Diff for /imach/src/imach.c between versions 1.48 and 1.84

version 1.48, 2002/06/10 13:12:49 version 1.84, 2003/06/13 21:44:43
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
   This program computes Healthy Life Expectancies from    place. It differs from routine "prevalence" which may be called
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    many times. Probs is memory consuming and must be used with
   first survey ("cross") where individuals from different ages are    parcimony.
   interviewed on their health status or degree of disability (in the    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.83  2003/06/10 13:39:11  lievre
   (if any) in individual health status.  Health expectancies are    *** empty log message ***
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.82  2003/06/05 15:57:20  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Add log in  imach.c and  fullversion number is now printed.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave  */
   conditional to be observed in state i at the first wave. Therefore  /*
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where     Interpolated Markov Chain
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Short summary of the programme:
   where the markup *Covariates have to be included here again* invites    
   you to do it.  More covariates you add, slower the    This program computes Healthy Life Expectancies from
   convergence.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
   The advantage of this computer programme, compared to a simple    interviewed on their health status or degree of disability (in the
   multinomial logistic model, is clear when the delay between waves is not    case of a health survey which is our main interest) -2- at least a
   identical for each individual. Also, if a individual missed an    second wave of interviews ("longitudinal") which measure each change
   intermediate interview, the information is lost, but taken into    (if any) in individual health status.  Health expectancies are
   account using an interpolation or extrapolation.      computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
   hPijx is the probability to be observed in state i at age x+h    Maximum Likelihood of the parameters involved in the model.  The
   conditional to the observed state i at age x. The delay 'h' can be    simplest model is the multinomial logistic model where pij is the
   split into an exact number (nh*stepm) of unobserved intermediate    probability to be observed in state j at the second wave
   states. This elementary transition (by month or quarter trimester,    conditional to be observed in state i at the first wave. Therefore
   semester or year) is model as a multinomial logistic.  The hPx    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   matrix is simply the matrix product of nh*stepm elementary matrices    'age' is age and 'sex' is a covariate. If you want to have a more
   and the contribution of each individual to the likelihood is simply    complex model than "constant and age", you should modify the program
   hPijx.    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
   Also this programme outputs the covariance matrix of the parameters but also    convergence.
   of the life expectancies. It also computes the prevalence limits.  
      The advantage of this computer programme, compared to a simple
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    multinomial logistic model, is clear when the delay between waves is not
            Institut national d'études démographiques, Paris.    identical for each individual. Also, if a individual missed an
   This software have been partly granted by Euro-REVES, a concerted action    intermediate interview, the information is lost, but taken into
   from the European Union.    account using an interpolation or extrapolation.  
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    hPijx is the probability to be observed in state i at age x+h
   can be accessed at http://euroreves.ined.fr/imach .    conditional to the observed state i at age x. The delay 'h' can be
   **********************************************************************/    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
 #include <math.h>    semester or year) is modelled as a multinomial logistic.  The hPx
 #include <stdio.h>    matrix is simply the matrix product of nh*stepm elementary matrices
 #include <stdlib.h>    and the contribution of each individual to the likelihood is simply
 #include <unistd.h>    hPijx.
   
 #define MAXLINE 256    Also this programme outputs the covariance matrix of the parameters but also
 #define GNUPLOTPROGRAM "gnuplot"    of the life expectancies. It also computes the stable prevalence. 
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    
 #define FILENAMELENGTH 80    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /*#define DEBUG*/             Institut national d'études démographiques, Paris.
 #define windows    This software have been partly granted by Euro-REVES, a concerted action
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    from the European Union.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    can be accessed at http://euroreves.ined.fr/imach .
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define NINTERVMAX 8    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    **********************************************************************/
 #define NCOVMAX 8 /* Maximum number of covariates */  /*
 #define MAXN 20000    main
 #define YEARM 12. /* Number of months per year */    read parameterfile
 #define AGESUP 130    read datafile
 #define AGEBASE 40    concatwav
 #ifdef windows    freqsummary
 #define DIRSEPARATOR '\\'    if (mle >= 1)
 #else      mlikeli
 #define DIRSEPARATOR '/'    print results files
 #endif    if mle==1 
        computes hessian
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    read end of parameter file: agemin, agemax, bage, fage, estepm
 int erreur; /* Error number */        begin-prev-date,...
 int nvar;    open gnuplot file
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    open html file
 int npar=NPARMAX;    stable prevalence
 int nlstate=2; /* Number of live states */     for age prevalim()
 int ndeath=1; /* Number of dead states */    h Pij x
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    variance of p varprob
 int popbased=0;    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 int *wav; /* Number of waves for this individuual 0 is possible */    Variance-covariance of DFLE
 int maxwav; /* Maxim number of waves */    prevalence()
 int jmin, jmax; /* min, max spacing between 2 waves */     movingaverage()
 int mle, weightopt;    varevsij() 
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    if popbased==1 varevsij(,popbased)
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    total life expectancies
 double jmean; /* Mean space between 2 waves */    Variance of stable prevalence
 double **oldm, **newm, **savm; /* Working pointers to matrices */   end
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  */
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;   
 char filerese[FILENAMELENGTH];  #include <math.h>
 FILE  *ficresvij;  #include <stdio.h>
 char fileresv[FILENAMELENGTH];  #include <stdlib.h>
 FILE  *ficresvpl;  #include <unistd.h>
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];  #define MAXLINE 256
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #define GNUPLOTPROGRAM "gnuplot"
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 80
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  /*#define DEBUG*/
   #define windows
 char filerest[FILENAMELENGTH];  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 char fileregp[FILENAMELENGTH];  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 char popfile[FILENAMELENGTH];  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define NR_END 1  #define NINTERVMAX 8
 #define FREE_ARG char*  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define FTOL 1.0e-10  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 #define NRANSI  #define MAXN 20000
 #define ITMAX 200  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 #define TOL 2.0e-4  #define AGEBASE 40
   #ifdef windows
 #define CGOLD 0.3819660  #define DIRSEPARATOR '\\'
 #define ZEPS 1.0e-10  #define ODIRSEPARATOR '/'
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #else
   #define DIRSEPARATOR '/'
 #define GOLD 1.618034  #define ODIRSEPARATOR '\\'
 #define GLIMIT 100.0  #endif
 #define TINY 1.0e-20  
   /* $Id$ */
 static double maxarg1,maxarg2;  /* $State$ */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
    char fullversion[]="$Revision$ $Date$"; 
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  int erreur; /* Error number */
 #define rint(a) floor(a+0.5)  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 static double sqrarg;  int npar=NPARMAX;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  int nlstate=2; /* Number of live states */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int imx;  int popbased=0;
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 int estepm;  int jmin, jmax; /* min, max spacing between 2 waves */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int m,nb;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double **pmmij, ***probs, ***mobaverage;  double jmean; /* Mean space between 2 waves */
 double dateintmean=0;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 double *weight;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 int **s; /* Status */  FILE *ficlog, *ficrespow;
 double *agedc, **covar, idx;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  FILE *ficresprobmorprev;
   FILE *fichtm; /* Html File */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  FILE *ficreseij;
 double ftolhess; /* Tolerance for computing hessian */  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 /**************** split *************************/  char fileresv[FILENAMELENGTH];
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
    char *s;                             /* pointer */  char title[MAXLINE];
    int  l1, l2;                         /* length counters */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  char filelog[FILENAMELENGTH]; /* Log file */
    if ( s == NULL ) {                   /* no directory, so use current */  char filerest[FILENAMELENGTH];
 #if     defined(__bsd__)                /* get current working directory */  char fileregp[FILENAMELENGTH];
       extern char       *getwd( );  char popfile[FILENAMELENGTH];
   
       if ( getwd( dirc ) == NULL ) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 #else  
       extern char       *getcwd( );  #define NR_END 1
   #define FREE_ARG char*
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define FTOL 1.0e-10
 #endif  
          return( GLOCK_ERROR_GETCWD );  #define NRANSI 
       }  #define ITMAX 200 
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */  #define TOL 2.0e-4 
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  #define CGOLD 0.3819660 
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define ZEPS 1.0e-10 
       strcpy( name, s );                /* save file name */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  #define GOLD 1.618034 
    }  #define GLIMIT 100.0 
    l1 = strlen( dirc );                 /* length of directory */  #define TINY 1.0e-20 
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  static double maxarg1,maxarg2;
 #else  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 #endif    
    s = strrchr( name, '.' );            /* find last / */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    s++;  #define rint(a) floor(a+0.5)
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  static double sqrarg;
    l2= strlen( s)+1;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
    strncpy( finame, name, l1-l2);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  int imx; 
 }  int stepm;
   /* Stepm, step in month: minimum step interpolation*/
   
 /******************************************/  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void replace(char *s, char*t)  
 {  int m,nb;
   int i;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   int lg=20;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   i=0;  double **pmmij, ***probs;
   lg=strlen(t);  double dateintmean=0;
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  double *weight;
     if (t[i]== '\\') s[i]='/';  int **s; /* Status */
   }  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 int nbocc(char *s, char occ)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {  double ftolhess; /* Tolerance for computing hessian */
   int i,j=0;  
   int lg=20;  /**************** split *************************/
   i=0;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   lg=strlen(s);  {
   for(i=0; i<= lg; i++) {    char  *ss;                            /* pointer */
   if  (s[i] == occ ) j++;    int   l1, l2;                         /* length counters */
   }  
   return j;    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 void cutv(char *u,char *v, char*t, char occ)    if ( ss == NULL ) {                   /* no directory, so use current */
 {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   int i,lg,j,p=0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   i=0;      /* get current working directory */
   for(j=0; j<=strlen(t)-1; j++) {      /*    extern  char* getcwd ( char *buf , int len);*/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   }        return( GLOCK_ERROR_GETCWD );
       }
   lg=strlen(t);      strcpy( name, path );               /* we've got it */
   for(j=0; j<p; j++) {    } else {                              /* strip direcotry from path */
     (u[j] = t[j]);      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
      u[p]='\0';      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
    for(j=0; j<= lg; j++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if (j>=(p+1))(v[j-p-1] = t[j]);      dirc[l1-l2] = 0;                    /* add zero */
   }    }
 }    l1 = strlen( dirc );                  /* length of directory */
   #ifdef windows
 /********************** nrerror ********************/    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
 void nrerror(char error_text[])    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 {  #endif
   fprintf(stderr,"ERREUR ...\n");    ss = strrchr( name, '.' );            /* find last / */
   fprintf(stderr,"%s\n",error_text);    ss++;
   exit(1);    strcpy(ext,ss);                       /* save extension */
 }    l1= strlen( name);
 /*********************** vector *******************/    l2= strlen(ss)+1;
 double *vector(int nl, int nh)    strncpy( finame, name, l1-l2);
 {    finame[l1-l2]= 0;
   double *v;    return( 0 );                          /* we're done */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  }
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  
 }  /******************************************/
   
 /************************ free vector ******************/  void replace(char *s, char*t)
 void free_vector(double*v, int nl, int nh)  {
 {    int i;
   free((FREE_ARG)(v+nl-NR_END));    int lg=20;
 }    i=0;
     lg=strlen(t);
 /************************ivector *******************************/    for(i=0; i<= lg; i++) {
 int *ivector(long nl,long nh)      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   int *v;    }
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  }
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /******************free ivector **************************/    int lg=20;
 void free_ivector(int *v, long nl, long nh)    i=0;
 {    lg=strlen(s);
   free((FREE_ARG)(v+nl-NR_END));    for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /******************* imatrix *******************************/    return j;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  void cutv(char *u,char *v, char*t, char occ)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  {
   int **m;    /* cuts string t into u and v where u is ended by char occ excluding it
         and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   /* allocate pointers to rows */       gives u="abcedf" and v="ghi2j" */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    int i,lg,j,p=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    i=0;
   m += NR_END;    for(j=0; j<=strlen(t)-1; j++) {
   m -= nrl;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      }
    
   /* allocate rows and set pointers to them */    lg=strlen(t);
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    for(j=0; j<p; j++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      (u[j] = t[j]);
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;       u[p]='\0';
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
   /* return pointer to array of pointers to rows */    }
   return m;  }
 }  
   /********************** nrerror ********************/
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  void nrerror(char error_text[])
       int **m;  {
       long nch,ncl,nrh,nrl;    fprintf(stderr,"ERREUR ...\n");
      /* free an int matrix allocated by imatrix() */    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  }
   free((FREE_ARG) (m+nrl-NR_END));  /*********************** vector *******************/
 }  double *vector(int nl, int nh)
   {
 /******************* matrix *******************************/    double *v;
 double **matrix(long nrl, long nrh, long ncl, long nch)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {    if (!v) nrerror("allocation failure in vector");
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    return v-nl+NR_END;
   double **m;  }
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /************************ free vector ******************/
   if (!m) nrerror("allocation failure 1 in matrix()");  void free_vector(double*v, int nl, int nh)
   m += NR_END;  {
   m -= nrl;    free((FREE_ARG)(v+nl-NR_END));
   }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /************************ivector *******************************/
   m[nrl] += NR_END;  char *cvector(long nl,long nh)
   m[nrl] -= ncl;  {
     char *v;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
   return m;    if (!v) nrerror("allocation failure in cvector");
 }    return v-nl+NR_END;
   }
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /******************free ivector **************************/
 {  void free_cvector(char *v, long nl, long nh)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /******************* ma3x *******************************/  /************************ivector *******************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int *ivector(long nl,long nh)
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    int *v;
   double ***m;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    return v-nl+NR_END;
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    free((FREE_ARG)(v+nl-NR_END));
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   /******************* imatrix *******************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  { 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   m[nrl][ncl] += NR_END;    int **m; 
   m[nrl][ncl] -= nll;    
   for (j=ncl+1; j<=nch; j++)    /* allocate pointers to rows */ 
     m[nrl][j]=m[nrl][j-1]+nlay;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      if (!m) nrerror("allocation failure 1 in matrix()"); 
   for (i=nrl+1; i<=nrh; i++) {    m += NR_END; 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    m -= nrl; 
     for (j=ncl+1; j<=nch; j++)    
       m[i][j]=m[i][j-1]+nlay;    
   }    /* allocate rows and set pointers to them */ 
   return m;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
 /*************************free ma3x ************************/    m[nrl] -= ncl; 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /* return pointer to array of pointers to rows */ 
   free((FREE_ARG)(m+nrl-NR_END));    return m; 
 }  } 
   
