Diff for /imach/src/imach.c between versions 1.48 and 1.183

version 1.48, 2002/06/10 13:12:49 version 1.183, 2015/03/10 20:34:32
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.183  2015/03/10 20:34:32  brouard
      Summary: 0.98q0, trying with directest, mnbrak fixed
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    We use directest instead of original Powell test; probably no
   first survey ("cross") where individuals from different ages are    incidence on the results, but better justifications;
   interviewed on their health status or degree of disability (in the    We fixed Numerical Recipes mnbrak routine which was wrong and gave
   case of a health survey which is our main interest) -2- at least a    wrong results.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.182  2015/02/12 08:19:57  brouard
   computed from the time spent in each health state according to a    Summary: Trying to keep directest which seems simpler and more general
   model. More health states you consider, more time is necessary to reach the    Author: Nicolas Brouard
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.181  2015/02/11 23:22:24  brouard
   probability to be observed in state j at the second wave    Summary: Comments on Powell added
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Author:
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.180  2015/02/11 17:33:45  brouard
   where the markup *Covariates have to be included here again* invites    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.179  2015/01/04 09:57:06  brouard
     Summary: back to OS/X
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.178  2015/01/04 09:35:48  brouard
   identical for each individual. Also, if a individual missed an    *** empty log message ***
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.177  2015/01/03 18:40:56  brouard
     Summary: Still testing ilc32 on OSX
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.176  2015/01/03 16:45:04  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    *** empty log message ***
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.175  2015/01/03 16:33:42  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    *** empty log message ***
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.173  2015/01/03 12:06:26  brouard
      Summary: trying to detect cross-compilation
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.172  2014/12/27 12:07:47  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.171  2014/12/23 13:26:59  brouard
   software can be distributed freely for non commercial use. Latest version    Summary: Back from Visual C
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Still problem with utsname.h on Windows
    
 #include <math.h>    Revision 1.170  2014/12/23 11:17:12  brouard
 #include <stdio.h>    Summary: Cleaning some \%% back to %%
 #include <stdlib.h>  
 #include <unistd.h>    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
 #define MAXLINE 256    Revision 1.169  2014/12/22 23:08:31  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Summary: 0.98p
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 /*#define DEBUG*/  
 #define windows    Revision 1.168  2014/12/22 15:17:42  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Summary: update
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.167  2014/12/22 13:50:56  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Summary: Testing uname and compiler version and if compiled 32 or 64
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Testing on Linux 64
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.166  2014/12/22 11:40:47  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    *** empty log message ***
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.165  2014/12/16 11:20:36  brouard
 #define YEARM 12. /* Number of months per year */    Summary: After compiling on Visual C
 #define AGESUP 130  
 #define AGEBASE 40    * imach.c (Module): Merging 1.61 to 1.162
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.164  2014/12/16 10:52:11  brouard
 #else    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 #define DIRSEPARATOR '/'  
 #endif    * imach.c (Module): Merging 1.61 to 1.162
   
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Revision 1.163  2014/12/16 10:30:11  brouard
 int erreur; /* Error number */    * imach.c (Module): Merging 1.61 to 1.162
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.162  2014/09/25 11:43:39  brouard
 int npar=NPARMAX;    Summary: temporary backup 0.99!
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.1  2014/09/16 11:06:58  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Summary: With some code (wrong) for nlopt
 int popbased=0;  
     Author:
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.161  2014/09/15 20:41:41  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Summary: Problem with macro SQR on Intel compiler
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.160  2014/09/02 09:24:05  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    *** empty log message ***
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.159  2014/09/01 10:34:10  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Summary: WIN32
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Author: Brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *fichtm; /* Html File */    Revision 1.158  2014/08/27 17:11:51  brouard
 FILE *ficreseij;    *** empty log message ***
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.157  2014/08/27 16:26:55  brouard
 char fileresv[FILENAMELENGTH];    Summary: Preparing windows Visual studio version
 FILE  *ficresvpl;    Author: Brouard
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    In order to compile on Visual studio, time.h is now correct and time_t
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    and tm struct should be used. difftime should be used but sometimes I
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Add xdg-open for __linux in order to open default browser.
   
 char filerest[FILENAMELENGTH];    Revision 1.156  2014/08/25 20:10:10  brouard
 char fileregp[FILENAMELENGTH];    *** empty log message ***
 char popfile[FILENAMELENGTH];  
     Revision 1.155  2014/08/25 18:32:34  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Summary: New compile, minor changes
     Author: Brouard
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.154  2014/06/20 17:32:08  brouard
 #define FTOL 1.0e-10    Summary: Outputs now all graphs of convergence to period prevalence
   
 #define NRANSI    Revision 1.153  2014/06/20 16:45:46  brouard
 #define ITMAX 200    Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
 #define TOL 2.0e-4  
     Revision 1.152  2014/06/18 17:54:09  brouard
 #define CGOLD 0.3819660    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.150  2014/06/18 16:42:35  brouard
 #define TINY 1.0e-20    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.149  2014/06/18 15:51:14  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Summary: Some fixes in parameter files errors
      Author: Nicolas Brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
 static double sqrarg;    Author: Brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Just a new packaging for OS/X version 0.98nS
   
 int imx;    Revision 1.147  2014/06/16 10:33:11  brouard
 int stepm;    *** empty log message ***
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.146  2014/06/16 10:20:28  brouard
 int estepm;    Summary: Merge
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Author: Brouard
   
 int m,nb;    Merge, before building revised version.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.145  2014/06/10 21:23:15  brouard
 double **pmmij, ***probs, ***mobaverage;    Summary: Debugging with valgrind
 double dateintmean=0;    Author: Nicolas Brouard
   
 double *weight;    Lot of changes in order to output the results with some covariates
 int **s; /* Status */    After the Edimburgh REVES conference 2014, it seems mandatory to
 double *agedc, **covar, idx;    improve the code.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Also, decodemodel has been improved. Tricode is still not
 double ftolhess; /* Tolerance for computing hessian */    optimal. nbcode should be improved. Documentation has been added in
     the source code.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.143  2014/01/26 09:45:38  brouard
 {    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.142  2014/01/26 03:57:36  brouard
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       extern char       *getwd( );  
     Revision 1.141  2014/01/26 02:42:01  brouard
       if ( getwd( dirc ) == NULL ) {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #else  
       extern char       *getcwd( );    Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.139  2010/06/14 07:50:17  brouard
          return( GLOCK_ERROR_GETCWD );    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
       }    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.138  2010/04/30 18:19:40  brouard
       s++;                              /* after this, the filename */    *** empty log message ***
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.137  2010/04/29 18:11:38  brouard
       strcpy( name, s );                /* save file name */    (Module): Checking covariates for more complex models
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    than V1+V2. A lot of change to be done. Unstable.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.136  2010/04/26 20:30:53  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): merging some libgsl code. Fixing computation
 #ifdef windows    of likelione (using inter/intrapolation if mle = 0) in order to
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    get same likelihood as if mle=1.
 #else    Some cleaning of code and comments added.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.135  2009/10/29 15:33:14  brouard
    s = strrchr( name, '.' );            /* find last / */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.134  2009/10/29 13:18:53  brouard
    l1= strlen( name);    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.133  2009/07/06 10:21:25  brouard
    finame[l1-l2]= 0;    just nforces
    return( 0 );                         /* we're done */  
 }    Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
 /******************************************/    Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
 void replace(char *s, char*t)  
 {    Revision 1.130  2009/05/26 06:44:34  brouard
   int i;    (Module): Max Covariate is now set to 20 instead of 8. A
   int lg=20;    lot of cleaning with variables initialized to 0. Trying to make
   i=0;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.129  2007/08/31 13:49:27  lievre
     (s[i] = t[i]);    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.128  2006/06/30 13:02:05  brouard
 }    (Module): Clarifications on computing e.j
   
 int nbocc(char *s, char occ)    Revision 1.127  2006/04/28 18:11:50  brouard
 {    (Module): Yes the sum of survivors was wrong since
   int i,j=0;    imach-114 because nhstepm was no more computed in the age
   int lg=20;    loop. Now we define nhstepma in the age loop.
   i=0;    (Module): In order to speed up (in case of numerous covariates) we
   lg=strlen(s);    compute health expectancies (without variances) in a first step
   for(i=0; i<= lg; i++) {    and then all the health expectancies with variances or standard
   if  (s[i] == occ ) j++;    deviation (needs data from the Hessian matrices) which slows the
   }    computation.
   return j;    In the future we should be able to stop the program is only health
 }    expectancies and graph are needed without standard deviations.
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.126  2006/04/28 17:23:28  brouard
 {    (Module): Yes the sum of survivors was wrong since
   int i,lg,j,p=0;    imach-114 because nhstepm was no more computed in the age
   i=0;    loop. Now we define nhstepma in the age loop.
   for(j=0; j<=strlen(t)-1; j++) {    Version 0.98h
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
   lg=strlen(t);    Forecasting file added.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.124  2006/03/22 17:13:53  lievre
   }    Parameters are printed with %lf instead of %f (more numbers after the comma).
      u[p]='\0';    The log-likelihood is printed in the log file
   
    for(j=0; j<= lg; j++) {    Revision 1.123  2006/03/20 10:52:43  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    * imach.c (Module): <title> changed, corresponds to .htm file
   }    name. <head> headers where missing.
 }  
     * imach.c (Module): Weights can have a decimal point as for
 /********************** nrerror ********************/    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 void nrerror(char error_text[])    Modification of warning when the covariates values are not 0 or
 {    1.
   fprintf(stderr,"ERREUR ...\n");    Version 0.98g
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.122  2006/03/20 09:45:41  brouard
 }    (Module): Weights can have a decimal point as for
 /*********************** vector *******************/    English (a comma might work with a correct LC_NUMERIC environment,
 double *vector(int nl, int nh)    otherwise the weight is truncated).
 {    Modification of warning when the covariates values are not 0 or
   double *v;    1.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Version 0.98g
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.121  2006/03/16 17:45:01  lievre
 }    * imach.c (Module): Comments concerning covariates added
   
 /************************ free vector ******************/    * imach.c (Module): refinements in the computation of lli if
 void free_vector(double*v, int nl, int nh)    status=-2 in order to have more reliable computation if stepm is
 {    not 1 month. Version 0.98f
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 /************************ivector *******************************/    status=-2 in order to have more reliable computation if stepm is
 int *ivector(long nl,long nh)    not 1 month. Version 0.98f
 {  
   int *v;    Revision 1.119  2006/03/15 17:42:26  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    (Module): Bug if status = -2, the loglikelihood was
   if (!v) nrerror("allocation failure in ivector");    computed as likelihood omitting the logarithm. Version O.98e
   return v-nl+NR_END;  
 }    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 /******************free ivector **************************/    table of variances if popbased=1 .
 void free_ivector(int *v, long nl, long nh)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 {    (Module): Function pstamp added
   free((FREE_ARG)(v+nl-NR_END));    (Module): Version 0.98d
 }  
     Revision 1.117  2006/03/14 17:16:22  brouard
 /******************* imatrix *******************************/    (Module): varevsij Comments added explaining the second
 int **imatrix(long nrl, long nrh, long ncl, long nch)    table of variances if popbased=1 .
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 {    (Module): Function pstamp added
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Version 0.98d
   int **m;  
      Revision 1.116  2006/03/06 10:29:27  brouard
   /* allocate pointers to rows */    (Module): Variance-covariance wrong links and
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    varian-covariance of ej. is needed (Saito).
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.115  2006/02/27 12:17:45  brouard
   m -= nrl;    (Module): One freematrix added in mlikeli! 0.98c
    
      Revision 1.114  2006/02/26 12:57:58  brouard
   /* allocate rows and set pointers to them */    (Module): Some improvements in processing parameter
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    filename with strsep.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.113  2006/02/24 14:20:24  brouard
   m[nrl] -= ncl;    (Module): Memory leaks checks with valgrind and:
      datafile was not closed, some imatrix were not freed and on matrix
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    allocation too.
    
   /* return pointer to array of pointers to rows */    Revision 1.112  2006/01/30 09:55:26  brouard
   return m;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 }  
     Revision 1.111  2006/01/25 20:38:18  brouard
 /****************** free_imatrix *************************/    (Module): Lots of cleaning and bugs added (Gompertz)
 void free_imatrix(m,nrl,nrh,ncl,nch)    (Module): Comments can be added in data file. Missing date values
       int **m;    can be a simple dot '.'.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.110  2006/01/25 00:51:50  brouard
 {    (Module): Lots of cleaning and bugs added (Gompertz)
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.109  2006/01/24 19:37:15  brouard
 }    (Module): Comments (lines starting with a #) are allowed in data.
   
 /******************* matrix *******************************/    Revision 1.108  2006/01/19 18:05:42  lievre
 double **matrix(long nrl, long nrh, long ncl, long nch)    Gnuplot problem appeared...
 {    To be fixed
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.106  2006/01/19 13:24:36  brouard
   m += NR_END;    Some cleaning and links added in html output
   m -= nrl;  
     Revision 1.105  2006/01/05 20:23:19  lievre
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    *** empty log message ***
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.104  2005/09/30 16:11:43  lievre
   m[nrl] -= ncl;    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    that the person is alive, then we can code his/her status as -2
   return m;    (instead of missing=-1 in earlier versions) and his/her
 }    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 /*************************free matrix ************************/    the healthy state at last known wave). Version is 0.98
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.103  2005/09/30 15:54:49  lievre
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): sump fixed, loop imx fixed, and simplifications.
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.101  2004/09/15 10:38:38  brouard
 {    Fix on curr_time
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.99  2004/06/05 08:57:40  brouard
   m += NR_END;    *** empty log message ***
   m -= nrl;  
     Revision 1.98  2004/05/16 15:05:56  brouard
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    New version 0.97 . First attempt to estimate force of mortality
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    directly from the data i.e. without the need of knowing the health
   m[nrl] += NR_END;    state at each age, but using a Gompertz model: log u =a + b*age .
   m[nrl] -= ncl;    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    The same imach parameter file can be used but the option for mle should be -3.
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Agnès, who wrote this part of the code, tried to keep most of the
   for (j=ncl+1; j<=nch; j++)    former routines in order to include the new code within the former code.
     m[nrl][j]=m[nrl][j-1]+nlay;  
      The output is very simple: only an estimate of the intercept and of
   for (i=nrl+1; i<=nrh; i++) {    the slope with 95% confident intervals.
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    Current limitations:
       m[i][j]=m[i][j-1]+nlay;    A) Even if you enter covariates, i.e. with the
   }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   return m;    B) There is no computation of Life Expectancy nor Life Table.
 }  
     Revision 1.97  2004/02/20 13:25:42  lievre
 /*************************free ma3x ************************/    Version 0.96d. Population forecasting command line is (temporarily)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    suppressed.
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.96  2003/07/15 15:38:55  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   free((FREE_ARG)(m+nrl-NR_END));    rewritten within the same printf. Workaround: many printfs.
 }  
     Revision 1.95  2003/07/08 07:54:34  brouard
 /***************** f1dim *************************/    * imach.c (Repository):
 extern int ncom;    (Repository): Using imachwizard code to output a more meaningful covariance
 extern double *pcom,*xicom;    matrix (cov(a12,c31) instead of numbers.
 extern double (*nrfunc)(double []);  
      Revision 1.94  2003/06/27 13:00:02  brouard
 double f1dim(double x)    Just cleaning
 {  
   int j;    Revision 1.93  2003/06/25 16:33:55  brouard
   double f;    (Module): On windows (cygwin) function asctime_r doesn't
   double *xt;    exist so I changed back to asctime which exists.
      (Module): Version 0.96b
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.92  2003/06/25 16:30:45  brouard
   f=(*nrfunc)(xt);    (Module): On windows (cygwin) function asctime_r doesn't
   free_vector(xt,1,ncom);    exist so I changed back to asctime which exists.
   return f;  
 }    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 /*****************brent *************************/    (Repository): Elapsed time after each iteration is now output. It
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    helps to forecast when convergence will be reached. Elapsed time
 {    is stamped in powell.  We created a new html file for the graphs
   int iter;    concerning matrix of covariance. It has extension -cov.htm.
   double a,b,d,etemp;  
   double fu,fv,fw,fx;    Revision 1.90  2003/06/24 12:34:15  brouard
   double ftemp;    (Module): Some bugs corrected for windows. Also, when
   double p,q,r,tol1,tol2,u,v,w,x,xm;    mle=-1 a template is output in file "or"mypar.txt with the design
   double e=0.0;    of the covariance matrix to be input.
    
