ficrespop);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
 /***********************************************/              }
 /**************** Main Program *****************/            } /* end selection of waves */
 /***********************************************/          }
         }
 int main(int argc, char *argv[])        for(i=iagemin; i <= iagemax+3; i++){  
 {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          } 
   double agedeb, agefin,hf;          
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
   double fret;              if(posprop>=1.e-5){ 
   double **xi,tmp,delta;                probs[i][jk][j1]= prop[jk][i]/posprop;
               } else{
   double dum; /* Dummy variable */                if(first==1){
   double ***p3mat;                  first=0;
   int *indx;                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   char line[MAXLINE], linepar[MAXLINE];                }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              }
   int firstobs=1, lastobs=10;            } 
   int sdeb, sfin; /* Status at beginning and end */          }/* end jk */ 
   int c,  h , cpt,l;        }/* end i */ 
   int ju,jl, mi;      /*} *//* end i1 */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    } /* end j1 */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    
   int mobilav=0,popforecast=0;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   int hstepm, nhstepm;    /*free_vector(pp,1,nlstate);*/
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;  /************* Waves Concatenation ***************/
   double **prlim;  
   double *severity;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   double ***param; /* Matrix of parameters */  {
   double  *p;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   double **matcov; /* Matrix of covariance */       Death is a valid wave (if date is known).
   double ***delti3; /* Scale */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   double *delti; /* Scale */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   double ***eij, ***vareij;       and mw[mi+1][i]. dh depends on stepm.
   double **varpl; /* Variances of prevalence limits by age */       */
   double *epj, vepp;  
   double kk1, kk2;    int i, mi, m;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
     int first;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int j, k=0,jk, ju, jl;
     double sum=0.;
     first=0;
   char z[1]="c", occ;    jmin=100000;
 #include <sys/time.h>    jmax=-1;
 #include <time.h>    jmean=0.;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    for(i=1; i<=imx; i++){
        mi=0;
   /* long total_usecs;      m=firstpass;
   struct timeval start_time, end_time;      while(s[m][i] <= nlstate){
          if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          mw[++mi][i]=m;
   getcwd(pathcd, size);        if(m >=lastpass)
           break;
   printf("\n%s",version);        else
   if(argc <=1){          m++;
     printf("\nEnter the parameter file name: ");      }/* end while */
     scanf("%s",pathtot);      if (s[m][i] > nlstate){
   }        mi++;     /* Death is another wave */
   else{        /* if(mi==0)  never been interviewed correctly before death */
     strcpy(pathtot,argv[1]);           /* Only death is a correct wave */
   }        mw[mi][i]=m;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      }
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      wav[i]=mi;
   /* cutv(path,optionfile,pathtot,'\\');*/      if(mi==0){
         nbwarn++;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        if(first==0){
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   chdir(path);          first=1;
   replace(pathc,path);        }
         if(first==1){
 /*-------- arguments in the command line --------*/          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
   strcpy(fileres,"r");      } /* end mi==0 */
   strcat(fileres, optionfilefiname);    } /* End individuals */
   strcat(fileres,".txt");    /* Other files have txt extension */  
     for(i=1; i<=imx; i++){
   /*---------arguments file --------*/      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          dh[mi][i]=1;
     printf("Problem with optionfile %s\n",optionfile);        else{
     goto end;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   }            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   strcpy(filereso,"o");              if(j==0) j=1;  /* Survives at least one month after exam */
   strcat(filereso,fileres);              else if(j<0){
   if((ficparo=fopen(filereso,"w"))==NULL) {                nberr++;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   /* Reads comments: lines beginning with '#' */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);              k=k+1;
     puts(line);              if (j >= jmax){
     fputs(line,ficparo);                jmax=j;
   }                ijmax=i;
   ungetc(c,ficpar);              }
               if (j <= jmin){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                jmin=j;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                ijmin=i;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);              }
 while((c=getc(ficpar))=='#' && c!= EOF){              sum=sum+j;
     ungetc(c,ficpar);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fgets(line, MAXLINE, ficpar);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     puts(line);            }
     fputs(line,ficparo);          }
   }          else{
   ungetc(c,ficpar);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
      
   covar=matrix(0,NCOVMAX,1,n);            k=k+1;
   cptcovn=0;            if (j >= jmax) {
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              jmax=j;
               ijmax=i;
   ncovmodel=2+cptcovn;            }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            else if (j <= jmin){
                jmin=j;
   /* Read guess parameters */              ijmin=i;
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     ungetc(c,ficpar);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fgets(line, MAXLINE, ficpar);            if(j<0){
     puts(line);              nberr++;
     fputs(line,ficparo);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   ungetc(c,ficpar);            }
              sum=sum+j;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          }