 /***************** f1dim *************************/  /****************** free_imatrix *************************/
 extern int ncom;  void free_imatrix(m,nrl,nrh,ncl,nch)
 extern double *pcom,*xicom;        int **m;
 extern double (*nrfunc)(double []);        long nch,ncl,nrh,nrl; 
         /* free an int matrix allocated by imatrix() */ 
 double f1dim(double x)  { 
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   int j;    free((FREE_ARG) (m+nrl-NR_END)); 
   double f;  } 
   double *xt;  
    /******************* matrix *******************************/
   xt=vector(1,ncom);  double **matrix(long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  {
   f=(*nrfunc)(xt);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   free_vector(xt,1,ncom);    double **m;
   return f;  
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*****************brent *************************/    m += NR_END;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    m -= nrl;
 {  
   int iter;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double a,b,d,etemp;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double fu,fv,fw,fx;    m[nrl] += NR_END;
   double ftemp;    m[nrl] -= ncl;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      return m;
   a=(ax < cx ? ax : cx);    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
   b=(ax > cx ? ax : cx);     */
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /*************************free matrix ************************/
     xm=0.5*(a+b);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     printf(".");fflush(stdout);    free((FREE_ARG)(m+nrl-NR_END));
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /******************* ma3x *******************************/
 #endif  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       return fx;    double ***m;
     }  
     ftemp=fu;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (fabs(e) > tol1) {    if (!m) nrerror("allocation failure 1 in matrix()");
       r=(x-w)*(fx-fv);    m += NR_END;
       q=(x-v)*(fx-fw);    m -= nrl;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (q > 0.0) p = -p;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       q=fabs(q);    m[nrl] += NR_END;
       etemp=e;    m[nrl] -= ncl;
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         d=p/q;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         u=x+d;    m[nrl][ncl] += NR_END;
         if (u-a < tol2 || b-u < tol2)    m[nrl][ncl] -= nll;
           d=SIGN(tol1,xm-x);    for (j=ncl+1; j<=nch; j++) 
       }      m[nrl][j]=m[nrl][j-1]+nlay;
     } else {    
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    for (i=nrl+1; i<=nrh; i++) {
     }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      for (j=ncl+1; j<=nch; j++) 
     fu=(*f)(u);        m[i][j]=m[i][j-1]+nlay;
     if (fu <= fx) {    }
       if (u >= x) a=x; else b=x;    return m; 
       SHFT(v,w,x,u)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         SHFT(fv,fw,fx,fu)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         } else {    */
           if (u < x) a=u; else b=u;  }
           if (fu <= fw || w == x) {  
             v=w;  /*************************free ma3x ************************/
             w=u;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
             fv=fw;  {
             fw=fu;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
           } else if (fu <= fv || v == x || v == w) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             v=u;    free((FREE_ARG)(m+nrl-NR_END));
             fv=fu;  }
           }  
         }  /***************** f1dim *************************/
   }  extern int ncom; 
   nrerror("Too many iterations in brent");  extern double *pcom,*xicom;
   *xmin=x;  extern double (*nrfunc)(double []); 
   return fx;   
 }  double f1dim(double x) 
   { 
 /****************** mnbrak ***********************/    int j; 
     double f;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    double *xt; 
             double (*func)(double))   
 {    xt=vector(1,ncom); 
   double ulim,u,r,q, dum;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double fu;    f=(*nrfunc)(xt); 
      free_vector(xt,1,ncom); 
   *fa=(*func)(*ax);    return f; 
   *fb=(*func)(*bx);  } 
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /*****************brent *************************/
       SHFT(dum,*fb,*fa,dum)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       }  { 
   *cx=(*bx)+GOLD*(*bx-*ax);    int iter; 
   *fc=(*func)(*cx);    double a,b,d,etemp;
   while (*fb > *fc) {    double fu,fv,fw,fx;
     r=(*bx-*ax)*(*fb-*fc);    double ftemp;
     q=(*bx-*cx)*(*fb-*fa);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    double e=0.0; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   
     ulim=(*bx)+GLIMIT*(*cx-*bx);    a=(ax < cx ? ax : cx); 
     if ((*bx-u)*(u-*cx) > 0.0) {    b=(ax > cx ? ax : cx); 
       fu=(*func)(u);    x=w=v=bx; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    fw=fv=fx=(*f)(x); 
       fu=(*func)(u);    for (iter=1;iter<=ITMAX;iter++) { 
       if (fu < *fc) {      xm=0.5*(a+b); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
           SHFT(*fb,*fc,fu,(*func)(u))      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           }      printf(".");fflush(stdout);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      fprintf(ficlog,".");fflush(ficlog);
       u=ulim;  #ifdef DEBUG
       fu=(*func)(u);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     } else {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       u=(*cx)+GOLD*(*cx-*bx);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       fu=(*func)(u);  #endif
     }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     SHFT(*ax,*bx,*cx,u)        *xmin=x; 
       SHFT(*fa,*fb,*fc,fu)        return fx; 
       }      } 
 }      ftemp=fu;
       if (fabs(e) > tol1) { 
 /*************** linmin ************************/        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
 int ncom;        p=(x-v)*q-(x-w)*r; 
 double *pcom,*xicom;        q=2.0*(q-r); 
 double (*nrfunc)(double []);        if (q > 0.0) p = -p; 
          q=fabs(q); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        etemp=e; 
 {        e=d; 
   double brent(double ax, double bx, double cx,        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                double (*f)(double), double tol, double *xmin);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double f1dim(double x);        else { 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,          d=p/q; 
               double *fc, double (*func)(double));          u=x+d; 
   int j;          if (u-a < tol2 || b-u < tol2) 
   double xx,xmin,bx,ax;            d=SIGN(tol1,xm-x); 
   double fx,fb,fa;        } 
        } else { 
   ncom=n;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   pcom=vector(1,n);      } 
   xicom=vector(1,n);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   nrfunc=func;      fu=(*f)(u); 
   for (j=1;j<=n;j++) {      if (fu <= fx) { 
     pcom[j]=p[j];        if (u >= x) a=x; else b=x; 
     xicom[j]=xi[j];        SHFT(v,w,x,u) 
   }          SHFT(fv,fw,fx,fu) 
   ax=0.0;          } else { 
   xx=1.0;            if (u < x) a=u; else b=u; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);            if (fu <= fw || w == x) { 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);              v=w; 
 #ifdef DEBUG              w=u; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);              fv=fw; 
 #endif              fw=fu; 
   for (j=1;j<=n;j++) {            } else if (fu <= fv || v == x || v == w) { 
     xi[j] *= xmin;              v=u; 
     p[j] += xi[j];              fv=fu; 
   }            } 
   free_vector(xicom,1,n);          } 
   free_vector(pcom,1,n);    } 
 }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
 /*************** powell ************************/    return fx; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  } 
             double (*func)(double []))  
 {  /****************** mnbrak ***********************/
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   int i,ibig,j;              double (*func)(double)) 
   double del,t,*pt,*ptt,*xit;  { 
   double fp,fptt;    double ulim,u,r,q, dum;
   double *xits;    double fu; 
   pt=vector(1,n);   
   ptt=vector(1,n);    *fa=(*func)(*ax); 
   xit=vector(1,n);    *fb=(*func)(*bx); 
   xits=vector(1,n);    if (*fb > *fa) { 
   *fret=(*func)(p);      SHFT(dum,*ax,*bx,dum) 
   for (j=1;j<=n;j++) pt[j]=p[j];        SHFT(dum,*fb,*fa,dum) 
   for (*iter=1;;++(*iter)) {        } 
     fp=(*fret);    *cx=(*bx)+GOLD*(*bx-*ax); 
     ibig=0;    *fc=(*func)(*cx); 
     del=0.0;    while (*fb > *fc) { 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      r=(*bx-*ax)*(*fb-*fc); 
     for (i=1;i<=n;i++)      q=(*bx-*cx)*(*fb-*fa); 
       printf(" %d %.12f",i, p[i]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     printf("\n");        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for (i=1;i<=n;i++) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      if ((*bx-u)*(u-*cx) > 0.0) { 
       fptt=(*fret);        fu=(*func)(u); 
 #ifdef DEBUG      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       printf("fret=%lf \n",*fret);        fu=(*func)(u); 
 #endif        if (fu < *fc) { 
       printf("%d",i);fflush(stdout);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       linmin(p,xit,n,fret,func);            SHFT(*fb,*fc,fu,(*func)(u)) 
       if (fabs(fptt-(*fret)) > del) {            } 
         del=fabs(fptt-(*fret));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         ibig=i;        u=ulim; 
       }        fu=(*func)(u); 
 #ifdef DEBUG      } else { 
       printf("%d %.12e",i,(*fret));        u=(*cx)+GOLD*(*cx-*bx); 
       for (j=1;j<=n;j++) {        fu=(*func)(u); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      } 
         printf(" x(%d)=%.12e",j,xit[j]);      SHFT(*ax,*bx,*cx,u) 
       }        SHFT(*fa,*fb,*fc,fu) 
       for(j=1;j<=n;j++)        } 
         printf(" p=%.12e",p[j]);  } 
       printf("\n");  
 #endif  /*************** linmin ************************/
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int ncom; 
 #ifdef DEBUG  double *pcom,*xicom;
       int k[2],l;  double (*nrfunc)(double []); 
       k[0]=1;   
       k[1]=-1;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       printf("Max: %.12e",(*func)(p));  { 
       for (j=1;j<=n;j++)    double brent(double ax, double bx, double cx, 
         printf(" %.12e",p[j]);                 double (*f)(double), double tol, double *xmin); 
       printf("\n");    double f1dim(double x); 
       for(l=0;l<=1;l++) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         for (j=1;j<=n;j++) {                double *fc, double (*func)(double)); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int j; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double xx,xmin,bx,ax; 
         }    double fx,fb,fa;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));   
       }    ncom=n; 
 #endif    pcom=vector(1,n); 
     xicom=vector(1,n); 
     nrfunc=func; 
       free_vector(xit,1,n);    for (j=1;j<=n;j++) { 
       free_vector(xits,1,n);      pcom[j]=p[j]; 
       free_vector(ptt,1,n);      xicom[j]=xi[j]; 
       free_vector(pt,1,n);    } 
       return;    ax=0.0; 
     }    xx=1.0; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (j=1;j<=n;j++) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       ptt[j]=2.0*p[j]-pt[j];  #ifdef DEBUG
       xit[j]=p[j]-pt[j];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       pt[j]=p[j];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }  #endif
     fptt=(*func)(ptt);    for (j=1;j<=n;j++) { 
     if (fptt < fp) {      xi[j] *= xmin; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      p[j] += xi[j]; 
       if (t < 0.0) {    } 
         linmin(p,xit,n,fret,func);    free_vector(xicom,1,n); 
         for (j=1;j<=n;j++) {    free_vector(pcom,1,n); 
           xi[j][ibig]=xi[j][n];  } 
           xi[j][n]=xit[j];  
         }  /*************** powell ************************/
 #ifdef DEBUG  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);              double (*func)(double [])) 
         for(j=1;j<=n;j++)  { 
           printf(" %.12e",xit[j]);    void linmin(double p[], double xi[], int n, double *fret, 
         printf("\n");                double (*func)(double [])); 
 #endif    int i,ibig,j; 
       }    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
   }    double *xits;
 }    pt=vector(1,n); 
     ptt=vector(1,n); 
 /**** Prevalence limit ****************/    xit=vector(1,n); 
     xits=vector(1,n); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    for (*iter=1;;++(*iter)) { 
      matrix by transitions matrix until convergence is reached */      fp=(*fret); 
       ibig=0; 
   int i, ii,j,k;      del=0.0; 
   double min, max, maxmin, maxmax,sumnew=0.;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   double **matprod2();      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   double **out, cov[NCOVMAX], **pmij();      fprintf(ficrespow,"%d %.12f",*iter,*fret);
   double **newm;      for (i=1;i<=n;i++) {
   double agefin, delaymax=50 ; /* Max number of years to converge */        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficrespow," %.12lf", p[i]);
     for (j=1;j<=nlstate+ndeath;j++){      }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      printf("\n");
     }      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");
    cov[1]=1.;      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fptt=(*fret); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #ifdef DEBUG
     newm=savm;        printf("fret=%lf \n",*fret);
     /* Covariates have to be included here again */        fprintf(ficlog,"fret=%lf \n",*fret);
      cov[2]=agefin;  #endif
          printf("%d",i);fflush(stdout);
       for (k=1; k<=cptcovn;k++) {        fprintf(ficlog,"%d",i);fflush(ficlog);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        linmin(p,xit,n,fret,func); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        if (fabs(fptt-(*fret)) > del) { 
       }          del=fabs(fptt-(*fret)); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          ibig=i; 
       for (k=1; k<=cptcovprod;k++)        } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        fprintf(ficlog,"%d %.12e",i,(*fret));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        for (j=1;j<=n;j++) {
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     savm=oldm;        }
     oldm=newm;        for(j=1;j<=n;j++) {
     maxmax=0.;          printf(" p=%.12e",p[j]);
     for(j=1;j<=nlstate;j++){          fprintf(ficlog," p=%.12e",p[j]);
       min=1.;        }
       max=0.;        printf("\n");
       for(i=1; i<=nlstate; i++) {        fprintf(ficlog,"\n");
         sumnew=0;  #endif
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      } 
         prlim[i][j]= newm[i][j]/(1-sumnew);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         max=FMAX(max,prlim[i][j]);  #ifdef DEBUG
         min=FMIN(min,prlim[i][j]);        int k[2],l;
       }        k[0]=1;
       maxmin=max-min;        k[1]=-1;
       maxmax=FMAX(maxmax,maxmin);        printf("Max: %.12e",(*func)(p));
     }        fprintf(ficlog,"Max: %.12e",(*func)(p));
     if(maxmax < ftolpl){        for (j=1;j<=n;j++) {
       return prlim;          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
   }        }
 }        printf("\n");
         fprintf(ficlog,"\n");
 /*************** transition probabilities ***************/        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double s1, s2;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /*double t34;*/          }
   int i,j,j1, nc, ii, jj;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(i=1; i<= nlstate; i++){        }
     for(j=1; j<i;j++){  #endif
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        free_vector(xit,1,n); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        free_vector(xits,1,n); 
       }        free_vector(ptt,1,n); 
       ps[i][j]=s2;        free_vector(pt,1,n); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        return; 
     }      } 
     for(j=i+1; j<=nlstate+ndeath;j++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      for (j=1;j<=n;j++) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        ptt[j]=2.0*p[j]-pt[j]; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        xit[j]=p[j]-pt[j]; 
       }        pt[j]=p[j]; 
       ps[i][j]=s2;      } 
     }      fptt=(*func)(ptt); 
   }      if (fptt < fp) { 
     /*ps[3][2]=1;*/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
   for(i=1; i<= nlstate; i++){          linmin(p,xit,n,fret,func); 
      s1=0;          for (j=1;j<=n;j++) { 
     for(j=1; j<i; j++)            xi[j][ibig]=xi[j][n]; 
       s1+=exp(ps[i][j]);            xi[j][n]=xit[j]; 
     for(j=i+1; j<=nlstate+ndeath; j++)          }
       s1+=exp(ps[i][j]);  #ifdef DEBUG
     ps[i][i]=1./(s1+1.);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(j=1; j<i; j++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       ps[i][j]= exp(ps[i][j])*ps[i][i];          for(j=1;j<=n;j++){
     for(j=i+1; j<=nlstate+ndeath; j++)            printf(" %.12e",xit[j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];            fprintf(ficlog," %.12e",xit[j]);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          }
   } /* end i */          printf("\n");
           fprintf(ficlog,"\n");
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #endif
     for(jj=1; jj<= nlstate+ndeath; jj++){        }
       ps[ii][jj]=0;      } 
       ps[ii][ii]=1;    } 
     }  } 
   }  
   /**** Prevalence limit (stable prevalence)  ****************/
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
      printf("%lf ",ps[ii][jj]);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
    }       matrix by transitions matrix until convergence is reached */
     printf("\n ");  
     }    int i, ii,j,k;
     printf("\n ");printf("%lf ",cov[2]);*/    double min, max, maxmin, maxmax,sumnew=0.;
 /*    double **matprod2();
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double **out, cov[NCOVMAX], **pmij();
   goto end;*/    double **newm;
     return ps;    double agefin, delaymax=50 ; /* Max number of years to converge */
 }  
     for (ii=1;ii<=nlstate+ndeath;ii++)
 /**************** Product of 2 matrices ******************/      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      }
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times     cov[1]=1.;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */   
   /* in, b, out are matrice of pointers which should have been initialized   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      before: only the contents of out is modified. The function returns    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
      a pointer to pointers identical to out */      newm=savm;
   long i, j, k;      /* Covariates have to be included here again */
   for(i=nrl; i<= nrh; i++)       cov[2]=agefin;
     for(k=ncolol; k<=ncoloh; k++)    
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        for (k=1; k<=cptcovn;k++) {
         out[i][k] +=in[i][j]*b[j][k];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   return out;        }
 }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /************* Higher Matrix Product ***************/  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      savm=oldm;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      oldm=newm;
      (typically every 2 years instead of every month which is too big).      maxmax=0.;
      Model is determined by parameters x and covariates have to be      for(j=1;j<=nlstate;j++){
      included manually here.        min=1.;
         max=0.;
      */        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   int i, j, d, h, k;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double **out, cov[NCOVMAX];          prlim[i][j]= newm[i][j]/(1-sumnew);
   double **newm;          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
   /* Hstepm could be zero and should return the unit matrix */        }
   for (i=1;i<=nlstate+ndeath;i++)        maxmin=max-min;
     for (j=1;j<=nlstate+ndeath;j++){        maxmax=FMAX(maxmax,maxmin);
       oldm[i][j]=(i==j ? 1.0 : 0.0);      }
       po[i][j][0]=(i==j ? 1.0 : 0.0);      if(maxmax < ftolpl){
     }        return prlim;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      }
   for(h=1; h <=nhstepm; h++){    }
     for(d=1; d <=hstepm; d++){  }
       newm=savm;  
       /* Covariates have to be included here again */  /*************** transition probabilities ***************/ 
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
       for (k=1; k<=cptcovage;k++)    double s1, s2;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /*double t34;*/
       for (k=1; k<=cptcovprod;k++)    int i,j,j1, nc, ii, jj;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
       for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          /*s2 += param[i][j][nc]*cov[nc];*/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       savm=oldm;        }
       oldm=newm;        ps[i][j]=s2;
     }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     for(i=1; i<=nlstate+ndeath; i++)      }
       for(j=1;j<=nlstate+ndeath;j++) {      for(j=i+1; j<=nlstate+ndeath;j++){
         po[i][j][h]=newm[i][j];        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          */          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       }        }
   } /* end h */        ps[i][j]=s2;
   return po;      }
 }    }
       /*ps[3][2]=1;*/
   
 /*************** log-likelihood *************/    for(i=1; i<= nlstate; i++){
 double func( double *x)       s1=0;
 {      for(j=1; j<i; j++)
   int i, ii, j, k, mi, d, kk;        s1+=exp(ps[i][j]);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for(j=i+1; j<=nlstate+ndeath; j++)
   double **out;        s1+=exp(ps[i][j]);
   double sw; /* Sum of weights */      ps[i][i]=1./(s1+1.);
   double lli; /* Individual log likelihood */      for(j=1; j<i; j++)
   long ipmx;        ps[i][j]= exp(ps[i][j])*ps[i][i];
   /*extern weight */      for(j=i+1; j<=nlstate+ndeath; j++)
   /* We are differentiating ll according to initial status */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   /*for(i=1;i<imx;i++)    } /* end i */
     printf(" %d\n",s[4][i]);  
   */    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   cov[1]=1.;      for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        ps[ii][ii]=1;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    }
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       for(d=0; d<dh[mi][i]; d++){      for(jj=1; jj<= nlstate+ndeath; jj++){
         newm=savm;       printf("%lf ",ps[ii][jj]);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;     }
         for (kk=1; kk<=cptcovage;kk++) {      printf("\n ");
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
         }      printf("\n ");printf("%lf ",cov[2]);*/
          /*
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for(i=1; i<= npar; i++) printf("%f ",x[i]);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    goto end;*/
         savm=oldm;      return ps;
         oldm=newm;  }
          
          /**************** Product of 2 matrices ******************/
       } /* end mult */  
        double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  {
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       ipmx +=1;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       sw += weight[i];    /* in, b, out are matrice of pointers which should have been initialized 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       before: only the contents of out is modified. The function returns
     } /* end of wave */       a pointer to pointers identical to out */
   } /* end of individual */    long i, j, k;
     for(i=nrl; i<= nrh; i++)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      for(k=ncolol; k<=ncoloh; k++)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          out[i][k] +=in[i][j]*b[j][k];
   return -l;  
 }    return out;
   }
   
 /*********** Maximum Likelihood Estimation ***************/  
   /************* Higher Matrix Product ***************/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   int i,j, iter;  {
   double **xi,*delti;    /* Computes the transition matrix starting at age 'age' over 
   double fret;       'nhstepm*hstepm*stepm' months (i.e. until
   xi=matrix(1,npar,1,npar);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for (i=1;i<=npar;i++)       nhstepm*hstepm matrices. 
     for (j=1;j<=npar;j++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       xi[i][j]=(i==j ? 1.0 : 0.0);       (typically every 2 years instead of every month which is too big 
   printf("Powell\n");       for the memory).
   powell(p,xi,npar,ftol,&iter,&fret,func);       Model is determined by parameters x and covariates have to be 
        included manually here. 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));       */
   
