Diff for /imach/src/imach.c between versions 1.48 and 1.196

version 1.48, 2002/06/10 13:12:49 version 1.196, 2015/08/18 23:17:52
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.196  2015/08/18 23:17:52  brouard
      Summary: 0.98q5
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.195  2015/08/18 16:28:39  brouard
   first survey ("cross") where individuals from different ages are    Summary: Adding a hack for testing purpose
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    After reading the title, ftol and model lines, if the comment line has
   second wave of interviews ("longitudinal") which measure each change    a q, starting with #q, the answer at the end of the run is quit. It
   (if any) in individual health status.  Health expectancies are    permits to run test files in batch with ctest. The former workaround was
   computed from the time spent in each health state according to a    $ echo q | imach foo.imach
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.194  2015/08/18 13:32:00  brouard
   simplest model is the multinomial logistic model where pij is the    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.193  2015/08/04 07:17:42  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: 0.98q4
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.192  2015/07/16 16:49:02  brouard
   where the markup *Covariates have to be included here again* invites    Summary: Fixing some outputs
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.191  2015/07/14 10:00:33  brouard
     Summary: Some fixes
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.190  2015/05/05 08:51:13  brouard
   identical for each individual. Also, if a individual missed an    Summary: Adding digits in output parameters (7 digits instead of 6)
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Fix 1+age+.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.189  2015/04/30 14:45:16  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Summary: 0.98q2
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.188  2015/04/30 08:27:53  brouard
   semester or year) is model as a multinomial logistic.  The hPx    *** empty log message ***
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.187  2015/04/29 09:11:15  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.186  2015/04/23 12:01:52  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: V1*age is working now, version 0.98q1
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Some codes had been disabled in order to simplify and Vn*age was
            Institut national d'études démographiques, Paris.    working in the optimization phase, ie, giving correct MLE parameters,
   This software have been partly granted by Euro-REVES, a concerted action    but, as usual, outputs were not correct and program core dumped.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.185  2015/03/11 13:26:42  brouard
   software can be distributed freely for non commercial use. Latest version    Summary: Inclusion of compile and links command line for Intel Compiler
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.184  2015/03/11 11:52:39  brouard
      Summary: Back from Windows 8. Intel Compiler
 #include <math.h>  
 #include <stdio.h>    Revision 1.183  2015/03/10 20:34:32  brouard
 #include <stdlib.h>    Summary: 0.98q0, trying with directest, mnbrak fixed
 #include <unistd.h>  
     We use directest instead of original Powell test; probably no
 #define MAXLINE 256    incidence on the results, but better justifications;
 #define GNUPLOTPROGRAM "gnuplot"    We fixed Numerical Recipes mnbrak routine which was wrong and gave
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    wrong results.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.182  2015/02/12 08:19:57  brouard
 #define windows    Summary: Trying to keep directest which seems simpler and more general
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Author: Nicolas Brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.181  2015/02/11 23:22:24  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Summary: Comments on Powell added
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Author:
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.180  2015/02/11 17:33:45  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Summary: Finishing move from main to function (hpijx and prevalence_limit)
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.179  2015/01/04 09:57:06  brouard
 #define YEARM 12. /* Number of months per year */    Summary: back to OS/X
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.178  2015/01/04 09:35:48  brouard
 #ifdef windows    *** empty log message ***
 #define DIRSEPARATOR '\\'  
 #else    Revision 1.177  2015/01/03 18:40:56  brouard
 #define DIRSEPARATOR '/'    Summary: Still testing ilc32 on OSX
 #endif  
     Revision 1.176  2015/01/03 16:45:04  brouard
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    *** empty log message ***
 int erreur; /* Error number */  
 int nvar;    Revision 1.175  2015/01/03 16:33:42  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    *** empty log message ***
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.174  2015/01/03 16:15:49  brouard
 int ndeath=1; /* Number of dead states */    Summary: Still in cross-compilation
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.172  2014/12/27 12:07:47  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.171  2014/12/23 13:26:59  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Summary: Back from Visual C
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Still problem with utsname.h on Windows
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.170  2014/12/23 11:17:12  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Summary: Cleaning some \%% back to %%
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    The escape was mandatory for a specific compiler (which one?), but too many warnings.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.169  2014/12/22 23:08:31  brouard
 char fileresv[FILENAMELENGTH];    Summary: 0.98p
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.168  2014/12/22 15:17:42  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Summary: update
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Testing on Linux 64
 char popfile[FILENAMELENGTH];  
     Revision 1.166  2014/12/22 11:40:47  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    *** empty log message ***
   
 #define NR_END 1    Revision 1.165  2014/12/16 11:20:36  brouard
 #define FREE_ARG char*    Summary: After compiling on Visual C
 #define FTOL 1.0e-10  
     * imach.c (Module): Merging 1.61 to 1.162
 #define NRANSI  
 #define ITMAX 200    Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 #define TOL 2.0e-4  
     * imach.c (Module): Merging 1.61 to 1.162
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.163  2014/12/16 10:30:11  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    * imach.c (Module): Merging 1.61 to 1.162
   
 #define GOLD 1.618034    Revision 1.162  2014/09/25 11:43:39  brouard
 #define GLIMIT 100.0    Summary: temporary backup 0.99!
 #define TINY 1.0e-20  
     Revision 1.1  2014/09/16 11:06:58  brouard
 static double maxarg1,maxarg2;    Summary: With some code (wrong) for nlopt
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Author:
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.161  2014/09/15 20:41:41  brouard
 #define rint(a) floor(a+0.5)    Summary: Problem with macro SQR on Intel compiler
   
 static double sqrarg;    Revision 1.160  2014/09/02 09:24:05  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    *** empty log message ***
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.159  2014/09/01 10:34:10  brouard
 int imx;    Summary: WIN32
 int stepm;    Author: Brouard
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.158  2014/08/27 17:11:51  brouard
 int estepm;    *** empty log message ***
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.157  2014/08/27 16:26:55  brouard
 int m,nb;    Summary: Preparing windows Visual studio version
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Author: Brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    In order to compile on Visual studio, time.h is now correct and time_t
 double dateintmean=0;    and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
 double *weight;    Trying to suppress #ifdef LINUX
 int **s; /* Status */    Add xdg-open for __linux in order to open default browser.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
 /**************** split *************************/    Author: Brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.154  2014/06/20 17:32:08  brouard
    char *s;                             /* pointer */    Summary: Outputs now all graphs of convergence to period prevalence
    int  l1, l2;                         /* length counters */  
     Revision 1.153  2014/06/20 16:45:46  brouard
    l1 = strlen( path );                 /* length of path */    Summary: If 3 live state, convergence to period prevalence on same graph
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Author: Brouard
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.152  2014/06/18 17:54:09  brouard
 #if     defined(__bsd__)                /* get current working directory */    Summary: open browser, use gnuplot on same dir than imach if not found in the path
       extern char       *getwd( );  
     Revision 1.151  2014/06/18 16:43:30  brouard
       if ( getwd( dirc ) == NULL ) {    *** empty log message ***
 #else  
       extern char       *getcwd( );    Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Author: brouard
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.149  2014/06/18 15:51:14  brouard
       }    Summary: Some fixes in parameter files errors
       strcpy( name, path );             /* we've got it */    Author: Nicolas Brouard
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.148  2014/06/17 17:38:48  brouard
       l2 = strlen( s );                 /* length of filename */    Summary: Nothing new
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Author: Brouard
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Just a new packaging for OS/X version 0.98nS
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.147  2014/06/16 10:33:11  brouard
    l1 = strlen( dirc );                 /* length of directory */    *** empty log message ***
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.146  2014/06/16 10:20:28  brouard
 #else    Summary: Merge
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Author: Brouard
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Merge, before building revised version.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.145  2014/06/10 21:23:15  brouard
    l1= strlen( name);    Summary: Debugging with valgrind
    l2= strlen( s)+1;    Author: Nicolas Brouard
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Lot of changes in order to output the results with some covariates
    return( 0 );                         /* we're done */    After the Edimburgh REVES conference 2014, it seems mandatory to
 }    improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
 /******************************************/    Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
 void replace(char *s, char*t)    the source code.
 {  
   int i;    Revision 1.143  2014/01/26 09:45:38  brouard
   int lg=20;    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   i=0;  
   lg=strlen(t);    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   for(i=0; i<= lg; i++) {    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.142  2014/01/26 03:57:36  brouard
   }    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 }  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int nbocc(char *s, char occ)  
 {    Revision 1.141  2014/01/26 02:42:01  brouard
   int i,j=0;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   int lg=20;  
   i=0;    Revision 1.140  2011/09/02 10:37:54  brouard
   lg=strlen(s);    Summary: times.h is ok with mingw32 now.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.139  2010/06/14 07:50:17  brouard
   }    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   return j;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 }  
     Revision 1.138  2010/04/30 18:19:40  brouard
 void cutv(char *u,char *v, char*t, char occ)    *** empty log message ***
 {  
   int i,lg,j,p=0;    Revision 1.137  2010/04/29 18:11:38  brouard
   i=0;    (Module): Checking covariates for more complex models
   for(j=0; j<=strlen(t)-1; j++) {    than V1+V2. A lot of change to be done. Unstable.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
   lg=strlen(t);    of likelione (using inter/intrapolation if mle = 0) in order to
   for(j=0; j<p; j++) {    get same likelihood as if mle=1.
     (u[j] = t[j]);    Some cleaning of code and comments added.
   }  
      u[p]='\0';    Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.134  2009/10/29 13:18:53  brouard
   }    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 }  
     Revision 1.133  2009/07/06 10:21:25  brouard
 /********************** nrerror ********************/    just nforces
   
 void nrerror(char error_text[])    Revision 1.132  2009/07/06 08:22:05  brouard
 {    Many tings
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.131  2009/06/20 16:22:47  brouard
   exit(1);    Some dimensions resccaled
 }  
 /*********************** vector *******************/    Revision 1.130  2009/05/26 06:44:34  brouard
 double *vector(int nl, int nh)    (Module): Max Covariate is now set to 20 instead of 8. A
 {    lot of cleaning with variables initialized to 0. Trying to make
   double *v;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.129  2007/08/31 13:49:27  lievre
   return v-nl+NR_END;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 }  
     Revision 1.128  2006/06/30 13:02:05  brouard
 /************************ free vector ******************/    (Module): Clarifications on computing e.j
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.127  2006/04/28 18:11:50  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Yes the sum of survivors was wrong since
 }    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
 /************************ivector *******************************/    (Module): In order to speed up (in case of numerous covariates) we
 int *ivector(long nl,long nh)    compute health expectancies (without variances) in a first step
 {    and then all the health expectancies with variances or standard
   int *v;    deviation (needs data from the Hessian matrices) which slows the
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    computation.
   if (!v) nrerror("allocation failure in ivector");    In the future we should be able to stop the program is only health
   return v-nl+NR_END;    expectancies and graph are needed without standard deviations.
 }  
     Revision 1.126  2006/04/28 17:23:28  brouard
 /******************free ivector **************************/    (Module): Yes the sum of survivors was wrong since
 void free_ivector(int *v, long nl, long nh)    imach-114 because nhstepm was no more computed in the age
 {    loop. Now we define nhstepma in the age loop.
   free((FREE_ARG)(v+nl-NR_END));    Version 0.98h
 }  
     Revision 1.125  2006/04/04 15:20:31  lievre
 /******************* imatrix *******************************/    Errors in calculation of health expectancies. Age was not initialized.
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Forecasting file added.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.124  2006/03/22 17:13:53  lievre
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Parameters are printed with %lf instead of %f (more numbers after the comma).
   int **m;    The log-likelihood is printed in the log file
    
   /* allocate pointers to rows */    Revision 1.123  2006/03/20 10:52:43  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    * imach.c (Module): <title> changed, corresponds to .htm file
   if (!m) nrerror("allocation failure 1 in matrix()");    name. <head> headers where missing.
   m += NR_END;  
   m -= nrl;    * imach.c (Module): Weights can have a decimal point as for
      English (a comma might work with a correct LC_NUMERIC environment,
      otherwise the weight is truncated).
   /* allocate rows and set pointers to them */    Modification of warning when the covariates values are not 0 or
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    1.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Version 0.98g
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.122  2006/03/20 09:45:41  brouard
      (Module): Weights can have a decimal point as for
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    English (a comma might work with a correct LC_NUMERIC environment,
      otherwise the weight is truncated).
   /* return pointer to array of pointers to rows */    Modification of warning when the covariates values are not 0 or
   return m;    1.
 }    Version 0.98g
   
 /****************** free_imatrix *************************/    Revision 1.121  2006/03/16 17:45:01  lievre
 void free_imatrix(m,nrl,nrh,ncl,nch)    * imach.c (Module): Comments concerning covariates added
       int **m;  
       long nch,ncl,nrh,nrl;    * imach.c (Module): refinements in the computation of lli if
      /* free an int matrix allocated by imatrix() */    status=-2 in order to have more reliable computation if stepm is
 {    not 1 month. Version 0.98f
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.120  2006/03/16 15:10:38  lievre
 }    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 /******************* matrix *******************************/    not 1 month. Version 0.98f
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.119  2006/03/15 17:42:26  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Module): Bug if status = -2, the loglikelihood was
   double **m;    computed as likelihood omitting the logarithm. Version O.98e
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.118  2006/03/14 18:20:07  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): varevsij Comments added explaining the second
   m += NR_END;    table of variances if popbased=1 .
   m -= nrl;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Version 0.98d
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.117  2006/03/14 17:16:22  brouard
   m[nrl] -= ncl;    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   return m;    (Module): Function pstamp added
 }    (Module): Version 0.98d
   
 /*************************free matrix ************************/    Revision 1.116  2006/03/06 10:29:27  brouard
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    (Module): Variance-covariance wrong links and
 {    varian-covariance of ej. is needed (Saito).
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.115  2006/02/27 12:17:45  brouard
 }    (Module): One freematrix added in mlikeli! 0.98c
   
 /******************* ma3x *******************************/    Revision 1.114  2006/02/26 12:57:58  brouard
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    (Module): Some improvements in processing parameter
 {    filename with strsep.
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    datafile was not closed, some imatrix were not freed and on matrix
   if (!m) nrerror("allocation failure 1 in matrix()");    allocation too.
   m += NR_END;  
   m -= nrl;    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.111  2006/01/25 20:38:18  brouard
   m[nrl] += NR_END;    (Module): Lots of cleaning and bugs added (Gompertz)
   m[nrl] -= ncl;    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Revision 1.110  2006/01/25 00:51:50  brouard
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    (Module): Lots of cleaning and bugs added (Gompertz)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    Revision 1.109  2006/01/24 19:37:15  brouard
   m[nrl][ncl] -= nll;    (Module): Comments (lines starting with a #) are allowed in data.
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.108  2006/01/19 18:05:42  lievre
      Gnuplot problem appeared...
   for (i=nrl+1; i<=nrh; i++) {    To be fixed
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    Revision 1.107  2006/01/19 16:20:37  brouard
       m[i][j]=m[i][j-1]+nlay;    Test existence of gnuplot in imach path
   }  
   return m;    Revision 1.106  2006/01/19 13:24:36  brouard
 }    Some cleaning and links added in html output
   
 /*************************free ma3x ************************/    Revision 1.105  2006/01/05 20:23:19  lievre
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    *** empty log message ***
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.104  2005/09/30 16:11:43  lievre
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): sump fixed, loop imx fixed, and simplifications.
   free((FREE_ARG)(m+nrl-NR_END));    (Module): If the status is missing at the last wave but we know
 }    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 /***************** f1dim *************************/    contributions to the likelihood is 1 - Prob of dying from last
 extern int ncom;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 extern double *pcom,*xicom;    the healthy state at last known wave). Version is 0.98
 extern double (*nrfunc)(double []);  
      Revision 1.103  2005/09/30 15:54:49  lievre
 double f1dim(double x)    (Module): sump fixed, loop imx fixed, and simplifications.
 {  
   int j;    Revision 1.102  2004/09/15 17:31:30  brouard
   double f;    Add the possibility to read data file including tab characters.
   double *xt;  
      Revision 1.101  2004/09/15 10:38:38  brouard
   xt=vector(1,ncom);    Fix on curr_time
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.100  2004/07/12 18:29:06  brouard
   free_vector(xt,1,ncom);    Add version for Mac OS X. Just define UNIX in Makefile
   return f;  
 }    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Revision 1.98  2004/05/16 15:05:56  brouard
 {    New version 0.97 . First attempt to estimate force of mortality
   int iter;    directly from the data i.e. without the need of knowing the health
   double a,b,d,etemp;    state at each age, but using a Gompertz model: log u =a + b*age .
   double fu,fv,fw,fx;    This is the basic analysis of mortality and should be done before any
   double ftemp;    other analysis, in order to test if the mortality estimated from the
   double p,q,r,tol1,tol2,u,v,w,x,xm;    cross-longitudinal survey is different from the mortality estimated
   double e=0.0;    from other sources like vital statistic data.
    