     for(i=1; i <=nlstate; i++)          jk= j/stepm;
     for(j=1; j <=nlstate+ndeath-1; j++){          jl= j -jk*stepm;
       fscanf(ficpar,"%1d%1d",&i1,&j1);          ju= j -(jk+1)*stepm;
       fprintf(ficparo,"%1d%1d",i1,j1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       printf("%1d%1d",i,j);            if(jl==0){
       for(k=1; k<=ncovmodel;k++){              dh[mi][i]=jk;
         fscanf(ficpar," %lf",&param[i][j][k]);              bh[mi][i]=0;
         printf(" %lf",param[i][j][k]);            }else{ /* We want a negative bias in order to only have interpolation ie
         fprintf(ficparo," %lf",param[i][j][k]);                    * to avoid the price of an extra matrix product in likelihood */
       }              dh[mi][i]=jk+1;
       fscanf(ficpar,"\n");              bh[mi][i]=ju;
       printf("\n");            }
       fprintf(ficparo,"\n");          }else{
     }            if(jl <= -ju){
                dh[mi][i]=jk;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
   p=param[1][1];                                   */
              }
   /* Reads comments: lines beginning with '#' */            else{
   while((c=getc(ficpar))=='#' && c!= EOF){              dh[mi][i]=jk+1;
     ungetc(c,ficpar);              bh[mi][i]=ju;
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            if(dh[mi][i]==0){
     fputs(line,ficparo);              dh[mi][i]=1; /* At least one step */
   }              bh[mi][i]=ju; /* At least one step */
   ungetc(c,ficpar);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          } /* end if mle */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        }
   for(i=1; i <=nlstate; i++){      } /* end wave */
     for(j=1; j <=nlstate+ndeath-1; j++){    }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    jmean=sum/k;
       printf("%1d%1d",i,j);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       for(k=1; k<=ncovmodel;k++){   }
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);  /*********** Tricode ****************************/
         fprintf(ficparo," %le",delti3[i][j][k]);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
       }  {
       fscanf(ficpar,"\n");    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       printf("\n");    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       fprintf(ficparo,"\n");     * Boring subroutine which should only output nbcode[Tvar[j]][k]
     }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   }     * nbcode[Tvar[j]][1]= 
   delti=delti3[1][1];    */
    
   /* Reads comments: lines beginning with '#' */    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   while((c=getc(ficpar))=='#' && c!= EOF){    int modmaxcovj=0; /* Modality max of covariates j */
     ungetc(c,ficpar);    int cptcode=0; /* Modality max of covariates j */
     fgets(line, MAXLINE, ficpar);    int modmincovj=0; /* Modality min of covariates j */
     puts(line);  
     fputs(line,ficparo);  
   }    cptcoveff=0; 
   ungetc(c,ficpar);   
      for (k=-1; k < maxncov; k++) Ndum[k]=0;
   matcov=matrix(1,npar,1,npar);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);    /* Loop on covariates without age and products */
     printf("%s",str);    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
     fprintf(ficparo,"%s",str);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
     for(j=1; j <=i; j++){                                 modality of this covariate Vj*/ 
       fscanf(ficpar," %le",&matcov[i][j]);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
       printf(" %.5le",matcov[i][j]);                                      * If product of Vn*Vm, still boolean *:
       fprintf(ficparo," %.5le",matcov[i][j]);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
     }                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     fscanf(ficpar,"\n");        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
     printf("\n");                                        modality of the nth covariate of individual i. */
     fprintf(ficparo,"\n");        if (ij > modmaxcovj)
   }          modmaxcovj=ij; 
   for(i=1; i <=npar; i++)        else if (ij < modmincovj) 
     for(j=i+1;j<=npar;j++)          modmincovj=ij; 
       matcov[i][j]=matcov[j][i];        if ((ij < -1) && (ij > NCOVMAX)){
              printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   printf("\n");          exit(1);
         }else
         Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     /*-------- Rewriting paramater file ----------*/        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
      strcpy(rfileres,"r");    /* "Rparameterfile */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        /* getting the maximum value of the modality of the covariate
      strcat(rfileres,".");    /* */           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
      strcat(rfileres,optionfilext);    /* Other files have txt extension */           female is 1, then modmaxcovj=1.*/
     if((ficres =fopen(rfileres,"w"))==NULL) {      }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     }      cptcode=modmaxcovj;
     fprintf(ficres,"#%s\n",version);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
         /*for (i=0; i<=cptcode; i++) {*/
     /*-------- data file ----------*/      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     if((fic=fopen(datafile,"r"))==NULL)    {        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
       printf("Problem with datafile: %s\n", datafile);goto end;        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     }          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
         }
     n= lastobs;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     severity = vector(1,maxwav);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     outcome=imatrix(1,maxwav+1,1,n);      } /* Ndum[-1] number of undefined modalities */
     num=ivector(1,n);  
     moisnais=vector(1,n);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     annais=vector(1,n);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
     moisdc=vector(1,n);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     andc=vector(1,n);         modmincovj=3; modmaxcovj = 7;
     agedc=vector(1,n);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     cod=ivector(1,n);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
     weight=vector(1,n);         variables V1_1 and V1_2.
