Diff for /imach/src/imach.c between versions 1.48 and 1.92

version 1.48, 2002/06/10 13:12:49 version 1.92, 2003/06/25 16:30:45
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.92  2003/06/25 16:30:45  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   This program computes Healthy Life Expectancies from    exist so I changed back to asctime which exists.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.91  2003/06/25 15:30:29  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository): Duplicated warning errors corrected.
   case of a health survey which is our main interest) -2- at least a    (Repository): Elapsed time after each iteration is now output. It
   second wave of interviews ("longitudinal") which measure each change    helps to forecast when convergence will be reached. Elapsed time
   (if any) in individual health status.  Health expectancies are    is stamped in powell.  We created a new html file for the graphs
   computed from the time spent in each health state according to a    concerning matrix of covariance. It has extension -cov.htm.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.90  2003/06/24 12:34:15  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Some bugs corrected for windows. Also, when
   probability to be observed in state j at the second wave    mle=-1 a template is output in file "or"mypar.txt with the design
   conditional to be observed in state i at the first wave. Therefore    of the covariance matrix to be input.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.89  2003/06/24 12:30:52  brouard
   complex model than "constant and age", you should modify the program    (Module): Some bugs corrected for windows. Also, when
   where the markup *Covariates have to be included here again* invites    mle=-1 a template is output in file "or"mypar.txt with the design
   you to do it.  More covariates you add, slower the    of the covariance matrix to be input.
   convergence.  
     Revision 1.88  2003/06/23 17:54:56  brouard
   The advantage of this computer programme, compared to a simple    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.87  2003/06/18 12:26:01  brouard
   intermediate interview, the information is lost, but taken into    Version 0.96
   account using an interpolation or extrapolation.    
     Revision 1.86  2003/06/17 20:04:08  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Change position of html and gnuplot routines and added
   conditional to the observed state i at age x. The delay 'h' can be    routine fileappend.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.85  2003/06/17 13:12:43  brouard
   semester or year) is model as a multinomial logistic.  The hPx    * imach.c (Repository): Check when date of death was earlier that
   matrix is simply the matrix product of nh*stepm elementary matrices    current date of interview. It may happen when the death was just
   and the contribution of each individual to the likelihood is simply    prior to the death. In this case, dh was negative and likelihood
   hPijx.    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
   Also this programme outputs the covariance matrix of the parameters but also    interview.
   of the life expectancies. It also computes the prevalence limits.    (Repository): Because some people have very long ID (first column)
      we changed int to long in num[] and we added a new lvector for
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    memory allocation. But we also truncated to 8 characters (left
            Institut national d'études démographiques, Paris.    truncation)
   This software have been partly granted by Euro-REVES, a concerted action    (Repository): No more line truncation errors.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.84  2003/06/13 21:44:43  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Replace "freqsummary" at a correct
   can be accessed at http://euroreves.ined.fr/imach .    place. It differs from routine "prevalence" which may be called
   **********************************************************************/    many times. Probs is memory consuming and must be used with
      parcimony.
 #include <math.h>    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.83  2003/06/10 13:39:11  lievre
 #include <unistd.h>    *** empty log message ***
   
 #define MAXLINE 256    Revision 1.82  2003/06/05 15:57:20  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Add log in  imach.c and  fullversion number is now printed.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80  */
 /*#define DEBUG*/  /*
 #define windows     Interpolated Markov Chain
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Short summary of the programme:
     
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    This program computes Healthy Life Expectancies from
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 #define NINTERVMAX 8    interviewed on their health status or degree of disability (in the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    case of a health survey which is our main interest) -2- at least a
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    second wave of interviews ("longitudinal") which measure each change
 #define NCOVMAX 8 /* Maximum number of covariates */    (if any) in individual health status.  Health expectancies are
 #define MAXN 20000    computed from the time spent in each health state according to a
 #define YEARM 12. /* Number of months per year */    model. More health states you consider, more time is necessary to reach the
 #define AGESUP 130    Maximum Likelihood of the parameters involved in the model.  The
 #define AGEBASE 40    simplest model is the multinomial logistic model where pij is the
 #ifdef windows    probability to be observed in state j at the second wave
 #define DIRSEPARATOR '\\'    conditional to be observed in state i at the first wave. Therefore
 #else    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define DIRSEPARATOR '/'    'age' is age and 'sex' is a covariate. If you want to have a more
 #endif    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    you to do it.  More covariates you add, slower the
 int erreur; /* Error number */    convergence.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    The advantage of this computer programme, compared to a simple
 int npar=NPARMAX;    multinomial logistic model, is clear when the delay between waves is not
 int nlstate=2; /* Number of live states */    identical for each individual. Also, if a individual missed an
 int ndeath=1; /* Number of dead states */    intermediate interview, the information is lost, but taken into
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    account using an interpolation or extrapolation.  
 int popbased=0;  
     hPijx is the probability to be observed in state i at age x+h
 int *wav; /* Number of waves for this individuual 0 is possible */    conditional to the observed state i at age x. The delay 'h' can be
 int maxwav; /* Maxim number of waves */    split into an exact number (nh*stepm) of unobserved intermediate
 int jmin, jmax; /* min, max spacing between 2 waves */    states. This elementary transition (by month, quarter,
 int mle, weightopt;    semester or year) is modelled as a multinomial logistic.  The hPx
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    matrix is simply the matrix product of nh*stepm elementary matrices
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    and the contribution of each individual to the likelihood is simply
 double jmean; /* Mean space between 2 waves */    hPijx.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Also this programme outputs the covariance matrix of the parameters but also
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    of the life expectancies. It also computes the stable prevalence. 
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    
 FILE *fichtm; /* Html File */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 FILE *ficreseij;             Institut national d'études démographiques, Paris.
 char filerese[FILENAMELENGTH];    This software have been partly granted by Euro-REVES, a concerted action
 FILE  *ficresvij;    from the European Union.
 char fileresv[FILENAMELENGTH];    It is copyrighted identically to a GNU software product, ie programme and
 FILE  *ficresvpl;    software can be distributed freely for non commercial use. Latest version
 char fileresvpl[FILENAMELENGTH];    can be accessed at http://euroreves.ined.fr/imach .
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    **********************************************************************/
   /*
 char filerest[FILENAMELENGTH];    main
 char fileregp[FILENAMELENGTH];    read parameterfile
 char popfile[FILENAMELENGTH];    read datafile
     concatwav
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    freqsummary
     if (mle >= 1)
 #define NR_END 1      mlikeli
 #define FREE_ARG char*    print results files
 #define FTOL 1.0e-10    if mle==1 
        computes hessian
 #define NRANSI    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define ITMAX 200        begin-prev-date,...
     open gnuplot file
 #define TOL 2.0e-4    open html file
     stable prevalence
 #define CGOLD 0.3819660     for age prevalim()
 #define ZEPS 1.0e-10    h Pij x
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 #define GOLD 1.618034    health expectancies
 #define GLIMIT 100.0    Variance-covariance of DFLE
 #define TINY 1.0e-20    prevalence()
      movingaverage()
 static double maxarg1,maxarg2;    varevsij() 
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    if popbased==1 varevsij(,popbased)
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    total life expectancies
      Variance of stable prevalence
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))   end
 #define rint(a) floor(a+0.5)  */
   
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   
   #include <math.h>
 int imx;  #include <stdio.h>
 int stepm;  #include <stdlib.h>
 /* Stepm, step in month: minimum step interpolation*/  #include <unistd.h>
   
 int estepm;  #include <sys/time.h>
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #include <time.h>
   #include "timeval.h"
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define MAXLINE 256
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define GNUPLOTPROGRAM "gnuplot"
 double **pmmij, ***probs, ***mobaverage;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 double dateintmean=0;  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 double *weight;  /*#define windows*/
 int **s; /* Status */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double *agedc, **covar, idx;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 double ftolhess; /* Tolerance for computing hessian */  
   #define NINTERVMAX 8
 /**************** split *************************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
    char *s;                             /* pointer */  #define MAXN 20000
    int  l1, l2;                         /* length counters */  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
    l1 = strlen( path );                 /* length of path */  #define AGEBASE 40
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #ifdef unix
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  #define DIRSEPARATOR '/'
    if ( s == NULL ) {                   /* no directory, so use current */  #define ODIRSEPARATOR '\\'
 #if     defined(__bsd__)                /* get current working directory */  #else
       extern char       *getwd( );  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
       if ( getwd( dirc ) == NULL ) {  #endif
 #else  
       extern char       *getcwd( );  /* $Id$ */
   /* $State$ */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
          return( GLOCK_ERROR_GETCWD );  char fullversion[]="$Revision$ $Date$"; 
       }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       strcpy( name, path );             /* we've got it */  int nvar;
    } else {                             /* strip direcotry from path */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       s++;                              /* after this, the filename */  int npar=NPARMAX;
       l2 = strlen( s );                 /* length of filename */  int nlstate=2; /* Number of live states */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int ndeath=1; /* Number of dead states */
       strcpy( name, s );                /* save file name */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int popbased=0;
       dirc[l1-l2] = 0;                  /* add zero */  
    }  int *wav; /* Number of waves for this individuual 0 is possible */
    l1 = strlen( dirc );                 /* length of directory */  int maxwav; /* Maxim number of waves */
 #ifdef windows  int jmin, jmax; /* min, max spacing between 2 waves */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int gipmx, gsw; /* Global variables on the number of contributions 
 #else                     to the likelihood and the sum of weights (done by funcone)*/
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int mle, weightopt;
 #endif  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    s = strrchr( name, '.' );            /* find last / */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    s++;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    strcpy(ext,s);                       /* save extension */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    l1= strlen( name);  double jmean; /* Mean space between 2 waves */
    l2= strlen( s)+1;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    strncpy( finame, name, l1-l2);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    finame[l1-l2]= 0;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    return( 0 );                         /* we're done */  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /******************************************/  double sw; /* Sum of weights */
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 void replace(char *s, char*t)  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int i;  FILE *ficresprobmorprev;
   int lg=20;  FILE *fichtm, *fichtmcov; /* Html File */
   i=0;  FILE *ficreseij;
   lg=strlen(t);  char filerese[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  FILE  *ficresvij;
     (s[i] = t[i]);  char fileresv[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  FILE  *ficresvpl;
   }  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int nbocc(char *s, char occ)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH]; 
   int i,j=0;  char command[FILENAMELENGTH];
   int lg=20;  int  outcmd=0;
   i=0;  
   lg=strlen(s);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char lfileres[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  char filelog[FILENAMELENGTH]; /* Log file */
   }  char filerest[FILENAMELENGTH];
   return j;  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 void cutv(char *u,char *v, char*t, char occ)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   int i,lg,j,p=0;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   i=0;  struct timezone tzp;
   for(j=0; j<=strlen(t)-1; j++) {  extern int gettimeofday();
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   }  long time_value;
   extern long time();
   lg=strlen(t);  char strcurr[80], strfor[80];
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define NR_END 1
   }  #define FREE_ARG char*
      u[p]='\0';  #define FTOL 1.0e-10
   
    for(j=0; j<= lg; j++) {  #define NRANSI 
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define ITMAX 200 
   }  
 }  #define TOL 2.0e-4 
   