   a=(ax < cx ? ax : cx);    Revision 1.89  2003/06/24 12:30:52  brouard
   b=(ax > cx ? ax : cx);    (Module): Some bugs corrected for windows. Also, when
   x=w=v=bx;    mle=-1 a template is output in file "or"mypar.txt with the design
   fw=fv=fx=(*f)(x);    of the covariance matrix to be input.
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    Revision 1.88  2003/06/23 17:54:56  brouard
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);    Revision 1.87  2003/06/18 12:26:01  brouard
 #ifdef DEBUG    Version 0.96
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Revision 1.86  2003/06/17 20:04:08  brouard
 #endif    (Module): Change position of html and gnuplot routines and added
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    routine fileappend.
       *xmin=x;  
       return fx;    Revision 1.85  2003/06/17 13:12:43  brouard
     }    * imach.c (Repository): Check when date of death was earlier that
     ftemp=fu;    current date of interview. It may happen when the death was just
     if (fabs(e) > tol1) {    prior to the death. In this case, dh was negative and likelihood
       r=(x-w)*(fx-fv);    was wrong (infinity). We still send an "Error" but patch by
       q=(x-v)*(fx-fw);    assuming that the date of death was just one stepm after the
       p=(x-v)*q-(x-w)*r;    interview.
       q=2.0*(q-r);    (Repository): Because some people have very long ID (first column)
       if (q > 0.0) p = -p;    we changed int to long in num[] and we added a new lvector for
       q=fabs(q);    memory allocation. But we also truncated to 8 characters (left
       etemp=e;    truncation)
       e=d;    (Repository): No more line truncation errors.
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.84  2003/06/13 21:44:43  brouard
       else {    * imach.c (Repository): Replace "freqsummary" at a correct
         d=p/q;    place. It differs from routine "prevalence" which may be called
         u=x+d;    many times. Probs is memory consuming and must be used with
         if (u-a < tol2 || b-u < tol2)    parcimony.
           d=SIGN(tol1,xm-x);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       }  
     } else {    Revision 1.83  2003/06/10 13:39:11  lievre
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    *** empty log message ***
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    Revision 1.82  2003/06/05 15:57:20  brouard
     fu=(*f)(u);    Add log in  imach.c and  fullversion number is now printed.
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  */
       SHFT(v,w,x,u)  /*
         SHFT(fv,fw,fx,fu)     Interpolated Markov Chain
         } else {  
           if (u < x) a=u; else b=u;    Short summary of the programme:
           if (fu <= fw || w == x) {    
             v=w;    This program computes Healthy Life Expectancies from
             w=u;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
             fv=fw;    first survey ("cross") where individuals from different ages are
             fw=fu;    interviewed on their health status or degree of disability (in the
           } else if (fu <= fv || v == x || v == w) {    case of a health survey which is our main interest) -2- at least a
             v=u;    second wave of interviews ("longitudinal") which measure each change
             fv=fu;    (if any) in individual health status.  Health expectancies are
           }    computed from the time spent in each health state according to a
         }    model. More health states you consider, more time is necessary to reach the
   }    Maximum Likelihood of the parameters involved in the model.  The
   nrerror("Too many iterations in brent");    simplest model is the multinomial logistic model where pij is the
   *xmin=x;    probability to be observed in state j at the second wave
   return fx;    conditional to be observed in state i at the first wave. Therefore
 }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 /****************** mnbrak ***********************/    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    you to do it.  More covariates you add, slower the
             double (*func)(double))    convergence.
 {  
   double ulim,u,r,q, dum;    The advantage of this computer programme, compared to a simple
   double fu;    multinomial logistic model, is clear when the delay between waves is not
      identical for each individual. Also, if a individual missed an
   *fa=(*func)(*ax);    intermediate interview, the information is lost, but taken into
   *fb=(*func)(*bx);    account using an interpolation or extrapolation.  
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    hPijx is the probability to be observed in state i at age x+h
       SHFT(dum,*fb,*fa,dum)    conditional to the observed state i at age x. The delay 'h' can be
       }    split into an exact number (nh*stepm) of unobserved intermediate
   *cx=(*bx)+GOLD*(*bx-*ax);    states. This elementary transition (by month, quarter,
   *fc=(*func)(*cx);    semester or year) is modelled as a multinomial logistic.  The hPx
   while (*fb > *fc) {    matrix is simply the matrix product of nh*stepm elementary matrices
     r=(*bx-*ax)*(*fb-*fc);    and the contribution of each individual to the likelihood is simply
     q=(*bx-*cx)*(*fb-*fa);    hPijx.
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    Also this programme outputs the covariance matrix of the parameters but also
     ulim=(*bx)+GLIMIT*(*cx-*bx);    of the life expectancies. It also computes the period (stable) prevalence. 
     if ((*bx-u)*(u-*cx) > 0.0) {    
       fu=(*func)(u);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     } else if ((*cx-u)*(u-ulim) > 0.0) {             Institut national d'études démographiques, Paris.
       fu=(*func)(u);    This software have been partly granted by Euro-REVES, a concerted action
       if (fu < *fc) {    from the European Union.
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    It is copyrighted identically to a GNU software product, ie programme and
           SHFT(*fb,*fc,fu,(*func)(u))    software can be distributed freely for non commercial use. Latest version
           }    can be accessed at http://euroreves.ined.fr/imach .
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       fu=(*func)(u);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     } else {    
       u=(*cx)+GOLD*(*cx-*bx);    **********************************************************************/
       fu=(*func)(u);  /*
     }    main
     SHFT(*ax,*bx,*cx,u)    read parameterfile
       SHFT(*fa,*fb,*fc,fu)    read datafile
       }    concatwav
 }    freqsummary
     if (mle >= 1)
 /*************** linmin ************************/      mlikeli
     print results files
 int ncom;    if mle==1 
 double *pcom,*xicom;       computes hessian
 double (*nrfunc)(double []);    read end of parameter file: agemin, agemax, bage, fage, estepm
          begin-prev-date,...
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    open gnuplot file
 {    open html file
   double brent(double ax, double bx, double cx,    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
                double (*f)(double), double tol, double *xmin);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   double f1dim(double x);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      freexexit2 possible for memory heap.
               double *fc, double (*func)(double));  
   int j;    h Pij x                         | pij_nom  ficrestpij
   double xx,xmin,bx,ax;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   double fx,fb,fa;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
           1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   ncom=n;  
   pcom=vector(1,n);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   xicom=vector(1,n);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   nrfunc=func;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   for (j=1;j<=n;j++) {     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     pcom[j]=p[j];     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     xicom[j]=xi[j];  
   }    forecasting if prevfcast==1 prevforecast call prevalence()
   ax=0.0;    health expectancies
   xx=1.0;    Variance-covariance of DFLE
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    prevalence()
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     movingaverage()
 #ifdef DEBUG    varevsij() 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if popbased==1 varevsij(,popbased)
 #endif    total life expectancies
   for (j=1;j<=n;j++) {    Variance of period (stable) prevalence
     xi[j] *= xmin;   end
     p[j] += xi[j];  */
   }  
   free_vector(xicom,1,n);  #define POWELL /* Instead of NLOPT */
   free_vector(pcom,1,n);  /* #define POWELLORIGINAL */ /* Don't use Directest to decide new direction but original Powell test */
 }  
   #include <math.h>
 /*************** powell ************************/  #include <stdio.h>
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #include <stdlib.h>
             double (*func)(double []))  #include <string.h>
 {  
   void linmin(double p[], double xi[], int n, double *fret,  #ifdef _WIN32
               double (*func)(double []));  #include <io.h>
   int i,ibig,j;  #include <windows.h>
   double del,t,*pt,*ptt,*xit;  #include <tchar.h>
   double fp,fptt;  #else
   double *xits;  #include <unistd.h>
   pt=vector(1,n);  #endif
   ptt=vector(1,n);  
   xit=vector(1,n);  #include <limits.h>
   xits=vector(1,n);  #include <sys/types.h>
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  #if defined(__GNUC__)
   for (*iter=1;;++(*iter)) {  #include <sys/utsname.h> /* Doesn't work on Windows */
     fp=(*fret);  #endif
     ibig=0;  
     del=0.0;  #include <sys/stat.h>
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #include <errno.h>
     for (i=1;i<=n;i++)  /* extern int errno; */
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /* #ifdef LINUX */
     for (i=1;i<=n;i++) {  /* #include <time.h> */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /* #include "timeval.h" */
       fptt=(*fret);  /* #else */
 #ifdef DEBUG  /* #include <sys/time.h> */
       printf("fret=%lf \n",*fret);  /* #endif */
 #endif  
       printf("%d",i);fflush(stdout);  #include <time.h>
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  #ifdef GSL
         del=fabs(fptt-(*fret));  #include <gsl/gsl_errno.h>
         ibig=i;  #include <gsl/gsl_multimin.h>
       }  #endif
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  #ifdef NLOPT
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #include <nlopt.h>
         printf(" x(%d)=%.12e",j,xit[j]);  typedef struct {
       }    double (* function)(double [] );
       for(j=1;j<=n;j++)  } myfunc_data ;
         printf(" p=%.12e",p[j]);  #endif
       printf("\n");  
 #endif  /* #include <libintl.h> */
     }  /* #define _(String) gettext (String) */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       int k[2],l;  
       k[0]=1;  #define GNUPLOTPROGRAM "gnuplot"
       k[1]=-1;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       printf("Max: %.12e",(*func)(p));  #define FILENAMELENGTH 132
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       printf("\n");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  #define NINTERVMAX 8
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       }  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 #endif  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   #define MAXN 20000
       free_vector(xit,1,n);  #define YEARM 12. /**< Number of months per year */
       free_vector(xits,1,n);  #define AGESUP 130
       free_vector(ptt,1,n);  #define AGEBASE 40
       free_vector(pt,1,n);  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       return;  #ifdef _WIN32
     }  #define DIRSEPARATOR '\\'
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #define CHARSEPARATOR "\\"
     for (j=1;j<=n;j++) {  #define ODIRSEPARATOR '/'
       ptt[j]=2.0*p[j]-pt[j];  #else
       xit[j]=p[j]-pt[j];  #define DIRSEPARATOR '/'
       pt[j]=p[j];  #define CHARSEPARATOR "/"
     }  #define ODIRSEPARATOR '\\'
     fptt=(*func)(ptt);  #endif
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /* $Id$ */
       if (t < 0.0) {  /* $State$ */
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  char version[]="Imach version 0.98q0, March 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
           xi[j][ibig]=xi[j][n];  char fullversion[]="$Revision$ $Date$"; 
           xi[j][n]=xit[j];  char strstart[80];
         }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 #ifdef DEBUG  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int nvar=0, nforce=0; /* Number of variables, number of forces */
         for(j=1;j<=n;j++)  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
           printf(" %.12e",xit[j]);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
         printf("\n");  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 #endif  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
       }  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     }  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 }  int cptcov=0; /* Working variable */
   int npar=NPARMAX;
 /**** Prevalence limit ****************/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav=0; /* Maxim number of waves */
   int i, ii,j,k;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   double min, max, maxmin, maxmax,sumnew=0.;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   double **matprod2();  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double **out, cov[NCOVMAX], **pmij();                     to the likelihood and the sum of weights (done by funcone)*/
   double **newm;  int mle=1, weightopt=0;
   double agefin, delaymax=50 ; /* Max number of years to converge */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for (ii=1;ii<=nlstate+ndeath;ii++)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     for (j=1;j<=nlstate+ndeath;j++){             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  int countcallfunc=0;  /* Count the number of calls to func */
     }  double jmean=1; /* Mean space between 2 waves */
   double **matprod2(); /* test */
    cov[1]=1.;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*FILE *fic ; */ /* Used in readdata only */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     newm=savm;  FILE *ficlog, *ficrespow;
     /* Covariates have to be included here again */  int globpr=0; /* Global variable for printing or not */
      cov[2]=agefin;  double fretone; /* Only one call to likelihood */
    long ipmx=0; /* Number of contributions */
       for (k=1; k<=cptcovn;k++) {  double sw; /* Sum of weights */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char filerespow[FILENAMELENGTH];
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       }  FILE *ficresilk;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       for (k=1; k<=cptcovprod;k++)  FILE *ficresprobmorprev;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  char filerese[FILENAMELENGTH];
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  FILE *ficresstdeij;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  char fileresstde[FILENAMELENGTH];
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
     savm=oldm;  FILE  *ficresvij;
     oldm=newm;  char fileresv[FILENAMELENGTH];
     maxmax=0.;  FILE  *ficresvpl;
     for(j=1;j<=nlstate;j++){  char fileresvpl[FILENAMELENGTH];
       min=1.;  char title[MAXLINE];
       max=0.;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       for(i=1; i<=nlstate; i++) {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         sumnew=0;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char command[FILENAMELENGTH];
         prlim[i][j]= newm[i][j]/(1-sumnew);  int  outcmd=0;
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       }  
       maxmin=max-min;  char filelog[FILENAMELENGTH]; /* Log file */
       maxmax=FMAX(maxmax,maxmin);  char filerest[FILENAMELENGTH];
     }  char fileregp[FILENAMELENGTH];
     if(maxmax < ftolpl){  char popfile[FILENAMELENGTH];
       return prlim;  
     }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   }  
 }  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   /* struct timezone tzp; */
 /*************** transition probabilities ***************/  /* extern int gettimeofday(); */
   struct tm tml, *gmtime(), *localtime();
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  extern time_t time();
   double s1, s2;  
   /*double t34;*/  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   int i,j,j1, nc, ii, jj;  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   struct tm tm;
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  char strcurr[80], strfor[80];
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  char *endptr;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  long lval;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  double dval;
       }  
       ps[i][j]=s2;  #define NR_END 1
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  #define FREE_ARG char*
     }  #define FTOL 1.0e-10
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define NRANSI 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define ITMAX 200 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  #define TOL 2.0e-4 
       ps[i][j]=s2;  
     }  #define CGOLD 0.3819660 
   }  #define ZEPS 1.0e-10 
     /*ps[3][2]=1;*/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
   for(i=1; i<= nlstate; i++){  #define GOLD 1.618034 
      s1=0;  #define GLIMIT 100.0 
     for(j=1; j<i; j++)  #define TINY 1.0e-20 
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  static double maxarg1,maxarg2;
       s1+=exp(ps[i][j]);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     ps[i][i]=1./(s1+1.);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     for(j=1; j<i; j++)    
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     for(j=i+1; j<=nlstate+ndeath; j++)  #define rint(a) floor(a+0.5)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #define mytinydouble 1.0e-16
   } /* end i */  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /* static double dsqrarg; */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
       ps[ii][jj]=0;  static double sqrarg;
       ps[ii][ii]=1;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   }  int agegomp= AGEGOMP;
   
   int imx; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  int stepm=1;
     for(jj=1; jj<= nlstate+ndeath; jj++){  /* Stepm, step in month: minimum step interpolation*/
      printf("%lf ",ps[ii][jj]);  
    }  int estepm;
     printf("\n ");  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  int m,nb;
 /*  long *num;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   goto end;*/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     return ps;  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /**************** Product of 2 matrices ******************/  
   double *weight;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  int **s; /* Status */
 {  double *agedc;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */                    * covar=matrix(0,NCOVMAX,1,n); 
   /* in, b, out are matrice of pointers which should have been initialized                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
      before: only the contents of out is modified. The function returns  double  idx; 
      a pointer to pointers identical to out */  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   long i, j, k;  int *Ndum; /** Freq of modality (tricode */
   for(i=nrl; i<= nrh; i++)  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     for(k=ncolol; k<=ncoloh; k++)  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  double *lsurv, *lpop, *tpop;
         out[i][k] +=in[i][j]*b[j][k];  
   double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   return out;  double ftolhess; /**< Tolerance for computing hessian */
 }  
   /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /************* Higher Matrix Product ***************/  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {    */ 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    char  *ss;                            /* pointer */
      duration (i.e. until    int   l1, l2;                         /* length counters */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    l1 = strlen(path );                   /* length of path */
      (typically every 2 years instead of every month which is too big).    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      Model is determined by parameters x and covariates have to be    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      included manually here.    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
      */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int i, j, d, h, k;      /* get current working directory */
   double **out, cov[NCOVMAX];      /*    extern  char* getcwd ( char *buf , int len);*/
   double **newm;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
   /* Hstepm could be zero and should return the unit matrix */      }
   for (i=1;i<=nlstate+ndeath;i++)      /* got dirc from getcwd*/
     for (j=1;j<=nlstate+ndeath;j++){      printf(" DIRC = %s \n",dirc);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    } else {                              /* strip direcotry from path */
       po[i][j][0]=(i==j ? 1.0 : 0.0);      ss++;                               /* after this, the filename */
     }      l2 = strlen( ss );                  /* length of filename */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(h=1; h <=nhstepm; h++){      strcpy( name, ss );         /* save file name */
     for(d=1; d <=hstepm; d++){      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       newm=savm;      dirc[l1-l2] = 0;                    /* add zero */
       /* Covariates have to be included here again */      printf(" DIRC2 = %s \n",dirc);
       cov[1]=1.;    }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    /* We add a separator at the end of dirc if not exists */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    l1 = strlen( dirc );                  /* length of directory */
       for (k=1; k<=cptcovage;k++)    if( dirc[l1-1] != DIRSEPARATOR ){
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      dirc[l1] =  DIRSEPARATOR;
       for (k=1; k<=cptcovprod;k++)      dirc[l1+1] = 0; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      printf(" DIRC3 = %s \n",dirc);
     }
     ss = strrchr( name, '.' );            /* find last / */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    if (ss >0){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      ss++;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      strcpy(ext,ss);                     /* save extension */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      l1= strlen( name);
       savm=oldm;      l2= strlen(ss)+1;
       oldm=newm;      strncpy( finame, name, l1-l2);
     }      finame[l1-l2]= 0;
     for(i=1; i<=nlstate+ndeath; i++)    }
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];    return( 0 );                          /* we're done */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  }
          */  
       }  
   } /* end h */  /******************************************/
   return po;  
 }  void replace_back_to_slash(char *s, char*t)
   {
     int i;
 /*************** log-likelihood *************/    int lg=0;
 double func( double *x)    i=0;
 {    lg=strlen(t);
   int i, ii, j, k, mi, d, kk;    for(i=0; i<= lg; i++) {
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      (s[i] = t[i]);
   double **out;      if (t[i]== '\\') s[i]='/';
   double sw; /* Sum of weights */    }
   double lli; /* Individual log likelihood */  }
   long ipmx;  
   /*extern weight */  char *trimbb(char *out, char *in)
   /* We are differentiating ll according to initial status */  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    char *s;
   /*for(i=1;i<imx;i++)    s=out;
     printf(" %d\n",s[4][i]);    while (*in != '\0'){
   */      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   cov[1]=1.;        in++;
       }
   for(k=1; k<=nlstate; k++) ll[k]=0.;      *out++ = *in++;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    *out='\0';
     for(mi=1; mi<= wav[i]-1; mi++){    return s;
       for (ii=1;ii<=nlstate+ndeath;ii++)  }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){  char *cutl(char *blocc, char *alocc, char *in, char occ)
         newm=savm;  {
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
         for (kk=1; kk<=cptcovage;kk++) {       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       gives blocc="abcdef2ghi" and alocc="j".
         }       If occ is not found blocc is null and alocc is equal to in. Returns blocc
            */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    char *s, *t;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    t=in;s=in;
         savm=oldm;    while ((*in != occ) && (*in != '\0')){
         oldm=newm;      *alocc++ = *in++;
            }
            if( *in == occ){
       } /* end mult */      *(alocc)='\0';
            s=++in;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/   
       ipmx +=1;    if (s == t) {/* occ not found */
       sw += weight[i];      *(alocc-(in-s))='\0';
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      in=s;
     } /* end of wave */    }
   } /* end of individual */    while ( *in != '\0'){
       *blocc++ = *in++;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    *blocc='\0';
   return -l;    return t;
 }  }
   char *cutv(char *blocc, char *alocc, char *in, char occ)
   {
 /*********** Maximum Likelihood Estimation ***************/    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
        and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       gives blocc="abcdef2ghi" and alocc="j".
 {       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   int i,j, iter;    */
   double **xi,*delti;    char *s, *t;
   double fret;    t=in;s=in;
   xi=matrix(1,npar,1,npar);    while (*in != '\0'){
   for (i=1;i<=npar;i++)      while( *in == occ){
     for (j=1;j<=npar;j++)        *blocc++ = *in++;
       xi[i][j]=(i==j ? 1.0 : 0.0);        s=in;
   printf("Powell\n");      }
   powell(p,xi,npar,ftol,&iter,&fret,func);      *blocc++ = *in++;
     }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    if (s == t) /* occ not found */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      *(blocc-(in-s))='\0';
     else
 }      *(blocc-(in-s)-1)='\0';
     in=s;
 /**** Computes Hessian and covariance matrix ***/    while ( *in != '\0'){
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      *alocc++ = *in++;
 {    }
   double  **a,**y,*x,pd;  
   double **hess;    *alocc='\0';
   int i, j,jk;    return s;
   int *indx;  }
   