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */         nbcode[Tvar[j]][ij]=k;
     mint=matrix(1,maxwav,1,n);         nbcode[Tvar[j]][1]=0;
     anint=matrix(1,maxwav,1,n);         nbcode[Tvar[j]][2]=1;
     s=imatrix(1,maxwav+1,1,n);         nbcode[Tvar[j]][3]=2;
     adl=imatrix(1,maxwav+1,1,n);          */
     tab=ivector(1,NCOVMAX);      ij=1; /* ij is similar to i but can jumps over null modalities */
     ncodemax=ivector(1,8);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
     i=1;          /*recode from 0 */
     while (fgets(line, MAXLINE, fic) != NULL)    {          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
       if ((i >= firstobs) && (i <=lastobs)) {            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                               k is a modality. If we have model=V1+V1*sex 
         for (j=maxwav;j>=1;j--){                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            ij++;
           strcpy(line,stra);          }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          if (ij > ncodemax[j]) break; 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }  /* end of loop on */
         }      } /* end of loop on modality */ 
            } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);     Ndum[ij]++; 
         for (j=ncovcol;j>=1;j--){   } 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }   ij=1;
         num[i]=atol(stra);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
             /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){     if((Ndum[i]!=0) && (i<=ncovcol)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
         i=i+1;       ij++;
       }     }else
     }         Tvaraff[ij]=0;
     /* printf("ii=%d", ij);   }
        scanf("%d",i);*/   ij--;
   imx=i-1; /* Number of individuals */   cptcoveff=ij; /*Number of total covariates*/
   
   /* for (i=1; i<=imx; i++){  }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  /*********** Health Expectancies ****************/
     }*/  
    /*  for (i=1; i<=imx; i++){  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  {
      /* Health expectancies, no variances */
      int i, j, nhstepm, hstepm, h, nstepm;
   /* Calculation of the number of parameter from char model*/    int nhstepma, nstepma; /* Decreasing with age */
   Tvar=ivector(1,15);    double age, agelim, hf;
   Tprod=ivector(1,15);    double ***p3mat;
   Tvaraff=ivector(1,15);    double eip;
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);          pstamp(ficreseij);
        fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   if (strlen(model) >1){    fprintf(ficreseij,"# Age");
     j=0, j1=0, k1=1, k2=1;    for(i=1; i<=nlstate;i++){
     j=nbocc(model,'+');      for(j=1; j<=nlstate;j++){
     j1=nbocc(model,'*');        fprintf(ficreseij," e%1d%1d ",i,j);
     cptcovn=j+1;      }
     cptcovprod=j1;      fprintf(ficreseij," e%1d. ",i);
        }
     strcpy(modelsav,model);    fprintf(ficreseij,"\n");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);    
       goto end;    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
        }
     for(i=(j+1); i>=1;i--){    else  hstepm=estepm;   
       cutv(stra,strb,modelsav,'+');    /* We compute the life expectancy from trapezoids spaced every estepm months
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);     * This is mainly to measure the difference between two models: for example
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/     * if stepm=24 months pijx are given only every 2 years and by summing them
       /*scanf("%d",i);*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
       if (strchr(strb,'*')) {     * progression in between and thus overestimating or underestimating according
         cutv(strd,strc,strb,'*');     * to the curvature of the survival function. If, for the same date, we 
         if (strcmp(strc,"age")==0) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           cptcovprod--;     * to compare the new estimate of Life expectancy with the same linear 
           cutv(strb,stre,strd,'V');     * hypothesis. A more precise result, taking into account a more precise
           Tvar[i]=atoi(stre);     * curvature will be obtained if estepm is as small as stepm. */
           cptcovage++;  
             Tage[cptcovage]=i;    /* For example we decided to compute the life expectancy with the smallest unit */
             /*printf("stre=%s ", stre);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         }       nhstepm is the number of hstepm from age to agelim 
         else if (strcmp(strd,"age")==0) {       nstepm is the number of stepm from age to agelin. 
           cptcovprod--;       Look at hpijx to understand the reason of that which relies in memory size
           cutv(strb,stre,strc,'V');       and note for a fixed period like estepm months */
           Tvar[i]=atoi(stre);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           cptcovage++;       survival function given by stepm (the optimization length). Unfortunately it
           Tage[cptcovage]=i;       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         else {       results. So we changed our mind and took the option of the best precision.