   a=(ax < cx ? ax : cx);    The same imach parameter file can be used but the option for mle should be -3.
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    Agnès, who wrote this part of the code, tried to keep most of the
   fw=fv=fx=(*f)(x);    former routines in order to include the new code within the former code.
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    The output is very simple: only an estimate of the intercept and of
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    the slope with 95% confident intervals.
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);    Current limitations:
 #ifdef DEBUG    A) Even if you enter covariates, i.e. with the
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    B) There is no computation of Life Expectancy nor Life Table.
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    Revision 1.97  2004/02/20 13:25:42  lievre
       *xmin=x;    Version 0.96d. Population forecasting command line is (temporarily)
       return fx;    suppressed.
     }  
     ftemp=fu;    Revision 1.96  2003/07/15 15:38:55  brouard
     if (fabs(e) > tol1) {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       r=(x-w)*(fx-fv);    rewritten within the same printf. Workaround: many printfs.
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.95  2003/07/08 07:54:34  brouard
       q=2.0*(q-r);    * imach.c (Repository):
       if (q > 0.0) p = -p;    (Repository): Using imachwizard code to output a more meaningful covariance
       q=fabs(q);    matrix (cov(a12,c31) instead of numbers.
       etemp=e;  
       e=d;    Revision 1.94  2003/06/27 13:00:02  brouard
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Just cleaning
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    Revision 1.93  2003/06/25 16:33:55  brouard
         d=p/q;    (Module): On windows (cygwin) function asctime_r doesn't
         u=x+d;    exist so I changed back to asctime which exists.
         if (u-a < tol2 || b-u < tol2)    (Module): Version 0.96b
           d=SIGN(tol1,xm-x);  
       }    Revision 1.92  2003/06/25 16:30:45  brouard
     } else {    (Module): On windows (cygwin) function asctime_r doesn't
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    exist so I changed back to asctime which exists.
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    Revision 1.91  2003/06/25 15:30:29  brouard
     fu=(*f)(u);    * imach.c (Repository): Duplicated warning errors corrected.
     if (fu <= fx) {    (Repository): Elapsed time after each iteration is now output. It
       if (u >= x) a=x; else b=x;    helps to forecast when convergence will be reached. Elapsed time
       SHFT(v,w,x,u)    is stamped in powell.  We created a new html file for the graphs
         SHFT(fv,fw,fx,fu)    concerning matrix of covariance. It has extension -cov.htm.
         } else {  
           if (u < x) a=u; else b=u;    Revision 1.90  2003/06/24 12:34:15  brouard
           if (fu <= fw || w == x) {    (Module): Some bugs corrected for windows. Also, when
             v=w;    mle=-1 a template is output in file "or"mypar.txt with the design
             w=u;    of the covariance matrix to be input.
             fv=fw;  
             fw=fu;    Revision 1.89  2003/06/24 12:30:52  brouard
           } else if (fu <= fv || v == x || v == w) {    (Module): Some bugs corrected for windows. Also, when
             v=u;    mle=-1 a template is output in file "or"mypar.txt with the design
             fv=fu;    of the covariance matrix to be input.
           }  
         }    Revision 1.88  2003/06/23 17:54:56  brouard
   }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   nrerror("Too many iterations in brent");  
   *xmin=x;    Revision 1.87  2003/06/18 12:26:01  brouard
   return fx;    Version 0.96
 }  
     Revision 1.86  2003/06/17 20:04:08  brouard
 /****************** mnbrak ***********************/    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))    Revision 1.85  2003/06/17 13:12:43  brouard
 {    * imach.c (Repository): Check when date of death was earlier that
   double ulim,u,r,q, dum;    current date of interview. It may happen when the death was just
   double fu;    prior to the death. In this case, dh was negative and likelihood
      was wrong (infinity). We still send an "Error" but patch by
   *fa=(*func)(*ax);    assuming that the date of death was just one stepm after the
   *fb=(*func)(*bx);    interview.
   if (*fb > *fa) {    (Repository): Because some people have very long ID (first column)
     SHFT(dum,*ax,*bx,dum)    we changed int to long in num[] and we added a new lvector for
       SHFT(dum,*fb,*fa,dum)    memory allocation. But we also truncated to 8 characters (left
       }    truncation)
   *cx=(*bx)+GOLD*(*bx-*ax);    (Repository): No more line truncation errors.
   *fc=(*func)(*cx);  
   while (*fb > *fc) {    Revision 1.84  2003/06/13 21:44:43  brouard
     r=(*bx-*ax)*(*fb-*fc);    * imach.c (Repository): Replace "freqsummary" at a correct
     q=(*bx-*cx)*(*fb-*fa);    place. It differs from routine "prevalence" which may be called
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    many times. Probs is memory consuming and must be used with
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    parcimony.
     ulim=(*bx)+GLIMIT*(*cx-*bx);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    Revision 1.83  2003/06/10 13:39:11  lievre
     } else if ((*cx-u)*(u-ulim) > 0.0) {    *** empty log message ***
       fu=(*func)(u);  
       if (fu < *fc) {    Revision 1.82  2003/06/05 15:57:20  brouard
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    Add log in  imach.c and  fullversion number is now printed.
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /*
       u=ulim;     Interpolated Markov Chain
       fu=(*func)(u);  
     } else {    Short summary of the programme:
       u=(*cx)+GOLD*(*cx-*bx);    
       fu=(*func)(u);    This program computes Healthy Life Expectancies from
     }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     SHFT(*ax,*bx,*cx,u)    first survey ("cross") where individuals from different ages are
       SHFT(*fa,*fb,*fc,fu)    interviewed on their health status or degree of disability (in the
       }    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /*************** linmin ************************/    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 int ncom;    Maximum Likelihood of the parameters involved in the model.  The
 double *pcom,*xicom;    simplest model is the multinomial logistic model where pij is the
 double (*nrfunc)(double []);    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 {    'age' is age and 'sex' is a covariate. If you want to have a more
   double brent(double ax, double bx, double cx,    complex model than "constant and age", you should modify the program
                double (*f)(double), double tol, double *xmin);    where the markup *Covariates have to be included here again* invites
   double f1dim(double x);    you to do it.  More covariates you add, slower the
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    convergence.
               double *fc, double (*func)(double));  
   int j;    The advantage of this computer programme, compared to a simple
   double xx,xmin,bx,ax;    multinomial logistic model, is clear when the delay between waves is not
   double fx,fb,fa;    identical for each individual. Also, if a individual missed an
      intermediate interview, the information is lost, but taken into
   ncom=n;    account using an interpolation or extrapolation.  
   pcom=vector(1,n);  
   xicom=vector(1,n);    hPijx is the probability to be observed in state i at age x+h
   nrfunc=func;    conditional to the observed state i at age x. The delay 'h' can be
   for (j=1;j<=n;j++) {    split into an exact number (nh*stepm) of unobserved intermediate
     pcom[j]=p[j];    states. This elementary transition (by month, quarter,
     xicom[j]=xi[j];    semester or year) is modelled as a multinomial logistic.  The hPx
   }    matrix is simply the matrix product of nh*stepm elementary matrices
   ax=0.0;    and the contribution of each individual to the likelihood is simply
   xx=1.0;    hPijx.
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    Also this programme outputs the covariance matrix of the parameters but also
 #ifdef DEBUG    of the life expectancies. It also computes the period (stable) prevalence. 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    
 #endif    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   for (j=1;j<=n;j++) {             Institut national d'études démographiques, Paris.
     xi[j] *= xmin;    This software have been partly granted by Euro-REVES, a concerted action
     p[j] += xi[j];    from the European Union.
   }    It is copyrighted identically to a GNU software product, ie programme and
   free_vector(xicom,1,n);    software can be distributed freely for non commercial use. Latest version
   free_vector(pcom,1,n);    can be accessed at http://euroreves.ined.fr/imach .
 }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /*************** powell ************************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    
             double (*func)(double []))    **********************************************************************/
 {  /*
   void linmin(double p[], double xi[], int n, double *fret,    main
               double (*func)(double []));    read parameterfile
   int i,ibig,j;    read datafile
   double del,t,*pt,*ptt,*xit;    concatwav
   double fp,fptt;    freqsummary
   double *xits;    if (mle >= 1)
   pt=vector(1,n);      mlikeli
   ptt=vector(1,n);    print results files
   xit=vector(1,n);    if mle==1 
   xits=vector(1,n);       computes hessian
   *fret=(*func)(p);    read end of parameter file: agemin, agemax, bage, fage, estepm
   for (j=1;j<=n;j++) pt[j]=p[j];        begin-prev-date,...
   for (*iter=1;;++(*iter)) {    open gnuplot file
     fp=(*fret);    open html file
     ibig=0;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
     del=0.0;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     for (i=1;i<=n;i++)      freexexit2 possible for memory heap.
       printf(" %d %.12f",i, p[i]);  
     printf("\n");    h Pij x                         | pij_nom  ficrestpij
     for (i=1;i<=n;i++) {     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       for (j=1;j<=n;j++) xit[j]=xi[j][i];         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       fptt=(*fret);         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 #endif         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       printf("%d",i);fflush(stdout);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       linmin(p,xit,n,fret,func);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       if (fabs(fptt-(*fret)) > del) {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
         del=fabs(fptt-(*fret));  
         ibig=i;    forecasting if prevfcast==1 prevforecast call prevalence()
       }    health expectancies
 #ifdef DEBUG    Variance-covariance of DFLE
       printf("%d %.12e",i,(*fret));    prevalence()
       for (j=1;j<=n;j++) {     movingaverage()
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    varevsij() 
         printf(" x(%d)=%.12e",j,xit[j]);    if popbased==1 varevsij(,popbased)
       }    total life expectancies
       for(j=1;j<=n;j++)    Variance of period (stable) prevalence
         printf(" p=%.12e",p[j]);   end
       printf("\n");  */
 #endif  
     }  /* #define DEBUG */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /* #define DEBUGBRENT */
 #ifdef DEBUG  #define POWELL /* Instead of NLOPT */
       int k[2],l;  #define POWELLF1F3 /* Skip test */
       k[0]=1;  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
       k[1]=-1;  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  #include <math.h>
         printf(" %.12e",p[j]);  #include <stdio.h>
       printf("\n");  #include <stdlib.h>
       for(l=0;l<=1;l++) {  #include <string.h>
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #ifdef _WIN32
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #include <io.h>
         }  #include <windows.h>
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #include <tchar.h>
       }  #else
 #endif  #include <unistd.h>
   #endif
   
       free_vector(xit,1,n);  #include <limits.h>
       free_vector(xits,1,n);  #include <sys/types.h>
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  #if defined(__GNUC__)
       return;  #include <sys/utsname.h> /* Doesn't work on Windows */
     }  #endif
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  #include <sys/stat.h>
       ptt[j]=2.0*p[j]-pt[j];  #include <errno.h>
       xit[j]=p[j]-pt[j];  /* extern int errno; */
       pt[j]=p[j];  
     }  /* #ifdef LINUX */
     fptt=(*func)(ptt);  /* #include <time.h> */
     if (fptt < fp) {  /* #include "timeval.h" */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /* #else */
       if (t < 0.0) {  /* #include <sys/time.h> */
         linmin(p,xit,n,fret,func);  /* #endif */
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  #include <time.h>
           xi[j][n]=xit[j];  
         }  #ifdef GSL
 #ifdef DEBUG  #include <gsl/gsl_errno.h>
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #include <gsl/gsl_multimin.h>
         for(j=1;j<=n;j++)  #endif
           printf(" %.12e",xit[j]);  
         printf("\n");  
 #endif  #ifdef NLOPT
       }  #include <nlopt.h>
     }  typedef struct {
   }    double (* function)(double [] );
 }  } myfunc_data ;
   #endif
 /**** Prevalence limit ****************/  
   /* #include <libintl.h> */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /* #define _(String) gettext (String) */
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
      matrix by transitions matrix until convergence is reached */  
   #define GNUPLOTPROGRAM "gnuplot"
   int i, ii,j,k;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double min, max, maxmin, maxmax,sumnew=0.;  #define FILENAMELENGTH 132
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double **newm;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   for (ii=1;ii<=nlstate+ndeath;ii++)  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define NINTERVMAX 8
     }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
    cov[1]=1.;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
    #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #define MAXN 20000
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #define YEARM 12. /**< Number of months per year */
     newm=savm;  #define AGESUP 130
     /* Covariates have to be included here again */  #define AGEBASE 40
      cov[2]=agefin;  #define AGEOVERFLOW 1.e20
    #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       for (k=1; k<=cptcovn;k++) {  #ifdef _WIN32
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #define DIRSEPARATOR '\\'
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #define CHARSEPARATOR "\\"
       }  #define ODIRSEPARATOR '/'
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #else
       for (k=1; k<=cptcovprod;k++)  #define DIRSEPARATOR '/'
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #endif
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /* $Id$ */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /* $State$ */
   #include "version.h"
     savm=oldm;  char version[]=__IMACH_VERSION__;
     oldm=newm;  char copyright[]="August 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
     maxmax=0.;  char fullversion[]="$Revision$ $Date$"; 
     for(j=1;j<=nlstate;j++){  char strstart[80];
       min=1.;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       max=0.;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       for(i=1; i<=nlstate; i++) {  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
         sumnew=0;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
         prlim[i][j]= newm[i][j]/(1-sumnew);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
         max=FMAX(max,prlim[i][j]);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
         min=FMIN(min,prlim[i][j]);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       }  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       maxmin=max-min;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       maxmax=FMAX(maxmax,maxmin);  int cptcov=0; /* Working variable */
     }  int npar=NPARMAX;
     if(maxmax < ftolpl){  int nlstate=2; /* Number of live states */
       return prlim;  int ndeath=1; /* Number of dead states */
     }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   }  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /*************** transition probabilities ***************/  int maxwav=0; /* Maxim number of waves */
   int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double s1, s2;                     to the likelihood and the sum of weights (done by funcone)*/
   /*double t34;*/  int mle=1, weightopt=0;
   int i,j,j1, nc, ii, jj;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     for(i=1; i<= nlstate; i++){  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     for(j=1; j<i;j++){             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int countcallfunc=0;  /* Count the number of calls to func */
         /*s2 += param[i][j][nc]*cov[nc];*/  double jmean=1; /* Mean space between 2 waves */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double **matprod2(); /* test */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  double **oldm, **newm, **savm; /* Working pointers to matrices */
       }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       ps[i][j]=s2;  /*FILE *fic ; */ /* Used in readdata only */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     }  FILE *ficlog, *ficrespow;
     for(j=i+1; j<=nlstate+ndeath;j++){  int globpr=0; /* Global variable for printing or not */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double fretone; /* Only one call to likelihood */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  long ipmx=0; /* Number of contributions */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  double sw; /* Sum of weights */
       }  char filerespow[FILENAMELENGTH];
       ps[i][j]=s2;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     }  FILE *ficresilk;
   }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     /*ps[3][2]=1;*/  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
   for(i=1; i<= nlstate; i++){  FILE *ficreseij;
      s1=0;  char filerese[FILENAMELENGTH];
     for(j=1; j<i; j++)  FILE *ficresstdeij;
       s1+=exp(ps[i][j]);  char fileresstde[FILENAMELENGTH];
     for(j=i+1; j<=nlstate+ndeath; j++)  FILE *ficrescveij;
       s1+=exp(ps[i][j]);  char filerescve[FILENAMELENGTH];
     ps[i][i]=1./(s1+1.);  FILE  *ficresvij;
     for(j=1; j<i; j++)  char fileresv[FILENAMELENGTH];
       ps[i][j]= exp(ps[i][j])*ps[i][i];  FILE  *ficresvpl;
     for(j=i+1; j<=nlstate+ndeath; j++)  char fileresvpl[FILENAMELENGTH];
       ps[i][j]= exp(ps[i][j])*ps[i][i];  char title[MAXLINE];
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   } /* end i */  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  char command[FILENAMELENGTH];
     for(jj=1; jj<= nlstate+ndeath; jj++){  int  outcmd=0;
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     }  
   }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  char popfile[FILENAMELENGTH];
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
    }  
     printf("\n ");  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     }  /* struct timezone tzp; */
     printf("\n ");printf("%lf ",cov[2]);*/  /* extern int gettimeofday(); */
 /*  struct tm tml, *gmtime(), *localtime();
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  extern time_t time();
     return ps;  
 }  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
 /**************** Product of 2 matrices ******************/  struct tm tm;
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  char strcurr[80], strfor[80];
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  char *endptr;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  long lval;
   /* in, b, out are matrice of pointers which should have been initialized  double dval;
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  #define NR_END 1
   long i, j, k;  #define FREE_ARG char*
   for(i=nrl; i<= nrh; i++)  #define FTOL 1.0e-10
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #define NRANSI 
         out[i][k] +=in[i][j]*b[j][k];  #define ITMAX 200 
   
   return out;  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /************* Higher Matrix Product ***************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  #define TINY 1.0e-20 
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  static double maxarg1,maxarg2;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
      (typically every 2 years instead of every month which is too big).  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      Model is determined by parameters x and covariates have to be    
      included manually here.  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
      */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   #define mytinydouble 1.0e-16
   int i, j, d, h, k;  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   double **out, cov[NCOVMAX];  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   double **newm;  /* static double dsqrarg; */
   /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   /* Hstepm could be zero and should return the unit matrix */  static double sqrarg;
   for (i=1;i<=nlstate+ndeath;i++)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     for (j=1;j<=nlstate+ndeath;j++){  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  int agegomp= AGEGOMP;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  int imx; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int stepm=1;
   for(h=1; h <=nhstepm; h++){  /* Stepm, step in month: minimum step interpolation*/
     for(d=1; d <=hstepm; d++){  
       newm=savm;  int estepm;
       /* Covariates have to be included here again */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  int m,nb;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  long *num;
       for (k=1; k<=cptcovage;k++)  int firstpass=0, lastpass=4,*cod, *Tage,*cens;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
       for (k=1; k<=cptcovprod;k++)                     covariate for which somebody answered excluding 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];                     undefined. Usually 2: 0 and 1. */
   int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered including 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/                               undefined. Usually 3: -1, 0 and 1. */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  double **pmmij, ***probs;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  double *ageexmed,*agecens;
       savm=oldm;  double dateintmean=0;
       oldm=newm;  
     }  double *weight;
     for(i=1; i<=nlstate+ndeath; i++)  int **s; /* Status */
       for(j=1;j<=nlstate+ndeath;j++) {  double *agedc;
         po[i][j][h]=newm[i][j];  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);                    * covar=matrix(0,NCOVMAX,1,n); 
          */                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
       }  double  idx; 
   } /* end h */  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   return po;  int *Ndum; /** Freq of modality (tricode */
 }  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 /*************** log-likelihood *************/  
 double func( double *x)  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 {  double ftolhess; /**< Tolerance for computing hessian */
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  /**************** split *************************/
   double **out;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double sw; /* Sum of weights */  {
   double lli; /* Individual log likelihood */    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   long ipmx;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   /*extern weight */    */ 
   /* We are differentiating ll according to initial status */    char  *ss;                            /* pointer */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    int   l1=0, l2=0;                             /* length counters */
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);    l1 = strlen(path );                   /* length of path */
   */    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   cov[1]=1.;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
   for(k=1; k<=nlstate; k++) ll[k]=0.;      strcpy( name, path );               /* we got the fullname name because no directory */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     for(mi=1; mi<= wav[i]-1; mi++){      /* get current working directory */
       for (ii=1;ii<=nlstate+ndeath;ii++)      /*    extern  char* getcwd ( char *buf , int len);*/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef WIN32
       for(d=0; d<dh[mi][i]; d++){      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
         newm=savm;  #else
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          if (getcwd(dirc, FILENAME_MAX) == NULL) {
         for (kk=1; kk<=cptcovage;kk++) {  #endif
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        return( GLOCK_ERROR_GETCWD );
         }      }
              /* got dirc from getcwd*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      printf(" DIRC = %s \n",dirc);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    } else {                              /* strip direcotry from path */
         savm=oldm;      ss++;                               /* after this, the filename */
         oldm=newm;      l2 = strlen( ss );                  /* length of filename */
              if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
              strcpy( name, ss );         /* save file name */
       } /* end mult */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
            dirc[l1-l2] = '\0';                 /* add zero */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      printf(" DIRC2 = %s \n",dirc);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    }
       ipmx +=1;    /* We add a separator at the end of dirc if not exists */
       sw += weight[i];    l1 = strlen( dirc );                  /* length of directory */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    if( dirc[l1-1] != DIRSEPARATOR ){
     } /* end of wave */      dirc[l1] =  DIRSEPARATOR;
   } /* end of individual */      dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    ss = strrchr( name, '.' );            /* find last / */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    if (ss >0){
   return -l;      ss++;
 }      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
       l2= strlen(ss)+1;
 /*********** Maximum Likelihood Estimation ***************/      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    }
 {  
   int i,j, iter;    return( 0 );                          /* we're done */
   double **xi,*delti;  }
   double fret;  
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  /******************************************/
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  void replace_back_to_slash(char *s, char*t)
   printf("Powell\n");  {
   powell(p,xi,npar,ftol,&iter,&fret,func);    int i;
     int lg=0;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    i=0;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /**** Computes Hessian and covariance matrix ***/    }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  }
 {  
   double  **a,**y,*x,pd;  char *trimbb(char *out, char *in)
   double **hess;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   int i, j,jk;    char *s;
   int *indx;    s=out;
     while (*in != '\0'){
   double hessii(double p[], double delta, int theta, double delti[]);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   double hessij(double p[], double delti[], int i, int j);        in++;
   void lubksb(double **a, int npar, int *indx, double b[]) ;      }
   void ludcmp(double **a, int npar, int *indx, double *d) ;      *out++ = *in++;
     }
   hess=matrix(1,npar,1,npar);    *out='\0';
     return s;
   printf("\nCalculation of the hessian matrix. Wait...\n");  }
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /* char *substrchaine(char *out, char *in, char *chain) */
     hess[i][i]=hessii(p,ftolhess,i,delti);  /* { */
     /*printf(" %f ",p[i]);*/  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
     /*printf(" %lf ",hess[i][i]);*/  /*   char *s, *t; */
   }  /*   t=in;s=out; */
    /*   while ((*in != *chain) && (*in != '\0')){ */
   for (i=1;i<=npar;i++) {  /*     *out++ = *in++; */
     for (j=1;j<=npar;j++)  {  /*   } */
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /*   /\* *in matches *chain *\/ */
         hess[i][j]=hessij(p,delti,i,j);  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
         hess[j][i]=hess[i][j];      /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
         /*printf(" %lf ",hess[i][j]);*/  /*   } */
       }  /*   in--; chain--; */
     }  /*   while ( (*in != '\0')){ */
   }  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   printf("\n");  /*     *out++ = *in++; */
   /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*   } */
    /*   *out='\0'; */
   a=matrix(1,npar,1,npar);  /*   out=s; */
   y=matrix(1,npar,1,npar);  /*   return out; */
   x=vector(1,npar);  /* } */
   indx=ivector(1,npar);  char *substrchaine(char *out, char *in, char *chain)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    /* Substract chain 'chain' from 'in', return and output 'out' */
   ludcmp(a,npar,indx,&pd);    /* in="V1+V1*age+age*age+V2", chain="age*age" */
   