 }    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
 /**** Computes Hessian and covariance matrix ***/    double **newm;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {    /* Hstepm could be zero and should return the unit matrix */
   double  **a,**y,*x,pd;    for (i=1;i<=nlstate+ndeath;i++)
   double **hess;      for (j=1;j<=nlstate+ndeath;j++){
   int i, j,jk;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   int *indx;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   double hessii(double p[], double delta, int theta, double delti[]);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double hessij(double p[], double delti[], int i, int j);    for(h=1; h <=nhstepm; h++){
   void lubksb(double **a, int npar, int *indx, double b[]) ;      for(d=1; d <=hstepm; d++){
   void ludcmp(double **a, int npar, int *indx, double *d) ;        newm=savm;
         /* Covariates have to be included here again */
   hess=matrix(1,npar,1,npar);        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   printf("\nCalculation of the hessian matrix. Wait...\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (i=1;i<=npar;i++){        for (k=1; k<=cptcovage;k++)
     printf("%d",i);fflush(stdout);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     hess[i][i]=hessii(p,ftolhess,i,delti);        for (k=1; k<=cptcovprod;k++)
     /*printf(" %f ",p[i]);*/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     /*printf(" %lf ",hess[i][i]);*/  
   }  
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (i=1;i<=npar;i++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     for (j=1;j<=npar;j++)  {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       if (j>i) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         printf(".%d%d",i,j);fflush(stdout);        savm=oldm;
         hess[i][j]=hessij(p,delti,i,j);        oldm=newm;
         hess[j][i]=hess[i][j];          }
         /*printf(" %lf ",hess[i][j]);*/      for(i=1; i<=nlstate+ndeath; i++)
       }        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
   }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   printf("\n");           */
         }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    } /* end h */
      return po;
   a=matrix(1,npar,1,npar);  }
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  
   indx=ivector(1,npar);  /*************** log-likelihood *************/
   for (i=1;i<=npar;i++)  double func( double *x)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  {
   ludcmp(a,npar,indx,&pd);    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (j=1;j<=npar;j++) {    double **out;
     for (i=1;i<=npar;i++) x[i]=0;    double sw; /* Sum of weights */
     x[j]=1;    double lli; /* Individual log likelihood */
     lubksb(a,npar,indx,x);    int s1, s2;
     for (i=1;i<=npar;i++){    double bbh, survp;
       matcov[i][j]=x[i];    long ipmx;
     }    /*extern weight */
   }    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   printf("\n#Hessian matrix#\n");    /*for(i=1;i<imx;i++) 
   for (i=1;i<=npar;i++) {      printf(" %d\n",s[4][i]);
     for (j=1;j<=npar;j++) {    */
       printf("%.3e ",hess[i][j]);    cov[1]=1.;
     }  
     printf("\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
     if(mle==1){
   /* Recompute Inverse */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=1;i<=npar;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
   ludcmp(a,npar,indx,&pd);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   /*  printf("\n#Hessian matrix recomputed#\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1;j<=npar;j++) {            }
     for (i=1;i<=npar;i++) x[i]=0;          for(d=0; d<dh[mi][i]; d++){
     x[j]=1;            newm=savm;
     lubksb(a,npar,indx,x);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1;i<=npar;i++){            for (kk=1; kk<=cptcovage;kk++) {
       y[i][j]=x[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       printf("%.3e ",y[i][j]);            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   */            oldm=newm;
           } /* end mult */
   free_matrix(a,1,npar,1,npar);        
   free_matrix(y,1,npar,1,npar);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   free_vector(x,1,npar);          /* But now since version 0.9 we anticipate for bias and large stepm.
   free_ivector(indx,1,npar);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   free_matrix(hess,1,npar,1,npar);           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
 }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
 /*************** hessian matrix ****************/           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 double hessii( double x[], double delta, int theta, double delti[])           * -stepm/2 to stepm/2 .
 {           * For stepm=1 the results are the same as for previous versions of Imach.
   int i;           * For stepm > 1 the results are less biased than in previous versions. 
   int l=1, lmax=20;           */
   double k1,k2;          s1=s[mw[mi][i]][i];
   double p2[NPARMAX+1];          s2=s[mw[mi+1][i]][i];
   double res;          bbh=(double)bh[mi][i]/(double)stepm; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          /* bias is positive if real duration
   double fx;           * is higher than the multiple of stepm and negative otherwise.
   int k=0,kmax=10;           */
   double l1;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
   fx=func(x);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   for (i=1;i<=npar;i++) p2[i]=x[i];               to the likelihood is the probability to die between last step unit time and current 
   for(l=0 ; l <=lmax; l++){               step unit time, which is also the differences between probability to die before dh 
     l1=pow(10,l);               and probability to die before dh-stepm . 
     delts=delt;               In version up to 0.92 likelihood was computed
     for(k=1 ; k <kmax; k=k+1){          as if date of death was unknown. Death was treated as any other
       delt = delta*(l1*k);          health state: the date of the interview describes the actual state
       p2[theta]=x[theta] +delt;          and not the date of a change in health state. The former idea was
       k1=func(p2)-fx;          to consider that at each interview the state was recorded
       p2[theta]=x[theta]-delt;          (healthy, disable or death) and IMaCh was corrected; but when we
       k2=func(p2)-fx;          introduced the exact date of death then we should have modified
       /*res= (k1-2.0*fx+k2)/delt/delt; */          the contribution of an exact death to the likelihood. This new
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          contribution is smaller and very dependent of the step unit
                stepm. It is no more the probability to die between last interview
 #ifdef DEBUG          and month of death but the probability to survive from last
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          interview up to one month before death multiplied by the
 #endif          probability to die within a month. Thanks to Chris
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          Jackson for correcting this bug.  Former versions increased
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          mortality artificially. The bad side is that we add another loop
         k=kmax;          which slows down the processing. The difference can be up to 10%
       }          lower mortality.
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            */
         k=kmax; l=lmax*10.;            lli=log(out[s1][s2] - savm[s1][s2]);
       }          }else{
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         delts=delt;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       }          } 
     }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
   delti[theta]=delts;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   return res;          ipmx +=1;
            sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 double hessij( double x[], double delti[], int thetai,int thetaj)      } /* end of individual */
 {    }  else if(mle==2){
   int i;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int l=1, l1, lmax=20;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double k1,k2,k3,k4,res,fx;        for(mi=1; mi<= wav[i]-1; mi++){
   double p2[NPARMAX+1];          for (ii=1;ii<=nlstate+ndeath;ii++)
   int k;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fx=func(x);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=1; k<=2; k++) {            }
     for (i=1;i<=npar;i++) p2[i]=x[i];          for(d=0; d<=dh[mi][i]; d++){
     p2[thetai]=x[thetai]+delti[thetai]/k;            newm=savm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     k1=func(p2)-fx;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     p2[thetai]=x[thetai]+delti[thetai]/k;            }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     k2=func(p2)-fx;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
     p2[thetai]=x[thetai]-delti[thetai]/k;            oldm=newm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          } /* end mult */
     k3=func(p2)-fx;        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     p2[thetai]=x[thetai]-delti[thetai]/k;          /* But now since version 0.9 we anticipate for bias and large stepm.
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     k4=func(p2)-fx;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           * the nearest (and in case of equal distance, to the lowest) interval but now
 #ifdef DEBUG           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 #endif           * probability in order to take into account the bias as a fraction of the way
   }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   return res;           * -stepm/2 to stepm/2 .
 }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
 /************** Inverse of matrix **************/           */
 void ludcmp(double **a, int n, int *indx, double *d)          s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   int i,imax,j,k;          bbh=(double)bh[mi][i]/(double)stepm; 
   double big,dum,sum,temp;          /* bias is positive if real duration
   double *vv;           * is higher than the multiple of stepm and negative otherwise.
             */
   vv=vector(1,n);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   *d=1.0;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for (i=1;i<=n;i++) {          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     big=0.0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for (j=1;j<=n;j++)          /*if(lli ==000.0)*/
       if ((temp=fabs(a[i][j])) > big) big=temp;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          ipmx +=1;
     vv[i]=1.0/big;          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (j=1;j<=n;j++) {        } /* end of wave */
     for (i=1;i<j;i++) {      } /* end of individual */
       sum=a[i][j];    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       a[i][j]=sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     big=0.0;          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=j;i<=n;i++) {            for (j=1;j<=nlstate+ndeath;j++){
       sum=a[i][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<j;k++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         sum -= a[i][k]*a[k][j];            }
       a[i][j]=sum;          for(d=0; d<dh[mi][i]; d++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {            newm=savm;
         big=dum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         imax=i;            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
     if (j != imax) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (k=1;k<=n;k++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         dum=a[imax][k];            savm=oldm;
         a[imax][k]=a[j][k];            oldm=newm;
         a[j][k]=dum;          } /* end mult */
       }        
       *d = -(*d);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       vv[imax]=vv[j];          /* But now since version 0.9 we anticipate for bias and large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     indx[j]=imax;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     if (a[j][j] == 0.0) a[j][j]=TINY;           * the nearest (and in case of equal distance, to the lowest) interval but now
     if (j != n) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       dum=1.0/(a[j][j]);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           * probability in order to take into account the bias as a fraction of the way
     }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
   free_vector(vv,1,n);  /* Doesn't work */           * For stepm=1 the results are the same as for previous versions of Imach.
 ;           * For stepm > 1 the results are less biased than in previous versions. 
 }           */
           s1=s[mw[mi][i]][i];
 void lubksb(double **a, int n, int *indx, double b[])          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm; 
   int i,ii=0,ip,j;          /* bias is positive if real duration
   double sum;           * is higher than the multiple of stepm and negative otherwise.
             */
   for (i=1;i<=n;i++) {          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
     ip=indx[i];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     sum=b[ip];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     b[ip]=b[i];          /*if(lli ==000.0)*/
     if (ii)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          ipmx +=1;
     else if (sum) ii=i;          sw += weight[i];
     b[i]=sum;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   for (i=n;i>=1;i--) {      } /* end of individual */
     sum=b[i];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     b[i]=sum/a[i][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /************ Frequencies ********************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {  /* Some frequencies */            }
            for(d=0; d<dh[mi][i]; d++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            newm=savm;
   double ***freq; /* Frequencies */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *pp;            for (kk=1; kk<=cptcovage;kk++) {
   double pos, k2, dateintsum=0,k2cpt=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   FILE *ficresp;            }
   char fileresp[FILENAMELENGTH];          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   pp=vector(1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            savm=oldm;
   strcpy(fileresp,"p");            oldm=newm;
   strcat(fileresp,fileres);          } /* end mult */
   if((ficresp=fopen(fileresp,"w"))==NULL) {        
     printf("Problem with prevalence resultfile: %s\n", fileresp);          s1=s[mw[mi][i]][i];
     exit(0);          s2=s[mw[mi+1][i]][i];
   }          if( s2 > nlstate){ 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            lli=log(out[s1][s2] - savm[s1][s2]);
   j1=0;          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ipmx +=1;
            sw += weight[i];
   for(k1=1; k1<=j;k1++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i1=1; i1<=ncodemax[k1];i1++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       j1++;        } /* end of wave */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      } /* end of individual */
         scanf("%d", i);*/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=-1; i<=nlstate+ndeath; i++)        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=agemin; m <= agemax+3; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             freq[i][jk][m]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
       dateintsum=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       k2cpt=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=1; i<=imx; i++) {            }
         bool=1;          for(d=0; d<dh[mi][i]; d++){
         if  (cptcovn>0) {            newm=savm;
           for (z1=1; z1<=cptcoveff; z1++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (kk=1; kk<=cptcovage;kk++) {
               bool=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         if (bool==1) {          
           for(m=firstpass; m<=lastpass; m++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             k2=anint[m][i]+(mint[m][i]/12.);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            savm=oldm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            oldm=newm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          } /* end mult */
               if (m<lastpass) {        
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          s1=s[mw[mi][i]][i];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          s2=s[mw[mi+1][i]][i];
               }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                        ipmx +=1;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          sw += weight[i];
                 dateintsum=dateintsum+k2;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 k2cpt++;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
               }        } /* end of wave */
             }      } /* end of individual */
           }    } /* End of if */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
            l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /*exit(0); */
     return -l;
       if  (cptcovn>0) {  }
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");  /*********** Maximum Likelihood Estimation ***************/
       }  
       for(i=1; i<=nlstate;i++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  {
       fprintf(ficresp, "\n");    int i,j, iter;
          double **xi;
       for(i=(int)agemin; i <= (int)agemax+3; i++){    double fret;
         if(i==(int)agemax+3)    char filerespow[FILENAMELENGTH];
           printf("Total");    xi=matrix(1,npar,1,npar);
         else    for (i=1;i<=npar;i++)
           printf("Age %d", i);      for (j=1;j<=npar;j++)
         for(jk=1; jk <=nlstate ; jk++){        xi[i][j]=(i==j ? 1.0 : 0.0);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             pp[jk] += freq[jk][m][i];    strcpy(filerespow,"pow"); 
         }    strcat(filerespow,fileres);
         for(jk=1; jk <=nlstate ; jk++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           for(m=-1, pos=0; m <=0 ; m++)      printf("Problem with resultfile: %s\n", filerespow);
             pos += freq[jk][m][i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           if(pp[jk]>=1.e-10)    }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           else    for (i=1;i<=nlstate;i++)
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for(j=1;j<=nlstate+ndeath;j++)
         }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
         for(jk=1; jk <=nlstate ; jk++){    powell(p,xi,npar,ftol,&iter,&fret,func);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    fclose(ficrespow);
         }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(jk=1,pos=0; jk <=nlstate ; jk++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){  }
           if(pos>=1.e-5)  
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /**** Computes Hessian and covariance matrix ***/
           else  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  {
           if( i <= (int) agemax){    double  **a,**y,*x,pd;
             if(pos>=1.e-5){    double **hess;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    int i, j,jk;
               probs[i][jk][j1]= pp[jk]/pos;    int *indx;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }    double hessii(double p[], double delta, int theta, double delti[]);
             else    double hessij(double p[], double delti[], int i, int j);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    void lubksb(double **a, int npar, int *indx, double b[]) ;
           }    void ludcmp(double **a, int npar, int *indx, double *d) ;
         }  
            hess=matrix(1,npar,1,npar);
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)    printf("\nCalculation of the hessian matrix. Wait...\n");
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         if(i <= (int) agemax)    for (i=1;i<=npar;i++){
           fprintf(ficresp,"\n");      printf("%d",i);fflush(stdout);
         printf("\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
       }      hess[i][i]=hessii(p,ftolhess,i,delti);
     }      /*printf(" %f ",p[i]);*/
   }      /*printf(" %lf ",hess[i][i]);*/
   dateintmean=dateintsum/k2cpt;    }
      
   fclose(ficresp);    for (i=1;i<=npar;i++) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for (j=1;j<=npar;j++)  {
   free_vector(pp,1,nlstate);        if (j>i) { 
            printf(".%d%d",i,j);fflush(stdout);
   /* End of Freq */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 }          hess[i][j]=hessij(p,delti,i,j);
           hess[j][i]=hess[i][j];    
 /************ Prevalence ********************/          /*printf(" %lf ",hess[i][j]);*/
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        }
 {  /* Some frequencies */      }
      }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    printf("\n");
   double ***freq; /* Frequencies */    fprintf(ficlog,"\n");
   double *pp;  
   double pos, k2;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   pp=vector(1,nlstate);    
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    a=matrix(1,npar,1,npar);
      y=matrix(1,npar,1,npar);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    x=vector(1,npar);
   j1=0;    indx=ivector(1,npar);
      for (i=1;i<=npar;i++)
   j=cptcoveff;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    ludcmp(a,npar,indx,&pd);
    
   for(k1=1; k1<=j;k1++){    for (j=1;j<=npar;j++) {
     for(i1=1; i1<=ncodemax[k1];i1++){      for (i=1;i<=npar;i++) x[i]=0;
       j1++;      x[j]=1;
            lubksb(a,npar,indx,x);
       for (i=-1; i<=nlstate+ndeath; i++)        for (i=1;i<=npar;i++){ 
         for (jk=-1; jk<=nlstate+ndeath; jk++)          matcov[i][j]=x[i];
           for(m=agemin; m <= agemax+3; m++)      }
             freq[i][jk][m]=0;    }
        
       for (i=1; i<=imx; i++) {    printf("\n#Hessian matrix#\n");
         bool=1;    fprintf(ficlog,"\n#Hessian matrix#\n");
         if  (cptcovn>0) {    for (i=1;i<=npar;i++) { 
           for (z1=1; z1<=cptcoveff; z1++)      for (j=1;j<=npar;j++) { 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        printf("%.3e ",hess[i][j]);
               bool=0;        fprintf(ficlog,"%.3e ",hess[i][j]);
         }      }
         if (bool==1) {      printf("\n");
           for(m=firstpass; m<=lastpass; m++){      fprintf(ficlog,"\n");
             k2=anint[m][i]+(mint[m][i]/12.);    }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /* Recompute Inverse */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    for (i=1;i<=npar;i++)
               if (m<lastpass) {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
                 if (calagedate>0)    ludcmp(a,npar,indx,&pd);
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
                 else    /*  printf("\n#Hessian matrix recomputed#\n");
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    for (j=1;j<=npar;j++) {
               }      for (i=1;i<=npar;i++) x[i]=0;
             }      x[j]=1;
           }      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
       }        y[i][j]=x[i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){        printf("%.3e ",y[i][j]);
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"%.3e ",y[i][j]);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      }
             pp[jk] += freq[jk][m][i];      printf("\n");
         }      fprintf(ficlog,"\n");
         for(jk=1; jk <=nlstate ; jk++){    }
           for(m=-1, pos=0; m <=0 ; m++)    */
             pos += freq[jk][m][i];  
         }    free_matrix(a,1,npar,1,npar);
            free_matrix(y,1,npar,1,npar);
         for(jk=1; jk <=nlstate ; jk++){    free_vector(x,1,npar);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    free_ivector(indx,1,npar);
             pp[jk] += freq[jk][m][i];    free_matrix(hess,1,npar,1,npar);
         }  
          