   double hessii(double p[], double delta, int theta, double delti[]);  int nbocc(char *s, char occ)
   double hessij(double p[], double delti[], int i, int j);  {
   void lubksb(double **a, int npar, int *indx, double b[]) ;    int i,j=0;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    int lg=20;
     i=0;
   hess=matrix(1,npar,1,npar);    lg=strlen(s);
     for(i=0; i<= lg; i++) {
   printf("\nCalculation of the hessian matrix. Wait...\n");    if  (s[i] == occ ) j++;
   for (i=1;i<=npar;i++){    }
     printf("%d",i);fflush(stdout);    return j;
     hess[i][i]=hessii(p,ftolhess,i,delti);  }
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  /* void cutv(char *u,char *v, char*t, char occ) */
   }  /* { */
    /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   for (i=1;i<=npar;i++) {  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     for (j=1;j<=npar;j++)  {  /*      gives u="abcdef2ghi" and v="j" *\/ */
       if (j>i) {  /*   int i,lg,j,p=0; */
         printf(".%d%d",i,j);fflush(stdout);  /*   i=0; */
         hess[i][j]=hessij(p,delti,i,j);  /*   lg=strlen(t); */
         hess[j][i]=hess[i][j];      /*   for(j=0; j<=lg-1; j++) { */
         /*printf(" %lf ",hess[i][j]);*/  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       }  /*   } */
     }  
   }  /*   for(j=0; j<p; j++) { */
   printf("\n");  /*     (u[j] = t[j]); */
   /*   } */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*      u[p]='\0'; */
    
   a=matrix(1,npar,1,npar);  /*    for(j=0; j<= lg; j++) { */
   y=matrix(1,npar,1,npar);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   x=vector(1,npar);  /*   } */
   indx=ivector(1,npar);  /* } */
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  #ifdef _WIN32
   ludcmp(a,npar,indx,&pd);  char * strsep(char **pp, const char *delim)
   {
   for (j=1;j<=npar;j++) {    char *p, *q;
     for (i=1;i<=npar;i++) x[i]=0;           
     x[j]=1;    if ((p = *pp) == NULL)
     lubksb(a,npar,indx,x);      return 0;
     for (i=1;i<=npar;i++){    if ((q = strpbrk (p, delim)) != NULL)
       matcov[i][j]=x[i];    {
     }      *pp = q + 1;
   }      *q = '\0';
     }
   printf("\n#Hessian matrix#\n");    else
   for (i=1;i<=npar;i++) {      *pp = 0;
     for (j=1;j<=npar;j++) {    return p;
       printf("%.3e ",hess[i][j]);  }
     }  #endif
     printf("\n");  
   }  /********************** nrerror ********************/
   
   /* Recompute Inverse */  void nrerror(char error_text[])
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    fprintf(stderr,"ERREUR ...\n");
   ludcmp(a,npar,indx,&pd);    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   /*  printf("\n#Hessian matrix recomputed#\n");  }
   /*********************** vector *******************/
   for (j=1;j<=npar;j++) {  double *vector(int nl, int nh)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    double *v;
     lubksb(a,npar,indx,x);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     for (i=1;i<=npar;i++){    if (!v) nrerror("allocation failure in vector");
       y[i][j]=x[i];    return v-nl+NR_END;
       printf("%.3e ",y[i][j]);  }
     }  
     printf("\n");  /************************ free vector ******************/
   }  void free_vector(double*v, int nl, int nh)
   */  {
     free((FREE_ARG)(v+nl-NR_END));
   free_matrix(a,1,npar,1,npar);  }
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  /************************ivector *******************************/
   free_ivector(indx,1,npar);  int *ivector(long nl,long nh)
   free_matrix(hess,1,npar,1,npar);  {
     int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /*************** hessian matrix ****************/  }
 double hessii( double x[], double delta, int theta, double delti[])  
 {  /******************free ivector **************************/
   int i;  void free_ivector(int *v, long nl, long nh)
   int l=1, lmax=20;  {
   double k1,k2;    free((FREE_ARG)(v+nl-NR_END));
   double p2[NPARMAX+1];  }
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /************************lvector *******************************/
   double fx;  long *lvector(long nl,long nh)
   int k=0,kmax=10;  {
   double l1;    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   fx=func(x);    if (!v) nrerror("allocation failure in ivector");
   for (i=1;i<=npar;i++) p2[i]=x[i];    return v-nl+NR_END;
   for(l=0 ; l <=lmax; l++){  }
     l1=pow(10,l);  
     delts=delt;  /******************free lvector **************************/
     for(k=1 ; k <kmax; k=k+1){  void free_lvector(long *v, long nl, long nh)
       delt = delta*(l1*k);  {
       p2[theta]=x[theta] +delt;    free((FREE_ARG)(v+nl-NR_END));
       k1=func(p2)-fx;  }
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  /******************* imatrix *******************************/
       /*res= (k1-2.0*fx+k2)/delt/delt; */  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
        { 
 #ifdef DEBUG    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    int **m; 
 #endif    
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    /* allocate pointers to rows */ 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         k=kmax;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       }    m += NR_END; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    m -= nrl; 
         k=kmax; l=lmax*10.;    
       }    
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    /* allocate rows and set pointers to them */ 
         delts=delt;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     }    m[nrl] += NR_END; 
   }    m[nrl] -= ncl; 
   delti[theta]=delts;    
   return res;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
 }    /* return pointer to array of pointers to rows */ 
     return m; 
 double hessij( double x[], double delti[], int thetai,int thetaj)  } 
 {  
   int i;  /****************** free_imatrix *************************/
   int l=1, l1, lmax=20;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double k1,k2,k3,k4,res,fx;        int **m;
   double p2[NPARMAX+1];        long nch,ncl,nrh,nrl; 
   int k;       /* free an int matrix allocated by imatrix() */ 
   { 
   fx=func(x);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   for (k=1; k<=2; k++) {    free((FREE_ARG) (m+nrl-NR_END)); 
     for (i=1;i<=npar;i++) p2[i]=x[i];  } 
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /******************* matrix *******************************/
     k1=func(p2)-fx;  double **matrix(long nrl, long nrh, long ncl, long nch)
    {
     p2[thetai]=x[thetai]+delti[thetai]/k;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **m;
     k2=func(p2)-fx;  
      m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     p2[thetai]=x[thetai]-delti[thetai]/k;    if (!m) nrerror("allocation failure 1 in matrix()");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    m += NR_END;
     k3=func(p2)-fx;    m -= nrl;
    
     p2[thetai]=x[thetai]-delti[thetai]/k;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     k4=func(p2)-fx;    m[nrl] += NR_END;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    m[nrl] -= ncl;
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif    return m;
   }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   return res;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 }  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
      */
 /************** Inverse of matrix **************/  }
 void ludcmp(double **a, int n, int *indx, double *d)  
 {  /*************************free matrix ************************/
   int i,imax,j,k;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double big,dum,sum,temp;  {
   double *vv;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      free((FREE_ARG)(m+nrl-NR_END));
   vv=vector(1,n);  }
   *d=1.0;  
   for (i=1;i<=n;i++) {  /******************* ma3x *******************************/
     big=0.0;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     for (j=1;j<=n;j++)  {
       if ((temp=fabs(a[i][j])) > big) big=temp;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double ***m;
     vv[i]=1.0/big;  
   }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
     for (i=1;i<j;i++) {    m += NR_END;
       sum=a[i][j];    m -= nrl;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     big=0.0;    m[nrl] += NR_END;
     for (i=j;i<=n;i++) {    m[nrl] -= ncl;
       sum=a[i][j];  
       for (k=1;k<j;k++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       if ( (dum=vv[i]*fabs(sum)) >= big) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         big=dum;    m[nrl][ncl] += NR_END;
         imax=i;    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
     if (j != imax) {    
       for (k=1;k<=n;k++) {    for (i=nrl+1; i<=nrh; i++) {
         dum=a[imax][k];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         a[imax][k]=a[j][k];      for (j=ncl+1; j<=nch; j++) 
         a[j][k]=dum;        m[i][j]=m[i][j-1]+nlay;
       }    }
       *d = -(*d);    return m; 
       vv[imax]=vv[j];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     indx[j]=imax;    */
     if (a[j][j] == 0.0) a[j][j]=TINY;  }
     if (j != n) {  
       dum=1.0/(a[j][j]);  /*************************free ma3x ************************/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     }  {
   }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   free_vector(vv,1,n);  /* Doesn't work */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 ;    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 void lubksb(double **a, int n, int *indx, double b[])  /*************** function subdirf ***********/
 {  char *subdirf(char fileres[])
   int i,ii=0,ip,j;  {
   double sum;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
   for (i=1;i<=n;i++) {    strcat(tmpout,"/"); /* Add to the right */
     ip=indx[i];    strcat(tmpout,fileres);
     sum=b[ip];    return tmpout;
     b[ip]=b[i];  }
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*************** function subdirf2 ***********/
     else if (sum) ii=i;  char *subdirf2(char fileres[], char *preop)
     b[i]=sum;  {
   }    
   for (i=n;i>=1;i--) {    /* Caution optionfilefiname is hidden */
     sum=b[i];    strcpy(tmpout,optionfilefiname);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    strcat(tmpout,"/");
     b[i]=sum/a[i][i];    strcat(tmpout,preop);
   }    strcat(tmpout,fileres);
 }    return tmpout;
   }
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /*************** function subdirf3 ***********/
 {  /* Some frequencies */  char *subdirf3(char fileres[], char *preop, char *preop2)
    {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    
   double ***freq; /* Frequencies */    /* Caution optionfilefiname is hidden */
   double *pp;    strcpy(tmpout,optionfilefiname);
   double pos, k2, dateintsum=0,k2cpt=0;    strcat(tmpout,"/");
   FILE *ficresp;    strcat(tmpout,preop);
   char fileresp[FILENAMELENGTH];    strcat(tmpout,preop2);
      strcat(tmpout,fileres);
   pp=vector(1,nlstate);    return tmpout;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  char *asc_diff_time(long time_sec, char ascdiff[])
   if((ficresp=fopen(fileresp,"w"))==NULL) {  {
     printf("Problem with prevalence resultfile: %s\n", fileresp);    long sec_left, days, hours, minutes;
     exit(0);    days = (time_sec) / (60*60*24);
   }    sec_left = (time_sec) % (60*60*24);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    hours = (sec_left) / (60*60) ;
   j1=0;    sec_left = (sec_left) %(60*60);
      minutes = (sec_left) /60;
   j=cptcoveff;    sec_left = (sec_left) % (60);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
      return ascdiff;
   for(k1=1; k1<=j;k1++){  }
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  /***************** f1dim *************************/
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  extern int ncom; 
         scanf("%d", i);*/  extern double *pcom,*xicom;
       for (i=-1; i<=nlstate+ndeath; i++)    extern double (*nrfunc)(double []); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)     
           for(m=agemin; m <= agemax+3; m++)  double f1dim(double x) 
             freq[i][jk][m]=0;  { 
          int j; 
       dateintsum=0;    double f;
       k2cpt=0;    double *xt; 
       for (i=1; i<=imx; i++) {   
         bool=1;    xt=vector(1,ncom); 
         if  (cptcovn>0) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
           for (z1=1; z1<=cptcoveff; z1++)    f=(*nrfunc)(xt); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    free_vector(xt,1,ncom); 
               bool=0;    return f; 
         }  } 
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){  /*****************brent *************************/
             k2=anint[m][i]+(mint[m][i]/12.);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  { 
               if(agev[m][i]==0) agev[m][i]=agemax+1;    int iter; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double a,b,d,etemp;
               if (m<lastpass) {    double fu=0,fv,fw,fx;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double ftemp=0.;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
               }    double e=0.0; 
                 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    a=(ax < cx ? ax : cx); 
                 dateintsum=dateintsum+k2;    b=(ax > cx ? ax : cx); 
                 k2cpt++;    x=w=v=bx; 
               }    fw=fv=fx=(*f)(x); 
             }    for (iter=1;iter<=ITMAX;iter++) { 
           }      xm=0.5*(a+b); 
         }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
              printf(".");fflush(stdout);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUGBRENT
       if  (cptcovn>0) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         fprintf(ficresp, "\n#********** Variable ");      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         fprintf(ficresp, "**********\n#");  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for(i=1; i<=nlstate;i++)        *xmin=x; 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        return fx; 
       fprintf(ficresp, "\n");      } 
            ftemp=fu;
       for(i=(int)agemin; i <= (int)agemax+3; i++){      if (fabs(e) > tol1) { 
         if(i==(int)agemax+3)        r=(x-w)*(fx-fv); 
           printf("Total");        q=(x-v)*(fx-fw); 
         else        p=(x-v)*q-(x-w)*r; 
           printf("Age %d", i);        q=2.0*(q-r); 
         for(jk=1; jk <=nlstate ; jk++){        if (q > 0.0) p = -p; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        q=fabs(q); 
             pp[jk] += freq[jk][m][i];        etemp=e; 
         }        e=d; 
         for(jk=1; jk <=nlstate ; jk++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           for(m=-1, pos=0; m <=0 ; m++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
             pos += freq[jk][m][i];        else { 
           if(pp[jk]>=1.e-10)          d=p/q; 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          u=x+d; 
           else          if (u-a < tol2 || b-u < tol2) 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            d=SIGN(tol1,xm-x); 
         }        } 
       } else { 
         for(jk=1; jk <=nlstate ; jk++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      } 
             pp[jk] += freq[jk][m][i];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         }      fu=(*f)(u); 
       if (fu <= fx) { 
         for(jk=1,pos=0; jk <=nlstate ; jk++)        if (u >= x) a=x; else b=x; 
           pos += pp[jk];        SHFT(v,w,x,u) 
         for(jk=1; jk <=nlstate ; jk++){        SHFT(fv,fw,fx,fu) 
           if(pos>=1.e-5)      } else { 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        if (u < x) a=u; else b=u; 
           else        if (fu <= fw || w == x) { 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          v=w; 
           if( i <= (int) agemax){          w=u; 
             if(pos>=1.e-5){          fv=fw; 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          fw=fu; 
               probs[i][jk][j1]= pp[jk]/pos;        } else if (fu <= fv || v == x || v == w) { 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          v=u; 
             }          fv=fu; 
             else        } 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      } 
           }    } 
         }    nrerror("Too many iterations in brent"); 
            *xmin=x; 
         for(jk=-1; jk <=nlstate+ndeath; jk++)    return fx; 
           for(m=-1; m <=nlstate+ndeath; m++)  } 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)  /****************** mnbrak ***********************/
           fprintf(ficresp,"\n");  
         printf("\n");  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       }              double (*func)(double)) 
     }  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
   }  the downhill direction (defined by the function as evaluated at the initial points) and returns
   dateintmean=dateintsum/k2cpt;  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
    values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
   fclose(ficresp);     */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double ulim,u,r,q, dum;
   free_vector(pp,1,nlstate);    double fu; 
     