   for (j=1;j<=npar;j++) {    char *strloc;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    strcpy (out, in); 
     lubksb(a,npar,indx,x);    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
     for (i=1;i<=npar;i++){    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
       matcov[i][j]=x[i];    if(strloc != NULL){ 
     }      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   }      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
       /* strcpy (strloc, strloc +strlen(chain));*/
   printf("\n#Hessian matrix#\n");    }
   for (i=1;i<=npar;i++) {    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
     for (j=1;j<=npar;j++) {    return out;
       printf("%.3e ",hess[i][j]);  }
     }  
     printf("\n");  
   }  char *cutl(char *blocc, char *alocc, char *in, char occ)
   {
   /* Recompute Inverse */    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   for (i=1;i<=npar;i++)       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];       gives blocc="abcdef" and alocc="ghi2j".
   ludcmp(a,npar,indx,&pd);       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     */
   /*  printf("\n#Hessian matrix recomputed#\n");    char *s, *t;
     t=in;s=in;
   for (j=1;j<=npar;j++) {    while ((*in != occ) && (*in != '\0')){
     for (i=1;i<=npar;i++) x[i]=0;      *alocc++ = *in++;
     x[j]=1;    }
     lubksb(a,npar,indx,x);    if( *in == occ){
     for (i=1;i<=npar;i++){      *(alocc)='\0';
       y[i][j]=x[i];      s=++in;
       printf("%.3e ",y[i][j]);    }
     }   
     printf("\n");    if (s == t) {/* occ not found */
   }      *(alocc-(in-s))='\0';
   */      in=s;
     }
   free_matrix(a,1,npar,1,npar);    while ( *in != '\0'){
   free_matrix(y,1,npar,1,npar);      *blocc++ = *in++;
   free_vector(x,1,npar);    }
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);    *blocc='\0';
     return t;
   }
 }  char *cutv(char *blocc, char *alocc, char *in, char occ)
   {
 /*************** hessian matrix ****************/    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
 double hessii( double x[], double delta, int theta, double delti[])       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 {       gives blocc="abcdef2ghi" and alocc="j".
   int i;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   int l=1, lmax=20;    */
   double k1,k2;    char *s, *t;
   double p2[NPARMAX+1];    t=in;s=in;
   double res;    while (*in != '\0'){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      while( *in == occ){
   double fx;        *blocc++ = *in++;
   int k=0,kmax=10;        s=in;
   double l1;      }
       *blocc++ = *in++;
   fx=func(x);    }
   for (i=1;i<=npar;i++) p2[i]=x[i];    if (s == t) /* occ not found */
   for(l=0 ; l <=lmax; l++){      *(blocc-(in-s))='\0';
     l1=pow(10,l);    else
     delts=delt;      *(blocc-(in-s)-1)='\0';
     for(k=1 ; k <kmax; k=k+1){    in=s;
       delt = delta*(l1*k);    while ( *in != '\0'){
       p2[theta]=x[theta] +delt;      *alocc++ = *in++;
       k1=func(p2)-fx;    }
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;    *alocc='\0';
       /*res= (k1-2.0*fx+k2)/delt/delt; */    return s;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  }
        
 #ifdef DEBUG  int nbocc(char *s, char occ)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
 #endif    int i,j=0;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    int lg=20;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    i=0;
         k=kmax;    lg=strlen(s);
       }    for(i=0; i<= lg; i++) {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    if  (s[i] == occ ) j++;
         k=kmax; l=lmax*10.;    }
       }    return j;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  }
         delts=delt;  
       }  /* void cutv(char *u,char *v, char*t, char occ) */
     }  /* { */
   }  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   delti[theta]=delts;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   return res;  /*      gives u="abcdef2ghi" and v="j" *\/ */
    /*   int i,lg,j,p=0; */
 }  /*   i=0; */
   /*   lg=strlen(t); */
 double hessij( double x[], double delti[], int thetai,int thetaj)  /*   for(j=0; j<=lg-1; j++) { */
 {  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   int i;  /*   } */
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  /*   for(j=0; j<p; j++) { */
   double p2[NPARMAX+1];  /*     (u[j] = t[j]); */
   int k;  /*   } */
   /*      u[p]='\0'; */
   fx=func(x);  
   for (k=1; k<=2; k++) {  /*    for(j=0; j<= lg; j++) { */
     for (i=1;i<=npar;i++) p2[i]=x[i];  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*   } */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /* } */
     k1=func(p2)-fx;  
    #ifdef _WIN32
     p2[thetai]=x[thetai]+delti[thetai]/k;  char * strsep(char **pp, const char *delim)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  {
     k2=func(p2)-fx;    char *p, *q;
             
     p2[thetai]=x[thetai]-delti[thetai]/k;    if ((p = *pp) == NULL)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      return 0;
     k3=func(p2)-fx;    if ((q = strpbrk (p, delim)) != NULL)
      {
     p2[thetai]=x[thetai]-delti[thetai]/k;      *pp = q + 1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      *q = '\0';
     k4=func(p2)-fx;    }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    else
 #ifdef DEBUG      *pp = 0;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    return p;
 #endif  }
   }  #endif
   return res;  
 }  /********************** nrerror ********************/
   
 /************** Inverse of matrix **************/  void nrerror(char error_text[])
 void ludcmp(double **a, int n, int *indx, double *d)  {
 {    fprintf(stderr,"ERREUR ...\n");
   int i,imax,j,k;    fprintf(stderr,"%s\n",error_text);
   double big,dum,sum,temp;    exit(EXIT_FAILURE);
   double *vv;  }
    /*********************** vector *******************/
   vv=vector(1,n);  double *vector(int nl, int nh)
   *d=1.0;  {
   for (i=1;i<=n;i++) {    double *v;
     big=0.0;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     for (j=1;j<=n;j++)    if (!v) nrerror("allocation failure in vector");
       if ((temp=fabs(a[i][j])) > big) big=temp;    return v-nl+NR_END;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  }
     vv[i]=1.0/big;  
   }  /************************ free vector ******************/
   for (j=1;j<=n;j++) {  void free_vector(double*v, int nl, int nh)
     for (i=1;i<j;i++) {  {
       sum=a[i][j];    free((FREE_ARG)(v+nl-NR_END));
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
     }  /************************ivector *******************************/
     big=0.0;  int *ivector(long nl,long nh)
     for (i=j;i<=n;i++) {  {
       sum=a[i][j];    int *v;
       for (k=1;k<j;k++)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         sum -= a[i][k]*a[k][j];    if (!v) nrerror("allocation failure in ivector");
       a[i][j]=sum;    return v-nl+NR_END;
       if ( (dum=vv[i]*fabs(sum)) >= big) {  }
         big=dum;  
         imax=i;  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
     }  {
     if (j != imax) {    free((FREE_ARG)(v+nl-NR_END));
       for (k=1;k<=n;k++) {  }
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /************************lvector *******************************/
         a[j][k]=dum;  long *lvector(long nl,long nh)
       }  {
       *d = -(*d);    long *v;
       vv[imax]=vv[j];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     }    if (!v) nrerror("allocation failure in ivector");
     indx[j]=imax;    return v-nl+NR_END;
     if (a[j][j] == 0.0) a[j][j]=TINY;  }
     if (j != n) {  
       dum=1.0/(a[j][j]);  /******************free lvector **************************/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  void free_lvector(long *v, long nl, long nh)
     }  {
   }    free((FREE_ARG)(v+nl-NR_END));
   free_vector(vv,1,n);  /* Doesn't work */  }
 ;  
 }  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 void lubksb(double **a, int n, int *indx, double b[])       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 {  { 
   int i,ii=0,ip,j;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double sum;    int **m; 
      
   for (i=1;i<=n;i++) {    /* allocate pointers to rows */ 
     ip=indx[i];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     sum=b[ip];    if (!m) nrerror("allocation failure 1 in matrix()"); 
     b[ip]=b[i];    m += NR_END; 
     if (ii)    m -= nrl; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    
     else if (sum) ii=i;    
     b[i]=sum;    /* allocate rows and set pointers to them */ 
   }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   for (i=n;i>=1;i--) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     sum=b[i];    m[nrl] += NR_END; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    m[nrl] -= ncl; 
     b[i]=sum/a[i][i];    
   }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 }    
     /* return pointer to array of pointers to rows */ 
 /************ Frequencies ********************/    return m; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  } 
 {  /* Some frequencies */  
    /****************** free_imatrix *************************/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double ***freq; /* Frequencies */        int **m;
   double *pp;        long nch,ncl,nrh,nrl; 
   double pos, k2, dateintsum=0,k2cpt=0;       /* free an int matrix allocated by imatrix() */ 
   FILE *ficresp;  { 
   char fileresp[FILENAMELENGTH];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      free((FREE_ARG) (m+nrl-NR_END)); 
   pp=vector(1,nlstate);  } 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");  /******************* matrix *******************************/
   strcat(fileresp,fileres);  double **matrix(long nrl, long nrh, long ncl, long nch)
   if((ficresp=fopen(fileresp,"w"))==NULL) {  {
     printf("Problem with prevalence resultfile: %s\n", fileresp);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     exit(0);    double **m;
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   j1=0;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
   j=cptcoveff;    m -= nrl;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
      m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for(k1=1; k1<=j;k1++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for(i1=1; i1<=ncodemax[k1];i1++){    m[nrl] += NR_END;
       j1++;    m[nrl] -= ncl;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (i=-1; i<=nlstate+ndeath; i++)      return m;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
           for(m=agemin; m <= agemax+3; m++)  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
             freq[i][jk][m]=0;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
           */
       dateintsum=0;  }
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  /*************************free matrix ************************/
         bool=1;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    free((FREE_ARG)(m+nrl-NR_END));
               bool=0;  }
         }  
         if (bool==1) {  /******************* ma3x *******************************/
           for(m=firstpass; m<=lastpass; m++){  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
             k2=anint[m][i]+(mint[m][i]/12.);  {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double ***m;
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    if (!m) nrerror("allocation failure 1 in matrix()");
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    m += NR_END;
               }    m -= nrl;
                