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  }
          
         for(jk=1; jk <=nlstate ; jk++){      /*************** hessian matrix ****************/
           if( i <= (int) agemax){  double hessii( double x[], double delta, int theta, double delti[])
             if(pos>=1.e-5){  {
               probs[i][jk][j1]= pp[jk]/pos;    int i;
             }    int l=1, lmax=20;
           }    double k1,k2;
         }    double p2[NPARMAX+1];
            double res;
       }    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     }    double fx;
   }    int k=0,kmax=10;
     double l1;
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    fx=func(x);
   free_vector(pp,1,nlstate);    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
 }  /* End of Freq */      l1=pow(10,l);
       delts=delt;
 /************* Waves Concatenation ***************/      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        p2[theta]=x[theta] +delt;
 {        k1=func(p2)-fx;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        p2[theta]=x[theta]-delt;
      Death is a valid wave (if date is known).        k2=func(p2)-fx;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        /*res= (k1-2.0*fx+k2)/delt/delt; */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
      and mw[mi+1][i]. dh depends on stepm.        
      */  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int i, mi, m;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  #endif
      double sum=0., jmean=0.;*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int j, k=0,jk, ju, jl;          k=kmax;
   double sum=0.;        }
   jmin=1e+5;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   jmax=-1;          k=kmax; l=lmax*10.;
   jmean=0.;        }
   for(i=1; i<=imx; i++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     mi=0;          delts=delt;
     m=firstpass;        }
     while(s[m][i] <= nlstate){      }
       if(s[m][i]>=1)    }
         mw[++mi][i]=m;    delti[theta]=delts;
       if(m >=lastpass)    return res; 
         break;    
       else  }
         m++;  
     }/* end while */  double hessij( double x[], double delti[], int thetai,int thetaj)
     if (s[m][i] > nlstate){  {
       mi++;     /* Death is another wave */    int i;
       /* if(mi==0)  never been interviewed correctly before death */    int l=1, l1, lmax=20;
          /* Only death is a correct wave */    double k1,k2,k3,k4,res,fx;
       mw[mi][i]=m;    double p2[NPARMAX+1];
     }    int k;
   
     wav[i]=mi;    fx=func(x);
     if(mi==0)    for (k=1; k<=2; k++) {
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      for (i=1;i<=npar;i++) p2[i]=x[i];
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   for(i=1; i<=imx; i++){      k1=func(p2)-fx;
     for(mi=1; mi<wav[i];mi++){    
       if (stepm <=0)      p2[thetai]=x[thetai]+delti[thetai]/k;
         dh[mi][i]=1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       else{      k2=func(p2)-fx;
         if (s[mw[mi+1][i]][i] > nlstate) {    
           if (agedc[i] < 2*AGESUP) {      p2[thetai]=x[thetai]-delti[thetai]/k;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           if(j==0) j=1;  /* Survives at least one month after exam */      k3=func(p2)-fx;
           k=k+1;    
           if (j >= jmax) jmax=j;      p2[thetai]=x[thetai]-delti[thetai]/k;
           if (j <= jmin) jmin=j;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           sum=sum+j;      k4=func(p2)-fx;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           }  #ifdef DEBUG
         }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         else{      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  #endif
           k=k+1;    }
           if (j >= jmax) jmax=j;    return res;
           else if (j <= jmin)jmin=j;  }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           sum=sum+j;  /************** Inverse of matrix **************/
         }  void ludcmp(double **a, int n, int *indx, double *d) 
         jk= j/stepm;  { 
         jl= j -jk*stepm;    int i,imax,j,k; 
         ju= j -(jk+1)*stepm;    double big,dum,sum,temp; 
         if(jl <= -ju)    double *vv; 
           dh[mi][i]=jk;   
         else    vv=vector(1,n); 
           dh[mi][i]=jk+1;    *d=1.0; 
         if(dh[mi][i]==0)    for (i=1;i<=n;i++) { 
           dh[mi][i]=1; /* At least one step */      big=0.0; 
       }      for (j=1;j<=n;j++) 
     }        if ((temp=fabs(a[i][j])) > big) big=temp; 
   }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   jmean=sum/k;      vv[i]=1.0/big; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    } 
  }    for (j=1;j<=n;j++) { 
 /*********** Tricode ****************************/      for (i=1;i<j;i++) { 
 void tricode(int *Tvar, int **nbcode, int imx)        sum=a[i][j]; 
 {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int Ndum[20],ij=1, k, j, i;        a[i][j]=sum; 
   int cptcode=0;      } 
   cptcoveff=0;      big=0.0; 
        for (i=j;i<=n;i++) { 
   for (k=0; k<19; k++) Ndum[k]=0;        sum=a[i][j]; 
   for (k=1; k<=7; k++) ncodemax[k]=0;        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        a[i][j]=sum; 
     for (i=1; i<=imx; i++) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       ij=(int)(covar[Tvar[j]][i]);          big=dum; 
       Ndum[ij]++;          imax=i; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        } 
       if (ij > cptcode) cptcode=ij;      } 
     }      if (j != imax) { 
         for (k=1;k<=n;k++) { 
     for (i=0; i<=cptcode; i++) {          dum=a[imax][k]; 
       if(Ndum[i]!=0) ncodemax[j]++;          a[imax][k]=a[j][k]; 
     }          a[j][k]=dum; 
     ij=1;        } 
         *d = -(*d); 
         vv[imax]=vv[j]; 
     for (i=1; i<=ncodemax[j]; i++) {      } 
       for (k=0; k<=19; k++) {      indx[j]=imax; 
         if (Ndum[k] != 0) {      if (a[j][j] == 0.0) a[j][j]=TINY; 
           nbcode[Tvar[j]][ij]=k;      if (j != n) { 
                  dum=1.0/(a[j][j]); 
           ij++;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         }      } 
         if (ij > ncodemax[j]) break;    } 
       }      free_vector(vv,1,n);  /* Doesn't work */
     }  ;
   }    } 
   
  for (k=0; k<19; k++) Ndum[k]=0;  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
  for (i=1; i<=ncovmodel-2; i++) {    int i,ii=0,ip,j; 
       ij=Tvar[i];    double sum; 
       Ndum[ij]++;   
     }    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
  ij=1;      sum=b[ip]; 
  for (i=1; i<=10; i++) {      b[ip]=b[i]; 
    if((Ndum[i]!=0) && (i<=ncovcol)){      if (ii) 
      Tvaraff[ij]=i;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
      ij++;      else if (sum) ii=i; 
    }      b[i]=sum; 
  }    } 
      for (i=n;i>=1;i--) { 
     cptcoveff=ij-1;      sum=b[i]; 
 }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
 /*********** Health Expectancies ****************/    } 
   } 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
   /************ Frequencies ********************/
 {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   /* Health expectancies */  {  /* Some frequencies */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    
   double age, agelim, hf;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   double ***p3mat,***varhe;    int first;
   double **dnewm,**doldm;    double ***freq; /* Frequencies */
   double *xp;    double *pp, **prop;
   double **gp, **gm;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double ***gradg, ***trgradg;    FILE *ficresp;
   int theta;    char fileresp[FILENAMELENGTH];
     
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    pp=vector(1,nlstate);
   xp=vector(1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   dnewm=matrix(1,nlstate*2,1,npar);    strcpy(fileresp,"p");
   doldm=matrix(1,nlstate*2,1,nlstate*2);    strcat(fileresp,fileres);
      if((ficresp=fopen(fileresp,"w"))==NULL) {
   fprintf(ficreseij,"# Health expectancies\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficreseij,"# Age");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   for(i=1; i<=nlstate;i++)      exit(0);
     for(j=1; j<=nlstate;j++)    }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   fprintf(ficreseij,"\n");    j1=0;
     
   if(estepm < stepm){    j=cptcoveff;
     printf ("Problem %d lower than %d\n",estepm, stepm);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }  
   else  hstepm=estepm;      first=1;
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example    for(k1=1; k1<=j;k1++){
    * if stepm=24 months pijx are given only every 2 years and by summing them      for(i1=1; i1<=ncodemax[k1];i1++){
    * we are calculating an estimate of the Life Expectancy assuming a linear        j1++;
    * progression inbetween and thus overestimating or underestimating according        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
    * to the curvature of the survival function. If, for the same date, we          scanf("%d", i);*/
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        for (i=-1; i<=nlstate+ndeath; i++)  
    * to compare the new estimate of Life expectancy with the same linear          for (jk=-1; jk<=nlstate+ndeath; jk++)  
    * hypothesis. A more precise result, taking into account a more precise            for(m=iagemin; m <= iagemax+3; m++)
    * curvature will be obtained if estepm is as small as stepm. */              freq[i][jk][m]=0;
   
   /* For example we decided to compute the life expectancy with the smallest unit */      for (i=1; i<=nlstate; i++)  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for(m=iagemin; m <= iagemax+3; m++)
      nhstepm is the number of hstepm from age to agelim          prop[i][m]=0;
      nstepm is the number of stepm from age to agelin.        
      Look at hpijx to understand the reason of that which relies in memory size        dateintsum=0;
      and note for a fixed period like estepm months */        k2cpt=0;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for (i=1; i<=imx; i++) {
      survival function given by stepm (the optimization length). Unfortunately it          bool=1;
      means that if the survival funtion is printed only each two years of age and if          if  (cptcovn>0) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            for (z1=1; z1<=cptcoveff; z1++) 
      results. So we changed our mind and took the option of the best precision.              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   */                bool=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          }
           if (bool==1){
   agelim=AGESUP;            for(m=firstpass; m<=lastpass; m++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              k2=anint[m][i]+(mint[m][i]/12.);
     /* nhstepm age range expressed in number of stepm */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     /* if (stepm >= YEARM) hstepm=1;*/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                if (m<lastpass) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     gp=matrix(0,nhstepm,1,nlstate*2);                }
     gm=matrix(0,nhstepm,1,nlstate*2);                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored                  dateintsum=dateintsum+k2;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */                  k2cpt++;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                  }
                  /*}*/
             }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          }
         }
     /* Computing Variances of health expectancies */         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){        if  (cptcovn>0) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          fprintf(ficresp, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            fprintf(ficresp, "**********\n#");
          }
       cptj=0;        for(i=1; i<=nlstate;i++) 
       for(j=1; j<= nlstate; j++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for(i=1; i<=nlstate; i++){        fprintf(ficresp, "\n");
           cptj=cptj+1;        
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        for(i=iagemin; i <= iagemax+3; i++){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          if(i==iagemax+3){
           }            fprintf(ficlog,"Total");
         }          }else{
       }            if(first==1){
                    first=0;
                    printf("See log file for details...\n");
       for(i=1; i<=npar; i++)            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            fprintf(ficlog,"Age %d", i);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
                for(jk=1; jk <=nlstate ; jk++){
       cptj=0;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for(j=1; j<= nlstate; j++){              pp[jk] += freq[jk][m][i]; 
         for(i=1;i<=nlstate;i++){          }
           cptj=cptj+1;          for(jk=1; jk <=nlstate ; jk++){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            for(m=-1, pos=0; m <=0 ; m++)
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              pos += freq[jk][m][i];
           }            if(pp[jk]>=1.e-10){
         }              if(first==1){
       }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(j=1; j<= nlstate*2; j++)              }
         for(h=0; h<=nhstepm-1; h++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            }else{
         }              if(first==1)
      }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 /* End theta */            }
           }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
           for(jk=1; jk <=nlstate ; jk++){
      for(h=0; h<=nhstepm-1; h++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       for(j=1; j<=nlstate*2;j++)              pp[jk] += freq[jk][m][i];
         for(theta=1; theta <=npar; theta++)          }       
           trgradg[h][j][theta]=gradg[h][theta][j];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                  pos += pp[jk];
             posprop += prop[jk][i];
      for(i=1;i<=nlstate*2;i++)          }
       for(j=1;j<=nlstate*2;j++)          for(jk=1; jk <=nlstate ; jk++){
         varhe[i][j][(int)age] =0.;            if(pos>=1.e-5){
               if(first==1)
      printf("%d|",(int)age);fflush(stdout);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      for(h=0;h<=nhstepm-1;h++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(k=0;k<=nhstepm-1;k++){            }else{
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);              if(first==1)
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for(i=1;i<=nlstate*2;i++)              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           for(j=1;j<=nlstate*2;j++)            }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;            if( i <= iagemax){
       }              if(pos>=1.e-5){
     }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     /* Computing expectancies */                /*probs[i][jk][j1]= pp[jk]/pos;*/
     for(i=1; i<=nlstate;i++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for(j=1; j<=nlstate;j++)              }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              else
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                      }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          }
           
         }          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
     fprintf(ficreseij,"%3.0f",age );              if(freq[jk][m][i] !=0 ) {
     cptj=0;              if(first==1)
     for(i=1; i<=nlstate;i++)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(j=1; j<=nlstate;j++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         cptj++;              }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          if(i <= iagemax)
       }            fprintf(ficresp,"\n");
     fprintf(ficreseij,"\n");          if(first==1)
                printf("Others in log...\n");
     free_matrix(gm,0,nhstepm,1,nlstate*2);          fprintf(ficlog,"\n");
     free_matrix(gp,0,nhstepm,1,nlstate*2);        }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    dateintmean=dateintsum/k2cpt; 
   }   
   printf("\n");    fclose(ficresp);
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   free_vector(xp,1,npar);    free_vector(pp,1,nlstate);
   free_matrix(dnewm,1,nlstate*2,1,npar);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    /* End of Freq */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  }
 }  
   /************ Prevalence ********************/
 /************ Variance ******************/  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  {  
 {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   /* Variance of health expectancies */       in each health status at the date of interview (if between dateprev1 and dateprev2).
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/       We still use firstpass and lastpass as another selection.
   double **newm;    */
   double **dnewm,**doldm;   
   int i, j, nhstepm, hstepm, h, nstepm ;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   int k, cptcode;    double ***freq; /* Frequencies */
   double *xp;    double *pp, **prop;
   double **gp, **gm;    double pos,posprop; 
   double ***gradg, ***trgradg;    double  y2; /* in fractional years */
   double ***p3mat;    int iagemin, iagemax;
   double age,agelim, hf;  
   int theta;    iagemin= (int) agemin;
     iagemax= (int) agemax;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    /*pp=vector(1,nlstate);*/
   fprintf(ficresvij,"# Age");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   for(i=1; i<=nlstate;i++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     for(j=1; j<=nlstate;j++)    j1=0;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    
   fprintf(ficresvij,"\n");    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   xp=vector(1,npar);    
   dnewm=matrix(1,nlstate,1,npar);    for(k1=1; k1<=j;k1++){
   doldm=matrix(1,nlstate,1,nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
          j1++;
   if(estepm < stepm){        
     printf ("Problem %d lower than %d\n",estepm, stepm);        for (i=1; i<=nlstate; i++)  
   }          for(m=iagemin; m <= iagemax+3; m++)
   else  hstepm=estepm;              prop[i][m]=0.0;
   /* For example we decided to compute the life expectancy with the smallest unit */       
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for (i=1; i<=imx; i++) { /* Each individual */
      nhstepm is the number of hstepm from age to agelim          bool=1;
      nstepm is the number of stepm from age to agelin.          if  (cptcovn>0) {
      Look at hpijx to understand the reason of that which relies in memory size            for (z1=1; z1<=cptcoveff; z1++) 
      and note for a fixed period like k years */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                bool=0;
      survival function given by stepm (the optimization length). Unfortunately it          } 
      means that if the survival funtion is printed only each two years of age and if          if (bool==1) { 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      results. So we changed our mind and took the option of the best precision.              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   agelim = AGESUP;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);                  prop[s[m][i]][iagemax+3] += weight[i]; 
     gp=matrix(0,nhstepm,1,nlstate);                } 
     gm=matrix(0,nhstepm,1,nlstate);              }
             } /* end selection of waves */
     for(theta=1; theta <=npar; theta++){          }
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(i=iagemin; i <= iagemax+3; i++){  
       }          
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            posprop += prop[jk][i]; 
           } 
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){     
           prlim[i][i]=probs[(int)age][i][ij];            if( i <=  iagemax){ 
       }              if(posprop>=1.e-5){ 
                  probs[i][jk][j1]= prop[jk][i]/posprop;
       for(j=1; j<= nlstate; j++){              } 
         for(h=0; h<=nhstepm; h++){            } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          }/* end jk */ 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        }/* end i */ 
         }      } /* end i1 */
       }    } /* end k1 */
        
       for(i=1; i<=npar; i++) /* Computes gradient */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*free_vector(pp,1,nlstate);*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }  /* End of prevalence */
    