   /* End of Freq */    *fa=(*func)(*ax); 
 }    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
 /************ Prevalence ********************/      SHFT(dum,*ax,*bx,dum) 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      SHFT(dum,*fb,*fa,dum) 
 {  /* Some frequencies */    } 
      *cx=(*bx)+GOLD*(*bx-*ax); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    *fc=(*func)(*cx); 
   double ***freq; /* Frequencies */  #ifdef DEBUG
   double *pp;    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   double pos, k2;    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   #endif
   pp=vector(1,nlstate);    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      r=(*bx-*ax)*(*fb-*fc); 
        q=(*bx-*cx)*(*fb-*fa); 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   j1=0;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
        ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
   j=cptcoveff;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        fu=(*func)(u); 
    #ifdef DEBUG
   for(k1=1; k1<=j;k1++){        /* f(x)=A(x-u)**2+f(u) */
     for(i1=1; i1<=ncodemax[k1];i1++){        double A, fparabu; 
       j1++;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
              fparabu= *fa - A*(*ax-u)*(*ax-u);
       for (i=-1; i<=nlstate+ndeath; i++)          printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         for (jk=-1; jk<=nlstate+ndeath; jk++)          fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           for(m=agemin; m <= agemax+3; m++)        /* And thus,it can be that fu > *fc even if fparabu < *fc */
             freq[i][jk][m]=0;        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
                (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
       for (i=1; i<=imx; i++) {        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
         bool=1;  #endif 
         if  (cptcovn>0) {  #ifdef MNBRAKORI
           for (z1=1; z1<=cptcoveff; z1++)  #else
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        if (fu > *fc) {
               bool=0;  #ifdef DEBUG
         }        printf("mnbrak4  fu > fc \n");
         if (bool==1) {        fprintf(ficlog, "mnbrak4 fu > fc\n");
           for(m=firstpass; m<=lastpass; m++){  #endif
             k2=anint[m][i]+(mint[m][i]/12.);          /* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          dum=u; /* Shifting c and u */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          u = *cx;
               if (m<lastpass) {          *cx = dum;
                 if (calagedate>0)          dum = fu;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          fu = *fc;
                 else          *fc =dum;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        } else { /* end */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  #ifdef DEBUG
               }        printf("mnbrak3  fu < fc \n");
             }        fprintf(ficlog, "mnbrak3 fu < fc\n");
           }  #endif
         }          dum=u; /* Shifting c and u */
       }          u = *cx;
       for(i=(int)agemin; i <= (int)agemax+3; i++){          *cx = dum;
         for(jk=1; jk <=nlstate ; jk++){          dum = fu;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          fu = *fc;
             pp[jk] += freq[jk][m][i];          *fc =dum;
         }        }
         for(jk=1; jk <=nlstate ; jk++){  #endif
           for(m=-1, pos=0; m <=0 ; m++)      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
             pos += freq[jk][m][i];  #ifdef DEBUG
         }        printf("mnbrak2  u after c but before ulim\n");
                fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
         for(jk=1; jk <=nlstate ; jk++){  #endif
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        fu=(*func)(u); 
             pp[jk] += freq[jk][m][i];        if (fu < *fc) { 
         }  #ifdef DEBUG
                printf("mnbrak2  u after c but before ulim AND fu < fc\n");
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
          #endif
         for(jk=1; jk <=nlstate ; jk++){              SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           if( i <= (int) agemax){          SHFT(*fb,*fc,fu,(*func)(u)) 
             if(pos>=1.e-5){        } 
               probs[i][jk][j1]= pp[jk]/pos;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
             }  #ifdef DEBUG
           }        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
         }        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
          #endif
       }        u=ulim; 
     }        fu=(*func)(u); 
   }      } else { /* u could be left to b (if r > q parabola has a maximum) */
   #ifdef DEBUG
          printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   free_vector(pp,1,nlstate);  #endif
          u=(*cx)+GOLD*(*cx-*bx); 
 }  /* End of Freq */        fu=(*func)(u); 
       } /* end tests */
 /************* Waves Concatenation ***************/      SHFT(*ax,*bx,*cx,u) 
       SHFT(*fa,*fb,*fc,fu) 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  #ifdef DEBUG
 {        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
      Death is a valid wave (if date is known).  #endif
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  } 
      and mw[mi+1][i]. dh depends on stepm.  
      */  /*************** linmin ************************/
   /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
   int i, mi, m;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
      double sum=0., jmean=0.;*/  the value of func at the returned location p . This is actually all accomplished by calling the
   routines mnbrak and brent .*/
   int j, k=0,jk, ju, jl;  int ncom; 
   double sum=0.;  double *pcom,*xicom;
   jmin=1e+5;  double (*nrfunc)(double []); 
   jmax=-1;   
   jmean=0.;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for(i=1; i<=imx; i++){  { 
     mi=0;    double brent(double ax, double bx, double cx, 
     m=firstpass;                 double (*f)(double), double tol, double *xmin); 
     while(s[m][i] <= nlstate){    double f1dim(double x); 
       if(s[m][i]>=1)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         mw[++mi][i]=m;                double *fc, double (*func)(double)); 
       if(m >=lastpass)    int j; 
         break;    double xx,xmin,bx,ax; 
       else    double fx,fb,fa;
         m++;   
     }/* end while */    ncom=n; 
     if (s[m][i] > nlstate){    pcom=vector(1,n); 
       mi++;     /* Death is another wave */    xicom=vector(1,n); 
       /* if(mi==0)  never been interviewed correctly before death */    nrfunc=func; 
          /* Only death is a correct wave */    for (j=1;j<=n;j++) { 
       mw[mi][i]=m;      pcom[j]=p[j]; 
     }      xicom[j]=xi[j]; 
     } 
     wav[i]=mi;    ax=0.0; 
     if(mi==0)    xx=1.0; 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
   }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
   #ifdef DEBUG
   for(i=1; i<=imx; i++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(mi=1; mi<wav[i];mi++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       if (stepm <=0)  #endif
         dh[mi][i]=1;    for (j=1;j<=n;j++) { 
       else{      xi[j] *= xmin; 
         if (s[mw[mi+1][i]][i] > nlstate) {      p[j] += xi[j]; 
           if (agedc[i] < 2*AGESUP) {    } 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    free_vector(xicom,1,n); 
           if(j==0) j=1;  /* Survives at least one month after exam */    free_vector(pcom,1,n); 
           k=k+1;  } 
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;  
           sum=sum+j;  /*************** powell ************************/
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  /*
           }  Minimization of a function func of n variables. Input consists of an initial starting point
         }  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
         else{  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  such that failure to decrease by more than this amount on one iteration signals doneness. On
           k=k+1;  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
           if (j >= jmax) jmax=j;  function value at p , and iter is the number of iterations taken. The routine linmin is used.
           else if (j <= jmin)jmin=j;   */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
           sum=sum+j;              double (*func)(double [])) 
         }  { 
         jk= j/stepm;    void linmin(double p[], double xi[], int n, double *fret, 
         jl= j -jk*stepm;                double (*func)(double [])); 
         ju= j -(jk+1)*stepm;    int i,ibig,j; 
         if(jl <= -ju)    double del,t,*pt,*ptt,*xit;
           dh[mi][i]=jk;    double directest;
         else    double fp,fptt;
           dh[mi][i]=jk+1;    double *xits;
         if(dh[mi][i]==0)    int niterf, itmp;
           dh[mi][i]=1; /* At least one step */  
       }    pt=vector(1,n); 
     }    ptt=vector(1,n); 
   }    xit=vector(1,n); 
   jmean=sum/k;    xits=vector(1,n); 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    *fret=(*func)(p); 
  }    for (j=1;j<=n;j++) pt[j]=p[j]; 
 /*********** Tricode ****************************/      rcurr_time = time(NULL);  
 void tricode(int *Tvar, int **nbcode, int imx)    for (*iter=1;;++(*iter)) { 
 {      fp=(*fret); 
   int Ndum[20],ij=1, k, j, i;      ibig=0; 
   int cptcode=0;      del=0.0; 
   cptcoveff=0;      rlast_time=rcurr_time;
        /* (void) gettimeofday(&curr_time,&tzp); */
   for (k=0; k<19; k++) Ndum[k]=0;      rcurr_time = time(NULL);  
   for (k=1; k<=7; k++) ncodemax[k]=0;      curr_time = *localtime(&rcurr_time);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
     for (i=1; i<=imx; i++) {  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       ij=(int)(covar[Tvar[j]][i]);     for (i=1;i<=n;i++) {
       Ndum[ij]++;        printf(" %d %.12f",i, p[i]);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        fprintf(ficlog," %d %.12lf",i, p[i]);
       if (ij > cptcode) cptcode=ij;        fprintf(ficrespow," %.12lf", p[i]);
     }      }
       printf("\n");
     for (i=0; i<=cptcode; i++) {      fprintf(ficlog,"\n");
       if(Ndum[i]!=0) ncodemax[j]++;      fprintf(ficrespow,"\n");fflush(ficrespow);
     }      if(*iter <=3){
     ij=1;        tml = *localtime(&rcurr_time);
         strcpy(strcurr,asctime(&tml));
         rforecast_time=rcurr_time; 
     for (i=1; i<=ncodemax[j]; i++) {        itmp = strlen(strcurr);
       for (k=0; k<=19; k++) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         if (Ndum[k] != 0) {          strcurr[itmp-1]='\0';
           nbcode[Tvar[j]][ij]=k;        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
                  fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           ij++;        for(niterf=10;niterf<=30;niterf+=10){
         }          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         if (ij > ncodemax[j]) break;          forecast_time = *localtime(&rforecast_time);
       }            strcpy(strfor,asctime(&forecast_time));
     }          itmp = strlen(strfor);
   }            if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
  for (k=0; k<19; k++) Ndum[k]=0;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
  for (i=1; i<=ncovmodel-2; i++) {        }
       ij=Tvar[i];      }
       Ndum[ij]++;      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
  ij=1;  #ifdef DEBUG
  for (i=1; i<=10; i++) {            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
    if((Ndum[i]!=0) && (i<=ncovcol)){            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
      Tvaraff[ij]=i;  #endif
      ij++;        printf("%d",i);fflush(stdout);
    }        fprintf(ficlog,"%d",i);fflush(ficlog);
  }        linmin(p,xit,n,fret,func); /* xit[n] has been loaded for direction i */
          if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
     cptcoveff=ij-1;                                         because that direction will be replaced unless the gain del is small
 }                                        in comparison with the 'probable' gain, mu^2, with the last average direction.
                                         Unless the n directions are conjugate some gain in the determinant may be obtained
 /*********** Health Expectancies ****************/                                        with the new direction.
                                         */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          del=fabs(fptt-(*fret)); 
           ibig=i; 
 {        } 
   /* Health expectancies */  #ifdef DEBUG
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        printf("%d %.12e",i,(*fret));
   double age, agelim, hf;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double ***p3mat,***varhe;        for (j=1;j<=n;j++) {
   double **dnewm,**doldm;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double *xp;          printf(" x(%d)=%.12e",j,xit[j]);
   double **gp, **gm;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double ***gradg, ***trgradg;        }
   int theta;        for(j=1;j<=n;j++) {
           printf(" p(%d)=%.12e",j,p[j]);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   xp=vector(1,npar);        }
   dnewm=matrix(1,nlstate*2,1,npar);        printf("\n");
   doldm=matrix(1,nlstate*2,1,nlstate*2);        fprintf(ficlog,"\n");
    #endif
   fprintf(ficreseij,"# Health expectancies\n");      } /* end i */
   fprintf(ficreseij,"# Age");      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
   for(i=1; i<=nlstate;i++)  #ifdef DEBUG
     for(j=1; j<=nlstate;j++)        int k[2],l;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        k[0]=1;
   fprintf(ficreseij,"\n");        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   if(estepm < stepm){        fprintf(ficlog,"Max: %.12e",(*func)(p));
     printf ("Problem %d lower than %d\n",estepm, stepm);        for (j=1;j<=n;j++) {
   }          printf(" %.12e",p[j]);
   else  hstepm=estepm;            fprintf(ficlog," %.12e",p[j]);
   /* We compute the life expectancy from trapezoids spaced every estepm months        }
    * This is mainly to measure the difference between two models: for example        printf("\n");
    * if stepm=24 months pijx are given only every 2 years and by summing them        fprintf(ficlog,"\n");
    * we are calculating an estimate of the Life Expectancy assuming a linear        for(l=0;l<=1;l++) {
    * progression inbetween and thus overestimating or underestimating according          for (j=1;j<=n;j++) {
    * to the curvature of the survival function. If, for the same date, we            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
    * to compare the new estimate of Life expectancy with the same linear            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
    * hypothesis. A more precise result, taking into account a more precise          }
    * curvature will be obtained if estepm is as small as stepm. */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   /* For example we decided to compute the life expectancy with the smallest unit */        }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  #endif
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size        free_vector(xit,1,n); 
      and note for a fixed period like estepm months */        free_vector(xits,1,n); 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        free_vector(ptt,1,n); 
      survival function given by stepm (the optimization length). Unfortunately it        free_vector(pt,1,n); 
      means that if the survival funtion is printed only each two years of age and if        return; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      } 
      results. So we changed our mind and took the option of the best precision.      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   */      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   agelim=AGESUP;        pt[j]=p[j]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } 
     /* nhstepm age range expressed in number of stepm */      fptt=(*func)(ptt); /* f_3 */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
     /* if (stepm >= YEARM) hstepm=1;*/        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
     gp=matrix(0,nhstepm,1,nlstate*2);        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
     gm=matrix(0,nhstepm,1,nlstate*2);        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   #ifdef NRCORIGINAL
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  #else
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
          t= t- del*SQR(fp-fptt);
   #endif
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
   #ifdef DEBUG
     /* Computing Variances of health expectancies */        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
      for(theta=1; theta <=npar; theta++){        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       for(i=1; i<=npar; i++){               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       }               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
          fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
       cptj=0;  #endif
       for(j=1; j<= nlstate; j++){  #ifdef POWELLORIGINAL
         for(i=1; i<=nlstate; i++){        if (t < 0.0) { /* Then we use it for new direction */
           cptj=cptj+1;  #else
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        if (directest*t < 0.0) { /* Contradiction between both tests */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt);
           }        printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         }        fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt);
       }        fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
            } 
              if (directest < 0.0) { /* Then we use it for new direction */
       for(i=1; i<=npar; i++)  #endif
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (j=1;j<=n;j++) { 
                  xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
       cptj=0;            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
       for(j=1; j<= nlstate; j++){          }
         for(i=1;i<=nlstate;i++){          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           cptj=cptj+1;          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  #ifdef DEBUG
           }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          for(j=1;j<=n;j++){
       for(j=1; j<= nlstate*2; j++)            printf(" %.12e",xit[j]);
         for(h=0; h<=nhstepm-1; h++){            fprintf(ficlog," %.12e",xit[j]);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }          printf("\n");
      }          fprintf(ficlog,"\n");
      #endif
 /* End theta */        } /* end of t negative */
       } /* end if (fptt < fp)  */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    } 
   } 
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*2;j++)  /**** Prevalence limit (stable or period prevalence)  ****************/
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
        {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      for(i=1;i<=nlstate*2;i++)       matrix by transitions matrix until convergence is reached */
       for(j=1;j<=nlstate*2;j++)    
         varhe[i][j][(int)age] =0.;    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
      printf("%d|",(int)age);fflush(stdout);    /* double **matprod2(); */ /* test */
      for(h=0;h<=nhstepm-1;h++){    double **out, cov[NCOVMAX+1], **pmij();
       for(k=0;k<=nhstepm-1;k++){    double **newm;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    double agefin, delaymax=50 ; /* Max number of years to converge */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    
         for(i=1;i<=nlstate*2;i++)    for (ii=1;ii<=nlstate+ndeath;ii++)
           for(j=1;j<=nlstate*2;j++)      for (j=1;j<=nlstate+ndeath;j++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }      }
     }    
     /* Computing expectancies */    cov[1]=1.;
     for(i=1; i<=nlstate;i++)    
       for(j=1; j<=nlstate;j++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      newm=savm;
                /* Covariates have to be included here again */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      cov[2]=agefin;
       
         }      for (k=1; k<=cptcovn;k++) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     fprintf(ficreseij,"%3.0f",age );        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
     cptj=0;      }
     for(i=1; i<=nlstate;i++)      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(j=1; j<=nlstate;j++){      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
         cptj++;      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      
       }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     fprintf(ficreseij,"\n");      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
          /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     free_matrix(gm,0,nhstepm,1,nlstate*2);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     free_matrix(gp,0,nhstepm,1,nlstate*2);      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      savm=oldm;
   }      oldm=newm;
   printf("\n");      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   free_vector(xp,1,npar);        min=1.;
   free_matrix(dnewm,1,nlstate*2,1,npar);        max=0.;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        for(i=1; i<=nlstate; i++) {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          sumnew=0;
 }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
 /************ Variance ******************/          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          max=FMAX(max,prlim[i][j]);
 {          min=FMIN(min,prlim[i][j]);
   /* Variance of health expectancies */        }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        maxmin=max-min;
   double **newm;        maxmax=FMAX(maxmax,maxmin);
   double **dnewm,**doldm;      } /* j loop */
   int i, j, nhstepm, hstepm, h, nstepm ;      if(maxmax < ftolpl){
   int k, cptcode;        return prlim;
   double *xp;      }
   double **gp, **gm;    } /* age loop */
   double ***gradg, ***trgradg;    return prlim; /* should not reach here */
   double ***p3mat;  }
   double age,agelim, hf;  
   int theta;  /*************** transition probabilities ***************/ 
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   fprintf(ficresvij,"# Age");  {
   for(i=1; i<=nlstate;i++)    /* According to parameters values stored in x and the covariate's values stored in cov,
     for(j=1; j<=nlstate;j++)       computes the probability to be observed in state j being in state i by appying the
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);       model to the ncovmodel covariates (including constant and age).
   fprintf(ficresvij,"\n");       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   xp=vector(1,npar);       ncth covariate in the global vector x is given by the formula:
   dnewm=matrix(1,nlstate,1,npar);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   doldm=matrix(1,nlstate,1,nlstate);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   if(estepm < stepm){       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     printf ("Problem %d lower than %d\n",estepm, stepm);       Outputs ps[i][j] the probability to be observed in j being in j according to
   }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   else  hstepm=estepm;      */
   /* For example we decided to compute the life expectancy with the smallest unit */    double s1, lnpijopii;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    /*double t34;*/
      nhstepm is the number of hstepm from age to agelim    int i,j, nc, ii, jj;
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size      for(i=1; i<= nlstate; i++){
      and note for a fixed period like k years */        for(j=1; j<i;j++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
      survival function given by stepm (the optimization length). Unfortunately it            /*lnpijopii += param[i][j][nc]*cov[nc];*/
      means that if the survival funtion is printed only each two years of age and if            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
      results. So we changed our mind and took the option of the best precision.          }
   */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(j=i+1; j<=nlstate+ndeath;j++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
     gp=matrix(0,nhstepm,1,nlstate);          }
     gm=matrix(0,nhstepm,1,nlstate);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient */      
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for(i=1; i<= nlstate; i++){
       }        s1=0;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(j=1; j<i; j++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)        for(j=i+1; j<=nlstate+ndeath; j++){
           prlim[i][i]=probs[(int)age][i][ij];          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       }          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
          }
       for(j=1; j<= nlstate; j++){        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         for(h=0; h<=nhstepm; h++){        ps[i][i]=1./(s1+1.);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        /* Computing other pijs */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        for(j=1; j<i; j++)
         }          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }        for(j=i+1; j<=nlstate+ndeath; j++)
              ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(i=1; i<=npar; i++) /* Computes gradient */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } /* end i */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          for(jj=1; jj<= nlstate+ndeath; jj++){
       if (popbased==1) {          ps[ii][jj]=0;
         for(i=1; i<=nlstate;i++)          ps[ii][ii]=1;
           prlim[i][i]=probs[(int)age][i][ij];        }
       }      }
       
       for(j=1; j<= nlstate; j++){      
         for(h=0; h<=nhstepm; h++){      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         }      /*   } */
       }      /*   printf("\n "); */
       /* } */
       for(j=1; j<= nlstate; j++)      /* printf("\n ");printf("%lf ",cov[2]);*/
         for(h=0; h<=nhstepm; h++){      /*
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         }        goto end;*/
     } /* End theta */      return ps;
   }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
   /**************** Product of 2 matrices ******************/
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
         for(theta=1; theta <=npar; theta++)  {
           trgradg[h][j][theta]=gradg[h][theta][j];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /* in, b, out are matrice of pointers which should have been initialized 
     for(i=1;i<=nlstate;i++)       before: only the contents of out is modified. The function returns
       for(j=1;j<=nlstate;j++)       a pointer to pointers identical to out */
         vareij[i][j][(int)age] =0.;    int i, j, k;
     for(i=nrl; i<= nrh; i++)
     for(h=0;h<=nhstepm;h++){      for(k=ncolol; k<=ncoloh; k++){
       for(k=0;k<=nhstepm;k++){        out[i][k]=0.;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for(j=ncl; j<=nch; j++)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          out[i][k] +=in[i][j]*b[j][k];
         for(i=1;i<=nlstate;i++)      }
           for(j=1;j<=nlstate;j++)    return out;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  }
       }  
     }  
   /************* Higher Matrix Product ***************/
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       for(j=1; j<=nlstate;j++){  {
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    /* Computes the transition matrix starting at age 'age' over 
       }       'nhstepm*hstepm*stepm' months (i.e. until
     fprintf(ficresvij,"\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     free_matrix(gp,0,nhstepm,1,nlstate);       nhstepm*hstepm matrices. 
     free_matrix(gm,0,nhstepm,1,nlstate);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);       (typically every 2 years instead of every month which is too big 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);       for the memory).
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       Model is determined by parameters x and covariates have to be 
   } /* End age */       included manually here. 
    