 /********************** nrerror ********************/  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 void nrerror(char error_text[])  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   fprintf(stderr,"ERREUR ...\n");  #define GOLD 1.618034 
   fprintf(stderr,"%s\n",error_text);  #define GLIMIT 100.0 
   exit(1);  #define TINY 1.0e-20 
 }  
 /*********************** vector *******************/  static double maxarg1,maxarg2;
 double *vector(int nl, int nh)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double *v;    
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if (!v) nrerror("allocation failure in vector");  #define rint(a) floor(a+0.5)
   return v-nl+NR_END;  
 }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /************************ free vector ******************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 void free_vector(double*v, int nl, int nh)  
 {  int imx; 
   free((FREE_ARG)(v+nl-NR_END));  int stepm;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /************************ivector *******************************/  int estepm;
 int *ivector(long nl,long nh)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   int *v;  int m,nb;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  long *num;
   if (!v) nrerror("allocation failure in ivector");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   return v-nl+NR_END;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double dateintmean=0;
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  double *weight;
 {  int **s; /* Status */
   free((FREE_ARG)(v+nl-NR_END));  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /******************* imatrix *******************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double ftolhess; /* Tolerance for computing hessian */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  /**************** split *************************/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   int **m;  {
      char  *ss;                            /* pointer */
   /* allocate pointers to rows */    int   l1, l2;                         /* length counters */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    l1 = strlen(path );                   /* length of path */
   m += NR_END;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m -= nrl;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      if ( ss == NULL ) {                   /* no directory, so use current */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   /* allocate rows and set pointers to them */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      /* get current working directory */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      /*    extern  char* getcwd ( char *buf , int len);*/
   m[nrl] += NR_END;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl] -= ncl;        return( GLOCK_ERROR_GETCWD );
        }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      strcpy( name, path );               /* we've got it */
      } else {                              /* strip direcotry from path */
   /* return pointer to array of pointers to rows */      ss++;                               /* after this, the filename */
   return m;      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /****************** free_imatrix *************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 void free_imatrix(m,nrl,nrh,ncl,nch)      dirc[l1-l2] = 0;                    /* add zero */
       int **m;    }
       long nch,ncl,nrh,nrl;    l1 = strlen( dirc );                  /* length of directory */
      /* free an int matrix allocated by imatrix() */    /*#ifdef windows
 {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #else
   free((FREE_ARG) (m+nrl-NR_END));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 }  #endif
     */
 /******************* matrix *******************************/    ss = strrchr( name, '.' );            /* find last / */
 double **matrix(long nrl, long nrh, long ncl, long nch)    ss++;
 {    strcpy(ext,ss);                       /* save extension */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    l1= strlen( name);
   double **m;    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    finame[l1-l2]= 0;
   if (!m) nrerror("allocation failure 1 in matrix()");    return( 0 );                          /* we're done */
   m += NR_END;  }
   m -= nrl;  
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /******************************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  void replace_back_to_slash(char *s, char*t)
   m[nrl] -= ncl;  {
     int i;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int lg=0;
   return m;    i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /*************************free matrix ************************/      (s[i] = t[i]);
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      if (t[i]== '\\') s[i]='/';
 {    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int nbocc(char *s, char occ)
   {
 /******************* ma3x *******************************/    int i,j=0;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    int lg=20;
 {    i=0;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    lg=strlen(s);
   double ***m;    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");    return j;
   m += NR_END;  }
   m -= nrl;  
   void cutv(char *u,char *v, char*t, char occ)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    /* cuts string t into u and v where u is ended by char occ excluding it
   m[nrl] += NR_END;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m[nrl] -= ncl;       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    lg=strlen(t);
   for (j=ncl+1; j<=nch; j++)    for(j=0; j<p; j++) {
     m[nrl][j]=m[nrl][j-1]+nlay;      (u[j] = t[j]);
      }
   for (i=nrl+1; i<=nrh; i++) {       u[p]='\0';
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)     for(j=0; j<= lg; j++) {
       m[i][j]=m[i][j-1]+nlay;      if (j>=(p+1))(v[j-p-1] = t[j]);
   }    }
   return m;  }
 }  
   /********************** nrerror ********************/
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  void nrerror(char error_text[])
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    fprintf(stderr,"ERREUR ...\n");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    fprintf(stderr,"%s\n",error_text);
   free((FREE_ARG)(m+nrl-NR_END));    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /***************** f1dim *************************/  double *vector(int nl, int nh)
 extern int ncom;  {
 extern double *pcom,*xicom;    double *v;
 extern double (*nrfunc)(double []);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      if (!v) nrerror("allocation failure in vector");
 double f1dim(double x)    return v-nl+NR_END;
 {  }
   int j;  
   double f;  /************************ free vector ******************/
   double *xt;  void free_vector(double*v, int nl, int nh)
    {
   xt=vector(1,ncom);    free((FREE_ARG)(v+nl-NR_END));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  }
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /************************ivector *******************************/
   return f;  int *ivector(long nl,long nh)
 }  {
     int *v;
 /*****************brent *************************/    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    if (!v) nrerror("allocation failure in ivector");
 {    return v-nl+NR_END;
   int iter;  }
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /******************free ivector **************************/
   double ftemp;  void free_ivector(int *v, long nl, long nh)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    free((FREE_ARG)(v+nl-NR_END));
    }
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  /************************lvector *******************************/
   x=w=v=bx;  long *lvector(long nl,long nh)
   fw=fv=fx=(*f)(x);  {
   for (iter=1;iter<=ITMAX;iter++) {    long *v;
     xm=0.5*(a+b);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if (!v) nrerror("allocation failure in ivector");
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    return v-nl+NR_END;
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /******************free lvector **************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  void free_lvector(long *v, long nl, long nh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    free((FREE_ARG)(v+nl-NR_END));
       *xmin=x;  }
       return fx;  
     }  /******************* imatrix *******************************/
     ftemp=fu;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     if (fabs(e) > tol1) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       r=(x-w)*(fx-fv);  { 
       q=(x-v)*(fx-fw);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       p=(x-v)*q-(x-w)*r;    int **m; 
       q=2.0*(q-r);    
       if (q > 0.0) p = -p;    /* allocate pointers to rows */ 
       q=fabs(q);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       etemp=e;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       e=d;    m += NR_END; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m -= nrl; 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    
       else {    
         d=p/q;    /* allocate rows and set pointers to them */ 
         u=x+d;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         if (u-a < tol2 || b-u < tol2)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           d=SIGN(tol1,xm-x);    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
     } else {    
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     }    
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    /* return pointer to array of pointers to rows */ 
     fu=(*f)(u);    return m; 
     if (fu <= fx) {  } 
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  /****************** free_imatrix *************************/
         SHFT(fv,fw,fx,fu)  void free_imatrix(m,nrl,nrh,ncl,nch)
         } else {        int **m;
           if (u < x) a=u; else b=u;        long nch,ncl,nrh,nrl; 
           if (fu <= fw || w == x) {       /* free an int matrix allocated by imatrix() */ 
             v=w;  { 
             w=u;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
             fv=fw;    free((FREE_ARG) (m+nrl-NR_END)); 
             fw=fu;  } 
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  /******************* matrix *******************************/
             fv=fu;  double **matrix(long nrl, long nrh, long ncl, long nch)
           }  {
         }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   }    double **m;
   nrerror("Too many iterations in brent");  
   *xmin=x;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   return fx;    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /****************** mnbrak ***********************/  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             double (*func)(double))    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   double ulim,u,r,q, dum;  
   double fu;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      return m;
   *fa=(*func)(*ax);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   *fb=(*func)(*bx);     */
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /*************************free matrix ************************/
       }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   while (*fb > *fc) {    free((FREE_ARG)(m+nrl-NR_END));
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /******************* ma3x *******************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       fu=(*func)(u);    double ***m;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (fu < *fc) {    if (!m) nrerror("allocation failure 1 in matrix()");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m += NR_END;
           SHFT(*fb,*fc,fu,(*func)(u))    m -= nrl;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       u=ulim;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fu=(*func)(u);    m[nrl] += NR_END;
     } else {    m[nrl] -= ncl;
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }  
     SHFT(*ax,*bx,*cx,u)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       SHFT(*fa,*fb,*fc,fu)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       }    m[nrl][ncl] += NR_END;
 }    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
 /*************** linmin ************************/      m[nrl][j]=m[nrl][j-1]+nlay;
     
 int ncom;    for (i=nrl+1; i<=nrh; i++) {
 double *pcom,*xicom;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 double (*nrfunc)(double []);      for (j=ncl+1; j<=nch; j++) 
          m[i][j]=m[i][j-1]+nlay;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    }
 {    return m; 
   double brent(double ax, double bx, double cx,    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                double (*f)(double), double tol, double *xmin);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double f1dim(double x);    */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  /*************************free ma3x ************************/
   double xx,xmin,bx,ax;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double fx,fb,fa;  {
      free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   ncom=n;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   pcom=vector(1,n);    free((FREE_ARG)(m+nrl-NR_END));
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /***************** f1dim *************************/
     pcom[j]=p[j];  extern int ncom; 
     xicom[j]=xi[j];  extern double *pcom,*xicom;
   }  extern double (*nrfunc)(double []); 
   ax=0.0;   
   xx=1.0;  double f1dim(double x) 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  { 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    int j; 
 #ifdef DEBUG    double f;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double *xt; 
 #endif   
   for (j=1;j<=n;j++) {    xt=vector(1,ncom); 
     xi[j] *= xmin;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     p[j] += xi[j];    f=(*nrfunc)(xt); 
   }    free_vector(xt,1,ncom); 
   free_vector(xicom,1,n);    return f; 
   free_vector(pcom,1,n);  } 
 }  
   /*****************brent *************************/
 /*************** powell ************************/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  { 
             double (*func)(double []))    int iter; 
 {    double a,b,d,etemp;
   void linmin(double p[], double xi[], int n, double *fret,    double fu,fv,fw,fx;
               double (*func)(double []));    double ftemp;
   int i,ibig,j;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double del,t,*pt,*ptt,*xit;    double e=0.0; 
   double fp,fptt;   
   double *xits;    a=(ax < cx ? ax : cx); 
   pt=vector(1,n);    b=(ax > cx ? ax : cx); 
   ptt=vector(1,n);    x=w=v=bx; 
   xit=vector(1,n);    fw=fv=fx=(*f)(x); 
   xits=vector(1,n);    for (iter=1;iter<=ITMAX;iter++) { 
   *fret=(*func)(p);      xm=0.5*(a+b); 
   for (j=1;j<=n;j++) pt[j]=p[j];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for (*iter=1;;++(*iter)) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     fp=(*fret);      printf(".");fflush(stdout);
     ibig=0;      fprintf(ficlog,".");fflush(ficlog);
     del=0.0;  #ifdef DEBUG
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (i=1;i<=n;i++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf(" %d %.12f",i, p[i]);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     printf("\n");  #endif
     for (i=1;i<=n;i++) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        *xmin=x; 
       fptt=(*fret);        return fx; 
 #ifdef DEBUG      } 
       printf("fret=%lf \n",*fret);      ftemp=fu;
 #endif      if (fabs(e) > tol1) { 
       printf("%d",i);fflush(stdout);        r=(x-w)*(fx-fv); 
       linmin(p,xit,n,fret,func);        q=(x-v)*(fx-fw); 
       if (fabs(fptt-(*fret)) > del) {        p=(x-v)*q-(x-w)*r; 
         del=fabs(fptt-(*fret));        q=2.0*(q-r); 
         ibig=i;        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
 #ifdef DEBUG        etemp=e; 
       printf("%d %.12e",i,(*fret));        e=d; 
       for (j=1;j<=n;j++) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         printf(" x(%d)=%.12e",j,xit[j]);        else { 
       }          d=p/q; 
       for(j=1;j<=n;j++)          u=x+d; 
         printf(" p=%.12e",p[j]);          if (u-a < tol2 || b-u < tol2) 
       printf("\n");            d=SIGN(tol1,xm-x); 
 #endif        } 
     }      } else { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #ifdef DEBUG      } 
       int k[2],l;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       k[0]=1;      fu=(*f)(u); 
       k[1]=-1;      if (fu <= fx) { 
       printf("Max: %.12e",(*func)(p));        if (u >= x) a=x; else b=x; 
       for (j=1;j<=n;j++)        SHFT(v,w,x,u) 
         printf(" %.12e",p[j]);          SHFT(fv,fw,fx,fu) 
       printf("\n");          } else { 
       for(l=0;l<=1;l++) {            if (u < x) a=u; else b=u; 
         for (j=1;j<=n;j++) {            if (fu <= fw || w == x) { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];              v=w; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);              w=u; 
         }              fv=fw; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));              fw=fu; 
       }            } else if (fu <= fv || v == x || v == w) { 
 #endif              v=u; 
               fv=fu; 
             } 
       free_vector(xit,1,n);          } 
       free_vector(xits,1,n);    } 
       free_vector(ptt,1,n);    nrerror("Too many iterations in brent"); 
       free_vector(pt,1,n);    *xmin=x; 
       return;    return fx; 
     }  } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /****************** mnbrak ***********************/
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       pt[j]=p[j];              double (*func)(double)) 
     }  { 
     fptt=(*func)(ptt);    double ulim,u,r,q, dum;
     if (fptt < fp) {    double fu; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);   
       if (t < 0.0) {    *fa=(*func)(*ax); 
         linmin(p,xit,n,fret,func);    *fb=(*func)(*bx); 
         for (j=1;j<=n;j++) {    if (*fb > *fa) { 
           xi[j][ibig]=xi[j][n];      SHFT(dum,*ax,*bx,dum) 
           xi[j][n]=xit[j];        SHFT(dum,*fb,*fa,dum) 
         }        } 
 #ifdef DEBUG    *cx=(*bx)+GOLD*(*bx-*ax); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    *fc=(*func)(*cx); 
         for(j=1;j<=n;j++)    while (*fb > *fc) { 
           printf(" %.12e",xit[j]);      r=(*bx-*ax)*(*fb-*fc); 
         printf("\n");      q=(*bx-*cx)*(*fb-*fa); 
 #endif      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   }      if ((*bx-u)*(u-*cx) > 0.0) { 
 }        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 /**** Prevalence limit ****************/        fu=(*func)(u); 
         if (fu < *fc) { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 {            SHFT(*fb,*fc,fu,(*func)(u)) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit            } 
      matrix by transitions matrix until convergence is reached */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   int i, ii,j,k;        fu=(*func)(u); 
   double min, max, maxmin, maxmax,sumnew=0.;      } else { 
   double **matprod2();        u=(*cx)+GOLD*(*cx-*bx); 
   double **out, cov[NCOVMAX], **pmij();        fu=(*func)(u); 
   double **newm;      } 
   double agefin, delaymax=50 ; /* Max number of years to converge */      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   for (ii=1;ii<=nlstate+ndeath;ii++)        } 
     for (j=1;j<=nlstate+ndeath;j++){  } 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************** linmin ************************/
   