       if (popbased==1) {  /************* Waves Concatenation ***************/
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       }  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       for(j=1; j<= nlstate; j++){       Death is a valid wave (if date is known).
         for(h=0; h<=nhstepm; h++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];       and mw[mi+1][i]. dh depends on stepm.
         }       */
       }  
     int i, mi, m;
       for(j=1; j<= nlstate; j++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         for(h=0; h<=nhstepm; h++){       double sum=0., jmean=0.;*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int first;
         }    int j, k=0,jk, ju, jl;
     } /* End theta */    double sum=0.;
     first=0;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    jmin=1e+5;
     jmax=-1;
     for(h=0; h<=nhstepm; h++)    jmean=0.;
       for(j=1; j<=nlstate;j++)    for(i=1; i<=imx; i++){
         for(theta=1; theta <=npar; theta++)      mi=0;
           trgradg[h][j][theta]=gradg[h][theta][j];      m=firstpass;
       while(s[m][i] <= nlstate){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        if(s[m][i]>=1)
     for(i=1;i<=nlstate;i++)          mw[++mi][i]=m;
       for(j=1;j<=nlstate;j++)        if(m >=lastpass)
         vareij[i][j][(int)age] =0.;          break;
         else
     for(h=0;h<=nhstepm;h++){          m++;
       for(k=0;k<=nhstepm;k++){      }/* end while */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      if (s[m][i] > nlstate){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        mi++;     /* Death is another wave */
         for(i=1;i<=nlstate;i++)        /* if(mi==0)  never been interviewed correctly before death */
           for(j=1;j<=nlstate;j++)           /* Only death is a correct wave */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        mw[mi][i]=m;
       }      }
     }  
       wav[i]=mi;
     fprintf(ficresvij,"%.0f ",age );      if(mi==0){
     for(i=1; i<=nlstate;i++)        if(first==0){
       for(j=1; j<=nlstate;j++){          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          first=1;
       }        }
     fprintf(ficresvij,"\n");        if(first==1){
     free_matrix(gp,0,nhstepm,1,nlstate);          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
     free_matrix(gm,0,nhstepm,1,nlstate);        }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      } /* end mi==0 */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    } /* End individuals */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    for(i=1; i<=imx; i++){
        for(mi=1; mi<wav[i];mi++){
   free_vector(xp,1,npar);        if (stepm <=0)
   free_matrix(doldm,1,nlstate,1,npar);          dh[mi][i]=1;
   free_matrix(dnewm,1,nlstate,1,nlstate);        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 }            if (agedc[i] < 2*AGESUP) {
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 /************ Variance of prevlim ******************/            if(j==0) j=1;  /* Survives at least one month after exam */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            k=k+1;
 {            if (j >= jmax) jmax=j;
   /* Variance of prevalence limit */            if (j <= jmin) jmin=j;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            sum=sum+j;
   double **newm;            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   double **dnewm,**doldm;            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   int i, j, nhstepm, hstepm;            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   int k, cptcode;            }
   double *xp;          }
   double *gp, *gm;          else{
   double **gradg, **trgradg;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   double age,agelim;            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   int theta;            k=k+1;
                if (j >= jmax) jmax=j;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");            else if (j <= jmin)jmin=j;
   fprintf(ficresvpl,"# Age");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   for(i=1; i<=nlstate;i++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       fprintf(ficresvpl," %1d-%1d",i,i);            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficresvpl,"\n");            sum=sum+j;
           }
   xp=vector(1,npar);          jk= j/stepm;
   dnewm=matrix(1,nlstate,1,npar);          jl= j -jk*stepm;
   doldm=matrix(1,nlstate,1,nlstate);          ju= j -(jk+1)*stepm;
            if(mle <=1){ 
   hstepm=1*YEARM; /* Every year of age */            if(jl==0){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              dh[mi][i]=jk;
   agelim = AGESUP;              bh[mi][i]=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }else{ /* We want a negative bias in order to only have interpolation ie
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    * at the price of an extra matrix product in likelihood */
     if (stepm >= YEARM) hstepm=1;              dh[mi][i]=jk+1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              bh[mi][i]=ju;
     gradg=matrix(1,npar,1,nlstate);            }
     gp=vector(1,nlstate);          }else{
     gm=vector(1,nlstate);            if(jl <= -ju){
               dh[mi][i]=jk;
     for(theta=1; theta <=npar; theta++){              bh[mi][i]=jl;       /* bias is positive if real duration
       for(i=1; i<=npar; i++){ /* Computes gradient */                                   * is higher than the multiple of stepm and negative otherwise.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                                   */
       }            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            else{
       for(i=1;i<=nlstate;i++)              dh[mi][i]=jk+1;
         gp[i] = prlim[i][i];              bh[mi][i]=ju;
                }
       for(i=1; i<=npar; i++) /* Computes gradient */            if(dh[mi][i]==0){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              dh[mi][i]=1; /* At least one step */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              bh[mi][i]=ju; /* At least one step */
       for(i=1;i<=nlstate;i++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         gm[i] = prlim[i][i];            }
           }
       for(i=1;i<=nlstate;i++)        } /* end if mle */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      } /* end wave */
     } /* End theta */    }
     jmean=sum/k;
     trgradg =matrix(1,nlstate,1,npar);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for(j=1; j<=nlstate;j++)   }
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] =0.;    
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    int cptcode=0;
     for(i=1;i<=nlstate;i++)    cptcoveff=0; 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
     fprintf(ficresvpl,"%.0f ",age );    for (k=1; k<=7; k++) ncodemax[k]=0;
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     fprintf(ficresvpl,"\n");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     free_vector(gp,1,nlstate);                                 modality*/ 
     free_vector(gm,1,nlstate);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     free_matrix(gradg,1,npar,1,nlstate);        Ndum[ij]++; /*store the modality */
     free_matrix(trgradg,1,nlstate,1,npar);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   } /* End age */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
   free_vector(xp,1,npar);                                         female is 1, then  cptcode=1.*/
   free_matrix(doldm,1,nlstate,1,npar);      }
   free_matrix(dnewm,1,nlstate,1,nlstate);  
       for (i=0; i<=cptcode; i++) {
 }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      ij=1; 
 {      for (i=1; i<=ncodemax[j]; i++) {
   int i, j,  i1, k1, l1;        for (k=0; k<= maxncov; k++) {
   int k2, l2, j1,  z1;          if (Ndum[k] != 0) {
   int k=0,l, cptcode;            nbcode[Tvar[j]][ij]=k; 
   int first=1;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;            
   double **dnewm,**doldm;            ij++;
   double *xp;          }
   double *gp, *gm;          if (ij > ncodemax[j]) break; 
   double **gradg, **trgradg;        }  
   double **mu;      } 
   double age,agelim, cov[NCOVMAX];    }  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  
   int theta;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];   for (i=1; i<=ncovmodel-2; i++) { 
   char fileresprobcor[FILENAMELENGTH];     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
   double ***varpij;     Ndum[ij]++;
    }
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);   ij=1;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {   for (i=1; i<= maxncov; i++) {
     printf("Problem with resultfile: %s\n", fileresprob);     if((Ndum[i]!=0) && (i<=ncovcol)){
   }       Tvaraff[ij]=i; /*For printing */
   strcpy(fileresprobcov,"probcov");       ij++;
   strcat(fileresprobcov,fileres);     }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {   }
     printf("Problem with resultfile: %s\n", fileresprobcov);   
   }   cptcoveff=ij-1; /*Number of simple covariates*/
   strcpy(fileresprobcor,"probcor");  }
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  /*********** Health Expectancies ****************/
     printf("Problem with resultfile: %s\n", fileresprobcor);  
   }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  {
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    /* Health expectancies */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    double age, agelim, hf;
   fprintf(ficresprob,"# Age");    double ***p3mat,***varhe;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    double **dnewm,**doldm;
   fprintf(ficresprobcov,"# Age");    double *xp;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    double **gp, **gm;
   fprintf(ficresprobcov,"# Age");    double ***gradg, ***trgradg;
     int theta;
   
   for(i=1; i<=nlstate;i++)    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     for(j=1; j<=(nlstate+ndeath);j++){    xp=vector(1,npar);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    
     }      fprintf(ficreseij,"# Health expectancies\n");
   fprintf(ficresprob,"\n");    fprintf(ficreseij,"# Age");
   fprintf(ficresprobcov,"\n");    for(i=1; i<=nlstate;i++)
   fprintf(ficresprobcor,"\n");      for(j=1; j<=nlstate;j++)
   xp=vector(1,npar);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    fprintf(ficreseij,"\n");
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    if(estepm < stepm){
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      printf ("Problem %d lower than %d\n",estepm, stepm);
   first=1;    }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    else  hstepm=estepm;   
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    /* We compute the life expectancy from trapezoids spaced every estepm months
     exit(0);     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
   else{     * we are calculating an estimate of the Life Expectancy assuming a linear 
     fprintf(ficgp,"\n# Routine varprob");     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     printf("Problem with html file: %s\n", optionfilehtm);     * to compare the new estimate of Life expectancy with the same linear 
     exit(0);     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
   else{  
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   cov[1]=1;       and note for a fixed period like estepm months */
   j=cptcoveff;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       survival function given by stepm (the optimization length). Unfortunately it
   j1=0;       means that if the survival funtion is printed only each two years of age and if
   for(k1=1; k1<=1;k1++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for(i1=1; i1<=ncodemax[k1];i1++){       results. So we changed our mind and took the option of the best precision.
     j1++;    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     if  (cptcovn>0) {  
       fprintf(ficresprob, "\n#********** Variable ");    agelim=AGESUP;
       fprintf(ficresprobcov, "\n#********** Variable ");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficgp, "\n#********** Variable ");      /* nhstepm age range expressed in number of stepm */
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       fprintf(ficresprobcor, "\n#********** Variable ");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficresprob, "**********\n#");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresprobcov, "**********\n#");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp, "**********\n#");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficgp, "**********\n#");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       fprintf(fichtm, "**********\n#");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     }   
      
       for (age=bage; age<=fage; age ++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {      /* Computing Variances of health expectancies */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }       for(theta=1; theta <=npar; theta++){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for(i=1; i<=npar; i++){ 
         for (k=1; k<=cptcovprod;k++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        }
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        cptj=0;
         gp=vector(1,(nlstate)*(nlstate+ndeath));        for(j=1; j<= nlstate; j++){
         gm=vector(1,(nlstate)*(nlstate+ndeath));          for(i=1; i<=nlstate; i++){
                cptj=cptj+1;
         for(theta=1; theta <=npar; theta++){            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
           for(i=1; i<=npar; i++)              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
                    }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
                 
           k=0;       
           for(i=1; i<= (nlstate); i++){        for(i=1; i<=npar; i++) 
             for(j=1; j<=(nlstate+ndeath);j++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               k=k+1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               gp[k]=pmmij[i][j];        
             }        cptj=0;
           }        for(j=1; j<= nlstate; j++){
                    for(i=1;i<=nlstate;i++){
           for(i=1; i<=npar; i++)            cptj=cptj+1;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           k=0;            }
           for(i=1; i<=(nlstate); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){        }
               k=k+1;        for(j=1; j<= nlstate*nlstate; j++)
               gm[k]=pmmij[i][j];          for(h=0; h<=nhstepm-1; h++){
             }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }          }
             } 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    /* End theta */
         }  
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)       for(h=0; h<=nhstepm-1; h++)
             trgradg[j][theta]=gradg[theta][j];        for(j=1; j<=nlstate*nlstate;j++)
                  for(theta=1; theta <=npar; theta++)
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            trgradg[h][j][theta]=gradg[h][theta][j];
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);       
          
         pmij(pmmij,cov,ncovmodel,x,nlstate);       for(i=1;i<=nlstate*nlstate;i++)
                for(j=1;j<=nlstate*nlstate;j++)
         k=0;          varhe[i][j][(int)age] =0.;
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){       printf("%d|",(int)age);fflush(stdout);
             k=k+1;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             mu[k][(int) age]=pmmij[i][j];       for(h=0;h<=nhstepm-1;h++){
           }        for(k=0;k<=nhstepm-1;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          for(i=1;i<=nlstate*nlstate;i++)
             varpij[i][j][(int)age] = doldm[i][j];            for(j=1;j<=nlstate*nlstate;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         /*printf("\n%d ",(int)age);        }
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      /* Computing expectancies */
      }*/      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
         fprintf(ficresprob,"\n%d ",(int)age);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(ficresprobcov,"\n%d ",(int)age);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         fprintf(ficresprobcor,"\n%d ",(int)age);            
   /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      fprintf(ficreseij,"%3.0f",age );
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      cptj=0;
         }      for(i=1; i<=nlstate;i++)
         i=0;        for(j=1; j<=nlstate;j++){
         for (k=1; k<=(nlstate);k++){          cptj++;
           for (l=1; l<=(nlstate+ndeath);l++){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
             i=i++;        }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      fprintf(ficreseij,"\n");
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);     
             for (j=1; j<=i;j++){      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }/* end of loop for state */    }
       } /* end of loop for age */    printf("\n");
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    fprintf(ficlog,"\n");
       for (k1=1; k1<=(nlstate);k1++){  
         for (l1=1; l1<=(nlstate+ndeath);l1++){    free_vector(xp,1,npar);
           if(l1==k1) continue;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           i=(k1-1)*(nlstate+ndeath)+l1;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           for (k2=1; k2<=(nlstate);k2++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
             for (l2=1; l2<=(nlstate+ndeath);l2++){  }
               if(l2==k2) continue;  
               j=(k2-1)*(nlstate+ndeath)+l2;  /************ Variance ******************/
               if(j<=i) continue;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
               for (age=bage; age<=fage; age ++){  {
                 if ((int)age %5==0){    /* Variance of health expectancies */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    /* double **newm;*/
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    double **dnewm,**doldm;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    double **dnewmp,**doldmp;
                   mu2=mu[j][(int) age]/stepm*YEARM;    int i, j, nhstepm, hstepm, h, nstepm ;
                   /* Computing eigen value of matrix of covariance */    int k, cptcode;
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    double *xp;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    double **gp, **gm;  /* for var eij */
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    double ***gradg, ***trgradg; /*for var eij */
                   /* Eigen vectors */    double **gradgp, **trgradgp; /* for var p point j */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    double *gpp, *gmp; /* for var p point j */
                   v21=sqrt(1.-v11*v11);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                   v12=-v21;    double ***p3mat;
                   v22=v11;    double age,agelim, hf;
                   /*printf(fignu*/    double ***mobaverage;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    int theta;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    char digit[4];
                   if(first==1){    char digitp[25];
                     first=0;  
                     fprintf(ficgp,"\nset parametric;set nolabel");    char fileresprobmorprev[FILENAMELENGTH];
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    if(popbased==1){
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);      if(mobilav!=0)
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);        strcpy(digitp,"-populbased-mobilav-");
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);      else strcpy(digitp,"-populbased-nomobil-");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    else 
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      strcpy(digitp,"-stablbased-");
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    if (mobilav!=0) {
                   }else{      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     first=0;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  
                   }/* if first */    strcpy(fileresprobmorprev,"prmorprev"); 
                 } /* age mod 5 */    sprintf(digit,"%-d",ij);
               } /* end loop age */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
               first=1;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             } /*l12 */    strcat(fileresprobmorprev,fileres);
           } /* k12 */    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         } /*l1 */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       }/* k1 */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     } /* loop covariates */    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   free_vector(xp,1,npar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   fclose(ficresprob);    }  
   fclose(ficresprobcov);    fprintf(ficresprobmorprev,"\n");
   fclose(ficresprobcor);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   fclose(ficgp);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   fclose(fichtm);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
 }      exit(0);
     }
     else{
 /******************* Printing html file ***********/      fprintf(ficgp,"\n# Routine varevsij");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    }
                   int lastpass, int stepm, int weightopt, char model[],\    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      printf("Problem with html file: %s\n", optionfilehtm);
                   int popforecast, int estepm ,\      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
                   double jprev1, double mprev1,double anprev1, \      exit(0);
                   double jprev2, double mprev2,double anprev2){    }
   int jj1, k1, i1, cpt;    else{
   /*char optionfilehtm[FILENAMELENGTH];*/      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     printf("Problem with %s \n",optionfilehtm), exit(0);    }
   }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    fprintf(ficresvij,"# Age");
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    for(i=1; i<=nlstate;i++)
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      for(j=1; j<=nlstate;j++)
  - Life expectancies by age and initial health status (estepm=%2d months):        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    fprintf(ficresvij,"\n");
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
     xp=vector(1,npar);
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    dnewm=matrix(1,nlstate,1,npar);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    doldm=matrix(1,nlstate,1,nlstate);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    gpp=vector(nlstate+1,nlstate+ndeath);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  if(popforecast==1) fprintf(fichtm,"\n    
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    if(estepm < stepm){
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      printf ("Problem %d lower than %d\n",estepm, stepm);
         <br>",fileres,fileres,fileres,fileres);    }
  else    else  hstepm=estepm;   
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    /* For example we decided to compute the life expectancy with the smallest unit */
 fprintf(fichtm," <li>Graphs</li><p>");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
  m=cptcoveff;       nstepm is the number of stepm from age to agelin. 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
  jj1=0;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  for(k1=1; k1<=m;k1++){       survival function given by stepm (the optimization length). Unfortunately it
    for(i1=1; i1<=ncodemax[k1];i1++){       means that if the survival funtion is printed every two years of age and if
      jj1++;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      if (cptcovn > 0) {       results. So we changed our mind and took the option of the best precision.
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    */
        for (cpt=1; cpt<=cptcoveff;cpt++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    agelim = AGESUP;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      /* Pij */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      /* Quasi-incidences */      gp=matrix(0,nhstepm,1,nlstate);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      gm=matrix(0,nhstepm,1,nlstate);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){      for(theta=1; theta <=npar; theta++){
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        }        }
     for(cpt=1; cpt<=nlstate;cpt++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 interval) in state (%d): v%s%d%d.png <br>  
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if (popbased==1) {
      }          if(mobilav ==0){
      for(cpt=1; cpt<=nlstate;cpt++) {            for(i=1; i<=nlstate;i++)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              prlim[i][i]=probs[(int)age][i][ij];
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }else{ /* mobilav */ 
      }            for(i=1; i<=nlstate;i++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              prlim[i][i]=mobaverage[(int)age][i][ij];
 health expectancies in states (1) and (2): e%s%d.png<br>          }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        }
    }    
  }        for(j=1; j<= nlstate; j++){
 fclose(fichtm);          for(h=0; h<=nhstepm; h++){
 }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 /******************* Gnuplot file **************/          }
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        }
         /* This for computing probability of death (h=1 means
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;           computed over hstepm matrices product = hstepm*stepm months) 
   int ng;           as a weighted average of prlim.
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        */
     printf("Problem with file %s",optionfilegnuplot);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
 #ifdef windows        }    
     fprintf(ficgp,"cd \"%s\" \n",pathc);        /* end probability of death */
 #endif  
 m=pow(2,cptcoveff);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
  /* 1eme*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for (cpt=1; cpt<= nlstate ; cpt ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    for (k1=1; k1<= m ; k1 ++) {   
         if (popbased==1) {
 #ifdef windows          if(mobilav ==0){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            for(i=1; i<=nlstate;i++)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              prlim[i][i]=probs[(int)age][i][ij];
 #endif          }else{ /* mobilav */ 
 #ifdef unix            for(i=1; i<=nlstate;i++)
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              prlim[i][i]=mobaverage[(int)age][i][ij];
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          }
 #endif        }
   