   free_vector(xp,1,npar);       */
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
 }    double **newm;
   
 /************ Variance of prevlim ******************/    /* Hstepm could be zero and should return the unit matrix */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for (i=1;i<=nlstate+ndeath;i++)
 {      for (j=1;j<=nlstate+ndeath;j++){
   /* Variance of prevalence limit */        oldm[i][j]=(i==j ? 1.0 : 0.0);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double **newm;      }
   double **dnewm,**doldm;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i, j, nhstepm, hstepm;    for(h=1; h <=nhstepm; h++){
   int k, cptcode;      for(d=1; d <=hstepm; d++){
   double *xp;        newm=savm;
   double *gp, *gm;        /* Covariates have to be included here again */
   double **gradg, **trgradg;        cov[1]=1.;
   double age,agelim;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   int theta;        for (k=1; k<=cptcovn;k++) 
              cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        for (k=1; k<=cptcovage;k++)
   fprintf(ficresvpl,"# Age");          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
       fprintf(ficresvpl," %1d-%1d",i,i);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fprintf(ficresvpl,"\n");  
   
   xp=vector(1,npar);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   dnewm=matrix(1,nlstate,1,npar);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   doldm=matrix(1,nlstate,1,nlstate);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=1*YEARM; /* Every year of age */        savm=oldm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        oldm=newm;
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for(i=1; i<=nlstate+ndeath; i++)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(j=1;j<=nlstate+ndeath;j++) {
     if (stepm >= YEARM) hstepm=1;          po[i][j][h]=newm[i][j];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     gradg=matrix(1,npar,1,nlstate);        }
     gp=vector(1,nlstate);      /*printf("h=%d ",h);*/
     gm=vector(1,nlstate);    } /* end h */
   /*     printf("\n H=%d \n",h); */
     for(theta=1; theta <=npar; theta++){    return po;
       for(i=1; i<=npar; i++){ /* Computes gradient */  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  #ifdef NLOPT
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
       for(i=1;i<=nlstate;i++)    double fret;
         gp[i] = prlim[i][i];    double *xt;
        int j;
       for(i=1; i<=npar; i++) /* Computes gradient */    myfunc_data *d2 = (myfunc_data *) pd;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /* xt = (p1-1); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    xt=vector(1,n); 
       for(i=1;i<=nlstate;i++)    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
         gm[i] = prlim[i][i];  
     fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
       for(i=1;i<=nlstate;i++)    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    printf("Function = %.12lf ",fret);
     } /* End theta */    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     printf("\n");
     trgradg =matrix(1,nlstate,1,npar);   free_vector(xt,1,n);
     return fret;
     for(j=1; j<=nlstate;j++)  }
       for(theta=1; theta <=npar; theta++)  #endif
         trgradg[j][theta]=gradg[theta][j];  
   /*************** log-likelihood *************/
     for(i=1;i<=nlstate;i++)  double func( double *x)
       varpl[i][(int)age] =0.;  {
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    int i, ii, j, k, mi, d, kk;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     for(i=1;i<=nlstate;i++)    double **out;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
     fprintf(ficresvpl,"%.0f ",age );    int s1, s2;
     for(i=1; i<=nlstate;i++)    double bbh, survp;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    long ipmx;
     fprintf(ficresvpl,"\n");    /*extern weight */
     free_vector(gp,1,nlstate);    /* We are differentiating ll according to initial status */
     free_vector(gm,1,nlstate);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     free_matrix(gradg,1,npar,1,nlstate);    /*for(i=1;i<imx;i++) 
     free_matrix(trgradg,1,nlstate,1,npar);      printf(" %d\n",s[4][i]);
   } /* End age */    */
   
   free_vector(xp,1,npar);    ++countcallfunc;
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    cov[1]=1.;
   
 }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /************ Variance of one-step probabilities  ******************/    if(mle==1){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        /* Computes the values of the ncovmodel covariates of the model
   int i, j,  i1, k1, l1;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   int k2, l2, j1,  z1;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   int k=0,l, cptcode;           to be observed in j being in i according to the model.
   int first=1;         */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   double **dnewm,**doldm;          cov[2+k]=covar[Tvar[k]][i];
   double *xp;        }
   double *gp, *gm;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   double **gradg, **trgradg;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   double **mu;           has been calculated etc */
   double age,agelim, cov[NCOVMAX];        for(mi=1; mi<= wav[i]-1; mi++){
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          for (ii=1;ii<=nlstate+ndeath;ii++)
   int theta;            for (j=1;j<=nlstate+ndeath;j++){
   char fileresprob[FILENAMELENGTH];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char fileresprobcov[FILENAMELENGTH];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   char fileresprobcor[FILENAMELENGTH];            }
           for(d=0; d<dh[mi][i]; d++){
   double ***varpij;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcpy(fileresprob,"prob");            for (kk=1; kk<=cptcovage;kk++) {
   strcat(fileresprob,fileres);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", fileresprob);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcpy(fileresprobcov,"probcov");            savm=oldm;
   strcat(fileresprobcov,fileres);            oldm=newm;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          } /* end mult */
     printf("Problem with resultfile: %s\n", fileresprobcov);        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   strcpy(fileresprobcor,"probcor");          /* But now since version 0.9 we anticipate for bias at large stepm.
   strcat(fileresprobcor,fileres);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
     printf("Problem with resultfile: %s\n", fileresprobcor);           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);           * probability in order to take into account the bias as a fraction of the way
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");           * For stepm=1 the results are the same as for previous versions of Imach.
   fprintf(ficresprob,"# Age");           * For stepm > 1 the results are less biased than in previous versions. 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");           */
   fprintf(ficresprobcov,"# Age");          s1=s[mw[mi][i]][i];
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          s2=s[mw[mi+1][i]][i];
   fprintf(ficresprobcov,"# Age");          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   for(i=1; i<=nlstate;i++)           */
     for(j=1; j<=(nlstate+ndeath);j++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          if( s2 > nlstate){ 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);            /* i.e. if s2 is a death state and if the date of death is known 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);               then the contribution to the likelihood is the probability to 
     }                 die between last step unit time and current  step unit time, 
   fprintf(ficresprob,"\n");               which is also equal to probability to die before dh 
   fprintf(ficresprobcov,"\n");               minus probability to die before dh-stepm . 
   fprintf(ficresprobcor,"\n");               In version up to 0.92 likelihood was computed
   xp=vector(1,npar);          as if date of death was unknown. Death was treated as any other
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          health state: the date of the interview describes the actual state
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          and not the date of a change in health state. The former idea was
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          to consider that at each interview the state was recorded
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          (healthy, disable or death) and IMaCh was corrected; but when we
   first=1;          introduced the exact date of death then we should have modified
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          the contribution of an exact death to the likelihood. This new
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          contribution is smaller and very dependent of the step unit
     exit(0);          stepm. It is no more the probability to die between last interview
   }          and month of death but the probability to survive from last
   else{          interview up to one month before death multiplied by the
     fprintf(ficgp,"\n# Routine varprob");          probability to die within a month. Thanks to Chris
   }          Jackson for correcting this bug.  Former versions increased
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          mortality artificially. The bad side is that we add another loop
     printf("Problem with html file: %s\n", optionfilehtm);          which slows down the processing. The difference can be up to 10%
     exit(0);          lower mortality.
   }            */
   else{          /* If, at the beginning of the maximization mostly, the
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");             cumulative probability or probability to be dead is
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");             constant (ie = 1) over time d, the difference is equal to
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");             0.  out[s1][3] = savm[s1][3]: probability, being at state
              s1 at precedent wave, to be dead a month before current
   }             wave is equal to probability, being at state s1 at
   cov[1]=1;             precedent wave, to be dead at mont of the current
   j=cptcoveff;             wave. Then the observed probability (that this person died)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}             is null according to current estimated parameter. In fact,
   j1=0;             it should be very low but not zero otherwise the log go to
   for(k1=1; k1<=1;k1++){             infinity.
     for(i1=1; i1<=ncodemax[k1];i1++){          */
     j1++;  /* #ifdef INFINITYORIGINAL */
   /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     if  (cptcovn>0) {  /* #else */
       fprintf(ficresprob, "\n#********** Variable ");  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
       fprintf(ficresprobcov, "\n#********** Variable ");  /*          lli=log(mytinydouble); */
       fprintf(ficgp, "\n#********** Variable ");  /*        else */
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
       fprintf(ficresprobcor, "\n#********** Variable ");  /* #endif */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              lli=log(out[s1][s2] - savm[s1][s2]);
       fprintf(ficresprob, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          } else if  (s2==-2) {
       fprintf(ficresprobcov, "**********\n#");            for (j=1,survp=0. ; j<=nlstate; j++) 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       fprintf(ficgp, "**********\n#");            /*survp += out[s1][j]; */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            lli= log(survp);
       fprintf(ficgp, "**********\n#");          }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          
       fprintf(fichtm, "**********\n#");          else if  (s2==-4) { 
     }            for (j=3,survp=0. ; j<=nlstate; j++)  
                  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for (age=bage; age<=fage; age ++){            lli= log(survp); 
         cov[2]=age;          } 
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          else if  (s2==-5) { 
         }            for (j=1,survp=0. ; j<=2; j++)  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for (k=1; k<=cptcovprod;k++)            lli= log(survp); 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          } 
                  
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          else{
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         gp=vector(1,(nlstate)*(nlstate+ndeath));            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         gm=vector(1,(nlstate)*(nlstate+ndeath));          } 
              /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         for(theta=1; theta <=npar; theta++){          /*if(lli ==000.0)*/
           for(i=1; i<=npar; i++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          ipmx +=1;
                    sw += weight[i];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                    /* if (lli < log(mytinydouble)){ */
           k=0;          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
           for(i=1; i<= (nlstate); i++){          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
             for(j=1; j<=(nlstate+ndeath);j++){          /* } */
               k=k+1;        } /* end of wave */
               gp[k]=pmmij[i][j];      } /* end of individual */
             }    }  else if(mle==2){
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                  for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(i=1; i<=npar; i++)        for(mi=1; mi<= wav[i]-1; mi++){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          for (ii=1;ii<=nlstate+ndeath;ii++)
                for (j=1;j<=nlstate+ndeath;j++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           k=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1; i<=(nlstate); i++){            }
             for(j=1; j<=(nlstate+ndeath);j++){          for(d=0; d<=dh[mi][i]; d++){
               k=k+1;            newm=savm;
               gm[k]=pmmij[i][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             }            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
             oldm=newm;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          } /* end mult */
           for(theta=1; theta <=npar; theta++)        
             trgradg[j][theta]=gradg[theta][j];          s1=s[mw[mi][i]][i];
                  s2=s[mw[mi+1][i]][i];
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          bbh=(double)bh[mi][i]/(double)stepm; 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                  ipmx +=1;
         pmij(pmmij,cov,ncovmodel,x,nlstate);          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         k=0;        } /* end of wave */
         for(i=1; i<=(nlstate); i++){      } /* end of individual */
           for(j=1; j<=(nlstate+ndeath);j++){    }  else if(mle==3){  /* exponential inter-extrapolation */
             k=k+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             mu[k][(int) age]=pmmij[i][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            for (j=1;j<=nlstate+ndeath;j++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             varpij[i][j][(int)age] = doldm[i][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
         /*printf("\n%d ",(int)age);          for(d=0; d<dh[mi][i]; d++){
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            newm=savm;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      }*/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresprob,"\n%d ",(int)age);            }
         fprintf(ficresprobcov,"\n%d ",(int)age);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficresprobcor,"\n%d ",(int)age);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            oldm=newm;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          } /* end mult */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          s1=s[mw[mi][i]][i];
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
         i=0;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for (k=1; k<=(nlstate);k++){          ipmx +=1;
           for (l=1; l<=(nlstate+ndeath);l++){          sw += weight[i];
             i=i++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        } /* end of wave */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      } /* end of individual */
             for (j=1; j<=i;j++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }/* end of loop for state */            for (j=1;j<=nlstate+ndeath;j++){
       } /* end of loop for age */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k1=1; k1<=(nlstate);k1++){            }
         for (l1=1; l1<=(nlstate+ndeath);l1++){          for(d=0; d<dh[mi][i]; d++){
           if(l1==k1) continue;            newm=savm;
           i=(k1-1)*(nlstate+ndeath)+l1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (k2=1; k2<=(nlstate);k2++){            for (kk=1; kk<=cptcovage;kk++) {
             for (l2=1; l2<=(nlstate+ndeath);l2++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if(l2==k2) continue;            }
               j=(k2-1)*(nlstate+ndeath)+l2;          
               if(j<=i) continue;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               for (age=bage; age<=fage; age ++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 if ((int)age %5==0){            savm=oldm;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            oldm=newm;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          } /* end mult */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        
                   mu1=mu[i][(int) age]/stepm*YEARM ;          s1=s[mw[mi][i]][i];
                   mu2=mu[j][(int) age]/stepm*YEARM;          s2=s[mw[mi+1][i]][i];
                   /* Computing eigen value of matrix of covariance */          if( s2 > nlstate){ 
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            lli=log(out[s1][s2] - savm[s1][s2]);
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          }else{
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   /* Eigen vectors */          }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          ipmx +=1;
                   v21=sqrt(1.-v11*v11);          sw += weight[i];
                   v12=-v21;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   v22=v11;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                   /*printf(fignu*/        } /* end of wave */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      } /* end of individual */
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   if(first==1){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                     first=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                     fprintf(ficgp,"\nset parametric;set nolabel");        for(mi=1; mi<= wav[i]-1; mi++){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);          for (ii=1;ii<=nlstate+ndeath;ii++)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            for (j=1;j<=nlstate+ndeath;j++){
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);            }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          for(d=0; d<dh[mi][i]; d++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            newm=savm;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            for (kk=1; kk<=cptcovage;kk++) {
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   }else{            }
                     first=0;          
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            savm=oldm;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            oldm=newm;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          } /* end mult */
                   }/* if first */        
                 } /* age mod 5 */          s1=s[mw[mi][i]][i];
               } /* end loop age */          s2=s[mw[mi+1][i]][i];
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               first=1;          ipmx +=1;
             } /*l12 */          sw += weight[i];
           } /* k12 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /*l1 */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       }/* k1 */        } /* end of wave */
     } /* loop covariates */      } /* end of individual */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    } /* End of if */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    return -l;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  }
   }  
   free_vector(xp,1,npar);  /*************** log-likelihood *************/
   fclose(ficresprob);  double funcone( double *x)
   fclose(ficresprobcov);  {
   fclose(ficresprobcor);    /* Same as likeli but slower because of a lot of printf and if */
   fclose(ficgp);    int i, ii, j, k, mi, d, kk;
   fclose(fichtm);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 }    double **out;
     double lli; /* Individual log likelihood */
     double llt;
 /******************* Printing html file ***********/    int s1, s2;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    double bbh, survp;
                   int lastpass, int stepm, int weightopt, char model[],\    /*extern weight */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    /* We are differentiating ll according to initial status */
                   int popforecast, int estepm ,\    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   double jprev1, double mprev1,double anprev1, \    /*for(i=1;i<imx;i++) 
                   double jprev2, double mprev2,double anprev2){      printf(" %d\n",s[4][i]);
   int jj1, k1, i1, cpt;    */
   /*char optionfilehtm[FILENAMELENGTH];*/    cov[1]=1.;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      for(mi=1; mi<= wav[i]-1; mi++){
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        for (ii=1;ii<=nlstate+ndeath;ii++)
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          for (j=1;j<=nlstate+ndeath;j++){
  - Life expectancies by age and initial health status (estepm=%2d months):            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          }
         for(d=0; d<dh[mi][i]; d++){
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n          newm=savm;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          for (kk=1; kk<=cptcovage;kk++) {
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
  if(popforecast==1) fprintf(fichtm,"\n          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          savm=oldm;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          oldm=newm;
         <br>",fileres,fileres,fileres,fileres);        } /* end mult */
  else        
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        s1=s[mw[mi][i]][i];
 fprintf(fichtm," <li>Graphs</li><p>");        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
  m=cptcoveff;        /* bias is positive if real duration
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}         * is higher than the multiple of stepm and negative otherwise.
          */
  jj1=0;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
  for(k1=1; k1<=m;k1++){          lli=log(out[s1][s2] - savm[s1][s2]);
    for(i1=1; i1<=ncodemax[k1];i1++){        } else if  (s2==-2) {
      jj1++;          for (j=1,survp=0. ; j<=nlstate; j++) 
      if (cptcovn > 0) {            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          lli= log(survp);
        for (cpt=1; cpt<=cptcoveff;cpt++)        }else if (mle==1){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        } else if(mle==2){
      }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      /* Pij */        } else if(mle==3){  /* exponential inter-extrapolation */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            } else if (mle==4){  /* mle=4 no inter-extrapolation */
      /* Quasi-incidences */          lli=log(out[s1][s2]); /* Original formula */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        } else{  /* mle=0 back to 1 */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        /* Stable prevalence in each health state */          /*lli=log(out[s1][s2]); */ /* Original formula */
        for(cpt=1; cpt<nlstate;cpt++){        } /* End of if */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        ipmx +=1;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        sw += weight[i];
        }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(cpt=1; cpt<=nlstate;cpt++) {        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        if(globpr){
 interval) in state (%d): v%s%d%d.png <br>          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     %11.6f %11.6f %11.6f ", \
      }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
      for(cpt=1; cpt<=nlstate;cpt++) {                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            llt +=ll[k]*gipmx/gsw;
      }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          }
 health expectancies in states (1) and (2): e%s%d.png<br>          fprintf(ficresilk," %10.6f\n", -llt);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        }
    }      } /* end of wave */
  }    } /* end of individual */
 fclose(fichtm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /******************* Gnuplot file **************/    if(globpr==0){ /* First time we count the contributions and weights */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      gipmx=ipmx;
       gsw=sw;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    }
   int ng;    return -l;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  }
     printf("Problem with file %s",optionfilegnuplot);  
   }  
   /*************** function likelione ***********/
 #ifdef windows  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     fprintf(ficgp,"cd \"%s\" \n",pathc);  {
 #endif    /* This routine should help understanding what is done with 
 m=pow(2,cptcoveff);       the selection of individuals/waves and
         to check the exact contribution to the likelihood.
  /* 1eme*/       Plotting could be done.
   for (cpt=1; cpt<= nlstate ; cpt ++) {     */
    for (k1=1; k1<= m ; k1 ++) {    int k;
   