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                 dateintsum=dateintsum+k2;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                 k2cpt++;    m[nrl] += NR_END;
               }    m[nrl] -= ncl;
             }  
           }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         }  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
            if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
       if  (cptcovn>0) {    for (j=ncl+1; j<=nch; j++) 
         fprintf(ficresp, "\n#********** Variable ");      m[nrl][j]=m[nrl][j-1]+nlay;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
         fprintf(ficresp, "**********\n#");    for (i=nrl+1; i<=nrh; i++) {
       }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for(i=1; i<=nlstate;i++)      for (j=ncl+1; j<=nch; j++) 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        m[i][j]=m[i][j-1]+nlay;
       fprintf(ficresp, "\n");    }
          return m; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         if(i==(int)agemax+3)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
           printf("Total");    */
         else  }
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){  /*************************free ma3x ************************/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
             pp[jk] += freq[jk][m][i];  {
         }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         for(jk=1; jk <=nlstate ; jk++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           for(m=-1, pos=0; m <=0 ; m++)    free((FREE_ARG)(m+nrl-NR_END));
             pos += freq[jk][m][i];  }
           if(pp[jk]>=1.e-10)  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*************** function subdirf ***********/
           else  char *subdirf(char fileres[])
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  {
         }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
         for(jk=1; jk <=nlstate ; jk++){    strcat(tmpout,"/"); /* Add to the right */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    strcat(tmpout,fileres);
             pp[jk] += freq[jk][m][i];    return tmpout;
         }  }
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)  /*************** function subdirf2 ***********/
           pos += pp[jk];  char *subdirf2(char fileres[], char *preop)
         for(jk=1; jk <=nlstate ; jk++){  {
           if(pos>=1.e-5)    
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    /* Caution optionfilefiname is hidden */
           else    strcpy(tmpout,optionfilefiname);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    strcat(tmpout,"/");
           if( i <= (int) agemax){    strcat(tmpout,preop);
             if(pos>=1.e-5){    strcat(tmpout,fileres);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    return tmpout;
               probs[i][jk][j1]= pp[jk]/pos;  }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }  /*************** function subdirf3 ***********/
             else  char *subdirf3(char fileres[], char *preop, char *preop2)
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  {
           }    
         }    /* Caution optionfilefiname is hidden */
            strcpy(tmpout,optionfilefiname);
         for(jk=-1; jk <=nlstate+ndeath; jk++)    strcat(tmpout,"/");
           for(m=-1; m <=nlstate+ndeath; m++)    strcat(tmpout,preop);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    strcat(tmpout,preop2);
         if(i <= (int) agemax)    strcat(tmpout,fileres);
           fprintf(ficresp,"\n");    return tmpout;
         printf("\n");  }
       }  
     }  char *asc_diff_time(long time_sec, char ascdiff[])
   }  {
   dateintmean=dateintsum/k2cpt;    long sec_left, days, hours, minutes;
      days = (time_sec) / (60*60*24);
   fclose(ficresp);    sec_left = (time_sec) % (60*60*24);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    hours = (sec_left) / (60*60) ;
   free_vector(pp,1,nlstate);    sec_left = (sec_left) %(60*60);
      minutes = (sec_left) /60;
   /* End of Freq */    sec_left = (sec_left) % (60);
 }    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
 /************ Prevalence ********************/  }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */  /***************** f1dim *************************/
    extern int ncom; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  extern double *pcom,*xicom;
   double ***freq; /* Frequencies */  extern double (*nrfunc)(double []); 
   double *pp;   
   double pos, k2;  double f1dim(double x) 
   { 
   pp=vector(1,nlstate);    int j; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double f;
      double *xt; 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);   
   j1=0;    xt=vector(1,ncom); 
      for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   j=cptcoveff;    f=(*nrfunc)(xt); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    free_vector(xt,1,ncom); 
      return f; 
   for(k1=1; k1<=j;k1++){  } 
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  /*****************brent *************************/
        double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       for (i=-1; i<=nlstate+ndeath; i++)    {
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
           for(m=agemin; m <= agemax+3; m++)     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
             freq[i][jk][m]=0;     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
           * the minimum is returned as xmin, and the minimum function value is returned as brent , the
       for (i=1; i<=imx; i++) {     * returned function value. 
         bool=1;    */
         if  (cptcovn>0) {    int iter; 
           for (z1=1; z1<=cptcoveff; z1++)    double a,b,d,etemp;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double fu=0,fv,fw,fx;
               bool=0;    double ftemp=0.;
         }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         if (bool==1) {    double e=0.0; 
           for(m=firstpass; m<=lastpass; m++){   
             k2=anint[m][i]+(mint[m][i]/12.);    a=(ax < cx ? ax : cx); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    b=(ax > cx ? ax : cx); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;    x=w=v=bx; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    fw=fv=fx=(*f)(x); 
               if (m<lastpass) {    for (iter=1;iter<=ITMAX;iter++) { 
                 if (calagedate>0)      xm=0.5*(a+b); 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                 else      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      printf(".");fflush(stdout);
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      fprintf(ficlog,".");fflush(ficlog);
               }  #ifdef DEBUGBRENT
             }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
       for(i=(int)agemin; i <= (int)agemax+3; i++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         for(jk=1; jk <=nlstate ; jk++){        *xmin=x; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        return fx; 
             pp[jk] += freq[jk][m][i];      } 
         }      ftemp=fu;
         for(jk=1; jk <=nlstate ; jk++){      if (fabs(e) > tol1) { 
           for(m=-1, pos=0; m <=0 ; m++)        r=(x-w)*(fx-fv); 
             pos += freq[jk][m][i];        q=(x-v)*(fx-fw); 
         }        p=(x-v)*q-(x-w)*r; 
                q=2.0*(q-r); 
         for(jk=1; jk <=nlstate ; jk++){        if (q > 0.0) p = -p; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        q=fabs(q); 
             pp[jk] += freq[jk][m][i];        etemp=e; 
         }        e=d; 
                if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                else { 
         for(jk=1; jk <=nlstate ; jk++){              d=p/q; 
           if( i <= (int) agemax){          u=x+d; 
             if(pos>=1.e-5){          if (u-a < tol2 || b-u < tol2) 
               probs[i][jk][j1]= pp[jk]/pos;            d=SIGN(tol1,xm-x); 
             }        } 
           }      } else { 
         }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
              } 
       }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
   }      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
          SHFT(v,w,x,u) 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        SHFT(fv,fw,fx,fu) 
   free_vector(pp,1,nlstate);      } else { 
          if (u < x) a=u; else b=u; 
 }  /* End of Freq */        if (fu <= fw || w == x) { 
           v=w; 
 /************* Waves Concatenation ***************/          w=u; 
           fv=fw; 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          fw=fu; 
 {        } else if (fu <= fv || v == x || v == w) { 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          v=u; 
      Death is a valid wave (if date is known).          fv=fu; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        } 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      } 
      and mw[mi+1][i]. dh depends on stepm.    } 
      */    nrerror("Too many iterations in brent"); 
     *xmin=x; 
   int i, mi, m;    return fx; 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  } 
      double sum=0., jmean=0.;*/  
   /****************** mnbrak ***********************/
   int j, k=0,jk, ju, jl;  
   double sum=0.;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   jmin=1e+5;              double (*func)(double)) 
   jmax=-1;  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
   jmean=0.;  the downhill direction (defined by the function as evaluated at the initial points) and returns
   for(i=1; i<=imx; i++){  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
     mi=0;  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
     m=firstpass;     */
     while(s[m][i] <= nlstate){    double ulim,u,r,q, dum;
       if(s[m][i]>=1)    double fu; 
         mw[++mi][i]=m;  
       if(m >=lastpass)    double scale=10.;
         break;    int iterscale=0;
       else  
         m++;    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
     }/* end while */    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
          /* Only death is a correct wave */    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
       mw[mi][i]=m;    /*   *bx = *ax - (*ax - *bx)/scale; */
     }    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
     /* } */
     wav[i]=mi;  
     if(mi==0)    if (*fb > *fa) { 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      SHFT(dum,*ax,*bx,dum) 
   }      SHFT(dum,*fb,*fa,dum) 
     } 
   for(i=1; i<=imx; i++){    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(mi=1; mi<wav[i];mi++){    *fc=(*func)(*cx); 
       if (stepm <=0)  #ifdef DEBUG
         dh[mi][i]=1;    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
       else{    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
         if (s[mw[mi+1][i]][i] > nlstate) {  #endif
           if (agedc[i] < 2*AGESUP) {    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      r=(*bx-*ax)*(*fb-*fc); 
           if(j==0) j=1;  /* Survives at least one month after exam */      q=(*bx-*cx)*(*fb-*fa); 
           k=k+1;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
           if (j >= jmax) jmax=j;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
           if (j <= jmin) jmin=j;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
           sum=sum+j;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        fu=(*func)(u); 
           }  #ifdef DEBUG
         }        /* f(x)=A(x-u)**2+f(u) */
         else{        double A, fparabu; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
           k=k+1;        fparabu= *fa - A*(*ax-u)*(*ax-u);
           if (j >= jmax) jmax=j;        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           else if (j <= jmin)jmin=j;        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        /* And thus,it can be that fu > *fc even if fparabu < *fc */
           sum=sum+j;        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
         }          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
         jk= j/stepm;        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
         jl= j -jk*stepm;  #endif 
         ju= j -(jk+1)*stepm;  #ifdef MNBRAKORIGINAL
         if(jl <= -ju)  #else
           dh[mi][i]=jk;  /*       if (fu > *fc) { */
         else  /* #ifdef DEBUG */
           dh[mi][i]=jk+1;  /*       printf("mnbrak4  fu > fc \n"); */
         if(dh[mi][i]==0)  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
           dh[mi][i]=1; /* At least one step */  /* #endif */
       }  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
     }  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
   }  /*      dum=u; /\* Shifting c and u *\/ */
   jmean=sum/k;  /*      u = *cx; */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  /*      *cx = dum; */
  }  /*      dum = fu; */
 /*********** Tricode ****************************/  /*      fu = *fc; */
 void tricode(int *Tvar, int **nbcode, int imx)  /*      *fc =dum; */
 {  /*       } else { /\* end *\/ */
   int Ndum[20],ij=1, k, j, i;  /* #ifdef DEBUG */
   int cptcode=0;  /*       printf("mnbrak3  fu < fc \n"); */
   cptcoveff=0;  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
    /* #endif */
   for (k=0; k<19; k++) Ndum[k]=0;  /*      dum=u; /\* Shifting c and u *\/ */
   for (k=1; k<=7; k++) ncodemax[k]=0;  /*      u = *cx; */
   /*      *cx = dum; */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /*      dum = fu; */
     for (i=1; i<=imx; i++) {  /*      fu = *fc; */
       ij=(int)(covar[Tvar[j]][i]);  /*      *fc =dum; */
       Ndum[ij]++;  /*       } */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  #ifdef DEBUG
       if (ij > cptcode) cptcode=ij;        printf("mnbrak34  fu < or >= fc \n");
     }        fprintf(ficlog, "mnbrak34 fu < fc\n");
   #endif
     for (i=0; i<=cptcode; i++) {        dum=u; /* Shifting c and u */
       if(Ndum[i]!=0) ncodemax[j]++;        u = *cx;
     }        *cx = dum;
     ij=1;        dum = fu;
         fu = *fc;
         *fc =dum;
     for (i=1; i<=ncodemax[j]; i++) {  #endif
       for (k=0; k<=19; k++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
         if (Ndum[k] != 0) {  #ifdef DEBUG
           nbcode[Tvar[j]][ij]=k;        printf("mnbrak2  u after c but before ulim\n");
                  fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
           ij++;  #endif
         }        fu=(*func)(u); 
         if (ij > ncodemax[j]) break;        if (fu < *fc) { 
       }    #ifdef DEBUG
     }        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
   }          fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
   #endif
  for (k=0; k<19; k++) Ndum[k]=0;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           SHFT(*fb,*fc,fu,(*func)(u)) 
  for (i=1; i<=ncovmodel-2; i++) {        } 
       ij=Tvar[i];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
       Ndum[ij]++;  #ifdef DEBUG
     }        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
         fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
  ij=1;  #endif
  for (i=1; i<=10; i++) {        u=ulim; 
    if((Ndum[i]!=0) && (i<=ncovcol)){        fu=(*func)(u); 
      Tvaraff[ij]=i;      } else { /* u could be left to b (if r > q parabola has a maximum) */
      ij++;  #ifdef DEBUG
    }        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
  }        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
    #endif
     cptcoveff=ij-1;        u=(*cx)+GOLD*(*cx-*bx); 
 }        fu=(*func)(u); 
       } /* end tests */
 /*********** Health Expectancies ****************/      SHFT(*ax,*bx,*cx,u) 
       SHFT(*fa,*fb,*fc,fu) 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  #ifdef DEBUG
         printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 {        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
   /* Health expectancies */  #endif
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
   double age, agelim, hf;  } 
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;  /*************** linmin ************************/
   double *xp;  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
   double **gp, **gm;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   double ***gradg, ***trgradg;  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   int theta;  the value of func at the returned location p . This is actually all accomplished by calling the
   routines mnbrak and brent .*/
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  int ncom; 
   xp=vector(1,npar);  double *pcom,*xicom;
   dnewm=matrix(1,nlstate*2,1,npar);  double (*nrfunc)(double []); 
   doldm=matrix(1,nlstate*2,1,nlstate*2);   
    void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   fprintf(ficreseij,"# Health expectancies\n");  { 
   fprintf(ficreseij,"# Age");    double brent(double ax, double bx, double cx, 
   for(i=1; i<=nlstate;i++)                 double (*f)(double), double tol, double *xmin); 
     for(j=1; j<=nlstate;j++)    double f1dim(double x); 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   fprintf(ficreseij,"\n");                double *fc, double (*func)(double)); 
     int j; 
   if(estepm < stepm){    double xx,xmin,bx,ax; 
     printf ("Problem %d lower than %d\n",estepm, stepm);    double fx,fb,fa;
   }  
   else  hstepm=estepm;      double scale=10., axs, xxs, xxss; /* Scale added for infinity */
   /* We compute the life expectancy from trapezoids spaced every estepm months   
    * This is mainly to measure the difference between two models: for example    ncom=n; 
    * if stepm=24 months pijx are given only every 2 years and by summing them    pcom=vector(1,n); 
    * we are calculating an estimate of the Life Expectancy assuming a linear    xicom=vector(1,n); 
    * progression inbetween and thus overestimating or underestimating according    nrfunc=func; 
    * to the curvature of the survival function. If, for the same date, we    for (j=1;j<=n;j++) { 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      pcom[j]=p[j]; 
    * to compare the new estimate of Life expectancy with the same linear      xicom[j]=xi[j]; 
    * hypothesis. A more precise result, taking into account a more precise    } 
    * curvature will be obtained if estepm is as small as stepm. */  
     /* axs=0.0; */
   /* For example we decided to compute the life expectancy with the smallest unit */    /* xxss=1; /\* 1 and using scale *\/ */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    xxs=1;
      nhstepm is the number of hstepm from age to agelim    /* do{ */
      nstepm is the number of stepm from age to agelin.      ax=0.;
      Look at hpijx to understand the reason of that which relies in memory size      xx= xxs;
      and note for a fixed period like estepm months */      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
      survival function given by stepm (the optimization length). Unfortunately it      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
      means that if the survival funtion is printed only each two years of age and if      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
      results. So we changed our mind and took the option of the best precision.      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
   */      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    /*   if (fx != fx){ */
     /*    xxs=xxs/scale; /\* Trying a smaller xx, closer to initial ax=0 *\/ */
   agelim=AGESUP;    /*    printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /*   } */
     /* nhstepm age range expressed in number of stepm */    /* }while(fx != fx); */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  #ifdef DEBUGLINMIN
     /* if (stepm >= YEARM) hstepm=1;*/    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  #endif
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
     gp=matrix(0,nhstepm,1,nlstate*2);    /* fmin = f(p[j] + xmin * xi[j]) */
     gm=matrix(0,nhstepm,1,nlstate*2);    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
     /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  #ifdef DEBUG
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    #endif
   #ifdef DEBUGLINMIN
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("linmin end ");
   #endif
     /* Computing Variances of health expectancies */    for (j=1;j<=n;j++) { 
       /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
      for(theta=1; theta <=npar; theta++){      xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
       for(i=1; i<=npar; i++){      /* if(xxs <1.0) */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
       }      p[j] += xi[j]; /* Parameters values are updated accordingly */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      } 
      /* printf("\n"); */
       cptj=0;  #ifdef DEBUGLINMIN
       for(j=1; j<= nlstate; j++){    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
         for(i=1; i<=nlstate; i++){    for (j=1;j<=n;j++) { 
           cptj=cptj+1;      printf(" xi[%d]= %12.7f p[%d]= %12.7f",j,xi[j],j,p[j]);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      if(j % ncovmodel == 0)
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        printf("\n");
           }    }
         }  #endif
       }    free_vector(xicom,1,n); 
          free_vector(pcom,1,n); 
        } 
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*************** powell ************************/
        /*
       cptj=0;  Minimization of a function func of n variables. Input consists of an initial starting point
       for(j=1; j<= nlstate; j++){  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
         for(i=1;i<=nlstate;i++){  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
           cptj=cptj+1;  such that failure to decrease by more than this amount on one iteration signals doneness. On
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  function value at p , and iter is the number of iterations taken. The routine linmin is used.
           }   */
         }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       }              double (*func)(double [])) 
       for(j=1; j<= nlstate*2; j++)  { 
         for(h=0; h<=nhstepm-1; h++){    void linmin(double p[], double xi[], int n, double *fret, 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                double (*func)(double [])); 
         }    int i,ibig,j; 
      }    double del,t,*pt,*ptt,*xit;
        double directest;
 /* End theta */    double fp,fptt;
     double *xits;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    int niterf, itmp;
   
      for(h=0; h<=nhstepm-1; h++)    pt=vector(1,n); 
       for(j=1; j<=nlstate*2;j++)    ptt=vector(1,n); 
         for(theta=1; theta <=npar; theta++)    xit=vector(1,n); 
           trgradg[h][j][theta]=gradg[h][theta][j];    xits=vector(1,n); 
          *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
      for(i=1;i<=nlstate*2;i++)      rcurr_time = time(NULL);  
       for(j=1;j<=nlstate*2;j++)    for (*iter=1;;++(*iter)) { 
         varhe[i][j][(int)age] =0.;      fp=(*fret); /* From former iteration or initial value */
       ibig=0; 
      printf("%d|",(int)age);fflush(stdout);      del=0.0; 
      for(h=0;h<=nhstepm-1;h++){      rlast_time=rcurr_time;
       for(k=0;k<=nhstepm-1;k++){      /* (void) gettimeofday(&curr_time,&tzp); */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      rcurr_time = time(NULL);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      curr_time = *localtime(&rcurr_time);
         for(i=1;i<=nlstate*2;i++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
           for(j=1;j<=nlstate*2;j++)      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       }      for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
     /* Computing expectancies */        fprintf(ficlog," %d %.12lf",i, p[i]);
     for(i=1; i<=nlstate;i++)        fprintf(ficrespow," %.12lf", p[i]);
       for(j=1; j<=nlstate;j++)      }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      printf("\n");
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      fprintf(ficlog,"\n");
                fprintf(ficrespow,"\n");fflush(ficrespow);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      if(*iter <=3){
         tml = *localtime(&rcurr_time);
         }        strcpy(strcurr,asctime(&tml));
         rforecast_time=rcurr_time; 
     fprintf(ficreseij,"%3.0f",age );        itmp = strlen(strcurr);
     cptj=0;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for(i=1; i<=nlstate;i++)          strcurr[itmp-1]='\0';
       for(j=1; j<=nlstate;j++){        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         cptj++;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        for(niterf=10;niterf<=30;niterf+=10){
       }          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
     fprintf(ficreseij,"\n");          forecast_time = *localtime(&rforecast_time);
              strcpy(strfor,asctime(&forecast_time));
     free_matrix(gm,0,nhstepm,1,nlstate*2);          itmp = strlen(strfor);
     free_matrix(gp,0,nhstepm,1,nlstate*2);          if(strfor[itmp-1]=='\n')
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          strfor[itmp-1]='\0';
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   }        }
   printf("\n");      }
       for (i=1;i<=n;i++) { /* For each direction i */
   free_vector(xp,1,npar);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
   free_matrix(dnewm,1,nlstate*2,1,npar);        fptt=(*fret); 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  #ifdef DEBUG
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 }            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   #endif
 /************ Variance ******************/            printf("%d",i);fflush(stdout); /* print direction (parameter) i */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        fprintf(ficlog,"%d",i);fflush(ficlog);
 {        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
   /* Variance of health expectancies */                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
   double **newm;          /* because that direction will be replaced unless the gain del is small */
   double **dnewm,**doldm;          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
   int i, j, nhstepm, hstepm, h, nstepm ;          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
   int k, cptcode;          /* with the new direction. */
   double *xp;          del=fabs(fptt-(*fret)); 
   double **gp, **gm;          ibig=i; 
   double ***gradg, ***trgradg;        } 
   double ***p3mat;  #ifdef DEBUG
   double age,agelim, hf;        printf("%d %.12e",i,(*fret));
   int theta;        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   fprintf(ficresvij,"# Age");          printf(" x(%d)=%.12e",j,xit[j]);
   for(i=1; i<=nlstate;i++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for(j=1; j<=nlstate;j++)        }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        for(j=1;j<=n;j++) {
   fprintf(ficresvij,"\n");          printf(" p(%d)=%.12e",j,p[j]);
           fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   xp=vector(1,npar);        }
   dnewm=matrix(1,nlstate,1,npar);        printf("\n");
   doldm=matrix(1,nlstate,1,nlstate);        fprintf(ficlog,"\n");
    #endif
   if(estepm < stepm){      } /* end loop on each direction i */
     printf ("Problem %d lower than %d\n",estepm, stepm);      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
   }      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
   else  hstepm=estepm;        /* New value of last point Pn is not computed, P(n-1) */
   /* For example we decided to compute the life expectancy with the smallest unit */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
      nhstepm is the number of hstepm from age to agelim        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
      nstepm is the number of stepm from age to agelin.        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
      Look at hpijx to understand the reason of that which relies in memory size        /* decreased of more than 3.84  */
      and note for a fixed period like k years */        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
      survival function given by stepm (the optimization length). Unfortunately it        /* By adding 10 parameters more the gain should be 18.31 */
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        /* Starting the program with initial values given by a former maximization will simply change */
      results. So we changed our mind and took the option of the best precision.        /* the scales of the directions and the directions, because the are reset to canonical directions */
   */        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
   agelim = AGESUP;  #ifdef DEBUG
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        int k[2],l;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        k[0]=1;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        k[1]=-1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("Max: %.12e",(*func)(p));
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     gp=matrix(0,nhstepm,1,nlstate);        for (j=1;j<=n;j++) {
     gm=matrix(0,nhstepm,1,nlstate);          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++){ /* Computes gradient */        printf("\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficlog,"\n");
       }        for(l=0;l<=1;l++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (j=1;j<=n;j++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       if (popbased==1) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         for(i=1; i<=nlstate;i++)          }
           prlim[i][i]=probs[(int)age][i][ij];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          }
       for(j=1; j<= nlstate; j++){  #endif
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        free_vector(xit,1,n); 
         }        free_vector(xits,1,n); 
       }        free_vector(ptt,1,n); 
            free_vector(pt,1,n); 
       for(i=1; i<=npar; i++) /* Computes gradient */        return; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } /* enough precision */ 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
          ptt[j]=2.0*p[j]-pt[j]; 
       if (popbased==1) {        xit[j]=p[j]-pt[j]; 
         for(i=1; i<=nlstate;i++)        pt[j]=p[j]; 
           prlim[i][i]=probs[(int)age][i][ij];      } 
       }      fptt=(*func)(ptt); /* f_3 */
   #ifdef POWELLF1F3
       for(j=1; j<= nlstate; j++){  #else
         for(h=0; h<=nhstepm; h++){      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  #endif
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         }        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
       }        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
       for(j=1; j<= nlstate; j++)        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         for(h=0; h<=nhstepm; h++){        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
         }  #ifdef NRCORIGINAL
     } /* End theta */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   #else
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
         t= t- del*SQR(fp-fptt);
     for(h=0; h<=nhstepm; h++)  #endif
       for(j=1; j<=nlstate;j++)        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
         for(theta=1; theta <=npar; theta++)  #ifdef DEBUG
           trgradg[h][j][theta]=gradg[h][theta][j];        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     for(i=1;i<=nlstate;i++)               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       for(j=1;j<=nlstate;j++)        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         vareij[i][j][(int)age] =0.;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     for(h=0;h<=nhstepm;h++){        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
       for(k=0;k<=nhstepm;k++){  #endif
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  #ifdef POWELLORIGINAL
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        if (t < 0.0) { /* Then we use it for new direction */
         for(i=1;i<=nlstate;i++)  #else
           for(j=1;j<=nlstate;j++)        if (directest*t < 0.0) { /* Contradiction between both tests */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
       }          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     }          fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
           fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     fprintf(ficresvij,"%.0f ",age );        } 
     for(i=1; i<=nlstate;i++)        if (directest < 0.0) { /* Then we use it for new direction */
       for(j=1; j<=nlstate;j++){  #endif
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  #ifdef DEBUGLINMIN
       }          printf("Before linmin in direction P%d-P0\n",n);
     fprintf(ficresvij,"\n");          for (j=1;j<=n;j++) { 
     free_matrix(gp,0,nhstepm,1,nlstate);            printf("Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     free_matrix(gm,0,nhstepm,1,nlstate);            if(j % ncovmodel == 0)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              printf("\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #endif
   } /* End age */          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
    #ifdef DEBUGLINMIN
   free_vector(xp,1,npar);          for (j=1;j<=n;j++) { 
   free_matrix(doldm,1,nlstate,1,npar);            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   free_matrix(dnewm,1,nlstate,1,nlstate);            if(j % ncovmodel == 0)
               printf("\n");
 }          }
   #endif
 /************ Variance of prevlim ******************/          for (j=1;j<=n;j++) { 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
 {            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
   /* Variance of prevalence limit */          }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   double **newm;          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;  #ifdef DEBUG
   int k, cptcode;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double *xp;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double *gp, *gm;          for(j=1;j<=n;j++){
   double **gradg, **trgradg;            printf(" %.12e",xit[j]);
   double age,agelim;            fprintf(ficlog," %.12e",xit[j]);
   int theta;          }
              printf("\n");
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          fprintf(ficlog,"\n");
   fprintf(ficresvpl,"# Age");  #endif
   for(i=1; i<=nlstate;i++)        } /* end of t or directest negative */
       fprintf(ficresvpl," %1d-%1d",i,i);  #ifdef POWELLF1F3
   fprintf(ficresvpl,"\n");  #else
       } /* end if (fptt < fp)  */
   xp=vector(1,npar);  #endif
   dnewm=matrix(1,nlstate,1,npar);    } /* loop iteration */ 
   doldm=matrix(1,nlstate,1,nlstate);  } 
    