           cutv(strb,stre,strc,'V');    */
           Tvar[i]=ncovcol+k1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;    agelim=AGESUP;
           Tvard[k1][1]=atoi(strc);    /* If stepm=6 months */
           Tvard[k1][2]=atoi(stre);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           Tvar[cptcovn+k2]=Tvard[k1][1];         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      
           for (k=1; k<=lastobs;k++)  /* nhstepm age range expressed in number of stepm */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           k1++;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           k2=k2+2;    /* if (stepm >= YEARM) hstepm=1;*/
         }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    for (age=bage; age<=fage; age ++){ 
        /*  scanf("%d",i);*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       cutv(strd,strc,strb,'V');      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       Tvar[i]=atoi(strc);      /* if (stepm >= YEARM) hstepm=1;*/
       }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      /* If stepm=6 months */
         scanf("%d",i);*/      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 }      
        hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      
   printf("cptcovprod=%d ", cptcovprod);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   scanf("%d ",i);*/      
     fclose(fic);      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     /*  if(mle==1){*/      
     if (weightopt != 1) { /* Maximisation without weights*/      /* Computing expectancies */
       for(i=1;i<=n;i++) weight[i]=1.0;      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++)
     /*-calculation of age at interview from date of interview and age at death -*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     agev=matrix(1,maxwav,1,imx);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
     for (i=1; i<=imx; i++) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          }
          anint[m][i]=9999;  
          s[m][i]=-1;      fprintf(ficreseij,"%3.0f",age );
        }      for(i=1; i<=nlstate;i++){
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        eip=0;
       }        for(j=1; j<=nlstate;j++){
     }          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     for (i=1; i<=imx; i++)  {        }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        fprintf(ficreseij,"%9.4f", eip );
       for(m=1; (m<= maxwav); m++){      }
         if(s[m][i] >0){      fprintf(ficreseij,"\n");
           if (s[m][i] >= nlstate+1) {      
             if(agedc[i]>0)    }
               if(moisdc[i]!=99 && andc[i]!=9999)    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 agev[m][i]=agedc[i];    printf("\n");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    fprintf(ficlog,"\n");
            else {    
               if (andc[i]!=9999){  }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
               }  
             }  {
           }    /* Covariances of health expectancies eij and of total life expectancies according
           else if(s[m][i] !=9){ /* Should no more exist */     to initial status i, ei. .
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    */
             if(mint[m][i]==99 || anint[m][i]==9999)    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
               agev[m][i]=1;    int nhstepma, nstepma; /* Decreasing with age */
             else if(agev[m][i] <agemin){    double age, agelim, hf;
               agemin=agev[m][i];    double ***p3matp, ***p3matm, ***varhe;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    double **dnewm,**doldm;
             }    double *xp, *xm;
             else if(agev[m][i] >agemax){    double **gp, **gm;
               agemax=agev[m][i];    double ***gradg, ***trgradg;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    int theta;
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/    double eip, vip;
             /*   agev[m][i] = age[i]+2*m;*/  
           }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           else { /* =9 */    xp=vector(1,npar);
             agev[m][i]=1;    xm=vector(1,npar);
             s[m][i]=-1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
           }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         }    
         else /*= 0 Unknown */    pstamp(ficresstdeij);
           agev[m][i]=1;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       }    fprintf(ficresstdeij,"# Age");
        for(i=1; i<=nlstate;i++){
     }      for(j=1; j<=nlstate;j++)
     for (i=1; i<=imx; i++)  {        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       for(m=1; (m<= maxwav); m++){      fprintf(ficresstdeij," e%1d. ",i);
         if (s[m][i] > (nlstate+ndeath)) {    }
           printf("Error: Wrong value in nlstate or ndeath\n");      fprintf(ficresstdeij,"\n");
           goto end;  
         }    pstamp(ficrescveij);
       }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     }    fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
     free_vector(severity,1,maxwav);        for(i2=1; i2<=nlstate;i2++)
     free_imatrix(outcome,1,maxwav+1,1,n);          for(j2=1; j2<=nlstate;j2++){
     free_vector(moisnais,1,n);            cptj2= (j2-1)*nlstate+i2;
     free_vector(annais,1,n);            if(cptj2 <= cptj)
     /* free_matrix(mint,1,maxwav,1,n);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
        free_matrix(anint,1,maxwav,1,n);*/          }
     free_vector(moisdc,1,n);      }
     free_vector(andc,1,n);    fprintf(ficrescveij,"\n");
     
        if(estepm < stepm){
     wav=ivector(1,imx);      printf ("Problem %d lower than %d\n",estepm, stepm);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    else  hstepm=estepm;   
        /* We compute the life expectancy from trapezoids spaced every estepm months
     /* Concatenates waves */     * This is mainly to measure the difference between two models: for example
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
       Tcode=ivector(1,100);     * to the curvature of the survival function. If, for the same date, we 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       ncodemax[1]=1;     * to compare the new estimate of Life expectancy with the same linear 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);     * hypothesis. A more precise result, taking into account a more precise
           * curvature will be obtained if estepm is as small as stepm. */
    codtab=imatrix(1,100,1,10);  
    h=0;    /* For example we decided to compute the life expectancy with the smallest unit */
    m=pow(2,cptcoveff);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
    for(k=1;k<=cptcoveff; k++){       nstepm is the number of stepm from age to agelin. 