    cov[1]=1.;  int ncom; 
    double *pcom,*xicom;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double (*nrfunc)(double []); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){   
     newm=savm;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     /* Covariates have to be included here again */  { 
      cov[2]=agefin;    double brent(double ax, double bx, double cx, 
                   double (*f)(double), double tol, double *xmin); 
       for (k=1; k<=cptcovn;k++) {    double f1dim(double x); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/                double *fc, double (*func)(double)); 
       }    int j; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double xx,xmin,bx,ax; 
       for (k=1; k<=cptcovprod;k++)    double fx,fb,fa;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];   
     ncom=n; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    pcom=vector(1,n); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    xicom=vector(1,n); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    nrfunc=func; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
     savm=oldm;      xicom[j]=xi[j]; 
     oldm=newm;    } 
     maxmax=0.;    ax=0.0; 
     for(j=1;j<=nlstate;j++){    xx=1.0; 
       min=1.;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       max=0.;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       for(i=1; i<=nlstate; i++) {  #ifdef DEBUG
         sumnew=0;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         prlim[i][j]= newm[i][j]/(1-sumnew);  #endif
         max=FMAX(max,prlim[i][j]);    for (j=1;j<=n;j++) { 
         min=FMIN(min,prlim[i][j]);      xi[j] *= xmin; 
       }      p[j] += xi[j]; 
       maxmin=max-min;    } 
       maxmax=FMAX(maxmax,maxmin);    free_vector(xicom,1,n); 
     }    free_vector(pcom,1,n); 
     if(maxmax < ftolpl){  } 
       return prlim;  
     }  char *asc_diff_time(long time_sec, char ascdiff[])
   }  {
 }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
 /*************** transition probabilities ***************/    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    sec_left = (sec_left) %(60*60);
 {    minutes = (sec_left) /60;
   double s1, s2;    sec_left = (sec_left) % (60);
   /*double t34;*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   int i,j,j1, nc, ii, jj;    return ascdiff;
   }
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /*************** powell ************************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         /*s2 += param[i][j][nc]*cov[nc];*/              double (*func)(double [])) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    void linmin(double p[], double xi[], int n, double *fret, 
       }                double (*func)(double [])); 
       ps[i][j]=s2;    int i,ibig,j; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
     for(j=i+1; j<=nlstate+ndeath;j++){    double *xits;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    int niterf, itmp;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    pt=vector(1,n); 
       }    ptt=vector(1,n); 
       ps[i][j]=s2;    xit=vector(1,n); 
     }    xits=vector(1,n); 
   }    *fret=(*func)(p); 
     /*ps[3][2]=1;*/    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   for(i=1; i<= nlstate; i++){      fp=(*fret); 
      s1=0;      ibig=0; 
     for(j=1; j<i; j++)      del=0.0; 
       s1+=exp(ps[i][j]);      last_time=curr_time;
     for(j=i+1; j<=nlstate+ndeath; j++)      (void) gettimeofday(&curr_time,&tzp);
       s1+=exp(ps[i][j]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     ps[i][i]=1./(s1+1.);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     for(j=1; j<i; j++)      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      for (i=1;i<=n;i++) {
     for(j=i+1; j<=nlstate+ndeath; j++)        printf(" %d %.12f",i, p[i]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fprintf(ficlog," %d %.12lf",i, p[i]);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        fprintf(ficrespow," %.12lf", p[i]);
   } /* end i */      }
       printf("\n");
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      fprintf(ficlog,"\n");
     for(jj=1; jj<= nlstate+ndeath; jj++){      fprintf(ficrespow,"\n");fflush(ficrespow);
       ps[ii][jj]=0;      if(*iter <=3){
       ps[ii][ii]=1;        tm = *localtime(&curr_time.tv_sec);
     }        strcpy(strcurr,asctime(&tmf));
   }  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time;
         itmp = strlen(strcurr);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        if(strcurr[itmp-1]=='\n')
     for(jj=1; jj<= nlstate+ndeath; jj++){          strcurr[itmp-1]='\0';
      printf("%lf ",ps[ii][jj]);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
    }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     printf("\n ");        for(niterf=10;niterf<=30;niterf+=10){
     }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     printf("\n ");printf("%lf ",cov[2]);*/          tmf = *localtime(&forecast_time.tv_sec);
 /*  /*      asctime_r(&tmf,strfor); */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          strcpy(strfor,asctime(&tmf));
   goto end;*/          itmp = strlen(strfor);
     return ps;          if(strfor[itmp-1]=='\n')
 }          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 /**************** Product of 2 matrices ******************/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      }
 {      for (i=1;i<=n;i++) { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        fptt=(*fret); 
   /* in, b, out are matrice of pointers which should have been initialized  #ifdef DEBUG
      before: only the contents of out is modified. The function returns        printf("fret=%lf \n",*fret);
      a pointer to pointers identical to out */        fprintf(ficlog,"fret=%lf \n",*fret);
   long i, j, k;  #endif
   for(i=nrl; i<= nrh; i++)        printf("%d",i);fflush(stdout);
     for(k=ncolol; k<=ncoloh; k++)        fprintf(ficlog,"%d",i);fflush(ficlog);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        linmin(p,xit,n,fret,func); 
         out[i][k] +=in[i][j]*b[j][k];        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   return out;          ibig=i; 
 }        } 
   #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
 /************* Higher Matrix Product ***************/        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 {          printf(" x(%d)=%.12e",j,xit[j]);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
      duration (i.e. until        }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        for(j=1;j<=n;j++) {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          printf(" p=%.12e",p[j]);
      (typically every 2 years instead of every month which is too big).          fprintf(ficlog," p=%.12e",p[j]);
      Model is determined by parameters x and covariates have to be        }
      included manually here.        printf("\n");
         fprintf(ficlog,"\n");
      */  #endif
       } 
   int i, j, d, h, k;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double **out, cov[NCOVMAX];  #ifdef DEBUG
   double **newm;        int k[2],l;
         k[0]=1;
   /* Hstepm could be zero and should return the unit matrix */        k[1]=-1;
   for (i=1;i<=nlstate+ndeath;i++)        printf("Max: %.12e",(*func)(p));
     for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
       oldm[i][j]=(i==j ? 1.0 : 0.0);        for (j=1;j<=n;j++) {
       po[i][j][0]=(i==j ? 1.0 : 0.0);          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        }
   for(h=1; h <=nhstepm; h++){        printf("\n");
     for(d=1; d <=hstepm; d++){        fprintf(ficlog,"\n");
       newm=savm;        for(l=0;l<=1;l++) {
       /* Covariates have to be included here again */          for (j=1;j<=n;j++) {
       cov[1]=1.;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (k=1; k<=cptcovage;k++)          }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for (k=1; k<=cptcovprod;k++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        }
   #endif
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        free_vector(xit,1,n); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        free_vector(xits,1,n); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        free_vector(ptt,1,n); 
       savm=oldm;        free_vector(pt,1,n); 
       oldm=newm;        return; 
     }      } 
     for(i=1; i<=nlstate+ndeath; i++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for(j=1;j<=nlstate+ndeath;j++) {      for (j=1;j<=n;j++) { 
         po[i][j][h]=newm[i][j];        ptt[j]=2.0*p[j]-pt[j]; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        xit[j]=p[j]-pt[j]; 
          */        pt[j]=p[j]; 
       }      } 
   } /* end h */      fptt=(*func)(ptt); 
   return po;      if (fptt < fp) { 
 }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
 /*************** log-likelihood *************/          for (j=1;j<=n;j++) { 
 double func( double *x)            xi[j][ibig]=xi[j][n]; 
 {            xi[j][n]=xit[j]; 
   int i, ii, j, k, mi, d, kk;          }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #ifdef DEBUG
   double **out;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double sw; /* Sum of weights */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double lli; /* Individual log likelihood */          for(j=1;j<=n;j++){
   long ipmx;            printf(" %.12e",xit[j]);
   /*extern weight */            fprintf(ficlog," %.12e",xit[j]);
   /* We are differentiating ll according to initial status */          }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          printf("\n");
   /*for(i=1;i<imx;i++)          fprintf(ficlog,"\n");
     printf(" %d\n",s[4][i]);  #endif
   */        }
   cov[1]=1.;      } 
     } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /**** Prevalence limit (stable prevalence)  ****************/
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
       for(d=0; d<dh[mi][i]; d++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         newm=savm;       matrix by transitions matrix until convergence is reached */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {    int i, ii,j,k;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double min, max, maxmin, maxmax,sumnew=0.;
         }    double **matprod2();
            double **out, cov[NCOVMAX], **pmij();
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double **newm;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double agefin, delaymax=50 ; /* Max number of years to converge */
         savm=oldm;  
         oldm=newm;    for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       } /* end mult */      }
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);     cov[1]=1.;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/   
       ipmx +=1;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       sw += weight[i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      newm=savm;
     } /* end of wave */      /* Covariates have to be included here again */
   } /* end of individual */       cov[2]=agefin;
     
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        for (k=1; k<=cptcovn;k++) {
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   return -l;        }
 }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /*********** Maximum Likelihood Estimation ***************/  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   int i,j, iter;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double **xi,*delti;  
   double fret;      savm=oldm;
   xi=matrix(1,npar,1,npar);      oldm=newm;
   for (i=1;i<=npar;i++)      maxmax=0.;
     for (j=1;j<=npar;j++)      for(j=1;j<=nlstate;j++){
       xi[i][j]=(i==j ? 1.0 : 0.0);        min=1.;
   printf("Powell\n");        max=0.;
   powell(p,xi,npar,ftol,&iter,&fret,func);        for(i=1; i<=nlstate; i++) {
           sumnew=0;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
 }          min=FMIN(min,prlim[i][j]);
         }
 /**** Computes Hessian and covariance matrix ***/        maxmin=max-min;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        maxmax=FMAX(maxmax,maxmin);
 {      }
   double  **a,**y,*x,pd;      if(maxmax < ftolpl){
   double **hess;        return prlim;
   int i, j,jk;      }
   int *indx;    }
   }
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  /*************** transition probabilities ***************/ 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
   hess=matrix(1,npar,1,npar);    double s1, s2;
     /*double t34;*/
   printf("\nCalculation of the hessian matrix. Wait...\n");    int i,j,j1, nc, ii, jj;
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);      for(i=1; i<= nlstate; i++){
     hess[i][i]=hessii(p,ftolhess,i,delti);      for(j=1; j<i;j++){
     /*printf(" %f ",p[i]);*/        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     /*printf(" %lf ",hess[i][i]);*/          /*s2 += param[i][j][nc]*cov[nc];*/
   }          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
            /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++)  {        ps[i][j]=s2;
       if (j>i) {        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
         printf(".%d%d",i,j);fflush(stdout);      }
         hess[i][j]=hessij(p,delti,i,j);      for(j=i+1; j<=nlstate+ndeath;j++){
         hess[j][i]=hess[i][j];            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         /*printf(" %lf ",hess[i][j]);*/          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       }          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
     }        }
   }        ps[i][j]=s2;
   printf("\n");      }
     }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      /*ps[3][2]=1;*/
    
   a=matrix(1,npar,1,npar);    for(i=1; i<= nlstate; i++){
   y=matrix(1,npar,1,npar);       s1=0;
   x=vector(1,npar);      for(j=1; j<i; j++)
   indx=ivector(1,npar);        s1+=exp(ps[i][j]);
   for (i=1;i<=npar;i++)      for(j=i+1; j<=nlstate+ndeath; j++)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        s1+=exp(ps[i][j]);
   ludcmp(a,npar,indx,&pd);      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
   for (j=1;j<=npar;j++) {        ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (i=1;i<=npar;i++) x[i]=0;      for(j=i+1; j<=nlstate+ndeath; j++)
     x[j]=1;        ps[i][j]= exp(ps[i][j])*ps[i][i];
     lubksb(a,npar,indx,x);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     for (i=1;i<=npar;i++){    } /* end i */
       matcov[i][j]=x[i];  
     }    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }      for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
   printf("\n#Hessian matrix#\n");        ps[ii][ii]=1;
   for (i=1;i<=npar;i++) {      }
     for (j=1;j<=npar;j++) {    }
       printf("%.3e ",hess[i][j]);  
     }  
     printf("\n");    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   }      for(jj=1; jj<= nlstate+ndeath; jj++){
        printf("%lf ",ps[ii][jj]);
   /* Recompute Inverse */     }
   for (i=1;i<=npar;i++)      printf("\n ");
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      }
   ludcmp(a,npar,indx,&pd);      printf("\n ");printf("%lf ",cov[2]);*/
   /*
   /*  printf("\n#Hessian matrix recomputed#\n");    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     goto end;*/
   for (j=1;j<=npar;j++) {      return ps;
     for (i=1;i<=npar;i++) x[i]=0;  }
     x[j]=1;  
     lubksb(a,npar,indx,x);  /**************** Product of 2 matrices ******************/
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       printf("%.3e ",y[i][j]);  {
     }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     printf("\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
   */       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   free_matrix(a,1,npar,1,npar);    long i, j, k;
   free_matrix(y,1,npar,1,npar);    for(i=nrl; i<= nrh; i++)
   free_vector(x,1,npar);      for(k=ncolol; k<=ncoloh; k++)
   free_ivector(indx,1,npar);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   free_matrix(hess,1,npar,1,npar);          out[i][k] +=in[i][j]*b[j][k];
   