   hstepm=1*YEARM; /* Every year of age */  /**** Prevalence limit (stable or period prevalence)  ****************/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     if (stepm >= YEARM) hstepm=1;       matrix by transitions matrix until convergence is reached */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    
     gradg=matrix(1,npar,1,nlstate);    int i, ii,j,k;
     gp=vector(1,nlstate);    double min, max, maxmin, maxmax,sumnew=0.;
     gm=vector(1,nlstate);    /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **pmij();
     for(theta=1; theta <=npar; theta++){    double **newm;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double agefin, delaymax=50 ; /* Max number of years to converge */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    
       }    for (ii=1;ii<=nlstate+ndeath;ii++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=1;j<=nlstate+ndeath;j++){
       for(i=1;i<=nlstate;i++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         gp[i] = prlim[i][i];      }
        
       for(i=1; i<=npar; i++) /* Computes gradient */    cov[1]=1.;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(i=1;i<=nlstate;i++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         gm[i] = prlim[i][i];      newm=savm;
       /* Covariates have to be included here again */
       for(i=1;i<=nlstate;i++)      cov[2]=agefin;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      if(nagesqr==1)
     } /* End theta */        cov[3]= agefin*agefin;;
       for (k=1; k<=cptcovn;k++) {
     trgradg =matrix(1,nlstate,1,npar);        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
     for(j=1; j<=nlstate;j++)      }
       for(theta=1; theta <=npar; theta++)      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         trgradg[j][theta]=gradg[theta][j];      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];
       for (k=1; k<=cptcovprod;k++) /* Useless */
     for(i=1;i<=nlstate;i++)        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       varpl[i][(int)age] =0.;      
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     for(i=1;i<=nlstate;i++)      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
     fprintf(ficresvpl,"%.0f ",age );      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
     for(i=1; i<=nlstate;i++)      
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      savm=oldm;
     fprintf(ficresvpl,"\n");      oldm=newm;
     free_vector(gp,1,nlstate);      maxmax=0.;
     free_vector(gm,1,nlstate);      for(j=1;j<=nlstate;j++){
     free_matrix(gradg,1,npar,1,nlstate);        min=1.;
     free_matrix(trgradg,1,nlstate,1,npar);        max=0.;
   } /* End age */        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   free_vector(xp,1,npar);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   free_matrix(doldm,1,nlstate,1,npar);          prlim[i][j]= newm[i][j]/(1-sumnew);
   free_matrix(dnewm,1,nlstate,1,nlstate);          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
           max=FMAX(max,prlim[i][j]);
 }          min=FMIN(min,prlim[i][j]);
         }
 /************ Variance of one-step probabilities  ******************/        maxmin=max-min;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        maxmax=FMAX(maxmax,maxmin);
 {      } /* j loop */
   int i, j,  i1, k1, l1;      if(maxmax < ftolpl){
   int k2, l2, j1,  z1;        return prlim;
   int k=0,l, cptcode;      }
   int first=1;    } /* age loop */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    return prlim; /* should not reach here */
   double **dnewm,**doldm;  }
   double *xp;  
   double *gp, *gm;  /*************** transition probabilities ***************/ 
   double **gradg, **trgradg;  
   double **mu;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double age,agelim, cov[NCOVMAX];  {
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    /* According to parameters values stored in x and the covariate's values stored in cov,
   int theta;       computes the probability to be observed in state j being in state i by appying the
   char fileresprob[FILENAMELENGTH];       model to the ncovmodel covariates (including constant and age).
   char fileresprobcov[FILENAMELENGTH];       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   char fileresprobcor[FILENAMELENGTH];       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
        ncth covariate in the global vector x is given by the formula:
   double ***varpij;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   strcpy(fileresprob,"prob");       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   strcat(fileresprob,fileres);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {       Outputs ps[i][j] the probability to be observed in j being in j according to
     printf("Problem with resultfile: %s\n", fileresprob);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   }    */
   strcpy(fileresprobcov,"probcov");    double s1, lnpijopii;
   strcat(fileresprobcov,fileres);    /*double t34;*/
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    int i,j, nc, ii, jj;
     printf("Problem with resultfile: %s\n", fileresprobcov);  
   }      for(i=1; i<= nlstate; i++){
   strcpy(fileresprobcor,"probcor");        for(j=1; j<i;j++){
   strcat(fileresprobcor,fileres);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {            /*lnpijopii += param[i][j][nc]*cov[nc];*/
     printf("Problem with resultfile: %s\n", fileresprobcor);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   }  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
          }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        for(j=i+1; j<=nlstate+ndeath;j++){
   fprintf(ficresprob,"# Age");          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   fprintf(ficresprobcov,"# Age");            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   fprintf(ficresprobcov,"# Age");          }
           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=(nlstate+ndeath);j++){      
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      for(i=1; i<= nlstate; i++){
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        s1=0;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        for(j=1; j<i; j++){
     }            s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   fprintf(ficresprob,"\n");          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   fprintf(ficresprobcov,"\n");        }
   fprintf(ficresprobcor,"\n");        for(j=i+1; j<=nlstate+ndeath; j++){
   xp=vector(1,npar);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        }
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        ps[i][i]=1./(s1+1.);
   first=1;        /* Computing other pijs */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for(j=1; j<i; j++)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     exit(0);        for(j=i+1; j<=nlstate+ndeath; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   else{        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     fprintf(ficgp,"\n# Routine varprob");      } /* end i */
   }      
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     printf("Problem with html file: %s\n", optionfilehtm);        for(jj=1; jj<= nlstate+ndeath; jj++){
     exit(0);          ps[ii][jj]=0;
   }          ps[ii][ii]=1;
   else{        }
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");      }
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      
       /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   cov[1]=1;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   j=cptcoveff;      /*   } */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      /*   printf("\n "); */
   j1=0;      /* } */
   for(k1=1; k1<=1;k1++){      /* printf("\n ");printf("%lf ",cov[2]);*/
     for(i1=1; i1<=ncodemax[k1];i1++){      /*
     j1++;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
     if  (cptcovn>0) {      return ps;
       fprintf(ficresprob, "\n#********** Variable ");  }
       fprintf(ficresprobcov, "\n#********** Variable ");  
       fprintf(ficgp, "\n#********** Variable ");  /**************** Product of 2 matrices ******************/
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");  
       fprintf(ficresprobcor, "\n#********** Variable ");  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  {
       fprintf(ficresprob, "**********\n#");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       fprintf(ficresprobcov, "**********\n#");    /* in, b, out are matrice of pointers which should have been initialized 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       before: only the contents of out is modified. The function returns
       fprintf(ficgp, "**********\n#");       a pointer to pointers identical to out */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i, j, k;
       fprintf(ficgp, "**********\n#");    for(i=nrl; i<= nrh; i++)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(k=ncolol; k<=ncoloh; k++){
       fprintf(fichtm, "**********\n#");        out[i][k]=0.;
     }        for(j=ncl; j<=nch; j++)
              out[i][k] +=in[i][j]*b[j][k];
       for (age=bage; age<=fage; age ++){      }
         cov[2]=age;    return out;
         for (k=1; k<=cptcovn;k++) {  }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /************* Higher Matrix Product ***************/
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
          {
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    /* Computes the transition matrix starting at age 'age' over 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);       'nhstepm*hstepm*stepm' months (i.e. until
         gp=vector(1,(nlstate)*(nlstate+ndeath));       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         gm=vector(1,(nlstate)*(nlstate+ndeath));       nhstepm*hstepm matrices. 
           Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         for(theta=1; theta <=npar; theta++){       (typically every 2 years instead of every month which is too big 
           for(i=1; i<=npar; i++)       for the memory).
             xp[i] = x[i] + (i==theta ?delti[theta]:0);       Model is determined by parameters x and covariates have to be 
                 included manually here. 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
                 */
           k=0;  
           for(i=1; i<= (nlstate); i++){    int i, j, d, h, k;
             for(j=1; j<=(nlstate+ndeath);j++){    double **out, cov[NCOVMAX+1];
               k=k+1;    double **newm;
               gp[k]=pmmij[i][j];    double agexact;
             }  
           }    /* Hstepm could be zero and should return the unit matrix */
              for (i=1;i<=nlstate+ndeath;i++)
           for(i=1; i<=npar; i++)      for (j=1;j<=nlstate+ndeath;j++){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        oldm[i][j]=(i==j ? 1.0 : 0.0);
            po[i][j][0]=(i==j ? 1.0 : 0.0);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      }
           k=0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           for(i=1; i<=(nlstate); i++){    for(h=1; h <=nhstepm; h++){
             for(j=1; j<=(nlstate+ndeath);j++){      for(d=1; d <=hstepm; d++){
               k=k+1;        newm=savm;
               gm[k]=pmmij[i][j];        /* Covariates have to be included here again */
             }        cov[1]=1.;
           }        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
              cov[2]=agexact;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        if(nagesqr==1)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            cov[3]= agexact*agexact;
         }        for (k=1; k<=cptcovn;k++) 
           cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
           for(theta=1; theta <=npar; theta++)          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
             trgradg[j][theta]=gradg[theta][j];          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
                for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  
          
         pmij(pmmij,cov,ncovmodel,x,nlstate);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         k=0;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         for(i=1; i<=(nlstate); i++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(j=1; j<=(nlstate+ndeath);j++){        savm=oldm;
             k=k+1;        oldm=newm;
             mu[k][(int) age]=pmmij[i][j];      }
           }      for(i=1; i<=nlstate+ndeath; i++)
         }        for(j=1;j<=nlstate+ndeath;j++) {
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          po[i][j][h]=newm[i][j];
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
             varpij[i][j][(int)age] = doldm[i][j];        }
       /*printf("h=%d ",h);*/
         /*printf("\n%d ",(int)age);    } /* end h */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  /*     printf("\n H=%d \n",h); */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    return po;
      }*/  }
   
         fprintf(ficresprob,"\n%d ",(int)age);  #ifdef NLOPT
         fprintf(ficresprobcov,"\n%d ",(int)age);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
         fprintf(ficresprobcor,"\n%d ",(int)age);    double fret;
     double *xt;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    int j;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    myfunc_data *d2 = (myfunc_data *) pd;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  /* xt = (p1-1); */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    xt=vector(1,n); 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
         }  
         i=0;    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
         for (k=1; k<=(nlstate);k++){    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
           for (l=1; l<=(nlstate+ndeath);l++){    printf("Function = %.12lf ",fret);
             i=i++;    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    printf("\n");
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);   free_vector(xt,1,n);
             for (j=1; j<=i;j++){    return fret;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  #endif
             }  
           }  /*************** log-likelihood *************/
         }/* end of loop for state */  double func( double *x)
       } /* end of loop for age */  {
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    int i, ii, j, k, mi, d, kk;
       for (k1=1; k1<=(nlstate);k1++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         for (l1=1; l1<=(nlstate+ndeath);l1++){    double **out;
           if(l1==k1) continue;    double sw; /* Sum of weights */
           i=(k1-1)*(nlstate+ndeath)+l1;    double lli; /* Individual log likelihood */
           for (k2=1; k2<=(nlstate);k2++){    int s1, s2;
             for (l2=1; l2<=(nlstate+ndeath);l2++){    double bbh, survp;
               if(l2==k2) continue;    long ipmx;
               j=(k2-1)*(nlstate+ndeath)+l2;    double agexact;
               if(j<=i) continue;    /*extern weight */
               for (age=bage; age<=fage; age ++){    /* We are differentiating ll according to initial status */
                 if ((int)age %5==0){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    /*for(i=1;i<imx;i++) 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      printf(" %d\n",s[4][i]);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    */
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;    ++countcallfunc;
                   /* Computing eigen value of matrix of covariance */  
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    cov[1]=1.;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    for(k=1; k<=nlstate; k++) ll[k]=0.;
                   /* Eigen vectors */  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    if(mle==1){
                   v21=sqrt(1.-v11*v11);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   v12=-v21;        /* Computes the values of the ncovmodel covariates of the model
                   v22=v11;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
                   /*printf(fignu*/           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */           to be observed in j being in i according to the model.
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */         */
                   if(first==1){        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
                     first=0;            cov[2+nagesqr+k]=covar[Tvar[k]][i];
                     fprintf(ficgp,"\nset parametric;set nolabel");        }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);           has been calculated etc */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);        for(mi=1; mi<= wav[i]-1; mi++){
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);          for (ii=1;ii<=nlstate+ndeath;ii++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            for (j=1;j<=nlstate+ndeath;j++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          for(d=0; d<dh[mi][i]; d++){
                   }else{            newm=savm;
                     first=0;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            cov[2]=agexact;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            if(nagesqr==1)
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              cov[3]= agexact*agexact;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            for (kk=1; kk<=cptcovage;kk++) {
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
                   }/* if first */            }
                 } /* age mod 5 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               } /* end loop age */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);            savm=oldm;
               first=1;            oldm=newm;
             } /*l12 */          } /* end mult */
           } /* k12 */        
         } /*l1 */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }/* k1 */          /* But now since version 0.9 we anticipate for bias at large stepm.
     } /* loop covariates */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);           * (in months) between two waves is not a multiple of stepm, we rounded to 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));           * the nearest (and in case of equal distance, to the lowest) interval but now
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);           * probability in order to take into account the bias as a fraction of the way
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
   free_vector(xp,1,npar);           * For stepm=1 the results are the same as for previous versions of Imach.
   fclose(ficresprob);           * For stepm > 1 the results are less biased than in previous versions. 
   fclose(ficresprobcov);           */
   fclose(ficresprobcor);          s1=s[mw[mi][i]][i];
   fclose(ficgp);          s2=s[mw[mi+1][i]][i];
   fclose(fichtm);          bbh=(double)bh[mi][i]/(double)stepm; 
 }          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
            */
 /******************* Printing html file ***********/          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          if( s2 > nlstate){ 
                   int lastpass, int stepm, int weightopt, char model[],\            /* i.e. if s2 is a death state and if the date of death is known 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\               then the contribution to the likelihood is the probability to 
                   int popforecast, int estepm ,\               die between last step unit time and current  step unit time, 
                   double jprev1, double mprev1,double anprev1, \               which is also equal to probability to die before dh 
                   double jprev2, double mprev2,double anprev2){               minus probability to die before dh-stepm . 
   int jj1, k1, i1, cpt;               In version up to 0.92 likelihood was computed
   /*char optionfilehtm[FILENAMELENGTH];*/          as if date of death was unknown. Death was treated as any other
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {          health state: the date of the interview describes the actual state
     printf("Problem with %s \n",optionfilehtm), exit(0);          and not the date of a change in health state. The former idea was
   }          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n          introduced the exact date of death then we should have modified
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          the contribution of an exact death to the likelihood. This new
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          contribution is smaller and very dependent of the step unit
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          stepm. It is no more the probability to die between last interview
  - Life expectancies by age and initial health status (estepm=%2d months):          and month of death but the probability to survive from last
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          interview up to one month before death multiplied by the
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n          mortality artificially. The bad side is that we add another loop
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          which slows down the processing. The difference can be up to 10%
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          lower mortality.
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n            */
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          /* If, at the beginning of the maximization mostly, the
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n             cumulative probability or probability to be dead is
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n             constant (ie = 1) over time d, the difference is equal to
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);             0.  out[s1][3] = savm[s1][3]: probability, being at state
              s1 at precedent wave, to be dead a month before current
  if(popforecast==1) fprintf(fichtm,"\n             wave is equal to probability, being at state s1 at
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n             precedent wave, to be dead at mont of the current
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n             wave. Then the observed probability (that this person died)
         <br>",fileres,fileres,fileres,fileres);             is null according to current estimated parameter. In fact,
  else             it should be very low but not zero otherwise the log go to
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);             infinity.
 fprintf(fichtm," <li>Graphs</li><p>");          */
   /* #ifdef INFINITYORIGINAL */
  m=cptcoveff;  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /* #else */
   /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
  jj1=0;  /*          lli=log(mytinydouble); */
  for(k1=1; k1<=m;k1++){  /*        else */
    for(i1=1; i1<=ncodemax[k1];i1++){  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
      jj1++;  /* #endif */
      if (cptcovn > 0) {              lli=log(out[s1][s2] - savm[s1][s2]);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)          } else if  (s2==-2) {
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            for (j=1,survp=0. ; j<=nlstate; j++) 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      }            /*survp += out[s1][j]; */
      /* Pij */            lli= log(survp);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              
      /* Quasi-incidences */          else if  (s2==-4) { 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>            for (j=3,survp=0. ; j<=nlstate; j++)  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
        /* Stable prevalence in each health state */            lli= log(survp); 
        for(cpt=1; cpt<nlstate;cpt++){          } 
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          else if  (s2==-5) { 
        }            for (j=1,survp=0. ; j<=2; j++)  
     for(cpt=1; cpt<=nlstate;cpt++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            lli= log(survp); 
 interval) in state (%d): v%s%d%d.png <br>          } 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            
      }          else{
      for(cpt=1; cpt<=nlstate;cpt++) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          } 
      }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          /*if(lli ==000.0)*/
 health expectancies in states (1) and (2): e%s%d.png<br>          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          ipmx +=1;
    }          sw += weight[i];
  }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 fclose(fichtm);          /* if (lli < log(mytinydouble)){ */
 }          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
           /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
 /******************* Gnuplot file **************/          /* } */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        } /* end of wave */
       } /* end of individual */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    }  else if(mle==2){
   int ng;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
     printf("Problem with file %s",optionfilegnuplot);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 #ifdef windows              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficgp,"cd \"%s\" \n",pathc);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 #endif            }
 m=pow(2,cptcoveff);          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
  /* 1eme*/            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (cpt=1; cpt<= nlstate ; cpt ++) {            cov[2]=agexact;
    for (k1=1; k1<= m ; k1 ++) {            if(nagesqr==1)
               cov[3]= agexact*agexact;
 #ifdef windows            for (kk=1; kk<=cptcovage;kk++) {
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            }
 #endif            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 #ifdef unix                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            savm=oldm;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            oldm=newm;
 #endif          } /* end mult */
         