      for(i=1; i <=(m/pow(2,k));i++){       Look at hpijx to understand the reason of that which relies in memory size
        for(j=1; j <= ncodemax[k]; j++){       and note for a fixed period like estepm months */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
            h++;       survival function given by stepm (the optimization length). Unfortunately it
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;       means that if the survival funtion is printed only each two years of age and if
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
          }       results. So we changed our mind and took the option of the best precision.
        }    */
      }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    /* If stepm=6 months */
       codtab[1][2]=1;codtab[2][2]=2; */    /* nhstepm age range expressed in number of stepm */
    /* for(i=1; i <=m ;i++){    agelim=AGESUP;
       for(k=1; k <=cptcovn; k++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }    /* if (stepm >= YEARM) hstepm=1;*/
       printf("\n");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }    
       scanf("%d",i);*/    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    /* Calculates basic frequencies. Computes observed prevalence at single age    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        and prints on file fileres'p'. */    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
        gm=matrix(0,nhstepm,1,nlstate*nlstate);
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (age=bage; age<=fage; age ++){ 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* if (stepm >= YEARM) hstepm=1;*/
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
        
     /* For Powell, parameters are in a vector p[] starting at p[1]      /* If stepm=6 months */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
     if(mle==1){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }      /* Computing  Variances of health expectancies */
          /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     /*--------- results files --------------*/         decrease memory allocation */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
    jk=1;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
    for(i=1,jk=1; i <=nlstate; i++){        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
      for(k=1; k <=(nlstate+ndeath); k++){    
        if (k != i)        for(j=1; j<= nlstate; j++){
          {          for(i=1; i<=nlstate; i++){
            printf("%d%d ",i,k);            for(h=0; h<=nhstepm-1; h++){
            fprintf(ficres,"%1d%1d ",i,k);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
            for(j=1; j <=ncovmodel; j++){              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
              printf("%f ",p[jk]);            }
              fprintf(ficres,"%f ",p[jk]);          }
              jk++;        }
            }       
            printf("\n");        for(ij=1; ij<= nlstate*nlstate; ij++)
            fprintf(ficres,"\n");          for(h=0; h<=nhstepm-1; h++){
          }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
      }          }
    }      }/* End theta */
  if(mle==1){      
     /* Computing hessian and covariance matrix */      
     ftolhess=ftol; /* Usually correct */      for(h=0; h<=nhstepm-1; h++)
     hesscov(matcov, p, npar, delti, ftolhess, func);        for(j=1; j<=nlstate*nlstate;j++)
  }          for(theta=1; theta <=npar; theta++)
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            trgradg[h][j][theta]=gradg[h][theta][j];
     printf("# Scales (for hessian or gradient estimation)\n");      
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){       for(ij=1;ij<=nlstate*nlstate;ij++)
         if (j!=i) {        for(ji=1;ji<=nlstate*nlstate;ji++)
           fprintf(ficres,"%1d%1d",i,j);          varhe[ij][ji][(int)age] =0.;
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){       printf("%d|",(int)age);fflush(stdout);
             printf(" %.5e",delti[jk]);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             fprintf(ficres," %.5e",delti[jk]);       for(h=0;h<=nhstepm-1;h++){
             jk++;        for(k=0;k<=nhstepm-1;k++){
           }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           printf("\n");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           fprintf(ficres,"\n");          for(ij=1;ij<=nlstate*nlstate;ij++)
         }            for(ji=1;ji<=nlstate*nlstate;ji++)
       }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
      }        }
          }
     k=1;  
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      /* Computing expectancies */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     for(i=1;i<=npar;i++){      for(i=1; i<=nlstate;i++)
       /*  if (k>nlstate) k=1;        for(j=1; j<=nlstate;j++)
       i1=(i-1)/(ncovmodel*nlstate)+1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       printf("%s%d%d",alph[k],i1,tab[i]);*/            
       fprintf(ficres,"%3d",i);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       printf("%3d",i);  
       for(j=1; j<=i;j++){          }
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);      fprintf(ficresstdeij,"%3.0f",age );
       }      for(i=1; i<=nlstate;i++){
       fprintf(ficres,"\n");        eip=0.;
       printf("\n");        vip=0.;
       k++;        for(j=1; j<=nlstate;j++){
     }          eip += eij[i][j][(int)age];
              for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     while((c=getc(ficpar))=='#' && c!= EOF){            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       ungetc(c,ficpar);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       fgets(line, MAXLINE, ficpar);        }
       puts(line);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       fputs(line,ficparo);      }