     return out;
 }  }
   
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  /************* Higher Matrix Product ***************/
 {  
   int i;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   int l=1, lmax=20;  {
   double k1,k2;    /* Computes the transition matrix starting at age 'age' over 
   double p2[NPARMAX+1];       'nhstepm*hstepm*stepm' months (i.e. until
   double res;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;       nhstepm*hstepm matrices. 
   double fx;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   int k=0,kmax=10;       (typically every 2 years instead of every month which is too big 
   double l1;       for the memory).
        Model is determined by parameters x and covariates have to be 
   fx=func(x);       included manually here. 
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){       */
     l1=pow(10,l);  
     delts=delt;    int i, j, d, h, k;
     for(k=1 ; k <kmax; k=k+1){    double **out, cov[NCOVMAX];
       delt = delta*(l1*k);    double **newm;
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;    /* Hstepm could be zero and should return the unit matrix */
       p2[theta]=x[theta]-delt;    for (i=1;i<=nlstate+ndeath;i++)
       k2=func(p2)-fx;      for (j=1;j<=nlstate+ndeath;j++){
       /*res= (k1-2.0*fx+k2)/delt/delt; */        oldm[i][j]=(i==j ? 1.0 : 0.0);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        po[i][j][0]=(i==j ? 1.0 : 0.0);
            }
 #ifdef DEBUG    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for(h=1; h <=nhstepm; h++){
 #endif      for(d=1; d <=hstepm; d++){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        newm=savm;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        /* Covariates have to be included here again */
         k=kmax;        cov[1]=1.;
       }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         k=kmax; l=lmax*10.;        for (k=1; k<=cptcovage;k++)
       }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for (k=1; k<=cptcovprod;k++)
         delts=delt;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }  
     }  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   delti[theta]=delts;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   return res;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
 }        savm=oldm;
         oldm=newm;
 double hessij( double x[], double delti[], int thetai,int thetaj)      }
 {      for(i=1; i<=nlstate+ndeath; i++)
   int i;        for(j=1;j<=nlstate+ndeath;j++) {
   int l=1, l1, lmax=20;          po[i][j][h]=newm[i][j];
   double k1,k2,k3,k4,res,fx;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   double p2[NPARMAX+1];           */
   int k;        }
     } /* end h */
   fx=func(x);    return po;
   for (k=1; k<=2; k++) {  }
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*************** log-likelihood *************/
     k1=func(p2)-fx;  double func( double *x)
    {
     p2[thetai]=x[thetai]+delti[thetai]/k;    int i, ii, j, k, mi, d, kk;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     k2=func(p2)-fx;    double **out;
      double sw; /* Sum of weights */
     p2[thetai]=x[thetai]-delti[thetai]/k;    double lli; /* Individual log likelihood */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int s1, s2;
     k3=func(p2)-fx;    double bbh, survp;
      long ipmx;
     p2[thetai]=x[thetai]-delti[thetai]/k;    /*extern weight */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* We are differentiating ll according to initial status */
     k4=func(p2)-fx;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    /*for(i=1;i<imx;i++) 
 #ifdef DEBUG      printf(" %d\n",s[4][i]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    */
 #endif    cov[1]=1.;
   }  
   return res;    for(k=1; k<=nlstate; k++) ll[k]=0.;
 }  
     if(mle==1){
 /************** Inverse of matrix **************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void ludcmp(double **a, int n, int *indx, double *d)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   int i,imax,j,k;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double big,dum,sum,temp;            for (j=1;j<=nlstate+ndeath;j++){
   double *vv;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   vv=vector(1,n);            }
   *d=1.0;          for(d=0; d<dh[mi][i]; d++){
   for (i=1;i<=n;i++) {            newm=savm;
     big=0.0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (j=1;j<=n;j++)            for (kk=1; kk<=cptcovage;kk++) {
       if ((temp=fabs(a[i][j])) > big) big=temp;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            }
     vv[i]=1.0/big;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (j=1;j<=n;j++) {            savm=oldm;
     for (i=1;i<j;i++) {            oldm=newm;
       sum=a[i][j];          } /* end mult */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        
       a[i][j]=sum;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     }          /* But now since version 0.9 we anticipate for bias and large stepm.
     big=0.0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for (i=j;i<=n;i++) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
       sum=a[i][j];           * the nearest (and in case of equal distance, to the lowest) interval but now
       for (k=1;k<j;k++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         sum -= a[i][k]*a[k][j];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       a[i][j]=sum;           * probability in order to take into account the bias as a fraction of the way
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         big=dum;           * -stepm/2 to stepm/2 .
         imax=i;           * For stepm=1 the results are the same as for previous versions of Imach.
       }           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
     if (j != imax) {          s1=s[mw[mi][i]][i];
       for (k=1;k<=n;k++) {          s2=s[mw[mi+1][i]][i];
         dum=a[imax][k];          bbh=(double)bh[mi][i]/(double)stepm; 
         a[imax][k]=a[j][k];          /* bias is positive if real duration
         a[j][k]=dum;           * is higher than the multiple of stepm and negative otherwise.
       }           */
       *d = -(*d);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       vv[imax]=vv[j];          if( s2 > nlstate){ 
     }            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     indx[j]=imax;               to the likelihood is the probability to die between last step unit time and current 
     if (a[j][j] == 0.0) a[j][j]=TINY;               step unit time, which is also the differences between probability to die before dh 
     if (j != n) {               and probability to die before dh-stepm . 
       dum=1.0/(a[j][j]);               In version up to 0.92 likelihood was computed
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          as if date of death was unknown. Death was treated as any other
     }          health state: the date of the interview describes the actual state
   }          and not the date of a change in health state. The former idea was
   free_vector(vv,1,n);  /* Doesn't work */          to consider that at each interview the state was recorded
 ;          (healthy, disable or death) and IMaCh was corrected; but when we
 }          introduced the exact date of death then we should have modified
           the contribution of an exact death to the likelihood. This new
 void lubksb(double **a, int n, int *indx, double b[])          contribution is smaller and very dependent of the step unit
 {          stepm. It is no more the probability to die between last interview
   int i,ii=0,ip,j;          and month of death but the probability to survive from last
   double sum;          interview up to one month before death multiplied by the
            probability to die within a month. Thanks to Chris
   for (i=1;i<=n;i++) {          Jackson for correcting this bug.  Former versions increased
     ip=indx[i];          mortality artificially. The bad side is that we add another loop
     sum=b[ip];          which slows down the processing. The difference can be up to 10%
     b[ip]=b[i];          lower mortality.
     if (ii)            */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            lli=log(out[s1][s2] - savm[s1][s2]);
     else if (sum) ii=i;          }else{
     b[i]=sum;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for (i=n;i>=1;i--) {          } 
     sum=b[i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          /*if(lli ==000.0)*/
     b[i]=sum/a[i][i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }          ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /************ Frequencies ********************/        } /* end of wave */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      } /* end of individual */
 {  /* Some frequencies */    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double ***freq; /* Frequencies */        for(mi=1; mi<= wav[i]-1; mi++){
   double *pp;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double pos, k2, dateintsum=0,k2cpt=0;            for (j=1;j<=nlstate+ndeath;j++){
   FILE *ficresp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char fileresp[FILENAMELENGTH];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   pp=vector(1,nlstate);          for(d=0; d<=dh[mi][i]; d++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            newm=savm;
   strcpy(fileresp,"p");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcat(fileresp,fileres);            for (kk=1; kk<=cptcovage;kk++) {
   if((ficresp=fopen(fileresp,"w"))==NULL) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("Problem with prevalence resultfile: %s\n", fileresp);            }
     exit(0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            savm=oldm;
   j1=0;            oldm=newm;
            } /* end mult */
   j=cptcoveff;        
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias and large stepm.
   for(k1=1; k1<=j;k1++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(i1=1; i1<=ncodemax[k1];i1++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       j1++;           * the nearest (and in case of equal distance, to the lowest) interval but now
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         scanf("%d", i);*/           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       for (i=-1; i<=nlstate+ndeath; i++)             * probability in order to take into account the bias as a fraction of the way
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
           for(m=agemin; m <= agemax+3; m++)           * -stepm/2 to stepm/2 .
             freq[i][jk][m]=0;           * For stepm=1 the results are the same as for previous versions of Imach.
                 * For stepm > 1 the results are less biased than in previous versions. 
       dateintsum=0;           */
       k2cpt=0;          s1=s[mw[mi][i]][i];
       for (i=1; i<=imx; i++) {          s2=s[mw[mi+1][i]][i];
         bool=1;          bbh=(double)bh[mi][i]/(double)stepm; 
         if  (cptcovn>0) {          /* bias is positive if real duration
           for (z1=1; z1<=cptcoveff; z1++)           * is higher than the multiple of stepm and negative otherwise.
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           */
               bool=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         if (bool==1) {          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
           for(m=firstpass; m<=lastpass; m++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             k2=anint[m][i]+(mint[m][i]/12.);          /*if(lli ==000.0)*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          ipmx +=1;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          sw += weight[i];
               if (m<lastpass) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        } /* end of wave */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      } /* end of individual */
               }    }  else if(mle==3){  /* exponential inter-extrapolation */
                    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 dateintsum=dateintsum+k2;        for(mi=1; mi<= wav[i]-1; mi++){
                 k2cpt++;          for (ii=1;ii<=nlstate+ndeath;ii++)
               }            for (j=1;j<=nlstate+ndeath;j++){
             }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
                    newm=savm;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
       if  (cptcovn>0) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresp, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficresp, "**********\n#");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
       for(i=1; i<=nlstate;i++)            oldm=newm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          } /* end mult */
       fprintf(ficresp, "\n");        
                /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for(i=(int)agemin; i <= (int)agemax+3; i++){          /* But now since version 0.9 we anticipate for bias and large stepm.
         if(i==(int)agemax+3)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           printf("Total");           * (in months) between two waves is not a multiple of stepm, we rounded to 
         else           * the nearest (and in case of equal distance, to the lowest) interval but now
           printf("Age %d", i);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for(jk=1; jk <=nlstate ; jk++){           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * probability in order to take into account the bias as a fraction of the way
             pp[jk] += freq[jk][m][i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
         for(jk=1; jk <=nlstate ; jk++){           * For stepm=1 the results are the same as for previous versions of Imach.
           for(m=-1, pos=0; m <=0 ; m++)           * For stepm > 1 the results are less biased than in previous versions. 
             pos += freq[jk][m][i];           */
           if(pp[jk]>=1.e-10)          s1=s[mw[mi][i]][i];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          s2=s[mw[mi+1][i]][i];
           else          bbh=(double)bh[mi][i]/(double)stepm; 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          /* bias is positive if real duration
         }           * is higher than the multiple of stepm and negative otherwise.
            */
         for(jk=1; jk <=nlstate ; jk++){          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             pp[jk] += freq[jk][m][i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         for(jk=1,pos=0; jk <=nlstate ; jk++)          ipmx +=1;
           pos += pp[jk];          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if(pos>=1.e-5)        } /* end of wave */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } /* end of individual */
           else    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if( i <= (int) agemax){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if(pos>=1.e-5){        for(mi=1; mi<= wav[i]-1; mi++){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
               probs[i][jk][j1]= pp[jk]/pos;            for (j=1;j<=nlstate+ndeath;j++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             else            }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
         for(jk=-1; jk <=nlstate+ndeath; jk++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=-1; m <=nlstate+ndeath; m++)            }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          
         if(i <= (int) agemax)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           fprintf(ficresp,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         printf("\n");            savm=oldm;
       }            oldm=newm;
     }          } /* end mult */
   }        
   dateintmean=dateintsum/k2cpt;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   fclose(ficresp);          if( s2 > nlstate){ 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            lli=log(out[s1][s2] - savm[s1][s2]);
   free_vector(pp,1,nlstate);          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /* End of Freq */          }
 }          ipmx +=1;
           sw += weight[i];
 /************ Prevalence ********************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 {  /* Some frequencies */        } /* end of wave */
        } /* end of individual */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double ***freq; /* Frequencies */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *pp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double pos, k2;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   pp=vector(1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            }
   j1=0;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   j=cptcoveff;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(k1=1; k1<=j;k1++){            }
     for(i1=1; i1<=ncodemax[k1];i1++){          
       j1++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=-1; i<=nlstate+ndeath; i++)              savm=oldm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)              oldm=newm;
           for(m=agemin; m <= agemax+3; m++)          } /* end mult */
             freq[i][jk][m]=0;        
                s1=s[mw[mi][i]][i];
       for (i=1; i<=imx; i++) {          s2=s[mw[mi+1][i]][i];
         bool=1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         if  (cptcovn>0) {          ipmx +=1;
           for (z1=1; z1<=cptcoveff; z1++)          sw += weight[i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               bool=0;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         }        } /* end of wave */
         if (bool==1) {      } /* end of individual */
           for(m=firstpass; m<=lastpass; m++){    } /* End of if */
             k2=anint[m][i]+(mint[m][i]/12.);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    return -l;
               if (m<lastpass) {  }
                 if (calagedate>0)  
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  /*************** log-likelihood *************/
                 else  double funcone( double *x)
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  {
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    /* Same as likeli but slower because of a lot of printf and if */
               }    int i, ii, j, k, mi, d, kk;
             }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           }    double **out;
         }    double lli; /* Individual log likelihood */
       }    double llt;
       for(i=(int)agemin; i <= (int)agemax+3; i++){    int s1, s2;
         for(jk=1; jk <=nlstate ; jk++){    double bbh, survp;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /*extern weight */
             pp[jk] += freq[jk][m][i];    /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(jk=1; jk <=nlstate ; jk++){    /*for(i=1;i<imx;i++) 
           for(m=-1, pos=0; m <=0 ; m++)      printf(" %d\n",s[4][i]);
             pos += freq[jk][m][i];    */
         }    cov[1]=1.;
          
         for(jk=1; jk <=nlstate ; jk++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if( i <= (int) agemax){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(pos>=1.e-5){          }
               probs[i][jk][j1]= pp[jk]/pos;        for(d=0; d<dh[mi][i]; d++){
             }          newm=savm;
           }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }          }
     }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
            oldm=newm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        } /* end mult */
   free_vector(pp,1,nlstate);        
          s1=s[mw[mi][i]][i];
 }  /* End of Freq */        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
 /************* Waves Concatenation ***************/        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)         */
 {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          lli=log(out[s1][s2] - savm[s1][s2]);
      Death is a valid wave (if date is known).        } else if (mle==1){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        } else if(mle==2){
      and mw[mi+1][i]. dh depends on stepm.          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      */        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int i, mi, m;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          lli=log(out[s1][s2]); /* Original formula */
      double sum=0., jmean=0.;*/        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
   int j, k=0,jk, ju, jl;        } /* End of if */
   double sum=0.;        ipmx +=1;
   jmin=1e+5;        sw += weight[i];
   jmax=-1;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmean=0.;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for(i=1; i<=imx; i++){        if(globpr){
     mi=0;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     m=firstpass;   %10.6f %10.6f %10.6f ", \
     while(s[m][i] <= nlstate){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       if(s[m][i]>=1)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         mw[++mi][i]=m;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       if(m >=lastpass)            llt +=ll[k]*gipmx/gsw;
         break;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       else          }
         m++;          fprintf(ficresilk," %10.6f\n", -llt);
     }/* end while */        }
     if (s[m][i] > nlstate){      } /* end of wave */
       mi++;     /* Death is another wave */    } /* end of individual */
       /* if(mi==0)  never been interviewed correctly before death */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
          /* Only death is a correct wave */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       mw[mi][i]=m;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     }    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
     wav[i]=mi;      gsw=sw;
     if(mi==0)    }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    return -l;
   }  }
   