 for (i=1; i<= nlstate ; i ++) {          s1=s[mw[mi][i]][i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          s2=s[mw[mi+1][i]][i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          bbh=(double)bh[mi][i]/(double)stepm; 
 }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          ipmx +=1;
     for (i=1; i<= nlstate ; i ++) {          sw += weight[i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        } /* end of wave */
 }      } /* end of individual */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    }  else if(mle==3){  /* exponential inter-extrapolation */
      for (i=1; i<= nlstate ; i ++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(mi=1; mi<= wav[i]-1; mi++){
 }            for (ii=1;ii<=nlstate+ndeath;ii++)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            for (j=1;j<=nlstate+ndeath;j++){
 #ifdef unix              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 #endif            }
    }          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   /*2 eme*/            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[2]=agexact;
   for (k1=1; k1<= m ; k1 ++) {            if(nagesqr==1)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);              cov[3]= agexact*agexact;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            for (kk=1; kk<=cptcovage;kk++) {
                  cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
     for (i=1; i<= nlstate+1 ; i ++) {            }
       k=2*i;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (j=1; j<= nlstate+1 ; j ++) {            savm=oldm;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            oldm=newm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          } /* end mult */
 }          
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          s1=s[mw[mi][i]][i];
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          s2=s[mw[mi+1][i]][i];
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          bbh=(double)bh[mi][i]/(double)stepm; 
       for (j=1; j<= nlstate+1 ; j ++) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          ipmx +=1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");          sw += weight[i];
 }            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficgp,"\" t\"\" w l 0,");        } /* end of wave */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      } /* end of individual */
       for (j=1; j<= nlstate+1 ; j ++) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 }          for(mi=1; mi<= wav[i]-1; mi++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for (ii=1;ii<=nlstate+ndeath;ii++)
       else fprintf(ficgp,"\" t\"\" w l 0,");            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   /*3eme*/          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   for (k1=1; k1<= m ; k1 ++) {            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (cpt=1; cpt<= nlstate ; cpt ++) {            cov[2]=agexact;
       k=2+nlstate*(2*cpt-2);            if(nagesqr==1)
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              cov[3]= agexact*agexact;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            for (kk=1; kk<=cptcovage;kk++) {
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            savm=oldm;
             oldm=newm;
 */          } /* end mult */
       for (i=1; i< nlstate ; i ++) {        
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
       }          if( s2 > nlstate){ 
     }            lli=log(out[s1][s2] - savm[s1][s2]);
   }          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /* CV preval stat */          }
     for (k1=1; k1<= m ; k1 ++) {          ipmx +=1;
     for (cpt=1; cpt<nlstate ; cpt ++) {          sw += weight[i];
       k=3;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        } /* end of wave */
       } /* end of individual */
       for (i=1; i< nlstate ; i ++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         fprintf(ficgp,"+$%d",k+i+1);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       l=3+(nlstate+ndeath)*cpt;          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            for (j=1;j<=nlstate+ndeath;j++){
       for (i=1; i< nlstate ; i ++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         l=3+(nlstate+ndeath)*cpt;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficgp,"+$%d",l+i+1);            }
       }          for(d=0; d<dh[mi][i]; d++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              newm=savm;
     }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }              cov[2]=agexact;
              if(nagesqr==1)
   /* proba elementaires */              cov[3]= agexact*agexact;
    for(i=1,jk=1; i <=nlstate; i++){            for (kk=1; kk<=cptcovage;kk++) {
     for(k=1; k <=(nlstate+ndeath); k++){              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
       if (k != i) {            }
         for(j=1; j <=ncovmodel; j++){          
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           jk++;            savm=oldm;
           fprintf(ficgp,"\n");            oldm=newm;
         }          } /* end mult */
       }        
     }          s1=s[mw[mi][i]][i];
    }          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          ipmx +=1;
      for(jk=1; jk <=m; jk++) {          sw += weight[i];
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        if (ng==2)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        } /* end of wave */
        else      } /* end of individual */
          fprintf(ficgp,"\nset title \"Probability\"\n");    } /* End of if */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
        i=1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
        for(k2=1; k2<=nlstate; k2++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
          k3=i;    return -l;
          for(k=1; k<=(nlstate+ndeath); k++) {  }
            if (k != k2){  
              if(ng==2)  /*************** log-likelihood *************/
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  double funcone( double *x)
              else  {
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* Same as likeli but slower because of a lot of printf and if */
              ij=1;    int i, ii, j, k, mi, d, kk;
              for(j=3; j <=ncovmodel; j++) {    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double **out;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double lli; /* Individual log likelihood */
                  ij++;    double llt;
                }    int s1, s2;
                else    double bbh, survp;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double agexact;
              }    /*extern weight */
              fprintf(ficgp,")/(1");    /* We are differentiating ll according to initial status */
                  /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
              for(k1=1; k1 <=nlstate; k1++){      /*for(i=1;i<imx;i++) 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      printf(" %d\n",s[4][i]);
                ij=1;    */
                for(j=3; j <=ncovmodel; j++){    cov[1]=1.;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
                    ij++;  
                  }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                  else      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for(mi=1; mi<= wav[i]-1; mi++){
                }        for (ii=1;ii<=nlstate+ndeath;ii++)
                fprintf(ficgp,")");          for (j=1;j<=nlstate+ndeath;j++){
              }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          }
              i=i+ncovmodel;        for(d=0; d<dh[mi][i]; d++){
            }          newm=savm;
          }          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
        }          cov[2]=agexact;
      }          if(nagesqr==1)
    }            cov[3]= agexact*agexact;
    fclose(ficgp);          for (kk=1; kk<=cptcovage;kk++) {
 }  /* end gnuplot */            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           }
   
 /*************** Moving average **************/          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, cpt, cptcod;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
       for (i=1; i<=nlstate;i++)          savm=oldm;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          oldm=newm;
           mobaverage[(int)agedeb][i][cptcod]=0.;        } /* end mult */
            
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        s1=s[mw[mi][i]][i];
       for (i=1; i<=nlstate;i++){        s2=s[mw[mi+1][i]][i];
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        bbh=(double)bh[mi][i]/(double)stepm; 
           for (cpt=0;cpt<=4;cpt++){        /* bias is positive if real duration
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];         * is higher than the multiple of stepm and negative otherwise.
           }         */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         }          lli=log(out[s1][s2] - savm[s1][s2]);
       }        } else if  (s2==-2) {
     }          for (j=1,survp=0. ; j<=nlstate; j++) 
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 }          lli= log(survp);
         }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 /************** Forecasting ******************/        } else if(mle==2){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          } else if(mle==3){  /* exponential inter-extrapolation */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int *popage;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          lli=log(out[s1][s2]); /* Original formula */
   double *popeffectif,*popcount;        } else{  /* mle=0 back to 1 */
   double ***p3mat;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   char fileresf[FILENAMELENGTH];          /*lli=log(out[s1][s2]); */ /* Original formula */
         } /* End of if */
  agelim=AGESUP;        ipmx +=1;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          if(globpr){
            fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   strcpy(fileresf,"f");   %11.6f %11.6f %11.6f ", \
   strcat(fileresf,fileres);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   if((ficresf=fopen(fileresf,"w"))==NULL) {                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     printf("Problem with forecast resultfile: %s\n", fileresf);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   }            llt +=ll[k]*gipmx/gsw;
   printf("Computing forecasting: result on file '%s' \n", fileresf);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(ficresilk," %10.6f\n", -llt);
         }
   if (mobilav==1) {      } /* end of wave */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    } /* end of individual */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if(globpr==0){ /* First time we count the contributions and weights */
   if (stepm<=12) stepsize=1;      gipmx=ipmx;
        gsw=sw;
   agelim=AGESUP;    }
      return -l;
   hstepm=1;  }
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;  /*************** function likelione ***********/
   yp2=modf((yp1*12),&yp);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   mprojmean=yp;  {
   yp1=modf((yp2*30.5),&yp);    /* This routine should help understanding what is done with 
   jprojmean=yp;       the selection of individuals/waves and
   if(jprojmean==0) jprojmean=1;       to check the exact contribution to the likelihood.
   if(mprojmean==0) jprojmean=1;       Plotting could be done.
       */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    int k;
    
   for(cptcov=1;cptcov<=i2;cptcov++){    if(*globpri !=0){ /* Just counts and sums, no printings */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      strcpy(fileresilk,"ilk"); 
       k=k+1;      strcat(fileresilk,fileres);
       fprintf(ficresf,"\n#******");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(j=1;j<=cptcoveff;j++) {        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }      }
       fprintf(ficresf,"******\n");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresf,"# StartingAge FinalAge");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
            for(k=1; k<=nlstate; k++) 
              fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         fprintf(ficresf,"\n");    }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
     *fretone=(*funcone)(p);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    if(*globpri !=0){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      fclose(ficresilk);
           nhstepm = nhstepm/hstepm;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
                fflush(fichtm); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
           oldm=oldms;savm=savms;    return;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    }
          
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {  /*********** Maximum Likelihood Estimation ***************/
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
             for(j=1; j<=nlstate+ndeath;j++) {  {
               kk1=0.;kk2=0;    int i,j, iter=0;
               for(i=1; i<=nlstate;i++) {                  double **xi;
                 if (mobilav==1)    double fret;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double fretone; /* Only one call to likelihood */
                 else {    /*  char filerespow[FILENAMELENGTH];*/
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }  #ifdef NLOPT
                    int creturn;
               }    nlopt_opt opt;
               if (h==(int)(calagedate+12*cpt)){    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
                 fprintf(ficresf," %.3f", kk1);    double *lb;
                            double minf; /* the minimum objective value, upon return */
               }    double * p1; /* Shifted parameters from 0 instead of 1 */
             }    myfunc_data dinst, *d = &dinst;
           }  #endif
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  
       }    xi=matrix(1,npar,1,npar);
     }    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++)
                xi[i][j]=(i==j ? 1.0 : 0.0);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
   fclose(ficresf);    strcat(filerespow,fileres);
 }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 /************** Forecasting ******************/      printf("Problem with resultfile: %s\n", filerespow);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int *popage;    for (i=1;i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      for(j=1;j<=nlstate+ndeath;j++)
   double *popeffectif,*popcount;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double ***p3mat,***tabpop,***tabpopprev;    fprintf(ficrespow,"\n");
   char filerespop[FILENAMELENGTH];  #ifdef POWELL
     powell(p,xi,npar,ftol,&iter,&fret,func);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  #endif
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;  #ifdef NLOPT
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  #ifdef NEWUOA
      opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  #else
      opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
    #endif
   strcpy(filerespop,"pop");    lb=vector(0,npar-1);
   strcat(filerespop,fileres);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    nlopt_set_lower_bounds(opt, lb);
     printf("Problem with forecast resultfile: %s\n", filerespop);    nlopt_set_initial_step1(opt, 0.1);
   }    
   printf("Computing forecasting: result on file '%s' \n", filerespop);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
     d->function = func;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     nlopt_set_min_objective(opt, myfunc, d);
   if (mobilav==1) {    nlopt_set_xtol_rel(opt, ftol);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
     movingaverage(agedeb, fage, ageminpar, mobaverage);      printf("nlopt failed! %d\n",creturn); 
   }    }
     else {
   stepsize=(int) (stepm+YEARM-1)/YEARM;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
   if (stepm<=12) stepsize=1;      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
        iter=1; /* not equal */
   agelim=AGESUP;    }
      nlopt_destroy(opt);
   hstepm=1;  #endif
   hstepm=hstepm/stepm;    free_matrix(xi,1,npar,1,npar);
      fclose(ficrespow);
   if (popforecast==1) {    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     if((ficpop=fopen(popfile,"r"))==NULL) {    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       printf("Problem with population file : %s\n",popfile);exit(0);    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     }  
     popage=ivector(0,AGESUP);  }
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);  /**** Computes Hessian and covariance matrix ***/
      void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     i=1;    {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    double  **a,**y,*x,pd;
        double **hess;
     imx=i;    int i, j;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    int *indx;
   }  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   for(cptcov=1;cptcov<=i2;cptcov++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
       k=k+1;    void ludcmp(double **a, int npar, int *indx, double *d) ;
       fprintf(ficrespop,"\n#******");    double gompertz(double p[]);
       for(j=1;j<=cptcoveff;j++) {    hess=matrix(1,npar,1,npar);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    printf("\nCalculation of the hessian matrix. Wait...\n");
       fprintf(ficrespop,"******\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       fprintf(ficrespop,"# Age");    for (i=1;i<=npar;i++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      printf("%d",i);fflush(stdout);
       if (popforecast==1)  fprintf(ficrespop," [Population]");      fprintf(ficlog,"%d",i);fflush(ficlog);
           
       for (cpt=0; cpt<=0;cpt++) {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        
              /*  printf(" %f ",p[i]);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    
              for (i=1;i<=npar;i++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++)  {
           oldm=oldms;savm=savms;        if (j>i) { 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            printf(".%d%d",i,j);fflush(stdout);
                  fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           for (h=0; h<=nhstepm; h++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {          
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          hess[j][i]=hess[i][j];    
             }          /*printf(" %lf ",hess[i][j]);*/
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;      }
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    printf("\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficlog,"\n");
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                 }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
               }    
               if (h==(int)(calagedate+12*cpt)){    a=matrix(1,npar,1,npar);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    y=matrix(1,npar,1,npar);
                   /*fprintf(ficrespop," %.3f", kk1);    x=vector(1,npar);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    indx=ivector(1,npar);
               }    for (i=1;i<=npar;i++)
             }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
             for(i=1; i<=nlstate;i++){    ludcmp(a,npar,indx,&pd);
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){    for (j=1;j<=npar;j++) {
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      for (i=1;i<=npar;i++) x[i]=0;
                 }      x[j]=1;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      lubksb(a,npar,indx,x);
             }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\n#Hessian matrix#\n");
         }    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
        for (j=1;j<=npar;j++) { 
   /******/        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        printf("\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      fprintf(ficlog,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;  
              /* Recompute Inverse */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++)
           oldm=oldms;savm=savms;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      ludcmp(a,npar,indx,&pd);
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    /*  printf("\n#Hessian matrix recomputed#\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    for (j=1;j<=npar;j++) {
             for(j=1; j<=nlstate+ndeath;j++) {      for (i=1;i<=npar;i++) x[i]=0;
               kk1=0.;kk2=0;      x[j]=1;
               for(i=1; i<=nlstate;i++) {                    lubksb(a,npar,indx,x);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          for (i=1;i<=npar;i++){ 
               }        y[i][j]=x[i];
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        printf("%.3e ",y[i][j]);
             }        fprintf(ficlog,"%.3e ",y[i][j]);
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("\n");
         }      fprintf(ficlog,"\n");
       }    }
    }    */
   }  
      free_matrix(a,1,npar,1,npar);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
   if (popforecast==1) {    free_ivector(indx,1,npar);
     free_ivector(popage,0,AGESUP);    free_matrix(hess,1,npar,1,npar);
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);  
   }  }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*************** hessian matrix ****************/
   fclose(ficrespop);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 }  {
     int i;
 /***********************************************/    int l=1, lmax=20;
 /**************** Main Program *****************/    double k1,k2;
 /***********************************************/    double p2[MAXPARM+1]; /* identical to x */
     double res;
 int main(int argc, char *argv[])    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 {    double fx;
     int k=0,kmax=10;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double l1;
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   double fret;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   double **xi,tmp,delta;      l1=pow(10,l);
       delts=delt;
   double dum; /* Dummy variable */      for(k=1 ; k <kmax; k=k+1){
   double ***p3mat;        delt = delta*(l1*k);
   int *indx;        p2[theta]=x[theta] +delt;
   char line[MAXLINE], linepar[MAXLINE];        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        p2[theta]=x[theta]-delt;
   int firstobs=1, lastobs=10;        k2=func(p2)-fx;
   int sdeb, sfin; /* Status at beginning and end */        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int c,  h , cpt,l;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int ju,jl, mi;        
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  #ifdef DEBUGHESS
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int mobilav=0,popforecast=0;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int hstepm, nhstepm;  #endif
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double bage, fage, age, agelim, agebase;          k=kmax;
   double ftolpl=FTOL;        }
   double **prlim;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double *severity;          k=kmax; l=lmax*10;
   double ***param; /* Matrix of parameters */        }
   double  *p;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double **matcov; /* Matrix of covariance */          delts=delt;
   double ***delti3; /* Scale */        }
   double *delti; /* Scale */      }
   double ***eij, ***vareij;    }
   double **varpl; /* Variances of prevalence limits by age */    delti[theta]=delts;
   double *epj, vepp;    return res; 
   double kk1, kk2;    
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  }
    