 for (i=1; i<= nlstate ; i ++) {        for(j=1; j<= nlstate; j++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(h=0; h<=nhstepm; h++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          }
     for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        /* This for computing probability of death (h=1 means
   else fprintf(ficgp," \%%*lf (\%%*lf)");           computed over hstepm matrices product = hstepm*stepm months) 
 }           as a weighted average of prlim.
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        */
      for (i=1; i<= nlstate ; i ++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
 }          }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        /* end probability of death */
 #ifdef unix  
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        for(j=1; j<= nlstate; j++) /* vareij */
 #endif          for(h=0; h<=nhstepm; h++){
    }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
   /*2 eme*/  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   for (k1=1; k1<= m ; k1 ++) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  
          } /* End theta */
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      for(h=0; h<=nhstepm; h++) /* veij */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<=nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(theta=1; theta <=npar; theta++)
 }              trgradg[h][j][theta]=gradg[h][theta][j];
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(theta=1; theta <=npar; theta++)
       for (j=1; j<= nlstate+1 ; j ++) {          trgradgp[j][theta]=gradgp[theta][j];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficgp,"\" t\"\" w l 0,");      for(i=1;i<=nlstate;i++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(j=1;j<=nlstate;j++)
       for (j=1; j<= nlstate+1 ; j ++) {          vareij[i][j][(int)age] =0.;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(h=0;h<=nhstepm;h++){
 }          for(k=0;k<=nhstepm;k++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       else fprintf(ficgp,"\" t\"\" w l 0,");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     }          for(i=1;i<=nlstate;i++)
   }            for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   /*3eme*/        }
       }
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {      /* pptj */
       k=2+nlstate*(2*cpt-2);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          varppt[j][i]=doldmp[j][i];
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      /* end ppptj */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      /*  x centered again */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
 */      if (popbased==1) {
       for (i=1; i< nlstate ; i ++) {        if(mobilav ==0){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
       }        }else{ /* mobilav */ 
     }          for(i=1; i<=nlstate;i++)
   }            prlim[i][i]=mobaverage[(int)age][i][ij];
          }
   /* CV preval stat */      }
     for (k1=1; k1<= m ; k1 ++) {               
     for (cpt=1; cpt<nlstate ; cpt ++) {      /* This for computing probability of death (h=1 means
       k=3;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);         as a weighted average of prlim.
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for (i=1; i< nlstate ; i ++)        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         fprintf(ficgp,"+$%d",k+i+1);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      }    
            /* end probability of death */
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for (i=1; i< nlstate ; i ++) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         l=3+(nlstate+ndeath)*cpt;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         fprintf(ficgp,"+$%d",l+i+1);        for(i=1; i<=nlstate;i++){
       }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          }
     }      } 
   }        fprintf(ficresprobmorprev,"\n");
    
   /* proba elementaires */      fprintf(ficresvij,"%.0f ",age );
    for(i=1,jk=1; i <=nlstate; i++){      for(i=1; i<=nlstate;i++)
     for(k=1; k <=(nlstate+ndeath); k++){        for(j=1; j<=nlstate;j++){
       if (k != i) {          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         for(j=1; j <=ncovmodel; j++){        }
              fprintf(ficresvij,"\n");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      free_matrix(gp,0,nhstepm,1,nlstate);
           jk++;      free_matrix(gm,0,nhstepm,1,nlstate);
           fprintf(ficgp,"\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    } /* End age */
    }    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      for(jk=1; jk <=m; jk++) {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
        if (ng==2)    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
        else  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
          fprintf(ficgp,"\nset title \"Probability\"\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
        i=1;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
        for(k2=1; k2<=nlstate; k2++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
          k3=i;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
          for(k=1; k<=(nlstate+ndeath); k++) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
            if (k != k2){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
              if(ng==2)    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  */
              else    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;    free_vector(xp,1,npar);
              for(j=3; j <=ncovmodel; j++) {    free_matrix(doldm,1,nlstate,1,nlstate);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(dnewm,1,nlstate,1,npar);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                  ij++;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                else    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fclose(ficresprobmorprev);
              }    fclose(ficgp);
              fprintf(ficgp,")/(1");    fclose(fichtm);
                }  /* end varevsij */
              for(k1=1; k1 <=nlstate; k1++){    
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  /************ Variance of prevlim ******************/
                ij=1;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
                for(j=3; j <=ncovmodel; j++){  {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* Variance of prevalence limit */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                    ij++;    double **newm;
                  }    double **dnewm,**doldm;
                  else    int i, j, nhstepm, hstepm;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int k, cptcode;
                }    double *xp;
                fprintf(ficgp,")");    double *gp, *gm;
              }    double **gradg, **trgradg;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double age,agelim;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    int theta;
              i=i+ncovmodel;     
            }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
          }    fprintf(ficresvpl,"# Age");
        }    for(i=1; i<=nlstate;i++)
      }        fprintf(ficresvpl," %1d-%1d",i,i);
    }    fprintf(ficresvpl,"\n");
    fclose(ficgp);  
 }  /* end gnuplot */    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
 /*************** Moving average **************/    
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   int i, cpt, cptcod;    agelim = AGESUP;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for (i=1; i<=nlstate;i++)      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      if (stepm >= YEARM) hstepm=1;
           mobaverage[(int)agedeb][i][cptcod]=0.;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
          gradg=matrix(1,npar,1,nlstate);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      gp=vector(1,nlstate);
       for (i=1; i<=nlstate;i++){      gm=vector(1,nlstate);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){      for(theta=1; theta <=npar; theta++){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        for(i=1; i<=npar; i++){ /* Computes gradient */
           }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        }
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
     }          gp[i] = prlim[i][i];
          
 }        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /************** Forecasting ******************/        for(i=1;i<=nlstate;i++)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          gm[i] = prlim[i][i];
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(i=1;i<=nlstate;i++)
   int *popage;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      } /* End theta */
   double *popeffectif,*popcount;  
   double ***p3mat;      trgradg =matrix(1,nlstate,1,npar);
   char fileresf[FILENAMELENGTH];  
       for(j=1; j<=nlstate;j++)
  agelim=AGESUP;        for(theta=1; theta <=npar; theta++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          trgradg[j][theta]=gradg[theta][j];
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
        matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   strcpy(fileresf,"f");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   strcat(fileresf,fileres);      for(i=1;i<=nlstate;i++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     printf("Problem with forecast resultfile: %s\n", fileresf);  
   }      fprintf(ficresvpl,"%.0f ",age );
   printf("Computing forecasting: result on file '%s' \n", fileresf);      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
   if (mobilav==1) {      free_vector(gm,1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(gradg,1,npar,1,nlstate);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      free_matrix(trgradg,1,nlstate,1,npar);
   }    } /* End age */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_vector(xp,1,npar);
   if (stepm<=12) stepsize=1;    free_matrix(doldm,1,nlstate,1,npar);
      free_matrix(dnewm,1,nlstate,1,nlstate);
   agelim=AGESUP;  
    }
   hstepm=1;  
   hstepm=hstepm/stepm;  /************ Variance of one-step probabilities  ******************/
   yp1=modf(dateintmean,&yp);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   anprojmean=yp;  {
   yp2=modf((yp1*12),&yp);    int i, j=0,  i1, k1, l1, t, tj;
   mprojmean=yp;    int k2, l2, j1,  z1;
   yp1=modf((yp2*30.5),&yp);    int k=0,l, cptcode;
   jprojmean=yp;    int first=1, first1;
   if(jprojmean==0) jprojmean=1;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if(mprojmean==0) jprojmean=1;    double **dnewm,**doldm;
      double *xp;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double *gp, *gm;
      double **gradg, **trgradg;
   for(cptcov=1;cptcov<=i2;cptcov++){    double **mu;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double age,agelim, cov[NCOVMAX];
       k=k+1;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       fprintf(ficresf,"\n#******");    int theta;
       for(j=1;j<=cptcoveff;j++) {    char fileresprob[FILENAMELENGTH];
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char fileresprobcov[FILENAMELENGTH];
       }    char fileresprobcor[FILENAMELENGTH];
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");    double ***varpij;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
          strcpy(fileresprob,"prob"); 
          strcat(fileresprob,fileres);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         fprintf(ficresf,"\n");      printf("Problem with resultfile: %s\n", fileresprob);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    strcpy(fileresprobcov,"probcov"); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    strcat(fileresprobcov,fileres);
           nhstepm = nhstepm/hstepm;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                printf("Problem with resultfile: %s\n", fileresprobcov);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      strcpy(fileresprobcor,"probcor"); 
            strcat(fileresprobcor,fileres);
           for (h=0; h<=nhstepm; h++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
             if (h==(int) (calagedate+YEARM*cpt)) {      printf("Problem with resultfile: %s\n", fileresprobcor);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
             }    }
             for(j=1; j<=nlstate+ndeath;j++) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               kk1=0.;kk2=0;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               for(i=1; i<=nlstate;i++) {                  printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                 if (mobilav==1)    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                 else {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    
                 }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                    fprintf(ficresprob,"# Age");
               }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficresprobcov,"# Age");
                 fprintf(ficresf," %.3f", kk1);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                            fprintf(ficresprobcov,"# Age");
               }  
             }  
           }    for(i=1; i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1; j<=(nlstate+ndeath);j++){
         }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   }      }  
           /* fprintf(ficresprob,"\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
   fclose(ficresf);   */
 }   xp=vector(1,npar);
 /************** Forecasting ******************/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   int *popage;    first=1;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   double *popeffectif,*popcount;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   double ***p3mat,***tabpop,***tabpopprev;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   char filerespop[FILENAMELENGTH];      exit(0);
     }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else{
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficgp,"\n# Routine varprob");
   agelim=AGESUP;    }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
        printf("Problem with html file: %s\n", optionfilehtm);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
        exit(0);
      }
   strcpy(filerespop,"pop");    else{
   strcat(filerespop,fileres);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      fprintf(fichtm,"\n");
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
   printf("Computing forecasting: result on file '%s' \n", filerespop);      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    cov[1]=1;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    tj=cptcoveff;
   }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for(t=1; t<=tj;t++){
   if (stepm<=12) stepsize=1;      for(i1=1; i1<=ncodemax[t];i1++){ 
          j1++;
   agelim=AGESUP;        if  (cptcovn>0) {
            fprintf(ficresprob, "\n#********** Variable "); 
   hstepm=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   hstepm=hstepm/stepm;          fprintf(ficresprob, "**********\n#\n");
            fprintf(ficresprobcov, "\n#********** Variable "); 
   if (popforecast==1) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if((ficpop=fopen(popfile,"r"))==NULL) {          fprintf(ficresprobcov, "**********\n#\n");
       printf("Problem with population file : %s\n",popfile);exit(0);          
     }          fprintf(ficgp, "\n#********** Variable "); 
     popage=ivector(0,AGESUP);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     popeffectif=vector(0,AGESUP);          fprintf(ficgp, "**********\n#\n");
     popcount=vector(0,AGESUP);          
              
     i=1;            fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     imx=i;          
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          fprintf(ficresprobcor, "\n#********** Variable ");    
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
   for(cptcov=1;cptcov<=i2;cptcov++){        }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        
       k=k+1;        for (age=bage; age<=fage; age ++){ 
       fprintf(ficrespop,"\n#******");          cov[2]=age;
       for(j=1;j<=cptcoveff;j++) {          for (k=1; k<=cptcovn;k++) {
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       }          }
       fprintf(ficrespop,"******\n");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       fprintf(ficrespop,"# Age");          for (k=1; k<=cptcovprod;k++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       if (popforecast==1)  fprintf(ficrespop," [Population]");          
                gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       for (cpt=0; cpt<=0;cpt++) {          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            gp=vector(1,(nlstate)*(nlstate+ndeath));
                  gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(theta=1; theta <=npar; theta++){
           nhstepm = nhstepm/hstepm;            for(i=1; i<=npar; i++)
                        xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            
           oldm=oldms;savm=savms;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              
                    k=0;
           for (h=0; h<=nhstepm; h++){            for(i=1; i<= (nlstate); i++){
             if (h==(int) (calagedate+YEARM*cpt)) {              for(j=1; j<=(nlstate+ndeath);j++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                k=k+1;
             }                gp[k]=pmmij[i][j];
             for(j=1; j<=nlstate+ndeath;j++) {              }
               kk1=0.;kk2=0;            }
               for(i=1; i<=nlstate;i++) {                          
                 if (mobilav==1)            for(i=1; i<=npar; i++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                 else {      
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                 }            k=0;
               }            for(i=1; i<=(nlstate); i++){
               if (h==(int)(calagedate+12*cpt)){              for(j=1; j<=(nlstate+ndeath);j++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                k=k+1;
                   /*fprintf(ficrespop," %.3f", kk1);                gm[k]=pmmij[i][j];
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              }
               }            }
             }       
             for(i=1; i<=nlstate;i++){            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               kk1=0.;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                 for(j=1; j<=nlstate;j++){          }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];            for(theta=1; theta <=npar; theta++)
             }              trgradg[j][theta]=gradg[theta][j];
           
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    
   /******/          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          k=0;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for(i=1; i<=(nlstate); i++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            for(j=1; j<=(nlstate+ndeath);j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              k=k+1;
           nhstepm = nhstepm/hstepm;              mu[k][(int) age]=pmmij[i][j];
                      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           for (h=0; h<=nhstepm; h++){              varpij[i][j][(int)age] = doldm[i][j];
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          /*printf("\n%d ",(int)age);
             }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             for(j=1; j<=nlstate+ndeath;j++) {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               kk1=0.;kk2=0;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               for(i=1; i<=nlstate;i++) {                          }*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }          fprintf(ficresprob,"\n%d ",(int)age);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          fprintf(ficresprobcov,"\n%d ",(int)age);
             }          fprintf(ficresprobcor,"\n%d ",(int)age);
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
    }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
            }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          i=0;
           for (k=1; k<=(nlstate);k++){
   if (popforecast==1) {            for (l=1; l<=(nlstate+ndeath);l++){ 
     free_ivector(popage,0,AGESUP);              i=i++;
     free_vector(popeffectif,0,AGESUP);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     free_vector(popcount,0,AGESUP);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   }              for (j=1; j<=i;j++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   fclose(ficrespop);              }
 }            }
           }/* end of loop for state */
 /***********************************************/        } /* end of loop for age */
 /**************** Main Program *****************/  
 /***********************************************/        /* Confidence intervalle of pij  */
         /*
 int main(int argc, char *argv[])          fprintf(ficgp,"\nset noparametric;unset label");
 {          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   double agedeb, agefin,hf;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   double fret;        */
   double **xi,tmp,delta;  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   double dum; /* Dummy variable */        first1=1;
   double ***p3mat;        for (k2=1; k2<=(nlstate);k2++){
   int *indx;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   char line[MAXLINE], linepar[MAXLINE];            if(l2==k2) continue;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            j=(k2-1)*(nlstate+ndeath)+l2;
   int firstobs=1, lastobs=10;            for (k1=1; k1<=(nlstate);k1++){
   int sdeb, sfin; /* Status at beginning and end */              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   int c,  h , cpt,l;                if(l1==k1) continue;
   int ju,jl, mi;                i=(k1-1)*(nlstate+ndeath)+l1;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                if(i<=j) continue;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                for (age=bage; age<=fage; age ++){ 
   int mobilav=0,popforecast=0;                  if ((int)age %5==0){
   int hstepm, nhstepm;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   double bage, fage, age, agelim, agebase;                    mu1=mu[i][(int) age]/stepm*YEARM ;
   double ftolpl=FTOL;                    mu2=mu[j][(int) age]/stepm*YEARM;
   double **prlim;                    c12=cv12/sqrt(v1*v2);
   double *severity;                    /* Computing eigen value of matrix of covariance */
   double ***param; /* Matrix of parameters */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   double  *p;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   double **matcov; /* Matrix of covariance */                    /* Eigen vectors */
   double ***delti3; /* Scale */                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   double *delti; /* Scale */                    /*v21=sqrt(1.-v11*v11); *//* error */
   double ***eij, ***vareij;                    v21=(lc1-v1)/cv12*v11;
   double **varpl; /* Variances of prevalence limits by age */                    v12=-v21;
   double *epj, vepp;                    v22=v11;
   double kk1, kk2;                    tnalp=v21/v11;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                    if(first1==1){
                        first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   char *alph[]={"a","a","b","c","d","e"}, str[4];                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
   char z[1]="c", occ;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 #include <sys/time.h>                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 #include <time.h>                    if(first==1){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                      first=0;
                        fprintf(ficgp,"\nset parametric;unset label");
   /* long total_usecs;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   struct timeval start_time, end_time;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                        fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
   getcwd(pathcd, size);                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
   printf("\n%s",version);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if(argc <=1){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     printf("\nEnter the parameter file name: ");                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     scanf("%s",pathtot);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   else{                    }else{
     strcpy(pathtot,argv[1]);                      first=0;
   }                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*cygwin_split_path(pathtot,path,optionfile);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /* cutv(path,optionfile,pathtot,'\\');*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                    }/* if first */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                  } /* age mod 5 */
   chdir(path);                } /* end loop age */
   replace(pathc,path);                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
 /*-------- arguments in the command line --------*/              } /*l12 */
             } /* k12 */
   strcpy(fileres,"r");          } /*l1 */
   strcat(fileres, optionfilefiname);        }/* k1 */
   strcat(fileres,".txt");    /* Other files have txt extension */      } /* loop covariates */
     }
   /*---------arguments file --------*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_vector(xp,1,npar);
     printf("Problem with optionfile %s\n",optionfile);    fclose(ficresprob);
     goto end;    fclose(ficresprobcov);
   }    fclose(ficresprobcor);
     fclose(ficgp);
   strcpy(filereso,"o");    fclose(fichtm);
   strcat(filereso,fileres);  }
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   /* Reads comments: lines beginning with '#' */                    int lastpass, int stepm, int weightopt, char model[],\
   while((c=getc(ficpar))=='#' && c!= EOF){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     ungetc(c,ficpar);                    int popforecast, int estepm ,\
     fgets(line, MAXLINE, ficpar);                    double jprev1, double mprev1,double anprev1, \
     puts(line);                    double jprev2, double mprev2,double anprev2){
     fputs(line,ficparo);    int jj1, k1, i1, cpt;
   }    /*char optionfilehtm[FILENAMELENGTH];*/
   ungetc(c,ficpar);    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
     ungetc(c,ficpar);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
     fgets(line, MAXLINE, ficpar);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
     puts(line);   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
     fputs(line,ficparo);   - Life expectancies by age and initial health status (estepm=%2d months): 
   }     <a href=\"e%s\">e%s</a> <br>\n</li>", \
   ungetc(c,ficpar);    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
    
      fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;   m=cptcoveff;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   ncovmodel=2+cptcovn;   jj1=0;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   for(k1=1; k1<=m;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   /* Read guess parameters */       jj1++;
   /* Reads comments: lines beginning with '#' */       if (cptcovn > 0) {
   while((c=getc(ficpar))=='#' && c!= EOF){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     ungetc(c,ficpar);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     fgets(line, MAXLINE, ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     puts(line);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fputs(line,ficparo);       }
   }       /* Pij */
   ungetc(c,ficpar);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
    <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       /* Quasi-incidences */
     for(i=1; i <=nlstate; i++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
     for(j=1; j <=nlstate+ndeath-1; j++){  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);         /* Stable prevalence in each health state */
       fprintf(ficparo,"%1d%1d",i1,j1);         for(cpt=1; cpt<nlstate;cpt++){
       printf("%1d%1d",i,j);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
       for(k=1; k<=ncovmodel;k++){  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
         fscanf(ficpar," %lf",&param[i][j][k]);         }
         printf(" %lf",param[i][j][k]);       for(cpt=1; cpt<=nlstate;cpt++) {
         fprintf(ficparo," %lf",param[i][j][k]);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
       }  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       fscanf(ficpar,"\n");       }
       printf("\n");       fprintf(fichtm,"\n<br>- Total life expectancy by age and
       fprintf(ficparo,"\n");  health expectancies in states (1) and (2): e%s%d.png<br>
     }  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
       } /* end i1 */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;   }/* End k1 */
    fprintf(fichtm,"</ul>");
   p=param[1][1];  
    
   /* Reads comments: lines beginning with '#' */   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
   while((c=getc(ficpar))=='#' && c!= EOF){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
     ungetc(c,ficpar);   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
     fgets(line, MAXLINE, ficpar);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
     puts(line);   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
     fputs(line,ficparo);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
   }   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
   ungetc(c,ficpar);   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   for(i=1; i <=nlstate; i++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     for(j=1; j <=nlstate+ndeath-1; j++){  /*      <br>",fileres,fileres,fileres,fileres); */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /*  else  */
       printf("%1d%1d",i,j);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       fprintf(ficparo,"%1d%1d",i1,j1);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);   m=cptcoveff;
         printf(" %le",delti3[i][j][k]);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }   jj1=0;
       fscanf(ficpar,"\n");   for(k1=1; k1<=m;k1++){
       printf("\n");     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficparo,"\n");       jj1++;
     }       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   delti=delti3[1][1];         for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /* Reads comments: lines beginning with '#' */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   while((c=getc(ficpar))=='#' && c!= EOF){       }
     ungetc(c,ficpar);       for(cpt=1; cpt<=nlstate;cpt++) {
     fgets(line, MAXLINE, ficpar);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
     puts(line);  interval) in state (%d): v%s%d%d.png <br>
     fputs(line,ficparo);  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
   }       }
   ungetc(c,ficpar);     } /* end i1 */
     }/* End k1 */
   matcov=matrix(1,npar,1,npar);   fprintf(fichtm,"</ul>");
   for(i=1; i <=npar; i++){  fclose(fichtm);
     fscanf(ficpar,"%s",&str);  }
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  /******************* Gnuplot file **************/
     for(j=1; j <=i; j++){  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       fprintf(ficparo," %.5le",matcov[i][j]);    int ng;
     }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     fscanf(ficpar,"\n");      printf("Problem with file %s",optionfilegnuplot);
     printf("\n");      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     fprintf(ficparo,"\n");    }
   }  
   for(i=1; i <=npar; i++)    /*#ifdef windows */
     for(j=i+1;j<=npar;j++)      fprintf(ficgp,"cd \"%s\" \n",pathc);
       matcov[i][j]=matcov[j][i];      /*#endif */
      m=pow(2,cptcoveff);
   printf("\n");    
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
     /*-------- Rewriting paramater file ----------*/     for (k1=1; k1<= m ; k1 ++) {
      strcpy(rfileres,"r");    /* "Rparameterfile */       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */       for (i=1; i<= nlstate ; i ++) {
     if((ficres =fopen(rfileres,"w"))==NULL) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       }
     fprintf(ficres,"#%s\n",version);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
           for (i=1; i<= nlstate ; i ++) {
     /*-------- data file ----------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     if((fic=fopen(datafile,"r"))==NULL)    {         else fprintf(ficgp," \%%*lf (\%%*lf)");
       printf("Problem with datafile: %s\n", datafile);goto end;       } 
     }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
     n= lastobs;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     severity = vector(1,maxwav);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     outcome=imatrix(1,maxwav+1,1,n);       }  
     num=ivector(1,n);       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     moisnais=vector(1,n);     }
     annais=vector(1,n);    }
     moisdc=vector(1,n);    /*2 eme*/
     andc=vector(1,n);    
     agedc=vector(1,n);    for (k1=1; k1<= m ; k1 ++) { 
     cod=ivector(1,n);      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
     weight=vector(1,n);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      
     mint=matrix(1,maxwav,1,n);      for (i=1; i<= nlstate+1 ; i ++) {
     anint=matrix(1,maxwav,1,n);        k=2*i;
     s=imatrix(1,maxwav+1,1,n);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
     adl=imatrix(1,maxwav+1,1,n);            for (j=1; j<= nlstate+1 ; j ++) {
     tab=ivector(1,NCOVMAX);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     ncodemax=ivector(1,8);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
     i=1;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     while (fgets(line, MAXLINE, fic) != NULL)    {        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       if ((i >= firstobs) && (i <=lastobs)) {        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
                for (j=1; j<= nlstate+1 ; j ++) {
         for (j=maxwav;j>=1;j--){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          else fprintf(ficgp," \%%*lf (\%%*lf)");
           strcpy(line,stra);        }   
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\" t\"\" w l 0,");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         }        for (j=1; j<= nlstate+1 ; j ++) {
                  if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        else fprintf(ficgp,"\" t\"\" w l 0,");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      }
     }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    
         for (j=ncovcol;j>=1;j--){    /*3eme*/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }    for (k1=1; k1<= m ; k1 ++) { 
         num[i]=atol(stra);      for (cpt=1; cpt<= nlstate ; cpt ++) {
                k=2+nlstate*(2*cpt-2);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         i=i+1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     /* printf("ii=%d", ij);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
        scanf("%d",i);*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   imx=i-1; /* Number of individuals */          
         */
   /* for (i=1; i<=imx; i++){        for (i=1; i< nlstate ; i ++) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        } 
     }*/      }
    /*  for (i=1; i<=imx; i++){    }
      if (s[4][i]==9)  s[4][i]=-1;    
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    /* CV preval stable (period) */
      for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<=nlstate ; cpt ++) {
   /* Calculation of the number of parameter from char model*/        k=3;
   Tvar=ivector(1,15);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   Tprod=ivector(1,15);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
   Tvaraff=ivector(1,15);        
   Tvard=imatrix(1,15,1,2);        for (i=1; i< nlstate ; i ++)
   Tage=ivector(1,15);                fprintf(ficgp,"+$%d",k+i+1);
            fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   if (strlen(model) >1){        
     j=0, j1=0, k1=1, k2=1;        l=3+(nlstate+ndeath)*cpt;
     j=nbocc(model,'+');        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
     j1=nbocc(model,'*');        for (i=1; i< nlstate ; i ++) {
     cptcovn=j+1;          l=3+(nlstate+ndeath)*cpt;
     cptcovprod=j1;          fprintf(ficgp,"+$%d",l+i+1);
            }
     strcpy(modelsav,model);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      } 
       printf("Error. Non available option model=%s ",model);    }  
       goto end;    
     }    /* proba elementaires */
        for(i=1,jk=1; i <=nlstate; i++){
     for(i=(j+1); i>=1;i--){      for(k=1; k <=(nlstate+ndeath); k++){
       cutv(stra,strb,modelsav,'+');        if (k != i) {
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          for(j=1; j <=ncovmodel; j++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       /*scanf("%d",i);*/            jk++; 
       if (strchr(strb,'*')) {            fprintf(ficgp,"\n");
         cutv(strd,strc,strb,'*');          }
         if (strcmp(strc,"age")==0) {        }
           cptcovprod--;      }
           cutv(strb,stre,strd,'V');     }
           Tvar[i]=atoi(stre);  
           cptcovage++;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
             Tage[cptcovage]=i;       for(jk=1; jk <=m; jk++) {
             /*printf("stre=%s ", stre);*/         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
         }         if (ng==2)
         else if (strcmp(strd,"age")==0) {           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           cptcovprod--;         else
           cutv(strb,stre,strc,'V');           fprintf(ficgp,"\nset title \"Probability\"\n");
           Tvar[i]=atoi(stre);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           cptcovage++;         i=1;
           Tage[cptcovage]=i;         for(k2=1; k2<=nlstate; k2++) {
         }           k3=i;
         else {           for(k=1; k<=(nlstate+ndeath); k++) {
           cutv(strb,stre,strc,'V');             if (k != k2){
           Tvar[i]=ncovcol+k1;               if(ng==2)
           cutv(strb,strc,strd,'V');                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           Tprod[k1]=i;               else
           Tvard[k1][1]=atoi(strc);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           Tvard[k1][2]=atoi(stre);               ij=1;
           Tvar[cptcovn+k2]=Tvard[k1][1];               for(j=3; j <=ncovmodel; j++) {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           for (k=1; k<=lastobs;k++)                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                   ij++;
           k1++;                 }
           k2=k2+2;                 else
         }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       }               }
       else {               fprintf(ficgp,")/(1");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/               
        /*  scanf("%d",i);*/               for(k1=1; k1 <=nlstate; k1++){   
       cutv(strd,strc,strb,'V');                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       Tvar[i]=atoi(strc);                 ij=1;
       }                 for(j=3; j <=ncovmodel; j++){
       strcpy(modelsav,stra);                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         scanf("%d",i);*/                     ij++;
     }                   }
 }                   else
                       fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                 }
   printf("cptcovprod=%d ", cptcovprod);                 fprintf(ficgp,")");
   scanf("%d ",i);*/               }
     fclose(fic);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     /*  if(mle==1){*/               i=i+ncovmodel;
     if (weightopt != 1) { /* Maximisation without weights*/             }
       for(i=1;i<=n;i++) weight[i]=1.0;           } /* end k */
     }         } /* end k2 */
     /*-calculation of age at interview from date of interview and age at death -*/       } /* end jk */
     agev=matrix(1,maxwav,1,imx);     } /* end ng */
      fclose(ficgp); 
     for (i=1; i<=imx; i++) {  }  /* end gnuplot */
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;  /*************** Moving average **************/
          s[m][i]=-1;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    int i, cpt, cptcod;
       }    int modcovmax =1;
     }    int mobilavrange, mob;
     double age;
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
       for(m=1; (m<= maxwav); m++){                             a covariate has 2 modalities */
         if(s[m][i] >0){    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
               if(moisdc[i]!=99 && andc[i]!=9999)      if(mobilav==1) mobilavrange=5; /* default */
                 agev[m][i]=agedc[i];      else mobilavrange=mobilav;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      for (age=bage; age<=fage; age++)
            else {        for (i=1; i<=nlstate;i++)
               if (andc[i]!=9999){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
               agev[m][i]=-1;      /* We keep the original values on the extreme ages bage, fage and for 
               }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
             }         we use a 5 terms etc. until the borders are no more concerned. 
           }      */ 
           else if(s[m][i] !=9){ /* Should no more exist */      for (mob=3;mob <=mobilavrange;mob=mob+2){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
             if(mint[m][i]==99 || anint[m][i]==9999)          for (i=1; i<=nlstate;i++){
               agev[m][i]=1;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
             else if(agev[m][i] <agemin){              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
               agemin=agev[m][i];                for (cpt=1;cpt<=(mob-1)/2;cpt++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
             }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
             else if(agev[m][i] >agemax){                }
               agemax=agev[m][i];              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            }
             }          }
             /*agev[m][i]=anint[m][i]-annais[i];*/        }/* end age */
             /*   agev[m][i] = age[i]+2*m;*/      }/* end mob */
           }    }else return -1;
           else { /* =9 */    return 0;
             agev[m][i]=1;  }/* End movingaverage */
             s[m][i]=-1;  
           }  
         }  /************** Forecasting ******************/
         else /*= 0 Unknown */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
           agev[m][i]=1;    /* proj1, year, month, day of starting projection 
       }       agemin, agemax range of age
           dateprev1 dateprev2 range of dates during which prevalence is computed
     }       anproj2 year of en of projection (same day and month as proj1).
     for (i=1; i<=imx; i++)  {    */
       for(m=1; (m<= maxwav); m++){    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
         if (s[m][i] > (nlstate+ndeath)) {    int *popage;
           printf("Error: Wrong value in nlstate or ndeath\n");      double agec; /* generic age */
           goto end;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         }    double *popeffectif,*popcount;
       }    double ***p3mat;
     }    double ***mobaverage;
     char fileresf[FILENAMELENGTH];
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
     agelim=AGESUP;
     free_vector(severity,1,maxwav);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     free_imatrix(outcome,1,maxwav+1,1,n);   
     free_vector(moisnais,1,n);    strcpy(fileresf,"f"); 
     free_vector(annais,1,n);    strcat(fileresf,fileres);
     /* free_matrix(mint,1,maxwav,1,n);    if((ficresf=fopen(fileresf,"w"))==NULL) {
        free_matrix(anint,1,maxwav,1,n);*/      printf("Problem with forecast resultfile: %s\n", fileresf);
     free_vector(moisdc,1,n);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     free_vector(andc,1,n);    }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
        fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
        if (mobilav!=0) {
     /* Concatenates waves */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       Tcode=ivector(1,100);      }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    }
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    stepsize=(int) (stepm+YEARM-1)/YEARM;
          if (stepm<=12) stepsize=1;
    codtab=imatrix(1,100,1,10);    if(estepm < stepm){
    h=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
    m=pow(2,cptcoveff);    }
      else  hstepm=estepm;   
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){    hstepm=hstepm/stepm; 
        for(j=1; j <= ncodemax[k]; j++){    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                                 fractional in yp1 */
            h++;    anprojmean=yp;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    yp2=modf((yp1*12),&yp);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    mprojmean=yp;
          }    yp1=modf((yp2*30.5),&yp);
        }    jprojmean=yp;
      }    if(jprojmean==0) jprojmean=1;
    }    if(mprojmean==0) jprojmean=1;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */    i1=cptcoveff;
    /* for(i=1; i <=m ;i++){    if (cptcovn < 1){i1=1;}
       for(k=1; k <=cptcovn; k++){    
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       }    
       printf("\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
       }  
       scanf("%d",i);*/  /*            if (h==(int)(YEARM*yearp)){ */
        for(cptcov=1, k=0;cptcov<=i1;cptcov++){
    /* Calculates basic frequencies. Computes observed prevalence at single age      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
        and prints on file fileres'p'. */        k=k+1;
         fprintf(ficresf,"\n#******");
            for(j=1;j<=cptcoveff;j++) {
              fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresf,"******\n");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate+ndeath;j++){ 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for(i=1; i<=nlstate;i++)              
                  fprintf(ficresf," p%d%d",i,j);
     /* For Powell, parameters are in a vector p[] starting at p[1]          fprintf(ficresf," p.%d",j);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
     if(mle==1){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
                nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     /*--------- results files --------------*/            nhstepm = nhstepm/hstepm; 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
    jk=1;          
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for (h=0; h<=nhstepm; h++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              if (h*hstepm/YEARM*stepm ==yearp) {
    for(i=1,jk=1; i <=nlstate; i++){                fprintf(ficresf,"\n");
      for(k=1; k <=(nlstate+ndeath); k++){                for(j=1;j<=cptcoveff;j++) 
        if (k != i)                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
          {                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
            printf("%d%d ",i,k);              } 
            fprintf(ficres,"%1d%1d ",i,k);              for(j=1; j<=nlstate+ndeath;j++) {
            for(j=1; j <=ncovmodel; j++){                ppij=0.;
              printf("%f ",p[jk]);                for(i=1; i<=nlstate;i++) {
              fprintf(ficres,"%f ",p[jk]);                  if (mobilav==1) 
              jk++;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
            }                  else {
            printf("\n");                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
            fprintf(ficres,"\n");                  }
          }                  if (h*hstepm/YEARM*stepm== yearp) {
      }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
    }                  }
  if(mle==1){                } /* end i */
     /* Computing hessian and covariance matrix */                if (h*hstepm/YEARM*stepm==yearp) {
     ftolhess=ftol; /* Usually correct */                  fprintf(ficresf," %.3f", ppij);
     hesscov(matcov, p, npar, delti, ftolhess, func);                }
  }              }/* end j */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            } /* end h */
     printf("# Scales (for hessian or gradient estimation)\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for(i=1,jk=1; i <=nlstate; i++){          } /* end agec */
       for(j=1; j <=nlstate+ndeath; j++){        } /* end yearp */
         if (j!=i) {      } /* end cptcod */
           fprintf(ficres,"%1d%1d",i,j);    } /* end  cptcov */
           printf("%1d%1d",i,j);         
           for(k=1; k<=ncovmodel;k++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);    fclose(ficresf);
             jk++;  }
           }  
           printf("\n");  /************** Forecasting *****not tested NB*************/
           fprintf(ficres,"\n");  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
         }    
       }    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
      }    int *popage;
        double calagedatem, agelim, kk1, kk2;
     k=1;    double *popeffectif,*popcount;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double ***p3mat,***tabpop,***tabpopprev;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double ***mobaverage;
     for(i=1;i<=npar;i++){    char filerespop[FILENAMELENGTH];
       /*  if (k>nlstate) k=1;  
       i1=(i-1)/(ncovmodel*nlstate)+1;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    agelim=AGESUP;
       fprintf(ficres,"%3d",i);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       printf("%3d",i);    
       for(j=1; j<=i;j++){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         fprintf(ficres," %.5e",matcov[i][j]);    
         printf(" %.5e",matcov[i][j]);    
       }    strcpy(filerespop,"pop"); 
       fprintf(ficres,"\n");    strcat(filerespop,fileres);
       printf("\n");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       k++;      printf("Problem with forecast resultfile: %s\n", filerespop);
     }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
        }
     while((c=getc(ficpar))=='#' && c!= EOF){    printf("Computing forecasting: result on file '%s' \n", filerespop);
       ungetc(c,ficpar);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       fgets(line, MAXLINE, ficpar);  
       puts(line);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       fputs(line,ficparo);  
     }    if (mobilav!=0) {
     ungetc(c,ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     estepm=0;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     if (estepm==0 || estepm < stepm) estepm=stepm;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     if (fage <= 2) {      }
       bage = ageminpar;    }
       fage = agemaxpar;  
     }    stepsize=(int) (stepm+YEARM-1)/YEARM;
        if (stepm<=12) stepsize=1;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    agelim=AGESUP;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    
      hstepm=1;
     while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=hstepm/stepm; 
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    if (popforecast==1) {
     puts(line);      if((ficpop=fopen(popfile,"r"))==NULL) {
     fputs(line,ficparo);        printf("Problem with population file : %s\n",popfile);exit(0);
   }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   ungetc(c,ficpar);      } 
        popage=ivector(0,AGESUP);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      popeffectif=vector(0,AGESUP);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      popcount=vector(0,AGESUP);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      
            i=1;   
   while((c=getc(ficpar))=='#' && c!= EOF){      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     ungetc(c,ficpar);     
     fgets(line, MAXLINE, ficpar);      imx=i;
     puts(line);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     fputs(line,ficparo);    }
   }  
   ungetc(c,ficpar);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        fprintf(ficrespop,"\n#******");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fscanf(ficpar,"pop_based=%d\n",&popbased);        }
   fprintf(ficparo,"pop_based=%d\n",popbased);          fprintf(ficrespop,"******\n");
   fprintf(ficres,"pop_based=%d\n",popbased);          fprintf(ficrespop,"# Age");
          for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   while((c=getc(ficpar))=='#' && c!= EOF){        if (popforecast==1)  fprintf(ficrespop," [Population]");
     ungetc(c,ficpar);        
     fgets(line, MAXLINE, ficpar);        for (cpt=0; cpt<=0;cpt++) { 
     puts(line);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     fputs(line,ficparo);          
   }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   ungetc(c,ficpar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
 while((c=getc(ficpar))=='#' && c!= EOF){            for (h=0; h<=nhstepm; h++){
     ungetc(c,ficpar);              if (h==(int) (calagedatem+YEARM*cpt)) {
     fgets(line, MAXLINE, ficpar);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     puts(line);              } 
     fputs(line,ficparo);              for(j=1; j<=nlstate+ndeath;j++) {
   }                kk1=0.;kk2=0;
   ungetc(c,ficpar);                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                  else {
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                }
                 if (h==(int)(calagedatem+12*cpt)){
 /*------------ gnuplot -------------*/                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   strcpy(optionfilegnuplot,optionfilefiname);                    /*fprintf(ficrespop," %.3f", kk1);
   strcat(optionfilegnuplot,".gp");                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                }
     printf("Problem with file %s",optionfilegnuplot);              }
   }              for(i=1; i<=nlstate;i++){
   fclose(ficgp);                kk1=0.;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                  for(j=1; j<=nlstate;j++){
 /*--------- index.htm --------*/                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
   strcpy(optionfilehtm,optionfile);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   strcat(optionfilehtm,".htm");              }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   }                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          }
 \n        }
 Total number of observations=%d <br>\n   
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    /******/
 <hr  size=\"2\" color=\"#EC5E5E\">  
  <ul><li>Parameter files<br>\n        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   fclose(fichtm);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);            
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*------------ free_vector  -------------*/            oldm=oldms;savm=savms;
  chdir(path);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
              for (h=0; h<=nhstepm; h++){
  free_ivector(wav,1,imx);              if (h==(int) (calagedatem+YEARM*cpt)) {
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                } 
  free_ivector(num,1,n);              for(j=1; j<=nlstate+ndeath;j++) {
  free_vector(agedc,1,n);                kk1=0.;kk2=0;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                for(i=1; i<=nlstate;i++) {              
  fclose(ficparo);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
  fclose(ficres);                }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
   /*--------------- Prevalence limit --------------*/            }
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(filerespl,"pl");          }
   strcat(filerespl,fileres);        }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {     } 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    }
   }   
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");    if (popforecast==1) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      free_ivector(popage,0,AGESUP);
   fprintf(ficrespl,"\n");      free_vector(popeffectif,0,AGESUP);
        free_vector(popcount,0,AGESUP);
   prlim=matrix(1,nlstate,1,nlstate);    }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fclose(ficrespop);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  } /* End of popforecast */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;  /***********************************************/
   agebase=ageminpar;  /**************** Main Program *****************/
   agelim=agemaxpar;  /***********************************************/
   ftolpl=1.e-10;  
   i1=cptcoveff;  int main(int argc, char *argv[])
   if (cptcovn < 1){i1=1;}  {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   for(cptcov=1;cptcov<=i1;cptcov++){    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double agedeb, agefin,hf;
         k=k+1;    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");    double fret;
         for(j=1;j<=cptcoveff;j++)    double **xi,tmp,delta;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");    double dum; /* Dummy variable */
            double ***p3mat;
         for (age=agebase; age<=agelim; age++){    double ***mobaverage;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    int *indx;
           fprintf(ficrespl,"%.0f",age );    char line[MAXLINE], linepar[MAXLINE];
           for(i=1; i<=nlstate;i++)    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
           fprintf(ficrespl," %.5f", prlim[i][i]);    int firstobs=1, lastobs=10;
           fprintf(ficrespl,"\n");    int sdeb, sfin; /* Status at beginning and end */
         }    int c,  h , cpt,l;
       }    int ju,jl, mi;
     }    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   fclose(ficrespl);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   /*------------- h Pij x at various ages ------------*/    int mobilav=0,popforecast=0;
      int hstepm, nhstepm;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }    double bage, fage, age, agelim, agebase;
   printf("Computing pij: result on file '%s' \n", filerespij);    double ftolpl=FTOL;
      double **prlim;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double *severity;
   /*if (stepm<=24) stepsize=2;*/    double ***param; /* Matrix of parameters */
     double  *p;
   agelim=AGESUP;    double **matcov; /* Matrix of covariance */
   hstepm=stepsize*YEARM; /* Every year of age */    double ***delti3; /* Scale */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    double *delti; /* Scale */
      double ***eij, ***vareij;
   k=0;    double **varpl; /* Variances of prevalence limits by age */
   for(cptcov=1;cptcov<=i1;cptcov++){    double *epj, vepp;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double kk1, kk2;
       k=k+1;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)    char *alph[]={"a","a","b","c","d","e"}, str[4];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");  
            char z[1]="c", occ;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  #include <sys/time.h>
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  #include <time.h>
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
           oldm=oldms;savm=savms;    /* long total_usecs;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         struct timeval start_time, end_time;
           fprintf(ficrespij,"# Age");    
           for(i=1; i<=nlstate;i++)       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
             for(j=1; j<=nlstate+ndeath;j++)    getcwd(pathcd, size);
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");    printf("\n%s\n%s",version,fullversion);
            for (h=0; h<=nhstepm; h++){    if(argc <=1){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      printf("\nEnter the parameter file name: ");
             for(i=1; i<=nlstate;i++)      scanf("%s",pathtot);
               for(j=1; j<=nlstate+ndeath;j++)    }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    else{
             fprintf(ficrespij,"\n");      strcpy(pathtot,argv[1]);
              }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
           fprintf(ficrespij,"\n");    /*cygwin_split_path(pathtot,path,optionfile);
         }      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     }    /* cutv(path,optionfile,pathtot,'\\');*/
   }  
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
   fclose(ficrespij);    replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){    /* Log file */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    strcat(filelog, optionfilefiname);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    strcat(filelog,".log");    /* */
   }    if((ficlog=fopen(filelog,"w"))==NULL)    {
   else{      printf("Problem with logfile %s\n",filelog);
     erreur=108;      goto end;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    }
   }    fprintf(ficlog,"Log filename:%s\n",filelog);
      fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
   /*---------- Health expectancies and variances ------------*/    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   strcpy(filerest,"t");  
   strcat(filerest,fileres);    /* */
   if((ficrest=fopen(filerest,"w"))==NULL) {    strcpy(fileres,"r");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    strcat(fileres, optionfilefiname);
   }    strcat(fileres,".txt");    /* Other files have txt extension */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
     /*---------arguments file --------*/
   