   for(i=1; i<=imx; i++){  char *subdirf(char fileres[])
     for(mi=1; mi<wav[i];mi++){  {
       if (stepm <=0)    /* Caution optionfilefiname is hidden */
         dh[mi][i]=1;    strcpy(tmpout,optionfilefiname);
       else{    strcat(tmpout,"/"); /* Add to the right */
         if (s[mw[mi+1][i]][i] > nlstate) {    strcat(tmpout,fileres);
           if (agedc[i] < 2*AGESUP) {    return tmpout;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  }
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;  char *subdirf2(char fileres[], char *preop)
           if (j >= jmax) jmax=j;  {
           if (j <= jmin) jmin=j;    
           sum=sum+j;    strcpy(tmpout,optionfilefiname);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    strcat(tmpout,"/");
           }    strcat(tmpout,preop);
         }    strcat(tmpout,fileres);
         else{    return tmpout;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  }
           k=k+1;  char *subdirf3(char fileres[], char *preop, char *preop2)
           if (j >= jmax) jmax=j;  {
           else if (j <= jmin)jmin=j;    
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    strcpy(tmpout,optionfilefiname);
           sum=sum+j;    strcat(tmpout,"/");
         }    strcat(tmpout,preop);
         jk= j/stepm;    strcat(tmpout,preop2);
         jl= j -jk*stepm;    strcat(tmpout,fileres);
         ju= j -(jk+1)*stepm;    return tmpout;
         if(jl <= -ju)  }
           dh[mi][i]=jk;  
         else  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           dh[mi][i]=jk+1;  {
         if(dh[mi][i]==0)    /* This routine should help understanding what is done with 
           dh[mi][i]=1; /* At least one step */       the selection of individuals/waves and
       }       to check the exact contribution to the likelihood.
     }       Plotting could be done.
   }     */
   jmean=sum/k;    int k;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }    if(*globpri !=0){ /* Just counts and sums, no printings */
 /*********** Tricode ****************************/      strcpy(fileresilk,"ilk"); 
 void tricode(int *Tvar, int **nbcode, int imx)      strcat(fileresilk,fileres);
 {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int Ndum[20],ij=1, k, j, i;        printf("Problem with resultfile: %s\n", fileresilk);
   int cptcode=0;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   cptcoveff=0;      }
        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   for (k=0; k<19; k++) Ndum[k]=0;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   for (k=1; k<=7; k++) ncodemax[k]=0;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     for (i=1; i<=imx; i++) {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       ij=(int)(covar[Tvar[j]][i]);    }
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    *fretone=(*funcone)(p);
       if (ij > cptcode) cptcode=ij;    if(*globpri !=0){
     }      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for (i=0; i<=cptcode; i++) {      fflush(fichtm); 
       if(Ndum[i]!=0) ncodemax[j]++;    } 
     }    return;
     ij=1;  }
   
   
     for (i=1; i<=ncodemax[j]; i++) {  /*********** Maximum Likelihood Estimation ***************/
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           nbcode[Tvar[j]][ij]=k;  {
              int i,j, iter;
           ij++;    double **xi;
         }    double fret;
         if (ij > ncodemax[j]) break;    double fretone; /* Only one call to likelihood */
       }      char filerespow[FILENAMELENGTH];
     }    xi=matrix(1,npar,1,npar);
   }      for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
  for (k=0; k<19; k++) Ndum[k]=0;        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
  for (i=1; i<=ncovmodel-2; i++) {    strcpy(filerespow,"pow"); 
       ij=Tvar[i];    strcat(filerespow,fileres);
       Ndum[ij]++;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
  ij=1;    }
  for (i=1; i<=10; i++) {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
    if((Ndum[i]!=0) && (i<=ncovcol)){    for (i=1;i<=nlstate;i++)
      Tvaraff[ij]=i;      for(j=1;j<=nlstate+ndeath;j++)
      ij++;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
    }    fprintf(ficrespow,"\n");
  }  
      powell(p,xi,npar,ftol,&iter,&fret,func);
     cptcoveff=ij-1;  
 }    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 /*********** Health Expectancies ****************/    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
   }
 {  
   /* Health expectancies */  /**** Computes Hessian and covariance matrix ***/
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double age, agelim, hf;  {
   double ***p3mat,***varhe;    double  **a,**y,*x,pd;
   double **dnewm,**doldm;    double **hess;
   double *xp;    int i, j,jk;
   double **gp, **gm;    int *indx;
   double ***gradg, ***trgradg;  
   int theta;    double hessii(double p[], double delta, int theta, double delti[]);
     double hessij(double p[], double delti[], int i, int j);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   xp=vector(1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);    hess=matrix(1,npar,1,npar);
    
   fprintf(ficreseij,"# Health expectancies\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficreseij,"# Age");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++){
     for(j=1; j<=nlstate;j++)      printf("%d",i);fflush(stdout);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      fprintf(ficlog,"%d",i);fflush(ficlog);
   fprintf(ficreseij,"\n");      hess[i][i]=hessii(p,ftolhess,i,delti);
       /*printf(" %f ",p[i]);*/
   if(estepm < stepm){      /*printf(" %lf ",hess[i][i]);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);    }
   }    
   else  hstepm=estepm;      for (i=1;i<=npar;i++) {
   /* We compute the life expectancy from trapezoids spaced every estepm months      for (j=1;j<=npar;j++)  {
    * This is mainly to measure the difference between two models: for example        if (j>i) { 
    * if stepm=24 months pijx are given only every 2 years and by summing them          printf(".%d%d",i,j);fflush(stdout);
    * we are calculating an estimate of the Life Expectancy assuming a linear          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
    * progression inbetween and thus overestimating or underestimating according          hess[i][j]=hessij(p,delti,i,j);
    * to the curvature of the survival function. If, for the same date, we          hess[j][i]=hess[i][j];    
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          /*printf(" %lf ",hess[i][j]);*/
    * to compare the new estimate of Life expectancy with the same linear        }
    * hypothesis. A more precise result, taking into account a more precise      }
    * curvature will be obtained if estepm is as small as stepm. */    }
     printf("\n");
   /* For example we decided to compute the life expectancy with the smallest unit */    fprintf(ficlog,"\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      nstepm is the number of stepm from age to agelin.    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      Look at hpijx to understand the reason of that which relies in memory size    
      and note for a fixed period like estepm months */    a=matrix(1,npar,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    y=matrix(1,npar,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    x=vector(1,npar);
      means that if the survival funtion is printed only each two years of age and if    indx=ivector(1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (i=1;i<=npar;i++)
      results. So we changed our mind and took the option of the best precision.      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   */    ludcmp(a,npar,indx,&pd);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
     for (j=1;j<=npar;j++) {
   agelim=AGESUP;      for (i=1;i<=npar;i++) x[i]=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      x[j]=1;
     /* nhstepm age range expressed in number of stepm */      lubksb(a,npar,indx,x);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      for (i=1;i<=npar;i++){ 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        matcov[i][j]=x[i];
     /* if (stepm >= YEARM) hstepm=1;*/      }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    printf("\n#Hessian matrix#\n");
     gp=matrix(0,nhstepm,1,nlstate*2);    fprintf(ficlog,"\n#Hessian matrix#\n");
     gm=matrix(0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        printf("%.3e ",hess[i][j]);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        fprintf(ficlog,"%.3e ",hess[i][j]);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        }
        printf("\n");
       fprintf(ficlog,"\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    }
   