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   char *alph[]={"a","a","b","c","d","e"}, str[4];  {
     int i;
     int l=1, lmax=20;
   char z[1]="c", occ;    double k1,k2,k3,k4,res,fx;
 #include <sys/time.h>    double p2[MAXPARM+1];
 #include <time.h>    int k;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
      fx=func(x);
   /* long total_usecs;    for (k=1; k<=2; k++) {
   struct timeval start_time, end_time;      for (i=1;i<=npar;i++) p2[i]=x[i];
        p2[thetai]=x[thetai]+delti[thetai]/k;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   getcwd(pathcd, size);      k1=func(p2)-fx;
     
   printf("\n%s",version);      p2[thetai]=x[thetai]+delti[thetai]/k;
   if(argc <=1){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     printf("\nEnter the parameter file name: ");      k2=func(p2)-fx;
     scanf("%s",pathtot);    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   else{      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     strcpy(pathtot,argv[1]);      k3=func(p2)-fx;
   }    
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      p2[thetai]=x[thetai]-delti[thetai]/k;
   /*cygwin_split_path(pathtot,path,optionfile);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      k4=func(p2)-fx;
   /* cutv(path,optionfile,pathtot,'\\');*/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   chdir(path);  #endif
   replace(pathc,path);    }
     return res;
 /*-------- arguments in the command line --------*/  }
   
   strcpy(fileres,"r");  /************** Inverse of matrix **************/
   strcat(fileres, optionfilefiname);  void ludcmp(double **a, int n, int *indx, double *d) 
   strcat(fileres,".txt");    /* Other files have txt extension */  { 
     int i,imax,j,k; 
   /*---------arguments file --------*/    double big,dum,sum,temp; 
     double *vv; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {   
     printf("Problem with optionfile %s\n",optionfile);    vv=vector(1,n); 
     goto end;    *d=1.0; 
   }    for (i=1;i<=n;i++) { 
       big=0.0; 
   strcpy(filereso,"o");      for (j=1;j<=n;j++) 
   strcat(filereso,fileres);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   if((ficparo=fopen(filereso,"w"))==NULL) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      vv[i]=1.0/big; 
   }    } 
     for (j=1;j<=n;j++) { 
   /* Reads comments: lines beginning with '#' */      for (i=1;i<j;i++) { 
   while((c=getc(ficpar))=='#' && c!= EOF){        sum=a[i][j]; 
     ungetc(c,ficpar);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     fgets(line, MAXLINE, ficpar);        a[i][j]=sum; 
     puts(line);      } 
     fputs(line,ficparo);      big=0.0; 
   }      for (i=j;i<=n;i++) { 
   ungetc(c,ficpar);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          sum -= a[i][k]*a[k][j]; 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        a[i][j]=sum; 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 while((c=getc(ficpar))=='#' && c!= EOF){          big=dum; 
     ungetc(c,ficpar);          imax=i; 
     fgets(line, MAXLINE, ficpar);        } 
     puts(line);      } 
     fputs(line,ficparo);      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
   ungetc(c,ficpar);          dum=a[imax][k]; 
            a[imax][k]=a[j][k]; 
              a[j][k]=dum; 
   covar=matrix(0,NCOVMAX,1,n);        } 
   cptcovn=0;        *d = -(*d); 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        vv[imax]=vv[j]; 
       } 
   ncovmodel=2+cptcovn;      indx[j]=imax; 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      if (a[j][j] == 0.0) a[j][j]=TINY; 
        if (j != n) { 
   /* Read guess parameters */        dum=1.0/(a[j][j]); 
   /* Reads comments: lines beginning with '#' */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   while((c=getc(ficpar))=='#' && c!= EOF){      } 
     ungetc(c,ficpar);    } 
     fgets(line, MAXLINE, ficpar);    free_vector(vv,1,n);  /* Doesn't work */
     puts(line);  ;
     fputs(line,ficparo);  } 
   }  
   ungetc(c,ficpar);  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int i,ii=0,ip,j; 
     for(i=1; i <=nlstate; i++)    double sum; 
     for(j=1; j <=nlstate+ndeath-1; j++){   
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for (i=1;i<=n;i++) { 
       fprintf(ficparo,"%1d%1d",i1,j1);      ip=indx[i]; 
       printf("%1d%1d",i,j);      sum=b[ip]; 
       for(k=1; k<=ncovmodel;k++){      b[ip]=b[i]; 
         fscanf(ficpar," %lf",&param[i][j][k]);      if (ii) 
         printf(" %lf",param[i][j][k]);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficparo," %lf",param[i][j][k]);      else if (sum) ii=i; 
       }      b[i]=sum; 
       fscanf(ficpar,"\n");    } 
       printf("\n");    for (i=n;i>=1;i--) { 
       fprintf(ficparo,"\n");      sum=b[i]; 
     }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        b[i]=sum/a[i][i]; 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    } 
   } 
   p=param[1][1];  
    void pstamp(FILE *fichier)
   /* Reads comments: lines beginning with '#' */  {
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /************ Frequencies ********************/
     fputs(line,ficparo);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   }  {  /* Some frequencies */
   ungetc(c,ficpar);    
     int i, m, jk, j1, bool, z1,j;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int first;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double ***freq; /* Frequencies */
   for(i=1; i <=nlstate; i++){    double *pp, **prop;
     for(j=1; j <=nlstate+ndeath-1; j++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    char fileresp[FILENAMELENGTH];
       printf("%1d%1d",i,j);    
       fprintf(ficparo,"%1d%1d",i1,j1);    pp=vector(1,nlstate);
       for(k=1; k<=ncovmodel;k++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    strcpy(fileresp,"p");
         printf(" %le",delti3[i][j][k]);    strcat(fileresp,fileres);
         fprintf(ficparo," %le",delti3[i][j][k]);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fscanf(ficpar,"\n");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       printf("\n");      exit(0);
       fprintf(ficparo,"\n");    }
     }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   }    j1=0;
   delti=delti3[1][1];    
      j=cptcoveff;
   /* Reads comments: lines beginning with '#' */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    first=1;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
     fputs(line,ficparo);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
   }    /*    j1++; */
   ungetc(c,ficpar);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
          /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   matcov=matrix(1,npar,1,npar);          scanf("%d", i);*/
   for(i=1; i <=npar; i++){        for (i=-5; i<=nlstate+ndeath; i++)  
     fscanf(ficpar,"%s",&str);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     printf("%s",str);            for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficparo,"%s",str);              freq[i][jk][m]=0;
     for(j=1; j <=i; j++){        
       fscanf(ficpar," %le",&matcov[i][j]);        for (i=1; i<=nlstate; i++)  
       printf(" %.5le",matcov[i][j]);          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficparo," %.5le",matcov[i][j]);            prop[i][m]=0;
     }        
     fscanf(ficpar,"\n");        dateintsum=0;
     printf("\n");        k2cpt=0;
     fprintf(ficparo,"\n");        for (i=1; i<=imx; i++) {
   }          bool=1;
   for(i=1; i <=npar; i++)          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     for(j=i+1;j<=npar;j++)            for (z1=1; z1<=cptcoveff; z1++)       
       matcov[i][j]=matcov[j][i];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                      /* Tests if the value of each of the covariates of i is equal to filter j1 */
   printf("\n");                bool=0;
                 /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
     /*-------- Rewriting paramater file ----------*/                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
      strcpy(rfileres,"r");    /* "Rparameterfile */                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/              } 
      strcat(rfileres,".");    /* */          }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */   
     if((ficres =fopen(rfileres,"w"))==NULL) {          if (bool==1){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            for(m=firstpass; m<=lastpass; m++){
     }              k2=anint[m][i]+(mint[m][i]/12.);
     fprintf(ficres,"#%s\n",version);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                    if(agev[m][i]==0) agev[m][i]=iagemax+1;
     /*-------- data file ----------*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     if((fic=fopen(datafile,"r"))==NULL)    {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       printf("Problem with datafile: %s\n", datafile);goto end;                if (m<lastpass) {
     }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     n= lastobs;                }
     severity = vector(1,maxwav);                
     outcome=imatrix(1,maxwav+1,1,n);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     num=ivector(1,n);                  dateintsum=dateintsum+k2;
     moisnais=vector(1,n);                  k2cpt++;
     annais=vector(1,n);                }
     moisdc=vector(1,n);                /*}*/
     andc=vector(1,n);            }
     agedc=vector(1,n);          }
     cod=ivector(1,n);        } /* end i */
     weight=vector(1,n);         
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     mint=matrix(1,maxwav,1,n);        pstamp(ficresp);
     anint=matrix(1,maxwav,1,n);        if  (cptcovn>0) {
     s=imatrix(1,maxwav+1,1,n);          fprintf(ficresp, "\n#********** Variable "); 
     adl=imatrix(1,maxwav+1,1,n);              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     tab=ivector(1,NCOVMAX);          fprintf(ficresp, "**********\n#");
     ncodemax=ivector(1,8);          fprintf(ficlog, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     i=1;          fprintf(ficlog, "**********\n#");
     while (fgets(line, MAXLINE, fic) != NULL)    {        }
       if ((i >= firstobs) && (i <=lastobs)) {        for(i=1; i<=nlstate;i++) 
                  fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for (j=maxwav;j>=1;j--){        fprintf(ficresp, "\n");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        
           strcpy(line,stra);        for(i=iagemin; i <= iagemax+3; i++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          if(i==iagemax+3){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"Total");
         }          }else{
                    if(first==1){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              first=0;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              printf("See log file for details...\n");
             }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"Age %d", i);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
           for(jk=1; jk <=nlstate ; jk++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for (j=ncovcol;j>=1;j--){              pp[jk] += freq[jk][m][i]; 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }          for(jk=1; jk <=nlstate ; jk++){
         num[i]=atol(stra);            for(m=-1, pos=0; m <=0 ; m++)
                      pos += freq[jk][m][i];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            if(pp[jk]>=1.e-10){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              if(first==1){
                 printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         i=i+1;              }
       }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }            }else{
     /* printf("ii=%d", ij);              if(first==1)
        scanf("%d",i);*/                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   imx=i-1; /* Number of individuals */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   /* for (i=1; i<=imx; i++){          }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          for(jk=1; jk <=nlstate ; jk++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     }*/              pp[jk] += freq[jk][m][i];
    /*  for (i=1; i<=imx; i++){          }       
      if (s[4][i]==9)  s[4][i]=-1;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            pos += pp[jk];
              posprop += prop[jk][i];
            }
   /* Calculation of the number of parameter from char model*/          for(jk=1; jk <=nlstate ; jk++){
   Tvar=ivector(1,15);            if(pos>=1.e-5){
   Tprod=ivector(1,15);              if(first==1)
   Tvaraff=ivector(1,15);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   Tvard=imatrix(1,15,1,2);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   Tage=ivector(1,15);                  }else{
                  if(first==1)
   if (strlen(model) >1){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     j=0, j1=0, k1=1, k2=1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     j=nbocc(model,'+');            }
     j1=nbocc(model,'*');            if( i <= iagemax){
     cptcovn=j+1;              if(pos>=1.e-5){
     cptcovprod=j1;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                    /*probs[i][jk][j1]= pp[jk]/pos;*/
     strcpy(modelsav,model);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              }
       printf("Error. Non available option model=%s ",model);              else
       goto end;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     }            }
              }
     for(i=(j+1); i>=1;i--){          
       cutv(stra,strb,modelsav,'+');          for(jk=-1; jk <=nlstate+ndeath; jk++)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            for(m=-1; m <=nlstate+ndeath; m++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              if(freq[jk][m][i] !=0 ) {
       /*scanf("%d",i);*/              if(first==1)
       if (strchr(strb,'*')) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         cutv(strd,strc,strb,'*');                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         if (strcmp(strc,"age")==0) {              }
           cptcovprod--;          if(i <= iagemax)
           cutv(strb,stre,strd,'V');            fprintf(ficresp,"\n");
           Tvar[i]=atoi(stre);          if(first==1)
           cptcovage++;            printf("Others in log...\n");
             Tage[cptcovage]=i;          fprintf(ficlog,"\n");
             /*printf("stre=%s ", stre);*/        }
         }        /*}*/
         else if (strcmp(strd,"age")==0) {    }
           cptcovprod--;    dateintmean=dateintsum/k2cpt; 
           cutv(strb,stre,strc,'V');   
           Tvar[i]=atoi(stre);    fclose(ficresp);
           cptcovage++;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           Tage[cptcovage]=i;    free_vector(pp,1,nlstate);
         }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         else {    /* End of Freq */
           cutv(strb,stre,strc,'V');  }
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V');  /************ Prevalence ********************/
           Tprod[k1]=i;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           Tvard[k1][1]=atoi(strc);  {  
           Tvard[k1][2]=atoi(stre);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           Tvar[cptcovn+k2]=Tvard[k1][1];       in each health status at the date of interview (if between dateprev1 and dateprev2).
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       We still use firstpass and lastpass as another selection.
           for (k=1; k<=lastobs;k++)    */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];   
           k1++;    int i, m, jk, j1, bool, z1,j;
           k2=k2+2;  
         }    double **prop;
       }    double posprop; 
       else {    double  y2; /* in fractional years */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    int iagemin, iagemax;
        /*  scanf("%d",i);*/    int first; /** to stop verbosity which is redirected to log file */
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);    iagemin= (int) agemin;
       }    iagemax= (int) agemax;
       strcpy(modelsav,stra);      /*pp=vector(1,nlstate);*/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         scanf("%d",i);*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     }    j1=0;
 }    
      /*j=cptcoveff;*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   printf("cptcovprod=%d ", cptcovprod);    
   scanf("%d ",i);*/    first=1;
     fclose(fic);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
       /*for(i1=1; i1<=ncodemax[k1];i1++){
     /*  if(mle==1){*/        j1++;*/
     if (weightopt != 1) { /* Maximisation without weights*/        
       for(i=1;i<=n;i++) weight[i]=1.0;        for (i=1; i<=nlstate; i++)  
     }          for(m=iagemin; m <= iagemax+3; m++)
     /*-calculation of age at interview from date of interview and age at death -*/            prop[i][m]=0.0;
     agev=matrix(1,maxwav,1,imx);       
         for (i=1; i<=imx; i++) { /* Each individual */
     for (i=1; i<=imx; i++) {          bool=1;
       for(m=2; (m<= maxwav); m++) {          if  (cptcovn>0) {
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            for (z1=1; z1<=cptcoveff; z1++) 
          anint[m][i]=9999;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
          s[m][i]=-1;                bool=0;
        }          } 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          if (bool==1) { 
       }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     for (i=1; i<=imx; i++)  {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(m=1; (m<= maxwav); m++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         if(s[m][i] >0){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           if (s[m][i] >= nlstate+1) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             if(agedc[i]>0)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               if(moisdc[i]!=99 && andc[i]!=9999)                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 agev[m][i]=agedc[i];                } 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/              }
            else {            } /* end selection of waves */
               if (andc[i]!=9999){          }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        }
               agev[m][i]=-1;        for(i=iagemin; i <= iagemax+3; i++){  
               }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             }            posprop += prop[jk][i]; 
           }          } 
           else if(s[m][i] !=9){ /* Should no more exist */          
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for(jk=1; jk <=nlstate ; jk++){     
             if(mint[m][i]==99 || anint[m][i]==9999)            if( i <=  iagemax){ 
               agev[m][i]=1;              if(posprop>=1.e-5){ 
             else if(agev[m][i] <agemin){                probs[i][jk][j1]= prop[jk][i]/posprop;
               agemin=agev[m][i];              } else{
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                if(first==1){
             }                  first=0;
             else if(agev[m][i] >agemax){                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
               agemax=agev[m][i];                }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              }
             }            } 
             /*agev[m][i]=anint[m][i]-annais[i];*/          }/* end jk */ 
             /*   agev[m][i] = age[i]+2*m;*/        }/* end i */ 
           }      /*} *//* end i1 */
           else { /* =9 */    } /* end j1 */
             agev[m][i]=1;    
             s[m][i]=-1;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           }    /*free_vector(pp,1,nlstate);*/
         }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         else /*= 0 Unknown */  }  /* End of prevalence */
           agev[m][i]=1;  
       }  /************* Waves Concatenation ***************/
      