     }      fprintf(ficresstdeij,"\n");
     ungetc(c,ficpar);  
     estepm=0;      fprintf(ficrescveij,"%3.0f",age );
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      for(i=1; i<=nlstate;i++)
     if (estepm==0 || estepm < stepm) estepm=stepm;        for(j=1; j<=nlstate;j++){
     if (fage <= 2) {          cptj= (j-1)*nlstate+i;
       bage = ageminpar;          for(i2=1; i2<=nlstate;i2++)
       fage = agemaxpar;            for(j2=1; j2<=nlstate;j2++){
     }              cptj2= (j2-1)*nlstate+i2;
                  if(cptj2 <= cptj)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        }
        fprintf(ficrescveij,"\n");
     while((c=getc(ficpar))=='#' && c!= EOF){     
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     puts(line);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     fputs(line,ficparo);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   ungetc(c,ficpar);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    printf("\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficlog,"\n");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
          free_vector(xm,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(xp,1,npar);
     ungetc(c,ficpar);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     puts(line);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    /* Variance of health expectancies */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   fscanf(ficpar,"pop_based=%d\n",&popbased);    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
   fprintf(ficparo,"pop_based=%d\n",popbased);      
   fprintf(ficres,"pop_based=%d\n",popbased);      int movingaverage();
      double **dnewm,**doldm;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewmp,**doldmp;
     ungetc(c,ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
     fgets(line, MAXLINE, ficpar);    int k;
     puts(line);    double *xp;
     fputs(line,ficparo);    double **gp, **gm;  /* for var eij */
   }    double ***gradg, ***trgradg; /*for var eij */
   ungetc(c,ficpar);    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    double ***p3mat;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    double age,agelim, hf;
     double ***mobaverage;
     int theta;
 while((c=getc(ficpar))=='#' && c!= EOF){    char digit[4];
     ungetc(c,ficpar);    char digitp[25];
     fgets(line, MAXLINE, ficpar);  
     puts(line);    char fileresprobmorprev[FILENAMELENGTH];
     fputs(line,ficparo);  
   }    if(popbased==1){
   ungetc(c,ficpar);      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      else strcpy(digitp,"-populbased-nomobil-");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    else 
       strcpy(digitp,"-stablbased-");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
     if (mobilav!=0) {
 /*------------ gnuplot -------------*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(optionfilegnuplot,optionfilefiname);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   strcat(optionfilegnuplot,".gp");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with file %s",optionfilegnuplot);      }
   }    }
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    strcpy(fileresprobmorprev,"prmorprev"); 
 /*--------- index.htm --------*/    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   strcpy(optionfilehtm,optionfile);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   strcat(optionfilehtm,".htm");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    strcat(fileresprobmorprev,fileres);
     printf("Problem with %s \n",optionfilehtm), exit(0);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 \n   
 Total number of observations=%d <br>\n    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    pstamp(ficresprobmorprev);
 <hr  size=\"2\" color=\"#EC5E5E\">    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
  <ul><li>Parameter files<br>\n    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);      fprintf(ficresprobmorprev," p.%-d SE",j);
   fclose(fichtm);      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    }  
      fprintf(ficresprobmorprev,"\n");
 /*------------ free_vector  -------------*/    fprintf(ficgp,"\n# Routine varevsij");
  chdir(path);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
  free_ivector(wav,1,imx);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  /*   } */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  free_ivector(num,1,n);    pstamp(ficresvij);
  free_vector(agedc,1,n);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    if(popbased==1)
  fclose(ficparo);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
  fclose(ficres);    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
   /*--------------- Prevalence limit --------------*/    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
   strcpy(filerespl,"pl");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   strcat(filerespl,fileres);    fprintf(ficresvij,"\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    doldm=matrix(1,nlstate,1,nlstate);
   fprintf(ficrespl,"#Prevalence limit\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   fprintf(ficrespl,"#Age ");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
   prlim=matrix(1,nlstate,1,nlstate);    gmp=vector(nlstate+1,nlstate+ndeath);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(estepm < stepm){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf ("Problem %d lower than %d\n",estepm, stepm);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    }
   k=0;    else  hstepm=estepm;   
   agebase=ageminpar;    /* For example we decided to compute the life expectancy with the smallest unit */
   agelim=agemaxpar;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   ftolpl=1.e-10;       nhstepm is the number of hstepm from age to agelim 
   i1=cptcoveff;       nstepm is the number of stepm from age to agelin. 