     /* Computing Variances of health expectancies */    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
      for(theta=1; theta <=npar; theta++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(i=1; i<=npar; i++){    ludcmp(a,npar,indx,&pd);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    /*  printf("\n#Hessian matrix recomputed#\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
      for (j=1;j<=npar;j++) {
       cptj=0;      for (i=1;i<=npar;i++) x[i]=0;
       for(j=1; j<= nlstate; j++){      x[j]=1;
         for(i=1; i<=nlstate; i++){      lubksb(a,npar,indx,x);
           cptj=cptj+1;      for (i=1;i<=npar;i++){ 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        y[i][j]=x[i];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        printf("%.3e ",y[i][j]);
           }        fprintf(ficlog,"%.3e ",y[i][j]);
         }      }
       }      printf("\n");
            fprintf(ficlog,"\n");
          }
       for(i=1; i<=npar; i++)    */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(a,1,npar,1,npar);
          free_matrix(y,1,npar,1,npar);
       cptj=0;    free_vector(x,1,npar);
       for(j=1; j<= nlstate; j++){    free_ivector(indx,1,npar);
         for(i=1;i<=nlstate;i++){    free_matrix(hess,1,npar,1,npar);
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  }
           }  
         }  /*************** hessian matrix ****************/
       }  double hessii( double x[], double delta, int theta, double delti[])
       for(j=1; j<= nlstate*2; j++)  {
         for(h=0; h<=nhstepm-1; h++){    int i;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int l=1, lmax=20;
         }    double k1,k2;
      }    double p2[NPARMAX+1];
        double res;
 /* End theta */    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    int k=0,kmax=10;
     double l1;
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*2;j++)    fx=func(x);
         for(theta=1; theta <=npar; theta++)    for (i=1;i<=npar;i++) p2[i]=x[i];
           trgradg[h][j][theta]=gradg[h][theta][j];    for(l=0 ; l <=lmax; l++){
            l1=pow(10,l);
       delts=delt;
      for(i=1;i<=nlstate*2;i++)      for(k=1 ; k <kmax; k=k+1){
       for(j=1;j<=nlstate*2;j++)        delt = delta*(l1*k);
         varhe[i][j][(int)age] =0.;        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
      printf("%d|",(int)age);fflush(stdout);        p2[theta]=x[theta]-delt;
      for(h=0;h<=nhstepm-1;h++){        k2=func(p2)-fx;
       for(k=0;k<=nhstepm-1;k++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        
         for(i=1;i<=nlstate*2;i++)  #ifdef DEBUG
           for(j=1;j<=nlstate*2;j++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }  #endif
     }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     /* Computing expectancies */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for(i=1; i<=nlstate;i++)          k=kmax;
       for(j=1; j<=nlstate;j++)        }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          k=kmax; l=lmax*10.;
                  }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
         }        }
       }
     fprintf(ficreseij,"%3.0f",age );    }
     cptj=0;    delti[theta]=delts;
     for(i=1; i<=nlstate;i++)    return res; 
       for(j=1; j<=nlstate;j++){    
         cptj++;  }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  
       }  double hessij( double x[], double delti[], int thetai,int thetaj)
     fprintf(ficreseij,"\n");  {
        int i;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    int l=1, l1, lmax=20;
     free_matrix(gp,0,nhstepm,1,nlstate*2);    double k1,k2,k3,k4,res,fx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    double p2[NPARMAX+1];
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    int k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }    fx=func(x);
   printf("\n");    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   free_vector(xp,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   free_matrix(dnewm,1,nlstate*2,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      k1=func(p2)-fx;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    
 }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 /************ Variance ******************/      k2=func(p2)-fx;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    
 {      p2[thetai]=x[thetai]-delti[thetai]/k;
   /* Variance of health expectancies */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      k3=func(p2)-fx;
   double **newm;    
   double **dnewm,**doldm;      p2[thetai]=x[thetai]-delti[thetai]/k;
   int i, j, nhstepm, hstepm, h, nstepm ;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int k, cptcode;      k4=func(p2)-fx;
   double *xp;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   double **gp, **gm;  #ifdef DEBUG
   double ***gradg, ***trgradg;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double ***p3mat;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double age,agelim, hf;  #endif
   int theta;    }
     return res;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  }
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  /************** Inverse of matrix **************/
     for(j=1; j<=nlstate;j++)  void ludcmp(double **a, int n, int *indx, double *d) 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  { 
   fprintf(ficresvij,"\n");    int i,imax,j,k; 
     double big,dum,sum,temp; 
   xp=vector(1,npar);    double *vv; 
   dnewm=matrix(1,nlstate,1,npar);   
   doldm=matrix(1,nlstate,1,nlstate);    vv=vector(1,n); 
      *d=1.0; 
   if(estepm < stepm){    for (i=1;i<=n;i++) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);      big=0.0; 
   }      for (j=1;j<=n;j++) 
   else  hstepm=estepm;          if ((temp=fabs(a[i][j])) > big) big=temp; 
   /* For example we decided to compute the life expectancy with the smallest unit */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      vv[i]=1.0/big; 
      nhstepm is the number of hstepm from age to agelim    } 
      nstepm is the number of stepm from age to agelin.    for (j=1;j<=n;j++) { 
      Look at hpijx to understand the reason of that which relies in memory size      for (i=1;i<j;i++) { 
      and note for a fixed period like k years */        sum=a[i][j]; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      survival function given by stepm (the optimization length). Unfortunately it        a[i][j]=sum; 
      means that if the survival funtion is printed only each two years of age and if      } 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      big=0.0; 
      results. So we changed our mind and took the option of the best precision.      for (i=j;i<=n;i++) { 
   */        sum=a[i][j]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        for (k=1;k<j;k++) 
   agelim = AGESUP;          sum -= a[i][k]*a[k][j]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        a[i][j]=sum; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          big=dum; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          imax=i; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        } 
     gp=matrix(0,nhstepm,1,nlstate);      } 
     gm=matrix(0,nhstepm,1,nlstate);      if (j != imax) { 
         for (k=1;k<=n;k++) { 
     for(theta=1; theta <=npar; theta++){          dum=a[imax][k]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */          a[imax][k]=a[j][k]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          a[j][k]=dum; 
       }        } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          *d = -(*d); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        vv[imax]=vv[j]; 
       } 
       if (popbased==1) {      indx[j]=imax; 
         for(i=1; i<=nlstate;i++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
           prlim[i][i]=probs[(int)age][i][ij];      if (j != n) { 
       }        dum=1.0/(a[j][j]); 
          for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       for(j=1; j<= nlstate; j++){      } 
         for(h=0; h<=nhstepm; h++){    } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    free_vector(vv,1,n);  /* Doesn't work */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  ;
         }  } 
       }  
      void lubksb(double **a, int n, int *indx, double b[]) 
       for(i=1; i<=npar; i++) /* Computes gradient */  { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i,ii=0,ip,j; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double sum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   
      for (i=1;i<=n;i++) { 
       if (popbased==1) {      ip=indx[i]; 
         for(i=1; i<=nlstate;i++)      sum=b[ip]; 
           prlim[i][i]=probs[(int)age][i][ij];      b[ip]=b[i]; 
       }      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       for(j=1; j<= nlstate; j++){      else if (sum) ii=i; 
         for(h=0; h<=nhstepm; h++){      b[i]=sum; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    } 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=n;i>=1;i--) { 
         }      sum=b[i]; 
       }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
       for(j=1; j<= nlstate; j++)    } 
         for(h=0; h<=nhstepm; h++){  } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  /************ Frequencies ********************/
     } /* End theta */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   {  /* Some frequencies */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     for(h=0; h<=nhstepm; h++)    int first;
       for(j=1; j<=nlstate;j++)    double ***freq; /* Frequencies */
         for(theta=1; theta <=npar; theta++)    double *pp, **prop;
           trgradg[h][j][theta]=gradg[h][theta][j];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    char fileresp[FILENAMELENGTH];
     for(i=1;i<=nlstate;i++)    
       for(j=1;j<=nlstate;j++)    pp=vector(1,nlstate);
         vareij[i][j][(int)age] =0.;    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
     for(h=0;h<=nhstepm;h++){    strcat(fileresp,fileres);
       for(k=0;k<=nhstepm;k++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      printf("Problem with prevalence resultfile: %s\n", fileresp);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         for(i=1;i<=nlstate;i++)      exit(0);
           for(j=1;j<=nlstate;j++)    }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       }    j1=0;
     }    
     j=cptcoveff;
     fprintf(ficresvij,"%.0f ",age );    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    first=1;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }    for(k1=1; k1<=j;k1++){
     fprintf(ficresvij,"\n");      for(i1=1; i1<=ncodemax[k1];i1++){
     free_matrix(gp,0,nhstepm,1,nlstate);        j1++;
     free_matrix(gm,0,nhstepm,1,nlstate);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          scanf("%d", i);*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        for (i=-1; i<=nlstate+ndeath; i++)  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   } /* End age */            for(m=iagemin; m <= iagemax+3; m++)
                freq[i][jk][m]=0;
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);      for (i=1; i<=nlstate; i++)  
   free_matrix(dnewm,1,nlstate,1,nlstate);        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
 }        
         dateintsum=0;
 /************ Variance of prevlim ******************/        k2cpt=0;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        for (i=1; i<=imx; i++) {
 {          bool=1;
   /* Variance of prevalence limit */          if  (cptcovn>0) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            for (z1=1; z1<=cptcoveff; z1++) 
   double **newm;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double **dnewm,**doldm;                bool=0;
   int i, j, nhstepm, hstepm;          }
   int k, cptcode;          if (bool==1){
   double *xp;            for(m=firstpass; m<=lastpass; m++){
   double *gp, *gm;              k2=anint[m][i]+(mint[m][i]/12.);
   double **gradg, **trgradg;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   double age,agelim;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int theta;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");                if (m<lastpass) {
   fprintf(ficresvpl,"# Age");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   for(i=1; i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       fprintf(ficresvpl," %1d-%1d",i,i);                }
   fprintf(ficresvpl,"\n");                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   xp=vector(1,npar);                  dateintsum=dateintsum+k2;
   dnewm=matrix(1,nlstate,1,npar);                  k2cpt++;
   doldm=matrix(1,nlstate,1,nlstate);                }
                  /*}*/
   hstepm=1*YEARM; /* Every year of age */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          }
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */         
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        if  (cptcovn>0) {
     gradg=matrix(1,npar,1,nlstate);          fprintf(ficresp, "\n#********** Variable "); 
     gp=vector(1,nlstate);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     gm=vector(1,nlstate);          fprintf(ficresp, "**********\n#");
         }
     for(theta=1; theta <=npar; theta++){        for(i=1; i<=nlstate;i++) 
       for(i=1; i<=npar; i++){ /* Computes gradient */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficresp, "\n");
       }        
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(i=iagemin; i <= iagemax+3; i++){
       for(i=1;i<=nlstate;i++)          if(i==iagemax+3){
         gp[i] = prlim[i][i];            fprintf(ficlog,"Total");
              }else{
       for(i=1; i<=npar; i++) /* Computes gradient */            if(first==1){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              first=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              printf("See log file for details...\n");
       for(i=1;i<=nlstate;i++)            }
         gm[i] = prlim[i][i];            fprintf(ficlog,"Age %d", i);
           }
       for(i=1;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     } /* End theta */              pp[jk] += freq[jk][m][i]; 
           }
     trgradg =matrix(1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
     for(j=1; j<=nlstate;j++)              pos += freq[jk][m][i];
       for(theta=1; theta <=npar; theta++)            if(pp[jk]>=1.e-10){
         trgradg[j][theta]=gradg[theta][j];              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(i=1;i<=nlstate;i++)              }
       varpl[i][(int)age] =0.;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            }else{
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              if(first==1)
     for(i=1;i<=nlstate;i++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
     fprintf(ficresvpl,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficresvpl,"\n");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     free_vector(gp,1,nlstate);              pp[jk] += freq[jk][m][i];
     free_vector(gm,1,nlstate);          }       
     free_matrix(gradg,1,npar,1,nlstate);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_matrix(trgradg,1,nlstate,1,npar);            pos += pp[jk];
   } /* End age */            posprop += prop[jk][i];
           }
   free_vector(xp,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   free_matrix(doldm,1,nlstate,1,npar);            if(pos>=1.e-5){
   free_matrix(dnewm,1,nlstate,1,nlstate);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
 /************ Variance of one-step probabilities  ******************/              if(first==1)
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, j,  i1, k1, l1;            }
   int k2, l2, j1,  z1;            if( i <= iagemax){
   int k=0,l, cptcode;              if(pos>=1.e-5){
   int first=1;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   double **dnewm,**doldm;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   double *xp;              }
   double *gp, *gm;              else
   double **gradg, **trgradg;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double **mu;            }
   double age,agelim, cov[NCOVMAX];          }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          
   int theta;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   char fileresprob[FILENAMELENGTH];            for(m=-1; m <=nlstate+ndeath; m++)
   char fileresprobcov[FILENAMELENGTH];              if(freq[jk][m][i] !=0 ) {
   char fileresprobcor[FILENAMELENGTH];              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   double ***varpij;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
   strcpy(fileresprob,"prob");          if(i <= iagemax)
   strcat(fileresprob,fileres);            fprintf(ficresp,"\n");
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          if(first==1)
     printf("Problem with resultfile: %s\n", fileresprob);            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
   strcpy(fileresprobcov,"probcov");        }
   strcat(fileresprobcov,fileres);      }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprobcov);    dateintmean=dateintsum/k2cpt; 
   }   
   strcpy(fileresprobcor,"probcor");    fclose(ficresp);
   strcat(fileresprobcor,fileres);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    free_vector(pp,1,nlstate);
     printf("Problem with resultfile: %s\n", fileresprobcor);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   }    /* End of Freq */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  /************ Prevalence ********************/
    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  {  
   fprintf(ficresprob,"# Age");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
   fprintf(ficresprobcov,"# Age");       We still use firstpass and lastpass as another selection.
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    */
   fprintf(ficresprobcov,"# Age");   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
   for(i=1; i<=nlstate;i++)    double *pp, **prop;
     for(j=1; j<=(nlstate+ndeath);j++){    double pos,posprop; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    double  y2; /* in fractional years */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    int iagemin, iagemax;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  
     }      iagemin= (int) agemin;
   fprintf(ficresprob,"\n");    iagemax= (int) agemax;
   fprintf(ficresprobcov,"\n");    /*pp=vector(1,nlstate);*/
   fprintf(ficresprobcor,"\n");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   xp=vector(1,npar);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    j1=0;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    j=cptcoveff;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   first=1;    
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    for(k1=1; k1<=j;k1++){
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      for(i1=1; i1<=ncodemax[k1];i1++){
     exit(0);        j1++;
   }        
   else{        for (i=1; i<=nlstate; i++)  
     fprintf(ficgp,"\n# Routine varprob");          for(m=iagemin; m <= iagemax+3; m++)
   }            prop[i][m]=0.0;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {       
     printf("Problem with html file: %s\n", optionfilehtm);        for (i=1; i<=imx; i++) { /* Each individual */
     exit(0);          bool=1;
   }          if  (cptcovn>0) {
   else{            for (z1=1; z1<=cptcoveff; z1++) 
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");                bool=0;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          } 
           if (bool==1) { 
   }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   cov[1]=1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   j=cptcoveff;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   j1=0;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for(k1=1; k1<=1;k1++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     for(i1=1; i1<=ncodemax[k1];i1++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     j1++;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
     if  (cptcovn>0) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
       fprintf(ficresprob, "\n#********** Variable ");                } 
       fprintf(ficresprobcov, "\n#********** Variable ");              }
       fprintf(ficgp, "\n#********** Variable ");            } /* end selection of waves */
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");          }
       fprintf(ficresprobcor, "\n#********** Variable ");        }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(i=iagemin; i <= iagemax+3; i++){  
       fprintf(ficresprob, "**********\n#");          
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       fprintf(ficresprobcov, "**********\n#");            posprop += prop[jk][i]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          } 
       fprintf(ficgp, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(jk=1; jk <=nlstate ; jk++){     
       fprintf(ficgp, "**********\n#");            if( i <=  iagemax){ 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if(posprop>=1.e-5){ 
       fprintf(fichtm, "**********\n#");                probs[i][jk][j1]= prop[jk][i]/posprop;
     }              } 
                } 
       for (age=bage; age<=fage; age ++){          }/* end jk */ 
         cov[2]=age;        }/* end i */ 
         for (k=1; k<=cptcovn;k++) {      } /* end i1 */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    } /* end k1 */
         }    
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for (k=1; k<=cptcovprod;k++)    /*free_vector(pp,1,nlstate);*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
          }  /* End of prevalence */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  /************* Waves Concatenation ***************/
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      {
         for(theta=1; theta <=npar; theta++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           for(i=1; i<=npar; i++)       Death is a valid wave (if date is known).
             xp[i] = x[i] + (i==theta ?delti[theta]:0);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                 dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       and mw[mi+1][i]. dh depends on stepm.
                 */
           k=0;  
           for(i=1; i<= (nlstate); i++){    int i, mi, m;
             for(j=1; j<=(nlstate+ndeath);j++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               k=k+1;       double sum=0., jmean=0.;*/
               gp[k]=pmmij[i][j];    int first;
             }    int j, k=0,jk, ju, jl;
           }    double sum=0.;
              first=0;
           for(i=1; i<=npar; i++)    jmin=1e+5;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    jmax=-1;
        jmean=0.;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    for(i=1; i<=imx; i++){
           k=0;      mi=0;
           for(i=1; i<=(nlstate); i++){      m=firstpass;
             for(j=1; j<=(nlstate+ndeath);j++){      while(s[m][i] <= nlstate){
               k=k+1;        if(s[m][i]>=1)
               gm[k]=pmmij[i][j];          mw[++mi][i]=m;
             }        if(m >=lastpass)
           }          break;
              else
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          m++;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        }/* end while */
         }      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        /* if(mi==0)  never been interviewed correctly before death */
           for(theta=1; theta <=npar; theta++)           /* Only death is a correct wave */
             trgradg[j][theta]=gradg[theta][j];        mw[mi][i]=m;
              }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      wav[i]=mi;
              if(mi==0){
         pmij(pmmij,cov,ncovmodel,x,nlstate);        nbwarn++;
                if(first==0){
         k=0;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         for(i=1; i<=(nlstate); i++){          first=1;
           for(j=1; j<=(nlstate+ndeath);j++){        }
             k=k+1;        if(first==1){
             mu[k][(int) age]=pmmij[i][j];          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
           }        }
         }      } /* end mi==0 */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    } /* End individuals */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         /*printf("\n%d ",(int)age);        if (stepm <=0)
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          dh[mi][i]=1;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        else{
      }*/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
         fprintf(ficresprob,"\n%d ",(int)age);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         fprintf(ficresprobcov,"\n%d ",(int)age);              if(j==0) j=1;  /* Survives at least one month after exam */
         fprintf(ficresprobcor,"\n%d ",(int)age);              else if(j<0){
                 nberr++;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));                j=1; /* Temporary Dangerous patch */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         }              }
         i=0;              k=k+1;
         for (k=1; k<=(nlstate);k++){              if (j >= jmax) jmax=j;
           for (l=1; l<=(nlstate+ndeath);l++){              if (j <= jmin) jmin=j;
             i=i++;              sum=sum+j;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             for (j=1; j<=i;j++){            }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          else{
             }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }/* end of loop for state */            k=k+1;
       } /* end of loop for age */            if (j >= jmax) jmax=j;
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            else if (j <= jmin)jmin=j;
       for (k1=1; k1<=(nlstate);k1++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for (l1=1; l1<=(nlstate+ndeath);l1++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           if(l1==k1) continue;            if(j<0){
           i=(k1-1)*(nlstate+ndeath)+l1;              nberr++;
           for (k2=1; k2<=(nlstate);k2++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             for (l2=1; l2<=(nlstate+ndeath);l2++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               if(l2==k2) continue;            }
               j=(k2-1)*(nlstate+ndeath)+l2;            sum=sum+j;
               if(j<=i) continue;          }
               for (age=bage; age<=fage; age ++){          jk= j/stepm;
                 if ((int)age %5==0){          jl= j -jk*stepm;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          ju= j -(jk+1)*stepm;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            if(jl==0){
                   mu1=mu[i][(int) age]/stepm*YEARM ;              dh[mi][i]=jk;
                   mu2=mu[j][(int) age]/stepm*YEARM;              bh[mi][i]=0;
                   /* Computing eigen value of matrix of covariance */            }else{ /* We want a negative bias in order to only have interpolation ie
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                    * at the price of an extra matrix product in likelihood */
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              dh[mi][i]=jk+1;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              bh[mi][i]=ju;
                   /* Eigen vectors */            }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          }else{
                   v21=sqrt(1.-v11*v11);            if(jl <= -ju){
                   v12=-v21;              dh[mi][i]=jk;
                   v22=v11;              bh[mi][i]=jl;       /* bias is positive if real duration
                   /*printf(fignu*/                                   * is higher than the multiple of stepm and negative otherwise.
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */                                   */
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            }
                   if(first==1){            else{
                     first=0;              dh[mi][i]=jk+1;
                     fprintf(ficgp,"\nset parametric;set nolabel");              bh[mi][i]=ju;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);            }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            if(dh[mi][i]==0){
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);              dh[mi][i]=1; /* At least one step */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);              bh[mi][i]=ju; /* At least one step */
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          } /* end if mle */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      } /* end wave */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    }
                   }else{    jmean=sum/k;
                     first=0;    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);   }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  /*********** Tricode ****************************/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  void tricode(int *Tvar, int **nbcode, int imx)
                   }/* if first */  {
                 } /* age mod 5 */    
               } /* end loop age */    int Ndum[20],ij=1, k, j, i, maxncov=19;
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);    int cptcode=0;
               first=1;    cptcoveff=0; 
             } /*l12 */   
           } /* k12 */    for (k=0; k<maxncov; k++) Ndum[k]=0;
         } /*l1 */    for (k=1; k<=7; k++) ncodemax[k]=0;
       }/* k1 */  
     } /* loop covariates */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                                 modality*/ 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        Ndum[ij]++; /*store the modality */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   }                                         Tvar[j]. If V=sex and male is 0 and 
   free_vector(xp,1,npar);                                         female is 1, then  cptcode=1.*/
   fclose(ficresprob);      }
   fclose(ficresprobcov);  
   fclose(ficresprobcor);      for (i=0; i<=cptcode; i++) {
   fclose(ficgp);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   fclose(fichtm);      }
 }  
       ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
 /******************* Printing html file ***********/        for (k=0; k<= maxncov; k++) {
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          if (Ndum[k] != 0) {
                   int lastpass, int stepm, int weightopt, char model[],\            nbcode[Tvar[j]][ij]=k; 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                   int popforecast, int estepm ,\            
                   double jprev1, double mprev1,double anprev1, \            ij++;
                   double jprev2, double mprev2,double anprev2){          }
   int jj1, k1, i1, cpt;          if (ij > ncodemax[j]) break; 
   /*char optionfilehtm[FILENAMELENGTH];*/        }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      } 
     printf("Problem with %s \n",optionfilehtm), exit(0);    }  
   }  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n   for (i=1; i<=ncovmodel-2; i++) { 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n     ij=Tvar[i];
  - Life expectancies by age and initial health status (estepm=%2d months):     Ndum[ij]++;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \   }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
    ij=1;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n   for (i=1; i<= maxncov; i++) {
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n     if((Ndum[i]!=0) && (i<=ncovcol)){
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n       Tvaraff[ij]=i; /*For printing */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n       ij++;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n     }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n   }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n   
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);   cptcoveff=ij-1; /*Number of simple covariates*/
   }
  if(popforecast==1) fprintf(fichtm,"\n  
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  /*********** Health Expectancies ****************/
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  {
 fprintf(fichtm," <li>Graphs</li><p>");    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
  m=cptcoveff;    double age, agelim, hf;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double ***p3mat,***varhe;
     double **dnewm,**doldm;
  jj1=0;    double *xp;
  for(k1=1; k1<=m;k1++){    double **gp, **gm;
    for(i1=1; i1<=ncodemax[k1];i1++){    double ***gradg, ***trgradg;
      jj1++;    int theta;
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        for (cpt=1; cpt<=cptcoveff;cpt++)    xp=vector(1,npar);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      }    
      /* Pij */    fprintf(ficreseij,"# Health expectancies\n");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    fprintf(ficreseij,"# Age");
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(i=1; i<=nlstate;i++)
      /* Quasi-incidences */      for(j=1; j<=nlstate;j++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        fprintf(ficreseij," %1d-%1d (SE)",i,j);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    fprintf(ficreseij,"\n");
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){    if(estepm < stepm){
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      printf ("Problem %d lower than %d\n",estepm, stepm);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    }
        }    else  hstepm=estepm;   
     for(cpt=1; cpt<=nlstate;cpt++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident     * This is mainly to measure the difference between two models: for example
 interval) in state (%d): v%s%d%d.png <br>     * if stepm=24 months pijx are given only every 2 years and by summing them
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       * we are calculating an estimate of the Life Expectancy assuming a linear 
      }     * progression in between and thus overestimating or underestimating according
      for(cpt=1; cpt<=nlstate;cpt++) {     * to the curvature of the survival function. If, for the same date, we 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     * to compare the new estimate of Life expectancy with the same linear 
      }     * hypothesis. A more precise result, taking into account a more precise
      fprintf(fichtm,"\n<br>- Total life expectancy by age and     * curvature will be obtained if estepm is as small as stepm. */
 health expectancies in states (1) and (2): e%s%d.png<br>  
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /* For example we decided to compute the life expectancy with the smallest unit */
    }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  }       nhstepm is the number of hstepm from age to agelim 
 fclose(fichtm);       nstepm is the number of stepm from age to agelin. 
 }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
 /******************* Gnuplot file **************/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   int ng;       results. So we changed our mind and took the option of the best precision.
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    */
     printf("Problem with file %s",optionfilegnuplot);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
     agelim=AGESUP;
 #ifdef windows    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficgp,"cd \"%s\" \n",pathc);      /* nhstepm age range expressed in number of stepm */
 #endif      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 m=pow(2,cptcoveff);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
  /* 1eme*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   for (cpt=1; cpt<= nlstate ; cpt ++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for (k1=1; k1<= m ; k1 ++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
 #ifdef windows      gm=matrix(0,nhstepm,1,nlstate*nlstate);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 #endif         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 #ifdef unix      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);   
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  
 #endif      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
 for (i=1; i<= nlstate ; i ++) {      /* Computing Variances of health expectancies */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");       for(theta=1; theta <=npar; theta++){
 }        for(i=1; i<=npar; i++){ 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }        cptj=0;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<= nlstate; j++){
      for (i=1; i<= nlstate ; i ++) {          for(i=1; i<=nlstate; i++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            cptj=cptj+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 }                gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            }
 #ifdef unix          }
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        }
 #endif       
    }       
   }        for(i=1; i<=npar; i++) 
   /*2 eme*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for (k1=1; k1<= m ; k1 ++) {        
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        cptj=0;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        for(j=1; j<= nlstate; j++){
              for(i=1;i<=nlstate;i++){
     for (i=1; i<= nlstate+1 ; i ++) {            cptj=cptj+1;
       k=2*i;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        for(j=1; j<= nlstate*nlstate; j++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          for(h=0; h<=nhstepm-1; h++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       } 
         else fprintf(ficgp," \%%*lf (\%%*lf)");     
 }    /* End theta */
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       for(h=0; h<=nhstepm-1; h++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<=nlstate*nlstate;j++)
 }            for(theta=1; theta <=npar; theta++)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            trgradg[h][j][theta]=gradg[h][theta][j];
       else fprintf(ficgp,"\" t\"\" w l 0,");       
     }  
   }       for(i=1;i<=nlstate*nlstate;i++)
          for(j=1;j<=nlstate*nlstate;j++)
   /*3eme*/          varhe[i][j][(int)age] =0.;
   