     }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     for (i=1; i<=imx; i++)  {  {
       for(m=1; (m<= maxwav); m++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         if (s[m][i] > (nlstate+ndeath)) {       Death is a valid wave (if date is known).
           printf("Error: Wrong value in nlstate or ndeath\n");         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           goto end;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         }       and mw[mi+1][i]. dh depends on stepm.
       }       */
     }  
     int i, mi, m;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
     free_vector(severity,1,maxwav);    int first;
     free_imatrix(outcome,1,maxwav+1,1,n);    int j, k=0,jk, ju, jl;
     free_vector(moisnais,1,n);    double sum=0.;
     free_vector(annais,1,n);    first=0;
     /* free_matrix(mint,1,maxwav,1,n);    jmin=100000;
        free_matrix(anint,1,maxwav,1,n);*/    jmax=-1;
     free_vector(moisdc,1,n);    jmean=0.;
     free_vector(andc,1,n);    for(i=1; i<=imx; i++){
       mi=0;
          m=firstpass;
     wav=ivector(1,imx);      while(s[m][i] <= nlstate){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          mw[++mi][i]=m;
            if(m >=lastpass)
     /* Concatenates waves */          break;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        else
           m++;
       }/* end while */
       Tcode=ivector(1,100);      if (s[m][i] > nlstate){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        mi++;     /* Death is another wave */
       ncodemax[1]=1;        /* if(mi==0)  never been interviewed correctly before death */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);           /* Only death is a correct wave */
              mw[mi][i]=m;
    codtab=imatrix(1,100,1,10);      }
    h=0;  
    m=pow(2,cptcoveff);      wav[i]=mi;
        if(mi==0){
    for(k=1;k<=cptcoveff; k++){        nbwarn++;
      for(i=1; i <=(m/pow(2,k));i++){        if(first==0){
        for(j=1; j <= ncodemax[k]; j++){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          first=1;
            h++;        }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        if(first==1){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
          }        }
        }      } /* end mi==0 */
      }    } /* End individuals */
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    for(i=1; i<=imx; i++){
       codtab[1][2]=1;codtab[2][2]=2; */      for(mi=1; mi<wav[i];mi++){
    /* for(i=1; i <=m ;i++){        if (stepm <=0)
       for(k=1; k <=cptcovn; k++){          dh[mi][i]=1;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        else{
       }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       printf("\n");            if (agedc[i] < 2*AGESUP) {
       }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       scanf("%d",i);*/              if(j==0) j=1;  /* Survives at least one month after exam */
                  else if(j<0){
    /* Calculates basic frequencies. Computes observed prevalence at single age                nberr++;
        and prints on file fileres'p'. */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
                    printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                    fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              k=k+1;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if (j >= jmax){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                jmax=j;
                      ijmax=i;
     /* For Powell, parameters are in a vector p[] starting at p[1]              }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              if (j <= jmin){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                jmin=j;
                 ijmin=i;
     if(mle==1){              }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              sum=sum+j;
     }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                  /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     /*--------- results files --------------*/            }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          }
            else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    jk=1;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            k=k+1;
    for(i=1,jk=1; i <=nlstate; i++){            if (j >= jmax) {
      for(k=1; k <=(nlstate+ndeath); k++){              jmax=j;
        if (k != i)              ijmax=i;
          {            }
            printf("%d%d ",i,k);            else if (j <= jmin){
            fprintf(ficres,"%1d%1d ",i,k);              jmin=j;
            for(j=1; j <=ncovmodel; j++){              ijmin=i;
              printf("%f ",p[jk]);            }
              fprintf(ficres,"%f ",p[jk]);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
              jk++;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
            }            if(j<0){
            printf("\n");              nberr++;
            fprintf(ficres,"\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }            }
    }            sum=sum+j;
  if(mle==1){          }
     /* Computing hessian and covariance matrix */          jk= j/stepm;
     ftolhess=ftol; /* Usually correct */          jl= j -jk*stepm;
     hesscov(matcov, p, npar, delti, ftolhess, func);          ju= j -(jk+1)*stepm;
  }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            if(jl==0){
     printf("# Scales (for hessian or gradient estimation)\n");              dh[mi][i]=jk;
      for(i=1,jk=1; i <=nlstate; i++){              bh[mi][i]=0;
       for(j=1; j <=nlstate+ndeath; j++){            }else{ /* We want a negative bias in order to only have interpolation ie
         if (j!=i) {                    * to avoid the price of an extra matrix product in likelihood */
           fprintf(ficres,"%1d%1d",i,j);              dh[mi][i]=jk+1;
           printf("%1d%1d",i,j);              bh[mi][i]=ju;
           for(k=1; k<=ncovmodel;k++){            }
             printf(" %.5e",delti[jk]);          }else{
             fprintf(ficres," %.5e",delti[jk]);            if(jl <= -ju){
             jk++;              dh[mi][i]=jk;
           }              bh[mi][i]=jl;       /* bias is positive if real duration
           printf("\n");                                   * is higher than the multiple of stepm and negative otherwise.
           fprintf(ficres,"\n");                                   */
         }            }
       }            else{
      }              dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
     k=1;            }
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            if(dh[mi][i]==0){
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              dh[mi][i]=1; /* At least one step */
     for(i=1;i<=npar;i++){              bh[mi][i]=ju; /* At least one step */
       /*  if (k>nlstate) k=1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       i1=(i-1)/(ncovmodel*nlstate)+1;            }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          } /* end if mle */
       printf("%s%d%d",alph[k],i1,tab[i]);*/        }
       fprintf(ficres,"%3d",i);      } /* end wave */
       printf("%3d",i);    }
       for(j=1; j<=i;j++){    jmean=sum/k;
         fprintf(ficres," %.5e",matcov[i][j]);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         printf(" %.5e",matcov[i][j]);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       }   }
       fprintf(ficres,"\n");  
       printf("\n");  /*********** Tricode ****************************/
       k++;  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     }  {
        /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     while((c=getc(ficpar))=='#' && c!= EOF){    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       ungetc(c,ficpar);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
       fgets(line, MAXLINE, ficpar);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
       puts(line);     * nbcode[Tvar[j]][1]= 
       fputs(line,ficparo);    */
     }  
     ungetc(c,ficpar);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     estepm=0;    int modmaxcovj=0; /* Modality max of covariates j */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    int cptcode=0; /* Modality max of covariates j */
     if (estepm==0 || estepm < stepm) estepm=stepm;    int modmincovj=0; /* Modality min of covariates j */
     if (fage <= 2) {  
       bage = ageminpar;  
       fage = agemaxpar;    cptcoveff=0; 
     }   
        for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    /* Loop on covariates without age and products */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
        for (k=-1; k < maxncov; k++) Ndum[k]=0;
     while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
     ungetc(c,ficpar);                                 modality of this covariate Vj*/ 
     fgets(line, MAXLINE, ficpar);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
     puts(line);                                      * If product of Vn*Vm, still boolean *:
     fputs(line,ficparo);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   }                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   ungetc(c,ficpar);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                          modality of the nth covariate of individual i. */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        if (ij > modmaxcovj)
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          modmaxcovj=ij; 
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        else if (ij < modmincovj) 
                modmincovj=ij; 
   while((c=getc(ficpar))=='#' && c!= EOF){        if ((ij < -1) && (ij > NCOVMAX)){
     ungetc(c,ficpar);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     fgets(line, MAXLINE, ficpar);          exit(1);
     puts(line);        }else
     fputs(line,ficparo);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   }        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   ungetc(c,ficpar);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
          /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
    dateprev1=anprev1+mprev1/12.+jprev1/365.;           female is 1, then modmaxcovj=1.*/
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      } /* end for loop on individuals i */
       printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   fscanf(ficpar,"pop_based=%d\n",&popbased);      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   fprintf(ficparo,"pop_based=%d\n",popbased);        cptcode=modmaxcovj;
   fprintf(ficres,"pop_based=%d\n",popbased);        /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
       /*for (i=0; i<=cptcode; i++) {*/
   while((c=getc(ficpar))=='#' && c!= EOF){      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
     ungetc(c,ficpar);        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
     fgets(line, MAXLINE, ficpar);        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
     puts(line);        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
     fputs(line,ficparo);          if( k != -1){
   }            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
   ungetc(c,ficpar);                               covariate for which somebody answered excluding 
                                undefined. Usually 2: 0 and 1. */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                               covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
         }
 while((c=getc(ficpar))=='#' && c!= EOF){        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     ungetc(c,ficpar);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     fgets(line, MAXLINE, ficpar);      } /* Ndum[-1] number of undefined modalities */
     puts(line);  
     fputs(line,ficparo);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   }      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
   ungetc(c,ficpar);         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);         defining two dummy variables: variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
 /*------------ gnuplot -------------*/         nbcode[Tvar[j]][3]=2;
   strcpy(optionfilegnuplot,optionfilefiname);      */
   strcat(optionfilegnuplot,".gp");      ij=0; /* ij is similar to i but can jumps over null modalities */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 to 1*/
     printf("Problem with file %s",optionfilegnuplot);          if (Ndum[i] == 0) { /* If at least one individual responded to this modality k */
   }            break;
   fclose(ficgp);          }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          ij++;
 /*--------- index.htm --------*/          nbcode[Tvar[j]][ij]=i;  /* stores the original modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
           cptcode = ij; /* New max modality for covar j */
   strcpy(optionfilehtm,optionfile);      } /* end of loop on modality i=-1 to 1 or more */
   strcat(optionfilehtm,".htm");        
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
     printf("Problem with %s \n",optionfilehtm), exit(0);      /*  /\*recode from 0 *\/ */
   }      /*                               k is a modality. If we have model=V1+V1*sex  */
       /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      /*  } */
 \n      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
 Total number of observations=%d <br>\n      /*  if (ij > ncodemax[j]) { */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
 <hr  size=\"2\" color=\"#EC5E5E\">      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
  <ul><li>Parameter files<br>\n      /*    break; */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      /*  } */
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);      /*   }  /\* end of loop on modality k *\/ */
   fclose(fichtm);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
      
 /*------------ free_vector  -------------*/    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
  chdir(path);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
  free_ivector(wav,1,imx);     Ndum[ij]++; /* Might be supersed V1 + V1*age */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);   } 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);   ij=0;
  free_vector(agedc,1,n);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
  fclose(ficparo);     if((Ndum[i]!=0) && (i<=ncovcol)){
  fclose(ficres);       ij++;
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
   /*--------------- Prevalence limit --------------*/     }else{
           /* Tvaraff[ij]=0; */
   strcpy(filerespl,"pl");     }
   strcat(filerespl,fileres);   }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   /* ij--; */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;   cptcoveff=ij; /*Number of total covariates*/
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  }
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  /*********** Health Expectancies ****************/
   fprintf(ficrespl,"\n");  
    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Health expectancies, no variances */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, j, nhstepm, hstepm, h, nstepm;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int nhstepma, nstepma; /* Decreasing with age */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double age, agelim, hf;
   k=0;    double ***p3mat;
   agebase=ageminpar;    double eip;
   agelim=agemaxpar;  
   ftolpl=1.e-10;    pstamp(ficreseij);
   i1=cptcoveff;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   if (cptcovn < 1){i1=1;}    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
   for(cptcov=1;cptcov<=i1;cptcov++){      for(j=1; j<=nlstate;j++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficreseij," e%1d%1d ",i,j);
         k=k+1;      }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      fprintf(ficreseij," e%1d. ",i);
         fprintf(ficrespl,"\n#******");    }
         for(j=1;j<=cptcoveff;j++)    fprintf(ficreseij,"\n");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");    
            if(estepm < stepm){
         for (age=agebase; age<=agelim; age++){      printf ("Problem %d lower than %d\n",estepm, stepm);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
           fprintf(ficrespl,"%.0f",age );    else  hstepm=estepm;   
           for(i=1; i<=nlstate;i++)    /* We compute the life expectancy from trapezoids spaced every estepm months
           fprintf(ficrespl," %.5f", prlim[i][i]);     * This is mainly to measure the difference between two models: for example
           fprintf(ficrespl,"\n");     * if stepm=24 months pijx are given only every 2 years and by summing them
         }     * we are calculating an estimate of the Life Expectancy assuming a linear 
       }     * progression in between and thus overestimating or underestimating according
     }     * to the curvature of the survival function. If, for the same date, we 
   fclose(ficrespl);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   /*------------- h Pij x at various ages ------------*/     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    /* For example we decided to compute the life expectancy with the smallest unit */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   printf("Computing pij: result on file '%s' \n", filerespij);       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   stepsize=(int) (stepm+YEARM-1)/YEARM;       and note for a fixed period like estepm months */
   /*if (stepm<=24) stepsize=2;*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   agelim=AGESUP;       means that if the survival funtion is printed only each two years of age and if
   hstepm=stepsize*YEARM; /* Every year of age */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       results. So we changed our mind and took the option of the best precision.
      */
   k=0;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    agelim=AGESUP;
       k=k+1;    /* If stepm=6 months */
         fprintf(ficrespij,"\n#****** ");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         for(j=1;j<=cptcoveff;j++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
         fprintf(ficrespij,"******\n");  /* nhstepm age range expressed in number of stepm */
            nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* if (stepm >= YEARM) hstepm=1;*/
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for (age=bage; age<=fage; age ++){ 
           fprintf(ficrespij,"# Age");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           for(i=1; i<=nlstate;i++)      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             for(j=1; j<=nlstate+ndeath;j++)      /* if (stepm >= YEARM) hstepm=1;*/
               fprintf(ficrespij," %1d-%1d",i,j);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){      /* If stepm=6 months */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             for(i=1; i<=nlstate;i++)         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
               for(j=1; j<=nlstate+ndeath;j++)      
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
             fprintf(ficrespij,"\n");      
              }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
           fprintf(ficrespij,"\n");      printf("%d|",(int)age);fflush(stdout);
         }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     }      
   }      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fclose(ficrespij);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){          }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      fprintf(ficreseij,"%3.0f",age );
   }      for(i=1; i<=nlstate;i++){
   else{        eip=0;
     erreur=108;        for(j=1; j<=nlstate;j++){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          eip +=eij[i][j][(int)age];
   }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
          }
         fprintf(ficreseij,"%9.4f", eip );
   /*---------- Health expectancies and variances ------------*/      }
       fprintf(ficreseij,"\n");
   strcpy(filerest,"t");      
   strcat(filerest,fileres);    }
   if((ficrest=fopen(filerest,"w"))==NULL) {    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    printf("\n");
   }    fprintf(ficlog,"\n");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    
   }
   
   strcpy(filerese,"e");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {  {
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    /* Covariances of health expectancies eij and of total life expectancies according
   }     to initial status i, ei. .
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
  strcpy(fileresv,"v");    int nhstepma, nstepma; /* Decreasing with age */
   strcat(fileresv,fileres);    double age, agelim, hf;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double ***p3matp, ***p3matm, ***varhe;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double **dnewm,**doldm;
   }    double *xp, *xm;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double **gp, **gm;
   calagedate=-1;    double ***gradg, ***trgradg;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int theta;
   
   k=0;    double eip, vip;
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       k=k+1;    xp=vector(1,npar);
       fprintf(ficrest,"\n#****** ");    xm=vector(1,npar);
       for(j=1;j<=cptcoveff;j++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficrest,"******\n");    
     pstamp(ficresstdeij);
       fprintf(ficreseij,"\n#****** ");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresstdeij,"# Age");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i<=nlstate;i++){
       fprintf(ficreseij,"******\n");      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresvij,"\n#****** ");      fprintf(ficresstdeij," e%1d. ",i);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresstdeij,"\n");
       fprintf(ficresvij,"******\n");  
     pstamp(ficrescveij);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       oldm=oldms;savm=savms;    fprintf(ficrescveij,"# Age");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        cptj= (j-1)*nlstate+i;
       oldm=oldms;savm=savms;        for(i2=1; i2<=nlstate;i2++)
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          for(j2=1; j2<=nlstate;j2++){
                cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      }
       fprintf(ficrest,"\n");    fprintf(ficrescveij,"\n");
     
       epj=vector(1,nlstate+1);    if(estepm < stepm){
       for(age=bage; age <=fage ;age++){      printf ("Problem %d lower than %d\n",estepm, stepm);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
         if (popbased==1) {    else  hstepm=estepm;   
           for(i=1; i<=nlstate;i++)    /* We compute the life expectancy from trapezoids spaced every estepm months
             prlim[i][i]=probs[(int)age][i][k];     * This is mainly to measure the difference between two models: for example
         }     * if stepm=24 months pijx are given only every 2 years and by summing them
             * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficrest," %4.0f",age);     * progression in between and thus overestimating or underestimating according
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){     * to the curvature of the survival function. If, for the same date, we 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             epj[j] += prlim[i][i]*eij[i][j][(int)age];     * to compare the new estimate of Life expectancy with the same linear 
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/     * hypothesis. A more precise result, taking into account a more precise
           }     * curvature will be obtained if estepm is as small as stepm. */
           epj[nlstate+1] +=epj[j];  
         }    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for(i=1, vepp=0.;i <=nlstate;i++)       nhstepm is the number of hstepm from age to agelim 
           for(j=1;j <=nlstate;j++)       nstepm is the number of stepm from age to agelin. 
             vepp += vareij[i][j][(int)age];       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       and note for a fixed period like estepm months */
         for(j=1;j <=nlstate;j++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       survival function given by stepm (the optimization length). Unfortunately it
         }       means that if the survival funtion is printed only each two years of age and if
         fprintf(ficrest,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
     }    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    /* If stepm=6 months */
     free_vector(weight,1,n);    /* nhstepm age range expressed in number of stepm */
   fclose(ficreseij);    agelim=AGESUP;
   fclose(ficresvij);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   fclose(ficrest);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fclose(ficpar);    /* if (stepm >= YEARM) hstepm=1;*/
   free_vector(epj,1,nlstate+1);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      
   /*------- Variance limit prevalence------*/      p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(fileresvpl,"vpl");    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   strcat(fileresvpl,fileres);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     exit(0);  
   }    for (age=bage; age<=fage; age ++){ 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   k=0;      /* if (stepm >= YEARM) hstepm=1;*/
   for(cptcov=1;cptcov<=i1;cptcov++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;      /* If stepm=6 months */
       fprintf(ficresvpl,"\n#****** ");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       for(j=1;j<=cptcoveff;j++)         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       fprintf(ficresvpl,"******\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      /* Computing  Variances of health expectancies */
       oldm=oldms;savm=savms;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);         decrease memory allocation */
     }      for(theta=1; theta <=npar; theta++){
  }        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fclose(ficresvpl);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
   /*---------- End : free ----------------*/        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
      
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(j=1; j<= nlstate; j++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(i=1; i<=nlstate; i++){
              for(h=0; h<=nhstepm-1; h++){
                gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
         
   free_matrix(matcov,1,npar,1,npar);        for(ij=1; ij<= nlstate*nlstate; ij++)
   free_vector(delti,1,npar);          for(h=0; h<=nhstepm-1; h++){
   free_matrix(agev,1,maxwav,1,imx);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          }
       }/* End theta */
   fprintf(fichtm,"\n</body>");      
   fclose(fichtm);      
   fclose(ficgp);      for(h=0; h<=nhstepm-1; h++)
          for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   if(erreur >0)            trgradg[h][j][theta]=gradg[h][theta][j];
     printf("End of Imach with error or warning %d\n",erreur);      
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       for(ij=1;ij<=nlstate*nlstate;ij++)
          for(ji=1;ji<=nlstate*nlstate;ji++)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          varhe[ij][ji][(int)age] =0.;
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
  end:        for(k=0;k<=nhstepm-1;k++){
 #ifdef windows          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   /* chdir(pathcd);*/          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 #endif          for(ij=1;ij<=nlstate*nlstate;ij++)
  /*system("wgnuplot graph.plt");*/            for(ji=1;ji<=nlstate*nlstate;ji++)
  /*system("../gp37mgw/wgnuplot graph.plt");*/              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
  /*system("cd ../gp37mgw");*/        }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      }
  strcpy(plotcmd,GNUPLOTPROGRAM);  
  strcat(plotcmd," ");      /* Computing expectancies */
  strcat(plotcmd,optionfilegnuplot);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
  system(plotcmd);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
 #ifdef windows          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   while (z[0] != 'q') {            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     /* chdir(path); */            
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");          }
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);      fprintf(ficresstdeij,"%3.0f",age );
     else if (z[0] == 'q') exit(0);      for(i=1; i<=nlstate;i++){
   }        eip=0.;
 #endif        vip=0.;
 }        for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and T statistics are in the log file.<br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                else
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){ 
                  if(nagesqr==0)
                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
     
                  ij=1;
                  for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(0);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar=numlinepar+3; /* In general */
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /* codtab[12][3]=1; */
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       printf("Parameters and 95%% confidence intervals\n");
       fprintf(ficlog, "Parameters, T and confidence intervals\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f T=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-2*sqrt(matcov[jk][jk]),p[jk]+2*sqrt(matcov[jk][jk]));
               fprintf(ficlog,"%12.7f T=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-2*sqrt(matcov[jk][jk]),p[jk]+2*sqrt(matcov[jk][jk]));
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
           }
         }
       }
   
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.48  
changed lines
  Added in v.1.196


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>