 #ifdef windows    if(*globpri !=0){ /* Just counts and sums, no printings */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      strcpy(fileresilk,"ilk"); 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      strcat(fileresilk,fileres);
 #endif      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 #ifdef unix        printf("Problem with resultfile: %s\n", fileresilk);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      }
 #endif      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 for (i=1; i<= nlstate ; i ++) {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(k=1; k<=nlstate; k++) 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    }
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    *fretone=(*funcone)(p);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if(*globpri !=0){
 }      fclose(ficresilk);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      for (i=1; i<= nlstate ; i ++) {      fflush(fichtm); 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    return;
 }    }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix  
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  /*********** Maximum Likelihood Estimation ***************/
 #endif  
    }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   }  {
   /*2 eme*/    int i,j, iter=0;
     double **xi;
   for (k1=1; k1<= m ; k1 ++) {    double fret;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    double fretone; /* Only one call to likelihood */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    /*  char filerespow[FILENAMELENGTH];*/
      
     for (i=1; i<= nlstate+1 ; i ++) {  #ifdef NLOPT
       k=2*i;    int creturn;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    nlopt_opt opt;
       for (j=1; j<= nlstate+1 ; j ++) {    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double *lb;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double minf; /* the minimum objective value, upon return */
 }      double * p1; /* Shifted parameters from 0 instead of 1 */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    myfunc_data dinst, *d = &dinst;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  #endif
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    xi=matrix(1,npar,1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for (i=1;i<=npar;i++)
 }        for (j=1;j<=npar;j++)
       fprintf(ficgp,"\" t\"\" w l 0,");        xi[i][j]=(i==j ? 1.0 : 0.0);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for (j=1; j<= nlstate+1 ; j ++) {    strcpy(filerespow,"pow"); 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    strcat(filerespow,fileres);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 }        printf("Problem with resultfile: %s\n", filerespow);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       else fprintf(ficgp,"\" t\"\" w l 0,");    }
     }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   }    for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   /*3eme*/        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   for (k1=1; k1<= m ; k1 ++) {  #ifdef POWELL
     for (cpt=1; cpt<= nlstate ; cpt ++) {    powell(p,xi,npar,ftol,&iter,&fret,func);
       k=2+nlstate*(2*cpt-2);  #endif
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  #ifdef NLOPT
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  #ifdef NEWUOA
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  #else
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  #endif
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    lb=vector(0,npar-1);
     for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
 */    nlopt_set_lower_bounds(opt, lb);
       for (i=1; i< nlstate ; i ++) {    nlopt_set_initial_step1(opt, 0.1);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    
     p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
       }    d->function = func;
     }    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   }    nlopt_set_min_objective(opt, myfunc, d);
      nlopt_set_xtol_rel(opt, ftol);
   /* CV preval stat */    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
     for (k1=1; k1<= m ; k1 ++) {      printf("nlopt failed! %d\n",creturn); 
     for (cpt=1; cpt<nlstate ; cpt ++) {    }
       k=3;    else {
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
       iter=1; /* not equal */
       for (i=1; i< nlstate ; i ++)    }
         fprintf(ficgp,"+$%d",k+i+1);    nlopt_destroy(opt);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  #endif
          free_matrix(xi,1,npar,1,npar);
       l=3+(nlstate+ndeath)*cpt;    fclose(ficrespow);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       for (i=1; i< nlstate ; i ++) {    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         l=3+(nlstate+ndeath)*cpt;    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         fprintf(ficgp,"+$%d",l+i+1);  
       }  }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
     }  /**** Computes Hessian and covariance matrix ***/
   }    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    {
   /* proba elementaires */    double  **a,**y,*x,pd;
    for(i=1,jk=1; i <=nlstate; i++){    double **hess;
     for(k=1; k <=(nlstate+ndeath); k++){    int i, j;
       if (k != i) {    int *indx;
         for(j=1; j <=ncovmodel; j++){  
            double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           jk++;    void lubksb(double **a, int npar, int *indx, double b[]) ;
           fprintf(ficgp,"\n");    void ludcmp(double **a, int npar, int *indx, double *d) ;
         }    double gompertz(double p[]);
       }    hess=matrix(1,npar,1,npar);
     }  
    }    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    for (i=1;i<=npar;i++){
      for(jk=1; jk <=m; jk++) {      printf("%d",i);fflush(stdout);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      fprintf(ficlog,"%d",i);fflush(ficlog);
        if (ng==2)     
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
        else      
          fprintf(ficgp,"\nset title \"Probability\"\n");      /*  printf(" %f ",p[i]);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
        i=1;    }
        for(k2=1; k2<=nlstate; k2++) {    
          k3=i;    for (i=1;i<=npar;i++) {
          for(k=1; k<=(nlstate+ndeath); k++) {      for (j=1;j<=npar;j++)  {
            if (k != k2){        if (j>i) { 
              if(ng==2)          printf(".%d%d",i,j);fflush(stdout);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
              else          hess[i][j]=hessij(p,delti,i,j,func,npar);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          
              ij=1;          hess[j][i]=hess[i][j];    
              for(j=3; j <=ncovmodel; j++) {          /*printf(" %lf ",hess[i][j]);*/
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }
                  ij++;    }
                }    printf("\n");
                else    fprintf(ficlog,"\n");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
              }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
              fprintf(ficgp,")/(1");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                  
              for(k1=1; k1 <=nlstate; k1++){      a=matrix(1,npar,1,npar);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    y=matrix(1,npar,1,npar);
                ij=1;    x=vector(1,npar);
                for(j=3; j <=ncovmodel; j++){    indx=ivector(1,npar);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    for (i=1;i<=npar;i++)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                    ij++;    ludcmp(a,npar,indx,&pd);
                  }  
                  else    for (j=1;j<=npar;j++) {
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for (i=1;i<=npar;i++) x[i]=0;
                }      x[j]=1;
                fprintf(ficgp,")");      lubksb(a,npar,indx,x);
              }      for (i=1;i<=npar;i++){ 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        matcov[i][j]=x[i];
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      }
              i=i+ncovmodel;    }
            }  
          }    printf("\n#Hessian matrix#\n");
        }    fprintf(ficlog,"\n#Hessian matrix#\n");
      }    for (i=1;i<=npar;i++) { 
    }      for (j=1;j<=npar;j++) { 
    fclose(ficgp);        printf("%.3e ",hess[i][j]);
 }  /* end gnuplot */        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
       printf("\n");
 /*************** Moving average **************/      fprintf(ficlog,"\n");
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    }
   
   int i, cpt, cptcod;    /* Recompute Inverse */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    for (i=1;i<=npar;i++)
       for (i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    ludcmp(a,npar,indx,&pd);
           mobaverage[(int)agedeb][i][cptcod]=0.;  
        /*  printf("\n#Hessian matrix recomputed#\n");
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){    for (j=1;j<=npar;j++) {
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for (i=1;i<=npar;i++) x[i]=0;
           for (cpt=0;cpt<=4;cpt++){      x[j]=1;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      lubksb(a,npar,indx,x);
           }      for (i=1;i<=npar;i++){ 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        y[i][j]=x[i];
         }        printf("%.3e ",y[i][j]);
       }        fprintf(ficlog,"%.3e ",y[i][j]);
     }      }
          printf("\n");
 }      fprintf(ficlog,"\n");
     }
     */
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    free_matrix(a,1,npar,1,npar);
      free_matrix(y,1,npar,1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    free_vector(x,1,npar);
   int *popage;    free_ivector(indx,1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    free_matrix(hess,1,npar,1,npar);
   double *popeffectif,*popcount;  
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];  }
   
  agelim=AGESUP;  /*************** hessian matrix ****************/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int i;
      int l=1, lmax=20;
      double k1,k2;
   strcpy(fileresf,"f");    double p2[MAXPARM+1]; /* identical to x */
   strcat(fileresf,fileres);    double res;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     printf("Problem with forecast resultfile: %s\n", fileresf);    double fx;
   }    int k=0,kmax=10;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double l1;
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   if (mobilav==1) {    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      l1=pow(10,l);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      delts=delt;
   }      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   stepsize=(int) (stepm+YEARM-1)/YEARM;        p2[theta]=x[theta] +delt;
   if (stepm<=12) stepsize=1;        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
          p2[theta]=x[theta]-delt;
   agelim=AGESUP;        k2=func(p2)-fx;
          /*res= (k1-2.0*fx+k2)/delt/delt; */
   hstepm=1;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   hstepm=hstepm/stepm;        
   yp1=modf(dateintmean,&yp);  #ifdef DEBUGHESS
   anprojmean=yp;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   yp2=modf((yp1*12),&yp);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   mprojmean=yp;  #endif
   yp1=modf((yp2*30.5),&yp);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   jprojmean=yp;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   if(jprojmean==0) jprojmean=1;          k=kmax;
   if(mprojmean==0) jprojmean=1;        }
          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          k=kmax; l=lmax*10;
          }
   for(cptcov=1;cptcov<=i2;cptcov++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          delts=delt;
       k=k+1;        }
       fprintf(ficresf,"\n#******");      }
       for(j=1;j<=cptcoveff;j++) {    }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    delti[theta]=delts;
       }    return res; 
       fprintf(ficresf,"******\n");    
       fprintf(ficresf,"# StartingAge FinalAge");  }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
        double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
        {
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    int i;
         fprintf(ficresf,"\n");    int l=1, lmax=20;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      double k1,k2,k3,k4,res,fx;
     double p2[MAXPARM+1];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int k;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    fx=func(x);
              for (k=1; k<=2; k++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1;i<=npar;i++) p2[i]=x[i];
           oldm=oldms;savm=savms;      p2[thetai]=x[thetai]+delti[thetai]/k;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
              k1=func(p2)-fx;
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {      p2[thetai]=x[thetai]+delti[thetai]/k;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             }      k2=func(p2)-fx;
             for(j=1; j<=nlstate+ndeath;j++) {    
               kk1=0.;kk2=0;      p2[thetai]=x[thetai]-delti[thetai]/k;
               for(i=1; i<=nlstate;i++) {                    p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                 if (mobilav==1)      k3=func(p2)-fx;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    
                 else {      p2[thetai]=x[thetai]-delti[thetai]/k;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                 }      k4=func(p2)-fx;
                      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
               }  #ifdef DEBUG
               if (h==(int)(calagedate+12*cpt)){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                 fprintf(ficresf," %.3f", kk1);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                          #endif
               }    }
             }    return res;
           }  }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  /************** Inverse of matrix **************/
       }  void ludcmp(double **a, int n, int *indx, double *d) 
     }  { 
   }    int i,imax,j,k; 
            double big,dum,sum,temp; 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *vv; 
    
   fclose(ficresf);    vv=vector(1,n); 
 }    *d=1.0; 
 /************** Forecasting ******************/    for (i=1;i<=n;i++) { 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      big=0.0; 
        for (j=1;j<=n;j++) 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   int *popage;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      vv[i]=1.0/big; 
   double *popeffectif,*popcount;    } 
   double ***p3mat,***tabpop,***tabpopprev;    for (j=1;j<=n;j++) { 
   char filerespop[FILENAMELENGTH];      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        a[i][j]=sum; 
   agelim=AGESUP;      } 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      big=0.0; 
        for (i=j;i<=n;i++) { 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        sum=a[i][j]; 
          for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
   strcpy(filerespop,"pop");        a[i][j]=sum; 
   strcat(filerespop,fileres);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          big=dum; 
     printf("Problem with forecast resultfile: %s\n", filerespop);          imax=i; 
   }        } 
   printf("Computing forecasting: result on file '%s' \n", filerespop);      } 
       if (j != imax) { 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   if (mobilav==1) {          a[imax][k]=a[j][k]; 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          a[j][k]=dum; 
     movingaverage(agedeb, fage, ageminpar, mobaverage);        } 
   }        *d = -(*d); 
         vv[imax]=vv[j]; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;      } 
   if (stepm<=12) stepsize=1;      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
   agelim=AGESUP;      if (j != n) { 
          dum=1.0/(a[j][j]); 
   hstepm=1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   hstepm=hstepm/stepm;      } 
      } 
   if (popforecast==1) {    free_vector(vv,1,n);  /* Doesn't work */
     if((ficpop=fopen(popfile,"r"))==NULL) {  ;
       printf("Problem with population file : %s\n",popfile);exit(0);  } 
     }  
     popage=ivector(0,AGESUP);  void lubksb(double **a, int n, int *indx, double b[]) 
     popeffectif=vector(0,AGESUP);  { 
     popcount=vector(0,AGESUP);    int i,ii=0,ip,j; 
        double sum; 
     i=1;     
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    for (i=1;i<=n;i++) { 
          ip=indx[i]; 
     imx=i;      sum=b[ip]; 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      b[ip]=b[i]; 
   }      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   for(cptcov=1;cptcov<=i2;cptcov++){      else if (sum) ii=i; 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      b[i]=sum; 
       k=k+1;    } 
       fprintf(ficrespop,"\n#******");    for (i=n;i>=1;i--) { 
       for(j=1;j<=cptcoveff;j++) {      sum=b[i]; 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       }      b[i]=sum/a[i][i]; 
       fprintf(ficrespop,"******\n");    } 
       fprintf(ficrespop,"# Age");  } 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");  void pstamp(FILE *fichier)
        {
       for (cpt=0; cpt<=0;cpt++) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    }
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /************ Frequencies ********************/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           nhstepm = nhstepm/hstepm;  {  /* Some frequencies */
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, m, jk, j1, bool, z1,j;
           oldm=oldms;savm=savms;    int first;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double ***freq; /* Frequencies */
            double *pp, **prop;
           for (h=0; h<=nhstepm; h++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             if (h==(int) (calagedate+YEARM*cpt)) {    char fileresp[FILENAMELENGTH];
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    
             }    pp=vector(1,nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
               kk1=0.;kk2=0;    strcpy(fileresp,"p");
               for(i=1; i<=nlstate;i++) {                  strcat(fileresp,fileres);
                 if (mobilav==1)    if((ficresp=fopen(fileresp,"w"))==NULL) {
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      printf("Problem with prevalence resultfile: %s\n", fileresp);
                 else {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      exit(0);
                 }    }
               }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
               if (h==(int)(calagedate+12*cpt)){    j1=0;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    
                   /*fprintf(ficrespop," %.3f", kk1);    j=cptcoveff;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
               }  
             }    first=1;
             for(i=1; i<=nlstate;i++){  
               kk1=0.;    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
                 for(j=1; j<=nlstate;j++){    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    /*    j1++; */
                 }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             }          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          for (jk=-5; jk<=nlstate+ndeath; jk++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            for(m=iagemin; m <= iagemax+3; m++)
           }              freq[i][jk][m]=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
         }        for (i=1; i<=nlstate; i++)  
       }          for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0;
   /******/        
         dateintsum=0;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        k2cpt=0;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for (i=1; i<=imx; i++) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          bool=1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
           nhstepm = nhstepm/hstepm;            for (z1=1; z1<=cptcoveff; z1++)       
                        if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
           oldm=oldms;savm=savms;                bool=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
           for (h=0; h<=nhstepm; h++){                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
             if (h==(int) (calagedate+YEARM*cpt)) {                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
             }              } 
             for(j=1; j<=nlstate+ndeath;j++) {          }
               kk1=0.;kk2=0;   
               for(i=1; i<=nlstate;i++) {                        if (bool==1){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                for(m=firstpass; m<=lastpass; m++){
               }              k2=anint[m][i]+(mint[m][i]/12.);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         }                if (m<lastpass) {
       }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
    }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   }                }
                  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   if (popforecast==1) {                  k2cpt++;
     free_ivector(popage,0,AGESUP);                }
     free_vector(popeffectif,0,AGESUP);                /*}*/
     free_vector(popcount,0,AGESUP);            }
   }          }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        } /* end i */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         
   fclose(ficrespop);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 }        pstamp(ficresp);
         if  (cptcovn>0) {
 /***********************************************/          fprintf(ficresp, "\n#********** Variable "); 
 /**************** Main Program *****************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /***********************************************/          fprintf(ficresp, "**********\n#");
           fprintf(ficlog, "\n#********** Variable "); 
 int main(int argc, char *argv[])          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 {          fprintf(ficlog, "**********\n#");
         }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for(i=1; i<=nlstate;i++) 
   double agedeb, agefin,hf;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        fprintf(ficresp, "\n");
         