   for (k1=1; k1<= m ; k1 ++) {       printf("%d|",(int)age);fflush(stdout);
     for (cpt=1; cpt<= nlstate ; cpt ++) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       k=2+nlstate*(2*cpt-2);       for(h=0;h<=nhstepm-1;h++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(k=0;k<=nhstepm-1;k++){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          for(i=1;i<=nlstate*nlstate;i++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for(j=1;j<=nlstate*nlstate;j++)
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      }
       /* Computing expectancies */
 */      for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {        for(j=1; j<=nlstate;j++)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       }            
     }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }  
            }
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {      fprintf(ficreseij,"%3.0f",age );
     for (cpt=1; cpt<nlstate ; cpt ++) {      cptj=0;
       k=3;      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(j=1; j<=nlstate;j++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       for (i=1; i< nlstate ; i ++)        }
         fprintf(ficgp,"+$%d",k+i+1);      fprintf(ficreseij,"\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);     
            free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       l=3+(nlstate+ndeath)*cpt;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       for (i=1; i< nlstate ; i ++) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         l=3+(nlstate+ndeath)*cpt;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficgp,"+$%d",l+i+1);    }
       }    printf("\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficlog,"\n");
     }  
   }      free_vector(xp,1,npar);
      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   /* proba elementaires */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
    for(i=1,jk=1; i <=nlstate; i++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     for(k=1; k <=(nlstate+ndeath); k++){  }
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){  /************ Variance ******************/
          void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  {
           jk++;    /* Variance of health expectancies */
           fprintf(ficgp,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         }    /* double **newm;*/
       }    double **dnewm,**doldm;
     }    double **dnewmp,**doldmp;
    }    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    double *xp;
      for(jk=1; jk <=m; jk++) {    double **gp, **gm;  /* for var eij */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    double ***gradg, ***trgradg; /*for var eij */
        if (ng==2)    double **gradgp, **trgradgp; /* for var p point j */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    double *gpp, *gmp; /* for var p point j */
        else    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
          fprintf(ficgp,"\nset title \"Probability\"\n");    double ***p3mat;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    double age,agelim, hf;
        i=1;    double ***mobaverage;
        for(k2=1; k2<=nlstate; k2++) {    int theta;
          k3=i;    char digit[4];
          for(k=1; k<=(nlstate+ndeath); k++) {    char digitp[25];
            if (k != k2){  
              if(ng==2)    char fileresprobmorprev[FILENAMELENGTH];
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  
              else    if(popbased==1){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      if(mobilav!=0)
              ij=1;        strcpy(digitp,"-populbased-mobilav-");
              for(j=3; j <=ncovmodel; j++) {      else strcpy(digitp,"-populbased-nomobil-");
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    else 
                  ij++;      strcpy(digitp,"-stablbased-");
                }  
                else    if (mobilav!=0) {
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
              }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
              fprintf(ficgp,")/(1");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                      printf(" Error in movingaverage mobilav=%d\n",mobilav);
              for(k1=1; k1 <=nlstate; k1++){        }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    }
                ij=1;  
                for(j=3; j <=ncovmodel; j++){    strcpy(fileresprobmorprev,"prmorprev"); 
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    sprintf(digit,"%-d",ij);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                    ij++;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                  }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                  else    strcat(fileresprobmorprev,fileres);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                fprintf(ficgp,")");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
              }    }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
              i=i+ncovmodel;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
            }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
          }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        }      fprintf(ficresprobmorprev," p.%-d SE",j);
      }      for(i=1; i<=nlstate;i++)
    }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    fclose(ficgp);    }  
 }  /* end gnuplot */    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 /*************** Moving average **************/    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       for (i=1; i<=nlstate;i++)    fprintf(ficresvij,"# Age");
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    for(i=1; i<=nlstate;i++)
           mobaverage[(int)agedeb][i][cptcod]=0.;      for(j=1; j<=nlstate;j++)
            fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    fprintf(ficresvij,"\n");
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    xp=vector(1,npar);
           for (cpt=0;cpt<=4;cpt++){    dnewm=matrix(1,nlstate,1,npar);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    doldm=matrix(1,nlstate,1,nlstate);
           }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }  
       }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     }    gpp=vector(nlstate+1,nlstate+ndeath);
        gmp=vector(nlstate+1,nlstate+ndeath);
 }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
 /************** Forecasting ******************/      printf ("Problem %d lower than %d\n",estepm, stepm);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    }
      else  hstepm=estepm;   
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    /* For example we decided to compute the life expectancy with the smallest unit */
   int *popage;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       nhstepm is the number of hstepm from age to agelim 
   double *popeffectif,*popcount;       nstepm is the number of stepm from age to agelin. 
   double ***p3mat;       Look at hpijx to understand the reason of that which relies in memory size
   char fileresf[FILENAMELENGTH];       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  agelim=AGESUP;       survival function given by stepm (the optimization length). Unfortunately it
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       results. So we changed our mind and took the option of the best precision.
      */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcpy(fileresf,"f");    agelim = AGESUP;
   strcat(fileresf,fileres);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if((ficresf=fopen(fileresf,"w"))==NULL) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     printf("Problem with forecast resultfile: %s\n", fileresf);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing forecasting: result on file '%s' \n", fileresf);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      gm=matrix(0,nhstepm,1,nlstate);
   
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(theta=1; theta <=npar; theta++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (stepm<=12) stepsize=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   agelim=AGESUP;        if (popbased==1) {
            if(mobilav ==0){
   hstepm=1;            for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm;              prlim[i][i]=probs[(int)age][i][ij];
   yp1=modf(dateintmean,&yp);          }else{ /* mobilav */ 
   anprojmean=yp;            for(i=1; i<=nlstate;i++)
   yp2=modf((yp1*12),&yp);              prlim[i][i]=mobaverage[(int)age][i][ij];
   mprojmean=yp;          }
   yp1=modf((yp2*30.5),&yp);        }
   jprojmean=yp;    
   if(jprojmean==0) jprojmean=1;        for(j=1; j<= nlstate; j++){
   if(mprojmean==0) jprojmean=1;          for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   for(cptcov=1;cptcov<=i2;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        /* This for computing probability of death (h=1 means
       k=k+1;           computed over hstepm matrices product = hstepm*stepm months) 
       fprintf(ficresf,"\n#******");           as a weighted average of prlim.
       for(j=1;j<=cptcoveff;j++) {        */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficresf,"******\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficresf,"# StartingAge FinalAge");        }    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        /* end probability of death */
        
              for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficresf,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        if (popbased==1) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          if(mobilav ==0){
           nhstepm = nhstepm/hstepm;            for(i=1; i<=nlstate;i++)
                        prlim[i][i]=probs[(int)age][i][ij];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{ /* mobilav */ 
           oldm=oldms;savm=savms;            for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                prlim[i][i]=mobaverage[(int)age][i][ij];
                  }
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        for(j=1; j<= nlstate; j++){
             }          for(h=0; h<=nhstepm; h++){
             for(j=1; j<=nlstate+ndeath;j++) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               kk1=0.;kk2=0;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
               for(i=1; i<=nlstate;i++) {                        }
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        /* This for computing probability of death (h=1 means
                 else {           computed over hstepm matrices product = hstepm*stepm months) 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];           as a weighted average of prlim.
                 }        */
                        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
               if (h==(int)(calagedate+12*cpt)){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                 fprintf(ficresf," %.3f", kk1);        }    
                                /* end probability of death */
               }  
             }        for(j=1; j<= nlstate; j++) /* vareij */
           }          for(h=0; h<=nhstepm; h++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         }          }
       }  
     }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       } /* End theta */
   fclose(ficresf);  
 }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          for(theta=1; theta <=npar; theta++)
   int *popage;            trgradg[h][j][theta]=gradg[h][theta][j];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   double ***p3mat,***tabpop,***tabpopprev;        for(theta=1; theta <=npar; theta++)
   char filerespop[FILENAMELENGTH];          trgradgp[j][theta]=gradgp[theta][j];
     