   if (cptcovn < 1){i1=1;}       Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   for(cptcov=1;cptcov<=i1;cptcov++){       survival function given by stepm (the optimization length). Unfortunately it
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       means that if the survival funtion is printed every two years of age and if
         k=k+1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       results. So we changed our mind and took the option of the best precision.
         fprintf(ficrespl,"\n#******");    */
         for(j=1;j<=cptcoveff;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim = AGESUP;
         fprintf(ficrespl,"******\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         for (age=agebase; age<=agelim; age++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespl,"%.0f",age );      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           for(i=1; i<=nlstate;i++)      gp=matrix(0,nhstepm,1,nlstate);
           fprintf(ficrespl," %.5f", prlim[i][i]);      gm=matrix(0,nhstepm,1,nlstate);
           fprintf(ficrespl,"\n");  
         }  
       }      for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   fclose(ficrespl);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   /*------------- h Pij x at various ages ------------*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        if (popbased==1) {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
   printf("Computing pij: result on file '%s' \n", filerespij);              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for(i=1; i<=nlstate;i++)
   /*if (stepm<=24) stepsize=2;*/              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   agelim=AGESUP;        }
   hstepm=stepsize*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
   k=0;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
       k=k+1;        }
         fprintf(ficrespij,"\n#****** ");        /* This for computing probability of death (h=1 means
         for(j=1;j<=cptcoveff;j++)           computed over hstepm matrices product = hstepm*stepm months) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           as a weighted average of prlim.
         fprintf(ficrespij,"******\n");        */
                for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        }    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* end probability of death */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           fprintf(ficrespij,"# Age");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           for(i=1; i<=nlstate;i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             for(j=1; j<=nlstate+ndeath;j++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               fprintf(ficrespij," %1d-%1d",i,j);   
           fprintf(ficrespij,"\n");        if (popbased==1) {
            for (h=0; h<=nhstepm; h++){          if(mobilav ==0){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            for(i=1; i<=nlstate;i++)
             for(i=1; i<=nlstate;i++)              prlim[i][i]=probs[(int)age][i][ij];
               for(j=1; j<=nlstate+ndeath;j++)          }else{ /* mobilav */ 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            for(i=1; i<=nlstate;i++)
             fprintf(ficrespij,"\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
              }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           fprintf(ficrespij,"\n");  
         }        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     }          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          }
         }
   fclose(ficrespij);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   /*---------- Forecasting ------------------*/        */
   if((stepm == 1) && (strcmp(model,".")==0)){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
   else{        /* end probability of death */
     erreur=108;  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        for(j=1; j<= nlstate; j++) /* vareij */
   }          for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   /*---------- Health expectancies and variances ------------*/  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   strcpy(filerest,"t");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   strcat(filerest,fileres);        }
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      } /* End theta */
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
   strcpy(filerese,"e");        for(j=1; j<=nlstate;j++)
   strcat(filerese,fileres);          for(theta=1; theta <=npar; theta++)
   if((ficreseij=fopen(filerese,"w"))==NULL) {            trgradg[h][j][theta]=gradg[h][theta][j];
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
  strcpy(fileresv,"v");    
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          vareij[i][j][(int)age] =0.;
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
   k=0;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   for(cptcov=1;cptcov<=i1;cptcov++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(i=1;i<=nlstate;i++)
       k=k+1;            for(j=1;j<=nlstate;j++)
       fprintf(ficrest,"\n#****** ");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       fprintf(ficrest,"******\n");    
       /* pptj */
       fprintf(ficreseij,"\n#****** ");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       for(j=1;j<=cptcoveff;j++)      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fprintf(ficreseij,"******\n");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       fprintf(ficresvij,"\n#****** ");      /* end ppptj */
       for(j=1;j<=cptcoveff;j++)      /*  x centered again */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficresvij,"******\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      if (popbased==1) {
       oldm=oldms;savm=savms;        if(mobilav ==0){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }else{ /* mobilav */ 
       oldm=oldms;savm=savms;          for(i=1; i<=nlstate;i++)
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);            prlim[i][i]=mobaverage[(int)age][i][ij];
            }
       }
                 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      /* This for computing probability of death (h=1 means
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       fprintf(ficrest,"\n");         as a weighted average of prlim.