   double fret;        for(i=iagemin; i <= iagemax+3; i++){
   double **xi,tmp,delta;          if(i==iagemax+3){
             fprintf(ficlog,"Total");
   double dum; /* Dummy variable */          }else{
   double ***p3mat;            if(first==1){
   int *indx;              first=0;
   char line[MAXLINE], linepar[MAXLINE];              printf("See log file for details...\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            }
   int firstobs=1, lastobs=10;            fprintf(ficlog,"Age %d", i);
   int sdeb, sfin; /* Status at beginning and end */          }
   int c,  h , cpt,l;          for(jk=1; jk <=nlstate ; jk++){
   int ju,jl, mi;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              pp[jk] += freq[jk][m][i]; 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          }
   int mobilav=0,popforecast=0;          for(jk=1; jk <=nlstate ; jk++){
   int hstepm, nhstepm;            for(m=-1, pos=0; m <=0 ; m++)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
   double bage, fage, age, agelim, agebase;              if(first==1){
   double ftolpl=FTOL;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double **prlim;              }
   double *severity;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double ***param; /* Matrix of parameters */            }else{
   double  *p;              if(first==1)
   double **matcov; /* Matrix of covariance */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double ***delti3; /* Scale */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double *delti; /* Scale */            }
   double ***eij, ***vareij;          }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;          for(jk=1; jk <=nlstate ; jk++){
   double kk1, kk2;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;              pp[jk] += freq[jk][m][i];
            }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];            pos += pp[jk];
             posprop += prop[jk][i];
           }
   char z[1]="c", occ;          for(jk=1; jk <=nlstate ; jk++){
 #include <sys/time.h>            if(pos>=1.e-5){
 #include <time.h>              if(first==1)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /* long total_usecs;            }else{
   struct timeval start_time, end_time;              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   getcwd(pathcd, size);            }
             if( i <= iagemax){
   printf("\n%s",version);              if(pos>=1.e-5){
   if(argc <=1){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     printf("\nEnter the parameter file name: ");                /*probs[i][jk][j1]= pp[jk]/pos;*/
     scanf("%s",pathtot);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   }              }
   else{              else
     strcpy(pathtot,argv[1]);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   }            }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          }
   /*cygwin_split_path(pathtot,path,optionfile);          
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          for(jk=-1; jk <=nlstate+ndeath; jk++)
   /* cutv(path,optionfile,pathtot,'\\');*/            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              if(first==1)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   chdir(path);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   replace(pathc,path);              }
           if(i <= iagemax)
 /*-------- arguments in the command line --------*/            fprintf(ficresp,"\n");
           if(first==1)
   strcpy(fileres,"r");            printf("Others in log...\n");
   strcat(fileres, optionfilefiname);          fprintf(ficlog,"\n");
   strcat(fileres,".txt");    /* Other files have txt extension */        }
         /*}*/
   /*---------arguments file --------*/    }
     dateintmean=dateintsum/k2cpt; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {   
     printf("Problem with optionfile %s\n",optionfile);    fclose(ficresp);
     goto end;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   }    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   strcpy(filereso,"o");    /* End of Freq */
   strcat(filereso,fileres);  }
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
   /* Reads comments: lines beginning with '#' */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   while((c=getc(ficpar))=='#' && c!= EOF){       in each health status at the date of interview (if between dateprev1 and dateprev2).
     ungetc(c,ficpar);       We still use firstpass and lastpass as another selection.
     fgets(line, MAXLINE, ficpar);    */
     puts(line);   
     fputs(line,ficparo);    int i, m, jk, j1, bool, z1,j;
   }  
   ungetc(c,ficpar);    double **prop;
     double posprop; 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double  y2; /* in fractional years */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    int iagemin, iagemax;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    int first; /** to stop verbosity which is redirected to log file */
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    iagemin= (int) agemin;
     fgets(line, MAXLINE, ficpar);    iagemax= (int) agemax;
     puts(line);    /*pp=vector(1,nlstate);*/
     fputs(line,ficparo);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   ungetc(c,ficpar);    j1=0;
      
        /*j=cptcoveff;*/
   covar=matrix(0,NCOVMAX,1,n);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   cptcovn=0;    
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    first=1;
     for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   ncovmodel=2+cptcovn;      /*for(i1=1; i1<=ncodemax[k1];i1++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        j1++;*/
          
   /* Read guess parameters */        for (i=1; i<=nlstate; i++)  
   /* Reads comments: lines beginning with '#' */          for(m=iagemin; m <= iagemax+3; m++)
   while((c=getc(ficpar))=='#' && c!= EOF){            prop[i][m]=0.0;
     ungetc(c,ficpar);       
     fgets(line, MAXLINE, ficpar);        for (i=1; i<=imx; i++) { /* Each individual */
     puts(line);          bool=1;
     fputs(line,ficparo);          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
   ungetc(c,ficpar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          } 
     for(i=1; i <=nlstate; i++)          if (bool==1) { 
     for(j=1; j <=nlstate+ndeath-1; j++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       fprintf(ficparo,"%1d%1d",i1,j1);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       printf("%1d%1d",i,j);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(k=1; k<=ncovmodel;k++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fscanf(ficpar," %lf",&param[i][j][k]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         printf(" %lf",param[i][j][k]);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         fprintf(ficparo," %lf",param[i][j][k]);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fscanf(ficpar,"\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
       printf("\n");                } 
       fprintf(ficparo,"\n");              }
     }            } /* end selection of waves */
            }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        }
         for(i=iagemin; i <= iagemax+3; i++){  
   p=param[1][1];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
              posprop += prop[jk][i]; 
   /* Reads comments: lines beginning with '#' */          } 
   while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);          for(jk=1; jk <=nlstate ; jk++){     
     fgets(line, MAXLINE, ficpar);            if( i <=  iagemax){ 
     puts(line);              if(posprop>=1.e-5){ 
     fputs(line,ficparo);                probs[i][jk][j1]= prop[jk][i]/posprop;
   }              } else{
   ungetc(c,ficpar);                if(first==1){
                   first=0;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                }
   for(i=1; i <=nlstate; i++){              }
     for(j=1; j <=nlstate+ndeath-1; j++){            } 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }/* end jk */ 
       printf("%1d%1d",i,j);        }/* end i */ 
       fprintf(ficparo,"%1d%1d",i1,j1);      /*} *//* end i1 */
       for(k=1; k<=ncovmodel;k++){    } /* end j1 */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    
         printf(" %le",delti3[i][j][k]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         fprintf(ficparo," %le",delti3[i][j][k]);    /*free_vector(pp,1,nlstate);*/
       }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fscanf(ficpar,"\n");  }  /* End of prevalence */
       printf("\n");  
       fprintf(ficparo,"\n");  /************* Waves Concatenation ***************/
     }  
   }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   delti=delti3[1][1];  {
      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   /* Reads comments: lines beginning with '#' */       Death is a valid wave (if date is known).
   while((c=getc(ficpar))=='#' && c!= EOF){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     ungetc(c,ficpar);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fgets(line, MAXLINE, ficpar);       and mw[mi+1][i]. dh depends on stepm.
     puts(line);       */
     fputs(line,ficparo);  
   }    int i, mi, m;
   ungetc(c,ficpar);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
   matcov=matrix(1,npar,1,npar);    int first;
   for(i=1; i <=npar; i++){    int j, k=0,jk, ju, jl;
     fscanf(ficpar,"%s",&str);    double sum=0.;
     printf("%s",str);    first=0;
     fprintf(ficparo,"%s",str);    jmin=100000;
     for(j=1; j <=i; j++){    jmax=-1;
       fscanf(ficpar," %le",&matcov[i][j]);    jmean=0.;
       printf(" %.5le",matcov[i][j]);    for(i=1; i<=imx; i++){
       fprintf(ficparo," %.5le",matcov[i][j]);      mi=0;
     }      m=firstpass;
     fscanf(ficpar,"\n");      while(s[m][i] <= nlstate){
     printf("\n");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     fprintf(ficparo,"\n");          mw[++mi][i]=m;
   }        if(m >=lastpass)
   for(i=1; i <=npar; i++)          break;
     for(j=i+1;j<=npar;j++)        else
       matcov[i][j]=matcov[j][i];          m++;
          }/* end while */
   printf("\n");      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
     /*-------- Rewriting paramater file ----------*/           /* Only death is a correct wave */
      strcpy(rfileres,"r");    /* "Rparameterfile */        mw[mi][i]=m;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      }
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      wav[i]=mi;
     if((ficres =fopen(rfileres,"w"))==NULL) {      if(mi==0){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        nbwarn++;
     }        if(first==0){
     fprintf(ficres,"#%s\n",version);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
              first=1;
     /*-------- data file ----------*/        }
     if((fic=fopen(datafile,"r"))==NULL)    {        if(first==1){
       printf("Problem with datafile: %s\n", datafile);goto end;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     }        }
       } /* end mi==0 */
     n= lastobs;    } /* End individuals */
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);    for(i=1; i<=imx; i++){
     num=ivector(1,n);      for(mi=1; mi<wav[i];mi++){
     moisnais=vector(1,n);        if (stepm <=0)
     annais=vector(1,n);          dh[mi][i]=1;
     moisdc=vector(1,n);        else{
     andc=vector(1,n);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     agedc=vector(1,n);            if (agedc[i] < 2*AGESUP) {
     cod=ivector(1,n);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     weight=vector(1,n);              if(j==0) j=1;  /* Survives at least one month after exam */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              else if(j<0){
     mint=matrix(1,maxwav,1,n);                nberr++;
     anint=matrix(1,maxwav,1,n);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     s=imatrix(1,maxwav+1,1,n);                j=1; /* Temporary Dangerous patch */
     adl=imatrix(1,maxwav+1,1,n);                    printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     tab=ivector(1,NCOVMAX);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     ncodemax=ivector(1,8);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
     i=1;              k=k+1;
     while (fgets(line, MAXLINE, fic) != NULL)    {              if (j >= jmax){
       if ((i >= firstobs) && (i <=lastobs)) {                jmax=j;
                        ijmax=i;
         for (j=maxwav;j>=1;j--){              }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              if (j <= jmin){
           strcpy(line,stra);                jmin=j;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                ijmin=i;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              }
         }              sum=sum+j;
                      /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            }
           }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          else{
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){            k=k+1;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if (j >= jmax) {
         }              jmax=j;
         num[i]=atol(stra);              ijmax=i;
                    }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            else if (j <= jmin){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              jmin=j;
               ijmin=i;
         i=i+1;            }
       }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     /* printf("ii=%d", ij);            if(j<0){
        scanf("%d",i);*/              nberr++;
   imx=i-1; /* Number of individuals */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* for (i=1; i<=imx; i++){            }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            sum=sum+j;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          jk= j/stepm;
     }*/          jl= j -jk*stepm;
    /*  for (i=1; i<=imx; i++){          ju= j -(jk+1)*stepm;
      if (s[4][i]==9)  s[4][i]=-1;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            if(jl==0){
                dh[mi][i]=jk;
                bh[mi][i]=0;
   /* Calculation of the number of parameter from char model*/            }else{ /* We want a negative bias in order to only have interpolation ie
   Tvar=ivector(1,15);                    * to avoid the price of an extra matrix product in likelihood */
   Tprod=ivector(1,15);              dh[mi][i]=jk+1;
   Tvaraff=ivector(1,15);              bh[mi][i]=ju;
   Tvard=imatrix(1,15,1,2);            }
   Tage=ivector(1,15);                }else{
                if(jl <= -ju){
   if (strlen(model) >1){              dh[mi][i]=jk;
     j=0, j1=0, k1=1, k2=1;              bh[mi][i]=jl;       /* bias is positive if real duration
     j=nbocc(model,'+');                                   * is higher than the multiple of stepm and negative otherwise.
     j1=nbocc(model,'*');                                   */
     cptcovn=j+1;            }
     cptcovprod=j1;            else{
                  dh[mi][i]=jk+1;
     strcpy(modelsav,model);              bh[mi][i]=ju;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            }
       printf("Error. Non available option model=%s ",model);            if(dh[mi][i]==0){
       goto end;              dh[mi][i]=1; /* At least one step */
     }              bh[mi][i]=ju; /* At least one step */
                  /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     for(i=(j+1); i>=1;i--){            }
       cutv(stra,strb,modelsav,'+');          } /* end if mle */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      } /* end wave */
       /*scanf("%d",i);*/    }
       if (strchr(strb,'*')) {    jmean=sum/k;
         cutv(strd,strc,strb,'*');    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         if (strcmp(strc,"age")==0) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           cptcovprod--;   }
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);  /*********** Tricode ****************************/
           cptcovage++;  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
             Tage[cptcovage]=i;  {
             /*printf("stre=%s ", stre);*/    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
         }    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
         else if (strcmp(strd,"age")==0) {     * Boring subroutine which should only output nbcode[Tvar[j]][k]
           cptcovprod--;     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
           cutv(strb,stre,strc,'V');     * nbcode[Tvar[j]][1]= 
           Tvar[i]=atoi(stre);    */
           cptcovage++;  
           Tage[cptcovage]=i;    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
         }    int modmaxcovj=0; /* Modality max of covariates j */
         else {    int cptcode=0; /* Modality max of covariates j */
           cutv(strb,stre,strc,'V');    int modmincovj=0; /* Modality min of covariates j */
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;    cptcoveff=0; 
           Tvard[k1][1]=atoi(strc);   
           Tvard[k1][2]=atoi(stre);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
           Tvar[cptcovn+k2]=Tvard[k1][1];    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)    /* Loop on covariates without age and products */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
           k1++;      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
           k2=k2+2;                                 modality of this covariate Vj*/ 
         }        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
       }                                      * If product of Vn*Vm, still boolean *:
       else {                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
        /*  scanf("%d",i);*/        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
       cutv(strd,strc,strb,'V');                                        modality of the nth covariate of individual i. */
       Tvar[i]=atoi(strc);        if (ij > modmaxcovj)
       }          modmaxcovj=ij; 
       strcpy(modelsav,stra);          else if (ij < modmincovj) 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          modmincovj=ij; 
         scanf("%d",i);*/        if ((ij < -1) && (ij > NCOVMAX)){
     }          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 }          exit(1);
          }else
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   printf("cptcovprod=%d ", cptcovprod);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   scanf("%d ",i);*/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     fclose(fic);        /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     /*  if(mle==1){*/           female is 1, then modmaxcovj=1.*/
     if (weightopt != 1) { /* Maximisation without weights*/      }
       for(i=1;i<=n;i++) weight[i]=1.0;      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     }      cptcode=modmaxcovj;
     /*-calculation of age at interview from date of interview and age at death -*/      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     agev=matrix(1,maxwav,1,imx);     /*for (i=0; i<=cptcode; i++) {*/
       for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     for (i=1; i<=imx; i++) {        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
       for(m=2; (m<= maxwav); m++) {        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
          anint[m][i]=9999;        }
          s[m][i]=-1;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
        }           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      } /* Ndum[-1] number of undefined modalities */
       }  
     }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
     for (i=1; i<=imx; i++)  {      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);         modmincovj=3; modmaxcovj = 7;
       for(m=1; (m<= maxwav); m++){         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
         if(s[m][i] >0){         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
           if (s[m][i] >= nlstate+1) {         variables V1_1 and V1_2.
             if(agedc[i]>0)         nbcode[Tvar[j]][ij]=k;
               if(moisdc[i]!=99 && andc[i]!=9999)         nbcode[Tvar[j]][1]=0;
                 agev[m][i]=agedc[i];         nbcode[Tvar[j]][2]=1;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/         nbcode[Tvar[j]][3]=2;
            else {      */
               if (andc[i]!=9999){      ij=1; /* ij is similar to i but can jumps over null modalities */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
               agev[m][i]=-1;        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
               }          /*recode from 0 */
             }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
           }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
           else if(s[m][i] !=9){ /* Should no more exist */                                       k is a modality. If we have model=V1+V1*sex 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             if(mint[m][i]==99 || anint[m][i]==9999)            ij++;
               agev[m][i]=1;          }
             else if(agev[m][i] <agemin){          if (ij > ncodemax[j]) break; 
               agemin=agev[m][i];        }  /* end of loop on */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      } /* end of loop on modality */ 
             }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
             else if(agev[m][i] >agemax){    
               agemax=agev[m][i];   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    
             }    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
             /*agev[m][i]=anint[m][i]-annais[i];*/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
             /*   agev[m][i] = age[i]+2*m;*/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
           }     Ndum[ij]++; 
           else { /* =9 */   } 
             agev[m][i]=1;  
             s[m][i]=-1;   ij=1;
           }   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         }     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
         else /*= 0 Unknown */     if((Ndum[i]!=0) && (i<=ncovcol)){
           agev[m][i]=1;       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
       }       Tvaraff[ij]=i; /*For printing (unclear) */
           ij++;
     }     }else
     for (i=1; i<=imx; i++)  {         Tvaraff[ij]=0;
       for(m=1; (m<= maxwav); m++){   }
         if (s[m][i] > (nlstate+ndeath)) {   ij--;
           printf("Error: Wrong value in nlstate or ndeath\n");     cptcoveff=ij; /*Number of total covariates*/
           goto end;  
         }  }
       }  
     }  
   /*********** Health Expectancies ****************/
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);  {
     free_vector(moisnais,1,n);    /* Health expectancies, no variances */
     free_vector(annais,1,n);    int i, j, nhstepm, hstepm, h, nstepm;
     /* free_matrix(mint,1,maxwav,1,n);    int nhstepma, nstepma; /* Decreasing with age */
        free_matrix(anint,1,maxwav,1,n);*/    double age, agelim, hf;
     free_vector(moisdc,1,n);    double ***p3mat;
     free_vector(andc,1,n);    double eip;
   