   strcpy(filerese,"e");    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   strcat(filerese,fileres);      printf("Problem with optionfile %s\n",optionfile);
   if((ficreseij=fopen(filerese,"w"))==NULL) {      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      goto end;
   }    }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
     strcpy(filereso,"o");
  strcpy(fileresv,"v");    strcat(filereso,fileres);
   strcat(fileresv,fileres);    if((ficparo=fopen(filereso,"w"))==NULL) {
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      printf("Problem with Output resultfile: %s\n", filereso);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   }      goto end;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    }
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
   k=0;      ungetc(c,ficpar);
   for(cptcov=1;cptcov<=i1;cptcov++){      fgets(line, MAXLINE, ficpar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      puts(line);
       k=k+1;      fputs(line,ficparo);
       fprintf(ficrest,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    ungetc(c,ficpar);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
       fprintf(ficreseij,"\n#****** ");    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       for(j=1;j<=cptcoveff;j++)    while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      ungetc(c,ficpar);
       fprintf(ficreseij,"******\n");      fgets(line, MAXLINE, ficpar);
       puts(line);
       fprintf(ficresvij,"\n#****** ");      fputs(line,ficparo);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    ungetc(c,ficpar);
       fprintf(ficresvij,"******\n");    
      
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    covar=matrix(0,NCOVMAX,1,n); 
       oldm=oldms;savm=savms;    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
       oldm=oldms;savm=savms;    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    
        /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
      while((c=getc(ficpar))=='#' && c!= EOF){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      ungetc(c,ficpar);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fgets(line, MAXLINE, ficpar);
       fprintf(ficrest,"\n");      puts(line);
       fputs(line,ficparo);
       epj=vector(1,nlstate+1);    }
       for(age=bage; age <=fage ;age++){    ungetc(c,ficpar);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    
         if (popbased==1) {    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
           for(i=1; i<=nlstate;i++)    for(i=1; i <=nlstate; i++)
             prlim[i][i]=probs[(int)age][i][k];      for(j=1; j <=nlstate+ndeath-1; j++){
         }        fscanf(ficpar,"%1d%1d",&i1,&j1);
                fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficrest," %4.0f",age);        if(mle==1)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          printf("%1d%1d",i,j);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        fprintf(ficlog,"%1d%1d",i,j);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        for(k=1; k<=ncovmodel;k++){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          fscanf(ficpar," %lf",&param[i][j][k]);
           }          if(mle==1){
           epj[nlstate+1] +=epj[j];            printf(" %lf",param[i][j][k]);
         }            fprintf(ficlog," %lf",param[i][j][k]);
           }
         for(i=1, vepp=0.;i <=nlstate;i++)          else
           for(j=1;j <=nlstate;j++)            fprintf(ficlog," %lf",param[i][j][k]);
             vepp += vareij[i][j][(int)age];          fprintf(ficparo," %lf",param[i][j][k]);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        }
         for(j=1;j <=nlstate;j++){        fscanf(ficpar,"\n");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        if(mle==1)
         }          printf("\n");
         fprintf(ficrest,"\n");        fprintf(ficlog,"\n");
       }        fprintf(ficparo,"\n");
     }      }
   }    
 free_matrix(mint,1,maxwav,1,n);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);    p=param[1][1];
   fclose(ficreseij);    
   fclose(ficresvij);    /* Reads comments: lines beginning with '#' */
   fclose(ficrest);    while((c=getc(ficpar))=='#' && c!= EOF){
   fclose(ficpar);      ungetc(c,ficpar);
   free_vector(epj,1,nlstate+1);      fgets(line, MAXLINE, ficpar);
        puts(line);
   /*------- Variance limit prevalence------*/        fputs(line,ficparo);
     }
   strcpy(fileresvpl,"vpl");    ungetc(c,ficpar);
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     exit(0);    for(i=1; i <=nlstate; i++){
   }      for(j=1; j <=nlstate+ndeath-1; j++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
   k=0;        fprintf(ficparo,"%1d%1d",i1,j1);
   for(cptcov=1;cptcov<=i1;cptcov++){        for(k=1; k<=ncovmodel;k++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fscanf(ficpar,"%le",&delti3[i][j][k]);
       k=k+1;          printf(" %le",delti3[i][j][k]);
       fprintf(ficresvpl,"\n#****** ");          fprintf(ficparo," %le",delti3[i][j][k]);
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fscanf(ficpar,"\n");
       fprintf(ficresvpl,"******\n");        printf("\n");
              fprintf(ficparo,"\n");
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;    }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    delti=delti3[1][1];
     }  
  }  
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   fclose(ficresvpl);    
     /* Reads comments: lines beginning with '#' */
   /*---------- End : free ----------------*/    while((c=getc(ficpar))=='#' && c!= EOF){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      ungetc(c,ficpar);
        fgets(line, MAXLINE, ficpar);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      puts(line);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fputs(line,ficparo);
      }
      ungetc(c,ficpar);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    matcov=matrix(1,npar,1,npar);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    for(i=1; i <=npar; i++){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      fscanf(ficpar,"%s",&str);
        if(mle==1)
   free_matrix(matcov,1,npar,1,npar);        printf("%s",str);
   free_vector(delti,1,npar);      fprintf(ficlog,"%s",str);
   free_matrix(agev,1,maxwav,1,imx);      fprintf(ficparo,"%s",str);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
   fprintf(fichtm,"\n</body>");        if(mle==1){
   fclose(fichtm);          printf(" %.5le",matcov[i][j]);
   fclose(ficgp);          fprintf(ficlog," %.5le",matcov[i][j]);
          }
         else
   if(erreur >0)          fprintf(ficlog," %.5le",matcov[i][j]);
     printf("End of Imach with error or warning %d\n",erreur);        fprintf(ficparo," %.5le",matcov[i][j]);
   else   printf("End of Imach\n");      }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fscanf(ficpar,"\n");
        if(mle==1)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        printf("\n");
   /*printf("Total time was %d uSec.\n", total_usecs);*/      fprintf(ficlog,"\n");
   /*------ End -----------*/      fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
  end:      for(j=i+1;j<=npar;j++)
 #ifdef windows        matcov[i][j]=matcov[j][i];
   /* chdir(pathcd);*/     
 #endif    if(mle==1)
  /*system("wgnuplot graph.plt");*/      printf("\n");
  /*system("../gp37mgw/wgnuplot graph.plt");*/    fprintf(ficlog,"\n");
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);    /*-------- Rewriting paramater file ----------*/
  strcat(plotcmd," ");    strcpy(rfileres,"r");    /* "Rparameterfile */
  strcat(plotcmd,optionfilegnuplot);    strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
  system(plotcmd);    strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 #ifdef windows    if((ficres =fopen(rfileres,"w"))==NULL) {
   while (z[0] != 'q') {      printf("Problem writing new parameter file: %s\n", fileres);goto end;
     /* chdir(path); */      fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    }
     scanf("%s",z);    fprintf(ficres,"#%s\n",version);
     if (z[0] == 'c') system("./imach");      
     else if (z[0] == 'e') system(optionfilehtm);    /*-------- data file ----------*/
     else if (z[0] == 'g') system(plotcmd);    if((fic=fopen(datafile,"r"))==NULL)    {
     else if (z[0] == 'q') exit(0);      printf("Problem with datafile: %s\n", datafile);goto end;
   }      fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
 #endif    }
 }  
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.48  
changed lines
  Added in v.1.84


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>