       */
       epj=vector(1,nlstate+1);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(age=bage; age <=fage ;age++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         if (popbased==1) {      }    
           for(i=1; i<=nlstate;i++)      /* end probability of death */
             prlim[i][i]=probs[(int)age][i][k];  
         }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
              for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficrest," %4.0f",age);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        for(i=1; i<=nlstate;i++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      } 
           }      fprintf(ficresprobmorprev,"\n");
           epj[nlstate+1] +=epj[j];  
         }      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(i=1, vepp=0.;i <=nlstate;i++)        for(j=1; j<=nlstate;j++){
           for(j=1;j <=nlstate;j++)          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
             vepp += vareij[i][j][(int)age];        }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      fprintf(ficresvij,"\n");
         for(j=1;j <=nlstate;j++){      free_matrix(gp,0,nhstepm,1,nlstate);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      free_matrix(gm,0,nhstepm,1,nlstate);
         }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         fprintf(ficrest,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    } /* End age */
   }    free_vector(gpp,nlstate+1,nlstate+ndeath);
 free_matrix(mint,1,maxwav,1,n);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_vector(weight,1,n);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   fclose(ficreseij);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
   fclose(ficresvij);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   fclose(ficrest);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   fclose(ficpar);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   free_vector(epj,1,nlstate+1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*------- Variance limit prevalence------*/      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
   strcpy(fileresvpl,"vpl");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
   strcat(fileresvpl,fileres);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     exit(0);  */
   }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
   k=0;    free_vector(xp,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    free_matrix(doldm,1,nlstate,1,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_matrix(dnewm,1,nlstate,1,npar);
       k=k+1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficresvpl,"\n#****** ");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       for(j=1;j<=cptcoveff;j++)    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficresvpl,"******\n");    fclose(ficresprobmorprev);
          fflush(ficgp);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    fflush(fichtm); 
       oldm=oldms;savm=savms;  }  /* end varevsij */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }  /************ Variance of prevlim ******************/
  }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
   fclose(ficresvpl);    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double *xp;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double *gp, *gm;
      double **gradg, **trgradg;
      double age,agelim;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    int theta;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    pstamp(ficresvpl);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
      fprintf(ficresvpl,"# Age");
   free_matrix(matcov,1,npar,1,npar);    for(i=1; i<=nlstate;i++)
   free_vector(delti,1,npar);        fprintf(ficresvpl," %1d-%1d",i,i);
   free_matrix(agev,1,maxwav,1,imx);    fprintf(ficresvpl,"\n");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     xp=vector(1,npar);
   fprintf(fichtm,"\n</body>");    dnewm=matrix(1,nlstate,1,npar);
   fclose(fichtm);    doldm=matrix(1,nlstate,1,nlstate);
   fclose(ficgp);    
      hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   if(erreur >0)    agelim = AGESUP;
     printf("End of Imach with error or warning %d\n",erreur);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   else   printf("End of Imach\n");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      gradg=matrix(1,npar,1,nlstate);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      gp=vector(1,nlstate);
   /*------ End -----------*/      gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
  end:        for(i=1; i<=npar; i++){ /* Computes gradient */
 #ifdef windows          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /* chdir(pathcd);*/        }
 #endif        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  /*system("wgnuplot graph.plt");*/        for(i=1;i<=nlstate;i++)
  /*system("../gp37mgw/wgnuplot graph.plt");*/          gp[i] = prlim[i][i];
  /*system("cd ../gp37mgw");*/      
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        for(i=1; i<=npar; i++) /* Computes gradient */
  strcpy(plotcmd,GNUPLOTPROGRAM);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  strcat(plotcmd," ");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  strcat(plotcmd,optionfilegnuplot);        for(i=1;i<=nlstate;i++)
  system(plotcmd);          gm[i] = prlim[i][i];
   
 #ifdef windows        for(i=1;i<=nlstate;i++)
   while (z[0] != 'q') {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     /* chdir(path); */      } /* End theta */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);      trgradg =matrix(1,nlstate,1,npar);
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);      for(j=1; j<=nlstate;j++)
     else if (z[0] == 'g') system(plotcmd);        for(theta=1; theta <=npar; theta++)
     else if (z[0] == 'q') exit(0);          trgradg[j][theta]=gradg[theta][j];
   }  
 #endif      for(i=1;i<=nlstate;i++)
 }        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* #include <gnu/libc-version.h> */ /* Only on gnu */
   #include <stdint.h>
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(". ");fprintf(ficlog,". ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
   #elif __unix__ // all unices, not all compilers
       // Unix
   #elif __linux__
       // linux
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though...
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit.\n"); fprintf(ficlog," 32-bit.\n");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit.\n"); fprintf(ficlog," 64-bit.\n");/* 64-bit */
   #else
      printf(" wtf-bit.\n"); fprintf(ficlog," wtf-bit.\n");/* wtf */
   #endif
   
   /* struct utsname sysInfo;
   
      if (uname(&sysInfo) != -1) {
        printf(" %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog," %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
             */
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf("GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, "GNU C version %d.\n", __GNUC_VERSION__);
   #endif
   #if defined(_MSC_VER)
      /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
      /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   #endif
      
     /* printf("GNU libc version: %s\n", gnu_get_libc_version()); */
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.48  
changed lines
  Added in v.1.171


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>