        pstamp(ficreseij);
     wav=ivector(1,imx);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    fprintf(ficreseij,"# Age");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    for(i=1; i<=nlstate;i++){
          for(j=1; j<=nlstate;j++){
     /* Concatenates waves */        fprintf(ficreseij," e%1d%1d ",i,j);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      }
       fprintf(ficreseij," e%1d. ",i);
     }
       Tcode=ivector(1,100);    fprintf(ficreseij,"\n");
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;    
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    if(estepm < stepm){
            printf ("Problem %d lower than %d\n",estepm, stepm);
    codtab=imatrix(1,100,1,10);    }
    h=0;    else  hstepm=estepm;   
    m=pow(2,cptcoveff);    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
    for(k=1;k<=cptcoveff; k++){     * if stepm=24 months pijx are given only every 2 years and by summing them
      for(i=1; i <=(m/pow(2,k));i++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
        for(j=1; j <= ncodemax[k]; j++){     * progression in between and thus overestimating or underestimating according
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){     * to the curvature of the survival function. If, for the same date, we 
            h++;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;     * to compare the new estimate of Life expectancy with the same linear 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/     * hypothesis. A more precise result, taking into account a more precise
          }     * curvature will be obtained if estepm is as small as stepm. */
        }  
      }    /* For example we decided to compute the life expectancy with the smallest unit */
    }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       nhstepm is the number of hstepm from age to agelim 
       codtab[1][2]=1;codtab[2][2]=2; */       nstepm is the number of stepm from age to agelin. 
    /* for(i=1; i <=m ;i++){       Look at hpijx to understand the reason of that which relies in memory size
       for(k=1; k <=cptcovn; k++){       and note for a fixed period like estepm months */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
       printf("\n");       means that if the survival funtion is printed only each two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       scanf("%d",i);*/       results. So we changed our mind and took the option of the best precision.
        */
    /* Calculates basic frequencies. Computes observed prevalence at single age    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        and prints on file fileres'p'. */  
     agelim=AGESUP;
        /* If stepm=6 months */
          /* Computed by stepm unit matrices, product of hstepm matrices, stored
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /* nhstepm age range expressed in number of stepm */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          /* if (stepm >= YEARM) hstepm=1;*/
     /* For Powell, parameters are in a vector p[] starting at p[1]    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
     for (age=bage; age<=fage; age ++){ 
     if(mle==1){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }      /* if (stepm >= YEARM) hstepm=1;*/
          nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      /* If stepm=6 months */
        /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
    jk=1;      
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      
    for(i=1,jk=1; i <=nlstate; i++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      for(k=1; k <=(nlstate+ndeath); k++){      
        if (k != i)      printf("%d|",(int)age);fflush(stdout);
          {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
            printf("%d%d ",i,k);      
            fprintf(ficres,"%1d%1d ",i,k);      /* Computing expectancies */
            for(j=1; j <=ncovmodel; j++){      for(i=1; i<=nlstate;i++)
              printf("%f ",p[jk]);        for(j=1; j<=nlstate;j++)
              fprintf(ficres,"%f ",p[jk]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              jk++;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
            }            
            printf("\n");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
            fprintf(ficres,"\n");  
          }          }
      }  
    }      fprintf(ficreseij,"%3.0f",age );
  if(mle==1){      for(i=1; i<=nlstate;i++){
     /* Computing hessian and covariance matrix */        eip=0;
     ftolhess=ftol; /* Usually correct */        for(j=1; j<=nlstate;j++){
     hesscov(matcov, p, npar, delti, ftolhess, func);          eip +=eij[i][j][(int)age];
  }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        }
     printf("# Scales (for hessian or gradient estimation)\n");        fprintf(ficreseij,"%9.4f", eip );
      for(i=1,jk=1; i <=nlstate; i++){      }
       for(j=1; j <=nlstate+ndeath; j++){      fprintf(ficreseij,"\n");
         if (j!=i) {      
           fprintf(ficres,"%1d%1d",i,j);    }
           printf("%1d%1d",i,j);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(k=1; k<=ncovmodel;k++){    printf("\n");
             printf(" %.5e",delti[jk]);    fprintf(ficlog,"\n");
             fprintf(ficres," %.5e",delti[jk]);    
             jk++;  }
           }  
           printf("\n");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           fprintf(ficres,"\n");  
         }  {
       }    /* Covariances of health expectancies eij and of total life expectancies according
      }     to initial status i, ei. .
        */
     k=1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    int nhstepma, nstepma; /* Decreasing with age */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double age, agelim, hf;
     for(i=1;i<=npar;i++){    double ***p3matp, ***p3matm, ***varhe;
       /*  if (k>nlstate) k=1;    double **dnewm,**doldm;
       i1=(i-1)/(ncovmodel*nlstate)+1;    double *xp, *xm;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    double **gp, **gm;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    double ***gradg, ***trgradg;
       fprintf(ficres,"%3d",i);    int theta;
       printf("%3d",i);  
       for(j=1; j<=i;j++){    double eip, vip;
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       }    xp=vector(1,npar);
       fprintf(ficres,"\n");    xm=vector(1,npar);
       printf("\n");    dnewm=matrix(1,nlstate*nlstate,1,npar);
       k++;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     }    
        pstamp(ficresstdeij);
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       ungetc(c,ficpar);    fprintf(ficresstdeij,"# Age");
       fgets(line, MAXLINE, ficpar);    for(i=1; i<=nlstate;i++){
       puts(line);      for(j=1; j<=nlstate;j++)
       fputs(line,ficparo);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     }      fprintf(ficresstdeij," e%1d. ",i);
     ungetc(c,ficpar);    }
     estepm=0;    fprintf(ficresstdeij,"\n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;    pstamp(ficrescveij);
     if (fage <= 2) {    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       bage = ageminpar;    fprintf(ficrescveij,"# Age");
       fage = agemaxpar;    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        for(i2=1; i2<=nlstate;i2++)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for(j2=1; j2<=nlstate;j2++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            cptj2= (j2-1)*nlstate+i2;
              if(cptj2 <= cptj)
     while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    fprintf(ficrescveij,"\n");
     fputs(line,ficparo);    
   }    if(estepm < stepm){
   ungetc(c,ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    else  hstepm=estepm;   
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /* We compute the life expectancy from trapezoids spaced every estepm months
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     * This is mainly to measure the difference between two models: for example
           * if stepm=24 months pijx are given only every 2 years and by summing them
   while((c=getc(ficpar))=='#' && c!= EOF){     * we are calculating an estimate of the Life Expectancy assuming a linear 
     ungetc(c,ficpar);     * progression in between and thus overestimating or underestimating according
     fgets(line, MAXLINE, ficpar);     * to the curvature of the survival function. If, for the same date, we 
     puts(line);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fputs(line,ficparo);     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
   ungetc(c,ficpar);     * curvature will be obtained if estepm is as small as stepm. */
    
     /* For example we decided to compute the life expectancy with the smallest unit */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   fscanf(ficpar,"pop_based=%d\n",&popbased);       Look at hpijx to understand the reason of that which relies in memory size
   fprintf(ficparo,"pop_based=%d\n",popbased);         and note for a fixed period like estepm months */
   fprintf(ficres,"pop_based=%d\n",popbased);      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   while((c=getc(ficpar))=='#' && c!= EOF){       means that if the survival funtion is printed only each two years of age and if
     ungetc(c,ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fgets(line, MAXLINE, ficpar);       results. So we changed our mind and took the option of the best precision.
     puts(line);    */
     fputs(line,ficparo);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
   ungetc(c,ficpar);    /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    agelim=AGESUP;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     puts(line);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     fputs(line,ficparo);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   ungetc(c,ficpar);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    for (age=bage; age<=fage; age ++){ 
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
 /*------------ gnuplot -------------*/      /* If stepm=6 months */
   strcpy(optionfilegnuplot,optionfilefiname);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   strcat(optionfilegnuplot,".gp");         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      
     printf("Problem with file %s",optionfilegnuplot);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
   fclose(ficgp);      /* Computing  Variances of health expectancies */
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 /*--------- index.htm --------*/         decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
   strcpy(optionfilehtm,optionfile);        for(i=1; i<=npar; i++){ 
   strcat(optionfilehtm,".htm");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("Problem with %s \n",optionfilehtm), exit(0);        }
   }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        for(j=1; j<= nlstate; j++){
 \n          for(i=1; i<=nlstate; i++){
 Total number of observations=%d <br>\n            for(h=0; h<=nhstepm-1; h++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 <hr  size=\"2\" color=\"#EC5E5E\">              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
  <ul><li>Parameter files<br>\n            }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          }
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);        }
   fclose(fichtm);       
         for(ij=1; ij<= nlstate*nlstate; ij++)
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          for(h=0; h<=nhstepm-1; h++){
              gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 /*------------ free_vector  -------------*/          }
  chdir(path);      }/* End theta */
        
  free_ivector(wav,1,imx);      
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      for(h=0; h<=nhstepm-1; h++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          for(j=1; j<=nlstate*nlstate;j++)
  free_ivector(num,1,n);          for(theta=1; theta <=npar; theta++)
  free_vector(agedc,1,n);            trgradg[h][j][theta]=gradg[h][theta][j];
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      
  fclose(ficparo);  
  fclose(ficres);       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   /*--------------- Prevalence limit --------------*/  
         printf("%d|",(int)age);fflush(stdout);
   strcpy(filerespl,"pl");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   strcat(filerespl,fileres);       for(h=0;h<=nhstepm-1;h++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(k=0;k<=nhstepm-1;k++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for(ij=1;ij<=nlstate*nlstate;ij++)
   fprintf(ficrespl,"#Prevalence limit\n");            for(ji=1;ji<=nlstate*nlstate;ji++)
   fprintf(ficrespl,"#Age ");              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        }
   fprintf(ficrespl,"\n");      }
    
   prlim=matrix(1,nlstate,1,nlstate);      /* Computing expectancies */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1; i<=nlstate;i++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate;j++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   k=0;            
   agebase=ageminpar;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   agelim=agemaxpar;  
   ftolpl=1.e-10;          }
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   for(cptcov=1;cptcov<=i1;cptcov++){        eip=0.;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        vip=0.;
         k=k+1;        for(j=1; j<=nlstate;j++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          eip += eij[i][j][(int)age];
         fprintf(ficrespl,"\n#******");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         for(j=1;j<=cptcoveff;j++)            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         fprintf(ficrespl,"******\n");        }
                fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
         for (age=agebase; age<=agelim; age++){      }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficresstdeij,"\n");
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)      fprintf(ficrescveij,"%3.0f",age );
           fprintf(ficrespl," %.5f", prlim[i][i]);      for(i=1; i<=nlstate;i++)
           fprintf(ficrespl,"\n");        for(j=1; j<=nlstate;j++){
         }          cptj= (j-1)*nlstate+i;
       }          for(i2=1; i2<=nlstate;i2++)
     }            for(j2=1; j2<=nlstate;j2++){
   fclose(ficrespl);              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
   /*------------- h Pij x at various ages ------------*/                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
              }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      fprintf(ficrescveij,"\n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     
   }    }
   printf("Computing pij: result on file '%s' \n", filerespij);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   /*if (stepm<=24) stepsize=2;*/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agelim=AGESUP;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   hstepm=stepsize*YEARM; /* Every year of age */    printf("\n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fprintf(ficlog,"\n");
    
   k=0;    free_vector(xm,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    free_vector(xp,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       k=k+1;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficrespij,"\n#****** ");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         for(j=1;j<=cptcoveff;j++)  }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");  /************ Variance ******************/
          void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* Variance of health expectancies */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* double **newm;*/
           oldm=oldms;savm=savms;    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      
           fprintf(ficrespij,"# Age");    int movingaverage();
           for(i=1; i<=nlstate;i++)    double **dnewm,**doldm;
             for(j=1; j<=nlstate+ndeath;j++)    double **dnewmp,**doldmp;
               fprintf(ficrespij," %1d-%1d",i,j);    int i, j, nhstepm, hstepm, h, nstepm ;
           fprintf(ficrespij,"\n");    int k;
            for (h=0; h<=nhstepm; h++){    double *xp;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    double **gp, **gm;  /* for var eij */
             for(i=1; i<=nlstate;i++)    double ***gradg, ***trgradg; /*for var eij */
               for(j=1; j<=nlstate+ndeath;j++)    double **gradgp, **trgradgp; /* for var p point j */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double *gpp, *gmp; /* for var p point j */
             fprintf(ficrespij,"\n");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
              }    double ***p3mat;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double age,agelim, hf;
           fprintf(ficrespij,"\n");    double ***mobaverage;
         }    int theta;
     }    char digit[4];
   }    char digitp[25];
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    char fileresprobmorprev[FILENAMELENGTH];
   
   fclose(ficrespij);    if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   /*---------- Forecasting ------------------*/      else strcpy(digitp,"-populbased-nomobil-");
   if((stepm == 1) && (strcmp(model,".")==0)){    }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    else 
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      strcpy(digitp,"-stablbased-");
   }  
   else{    if (mobilav!=0) {
     erreur=108;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   /*---------- Health expectancies and variances ------------*/    }
   
   strcpy(filerest,"t");    strcpy(fileresprobmorprev,"prmorprev"); 
   strcat(filerest,fileres);    sprintf(digit,"%-d",ij);
   if((ficrest=fopen(filerest,"w"))==NULL) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
   strcpy(filerese,"e");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   strcat(filerese,fileres);    }
   if((ficreseij=fopen(filerese,"w"))==NULL) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
  strcpy(fileresv,"v");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   strcat(fileresv,fileres);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      fprintf(ficresprobmorprev," p.%-d SE",j);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      for(i=1; i<=nlstate;i++)
   }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    }  
   calagedate=-1;    fprintf(ficresprobmorprev,"\n");
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   k=0;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*   } */
       k=k+1;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficrest,"\n#****** ");    pstamp(ficresvij);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(popbased==1)
       fprintf(ficrest,"******\n");      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficreseij,"\n#****** ");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresvij,"# Age");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i<=nlstate;i++)
       fprintf(ficreseij,"******\n");      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       fprintf(ficresvij,"\n#****** ");    fprintf(ficresvij,"\n");
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    xp=vector(1,npar);
       fprintf(ficresvij,"******\n");    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       oldm=oldms;savm=savms;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    gpp=vector(nlstate+1,nlstate+ndeath);
       oldm=oldms;savm=savms;    gmp=vector(nlstate+1,nlstate+ndeath);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        
     if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    else  hstepm=estepm;   
       fprintf(ficrest,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       epj=vector(1,nlstate+1);       nhstepm is the number of hstepm from age to agelim 
       for(age=bage; age <=fage ;age++){       nstepm is the number of stepm from age to agelin. 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       Look at function hpijx to understand why (it is linked to memory size questions) */
         if (popbased==1) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           for(i=1; i<=nlstate;i++)       survival function given by stepm (the optimization length). Unfortunately it
             prlim[i][i]=probs[(int)age][i][k];       means that if the survival funtion is printed every two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               results. So we changed our mind and took the option of the best precision.
         fprintf(ficrest," %4.0f",age);    */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    agelim = AGESUP;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           epj[nlstate+1] +=epj[j];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
         for(i=1, vepp=0.;i <=nlstate;i++)      gm=matrix(0,nhstepm,1,nlstate);
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      for(theta=1; theta <=npar; theta++){
         for(j=1;j <=nlstate;j++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }        }
         fprintf(ficrest,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }  
   }        if (popbased==1) {
 free_matrix(mint,1,maxwav,1,n);          if(mobilav ==0){
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);            for(i=1; i<=nlstate;i++)
     free_vector(weight,1,n);              prlim[i][i]=probs[(int)age][i][ij];
   fclose(ficreseij);          }else{ /* mobilav */ 
   fclose(ficresvij);            for(i=1; i<=nlstate;i++)
   fclose(ficrest);              prlim[i][i]=mobaverage[(int)age][i][ij];
   fclose(ficpar);          }
   free_vector(epj,1,nlstate+1);        }
      
   /*------- Variance limit prevalence------*/          for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   strcpy(fileresvpl,"vpl");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   strcat(fileresvpl,fileres);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        }
     exit(0);        /* This for computing probability of death (h=1 means
   }           computed over hstepm matrices product = hstepm*stepm months) 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);           as a weighted average of prlim.
         */
   k=0;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   for(cptcov=1;cptcov<=i1;cptcov++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       k=k+1;        }    
       fprintf(ficresvpl,"\n#****** ");        /* end probability of death */
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       fprintf(ficresvpl,"******\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
              hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       oldm=oldms;savm=savms;   
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        if (popbased==1) {
     }          if(mobilav ==0){
  }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   fclose(ficresvpl);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   /*---------- End : free ----------------*/              prlim[i][i]=mobaverage[(int)age][i][ij];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          }
          }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
            for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   free_matrix(matcov,1,npar,1,npar);           as a weighted average of prlim.
   free_vector(delti,1,npar);        */
   free_matrix(agev,1,maxwav,1,imx);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
   fprintf(fichtm,"\n</body>");        }    
   fclose(fichtm);        /* end probability of death */
   fclose(ficgp);  
          for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
   if(erreur >0)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     printf("End of Imach with error or warning %d\n",erreur);          }
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        }
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/      } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
  end:  
 #ifdef windows      for(h=0; h<=nhstepm; h++) /* veij */
   /* chdir(pathcd);*/        for(j=1; j<=nlstate;j++)
 #endif          for(theta=1; theta <=npar; theta++)
  /*system("wgnuplot graph.plt");*/            trgradg[h][j][theta]=gradg[h][theta][j];
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        for(theta=1; theta <=npar; theta++)
  strcpy(plotcmd,GNUPLOTPROGRAM);          trgradgp[j][theta]=gradgp[theta][j];
  strcat(plotcmd," ");    
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
 #ifdef windows        for(j=1;j<=nlstate;j++)
   while (z[0] != 'q') {          vareij[i][j][(int)age] =0.;
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      for(h=0;h<=nhstepm;h++){
     scanf("%s",z);        for(k=0;k<=nhstepm;k++){
     if (z[0] == 'c') system("./imach");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     else if (z[0] == 'e') system(optionfilehtm);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     else if (z[0] == 'g') system(plotcmd);          for(i=1;i<=nlstate;i++)
     else if (z[0] == 'q') exit(0);            for(j=1;j<=nlstate;j++)
   }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 #endif        }
 }      }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
   
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.48  
changed lines
  Added in v.1.183


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>