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   agelim=AGESUP;      for(i=1;i<=nlstate;i++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
   strcpy(filerespop,"pop");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   strcat(filerespop,fileres);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          for(i=1;i<=nlstate;i++)
     printf("Problem with forecast resultfile: %s\n", filerespop);            for(j=1;j<=nlstate;j++)
   }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }
       }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    
       /* pptj */
   if (mobilav==1) {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   stepsize=(int) (stepm+YEARM-1)/YEARM;      /* end ppptj */
   if (stepm<=12) stepsize=1;      /*  x centered again */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   agelim=AGESUP;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
   hstepm=1;      if (popbased==1) {
   hstepm=hstepm/stepm;        if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
   if (popforecast==1) {            prlim[i][i]=probs[(int)age][i][ij];
     if((ficpop=fopen(popfile,"r"))==NULL) {        }else{ /* mobilav */ 
       printf("Problem with population file : %s\n",popfile);exit(0);          for(i=1; i<=nlstate;i++)
     }            prlim[i][i]=mobaverage[(int)age][i][ij];
     popage=ivector(0,AGESUP);        }
     popeffectif=vector(0,AGESUP);      }
     popcount=vector(0,AGESUP);               
          /* This for computing probability of death (h=1 means
     i=1;           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;         as a weighted average of prlim.
          */
     imx=i;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
   for(cptcov=1;cptcov<=i2;cptcov++){      /* end probability of death */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       fprintf(ficrespop,"\n#******");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for(j=1;j<=cptcoveff;j++) {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=1; i<=nlstate;i++){
       }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       fprintf(ficrespop,"******\n");        }
       fprintf(ficrespop,"# Age");      } 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      fprintf(ficresprobmorprev,"\n");
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
            fprintf(ficresvij,"%.0f ",age );
       for (cpt=0; cpt<=0;cpt++) {      for(i=1; i<=nlstate;i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(j=1; j<=nlstate;j++){
                  fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      fprintf(ficresvij,"\n");
           nhstepm = nhstepm/hstepm;      free_matrix(gp,0,nhstepm,1,nlstate);
                free_matrix(gm,0,nhstepm,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           oldm=oldms;savm=savms;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            } /* End age */
           for (h=0; h<=nhstepm; h++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
               kk1=0.;kk2=0;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
               for(i=1; i<=nlstate;i++) {                  fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                 if (mobilav==1)  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                 else {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                 }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
               }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
               if (h==(int)(calagedate+12*cpt)){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                   /*fprintf(ficrespop," %.3f", kk1);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  */
               }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
             }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             for(i=1; i<=nlstate;i++){  
               kk1=0.;    free_vector(xp,1,npar);
                 for(j=1; j<=nlstate;j++){    free_matrix(doldm,1,nlstate,1,nlstate);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    free_matrix(dnewm,1,nlstate,1,npar);
                 }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fclose(ficresprobmorprev);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    fflush(ficgp);
           }    fflush(fichtm); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }  /* end varevsij */
         }  
       }  /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   /******/  {
     /* Variance of prevalence limit */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double **newm;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double **dnewm,**doldm;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int i, j, nhstepm, hstepm;
           nhstepm = nhstepm/hstepm;    int k, cptcode;
              double *xp;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *gp, *gm;
           oldm=oldms;savm=savms;    double **gradg, **trgradg;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double age,agelim;
           for (h=0; h<=nhstepm; h++){    int theta;
             if (h==(int) (calagedate+YEARM*cpt)) {     
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
             }    fprintf(ficresvpl,"# Age");
             for(j=1; j<=nlstate+ndeath;j++) {    for(i=1; i<=nlstate;i++)
               kk1=0.;kk2=0;        fprintf(ficresvpl," %1d-%1d",i,i);
               for(i=1; i<=nlstate;i++) {                  fprintf(ficresvpl,"\n");
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }    xp=vector(1,npar);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    dnewm=matrix(1,nlstate,1,npar);
             }    doldm=matrix(1,nlstate,1,nlstate);
           }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    hstepm=1*YEARM; /* Every year of age */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       }    agelim = AGESUP;
    }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        if (stepm >= YEARM) hstepm=1;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
   if (popforecast==1) {      gp=vector(1,nlstate);
     free_ivector(popage,0,AGESUP);      gm=vector(1,nlstate);
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   fclose(ficrespop);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 }        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
 /***********************************************/      
 /**************** Main Program *****************/        for(i=1; i<=npar; i++) /* Computes gradient */
 /***********************************************/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 int main(int argc, char *argv[])        for(i=1;i<=nlstate;i++)
 {          gm[i] = prlim[i][i];
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for(i=1;i<=nlstate;i++)
   double agedeb, agefin,hf;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      } /* End theta */
   
   double fret;      trgradg =matrix(1,nlstate,1,npar);
   double **xi,tmp,delta;  
       for(j=1; j<=nlstate;j++)
   double dum; /* Dummy variable */        for(theta=1; theta <=npar; theta++)
   double ***p3mat;          trgradg[j][theta]=gradg[theta][j];
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];      for(i=1;i<=nlstate;i++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        varpl[i][(int)age] =0.;
   int firstobs=1, lastobs=10;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   int sdeb, sfin; /* Status at beginning and end */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   int c,  h , cpt,l;      for(i=1;i<=nlstate;i++)
   int ju,jl, mi;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      fprintf(ficresvpl,"%.0f ",age );
   int mobilav=0,popforecast=0;      for(i=1; i<=nlstate;i++)
   int hstepm, nhstepm;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
   double bage, fage, age, agelim, agebase;      free_vector(gm,1,nlstate);
   double ftolpl=FTOL;      free_matrix(gradg,1,npar,1,nlstate);
   double **prlim;      free_matrix(trgradg,1,nlstate,1,npar);
   double *severity;    } /* End age */
   double ***param; /* Matrix of parameters */  
   double  *p;    free_vector(xp,1,npar);
   double **matcov; /* Matrix of covariance */    free_matrix(doldm,1,nlstate,1,npar);
   double ***delti3; /* Scale */    free_matrix(dnewm,1,nlstate,1,nlstate);
   double *delti; /* Scale */  
   double ***eij, ***vareij;  }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;  /************ Variance of one-step probabilities  ******************/
   double kk1, kk2;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  {
      int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   char z[1]="c", occ;    double **dnewm,**doldm;
 #include <sys/time.h>    double *xp;
 #include <time.h>    double *gp, *gm;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double **gradg, **trgradg;
      double **mu;
   /* long total_usecs;    double age,agelim, cov[NCOVMAX];
   struct timeval start_time, end_time;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      int theta;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    char fileresprob[FILENAMELENGTH];
   getcwd(pathcd, size);    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   printf("\n%s",version);  
   if(argc <=1){    double ***varpij;
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);    strcpy(fileresprob,"prob"); 
   }    strcat(fileresprob,fileres);
   else{    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     strcpy(pathtot,argv[1]);      printf("Problem with resultfile: %s\n", fileresprob);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    }
   /*cygwin_split_path(pathtot,path,optionfile);    strcpy(fileresprobcov,"probcov"); 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    strcat(fileresprobcov,fileres);
   /* cutv(path,optionfile,pathtot,'\\');*/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    }
   chdir(path);    strcpy(fileresprobcor,"probcor"); 
   replace(pathc,path);    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 /*-------- arguments in the command line --------*/      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   strcpy(fileres,"r");    }
   strcat(fileres, optionfilefiname);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   strcat(fileres,".txt");    /* Other files have txt extension */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /*---------arguments file --------*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     printf("Problem with optionfile %s\n",optionfile);    
     goto end;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   }    fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   strcpy(filereso,"o");    fprintf(ficresprobcov,"# Age");
   strcat(filereso,fileres);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   if((ficparo=fopen(filereso,"w"))==NULL) {    fprintf(ficresprobcov,"# Age");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }  
     for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */      for(j=1; j<=(nlstate+ndeath);j++){
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     ungetc(c,ficpar);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     fgets(line, MAXLINE, ficpar);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     puts(line);      }  
     fputs(line,ficparo);   /* fprintf(ficresprob,"\n");
   }    fprintf(ficresprobcov,"\n");
   ungetc(c,ficpar);    fprintf(ficresprobcor,"\n");
    */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);   xp=vector(1,npar);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 while((c=getc(ficpar))=='#' && c!= EOF){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     ungetc(c,ficpar);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     fgets(line, MAXLINE, ficpar);    first=1;
     puts(line);    fprintf(ficgp,"\n# Routine varprob");
     fputs(line,ficparo);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   }    fprintf(fichtm,"\n");
   ungetc(c,ficpar);  
      fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
        fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
   covar=matrix(0,NCOVMAX,1,n);    file %s<br>\n",optionfilehtmcov);
   cptcovn=0;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   ncovmodel=2+cptcovn;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   /* Read guess parameters */  standard deviations wide on each axis. <br>\
   /* Reads comments: lines beginning with '#' */   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   while((c=getc(ficpar))=='#' && c!= EOF){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     ungetc(c,ficpar);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);    cov[1]=1;
     fputs(line,ficparo);    tj=cptcoveff;
   }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   ungetc(c,ficpar);    j1=0;
      for(t=1; t<=tj;t++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(i1=1; i1<=ncodemax[t];i1++){ 
     for(i=1; i <=nlstate; i++)        j1++;
     for(j=1; j <=nlstate+ndeath-1; j++){        if  (cptcovn>0) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);          fprintf(ficresprob, "\n#********** Variable "); 
       fprintf(ficparo,"%1d%1d",i1,j1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%1d%1d",i,j);          fprintf(ficresprob, "**********\n#\n");
       for(k=1; k<=ncovmodel;k++){          fprintf(ficresprobcov, "\n#********** Variable "); 
         fscanf(ficpar," %lf",&param[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         printf(" %lf",param[i][j][k]);          fprintf(ficresprobcov, "**********\n#\n");
         fprintf(ficparo," %lf",param[i][j][k]);          
       }          fprintf(ficgp, "\n#********** Variable "); 
       fscanf(ficpar,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("\n");          fprintf(ficgp, "**********\n#\n");
       fprintf(ficparo,"\n");          
     }          
            fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   p=param[1][1];          
            fprintf(ficresprobcor, "\n#********** Variable ");    
   /* Reads comments: lines beginning with '#' */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcor, "**********\n#");    
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        
     puts(line);        for (age=bage; age<=fage; age ++){ 
     fputs(line,ficparo);          cov[2]=age;
   }          for (k=1; k<=cptcovn;k++) {
   ungetc(c,ficpar);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          for (k=1; k<=cptcovprod;k++)
   for(i=1; i <=nlstate; i++){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for(j=1; j <=nlstate+ndeath-1; j++){          
       fscanf(ficpar,"%1d%1d",&i1,&j1);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       printf("%1d%1d",i,j);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);          gp=vector(1,(nlstate)*(nlstate+ndeath));
       for(k=1; k<=ncovmodel;k++){          gm=vector(1,(nlstate)*(nlstate+ndeath));
         fscanf(ficpar,"%le",&delti3[i][j][k]);      
         printf(" %le",delti3[i][j][k]);          for(theta=1; theta <=npar; theta++){
         fprintf(ficparo," %le",delti3[i][j][k]);            for(i=1; i<=npar; i++)
       }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       fscanf(ficpar,"\n");            
       printf("\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fprintf(ficparo,"\n");            
     }            k=0;
   }            for(i=1; i<= (nlstate); i++){
   delti=delti3[1][1];              for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
   /* Reads comments: lines beginning with '#' */                gp[k]=pmmij[i][j];
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);            
     puts(line);            for(i=1; i<=npar; i++)
     fputs(line,ficparo);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   }      
   ungetc(c,ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              k=0;
   matcov=matrix(1,npar,1,npar);            for(i=1; i<=(nlstate); i++){
   for(i=1; i <=npar; i++){              for(j=1; j<=(nlstate+ndeath);j++){
     fscanf(ficpar,"%s",&str);                k=k+1;
     printf("%s",str);                gm[k]=pmmij[i][j];
     fprintf(ficparo,"%s",str);              }
     for(j=1; j <=i; j++){            }
       fscanf(ficpar," %le",&matcov[i][j]);       
       printf(" %.5le",matcov[i][j]);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       fprintf(ficparo," %.5le",matcov[i][j]);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     }          }
     fscanf(ficpar,"\n");  
     printf("\n");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     fprintf(ficparo,"\n");            for(theta=1; theta <=npar; theta++)
   }              trgradg[j][theta]=gradg[theta][j];
   for(i=1; i <=npar; i++)          
     for(j=i+1;j<=npar;j++)          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       matcov[i][j]=matcov[j][i];          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
              free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   printf("\n");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */          pmij(pmmij,cov,ncovmodel,x,nlstate);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          
      strcat(rfileres,".");    /* */          k=0;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          for(i=1; i<=(nlstate); i++){
     if((ficres =fopen(rfileres,"w"))==NULL) {            for(j=1; j<=(nlstate+ndeath);j++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              k=k+1;
     }              mu[k][(int) age]=pmmij[i][j];
     fprintf(ficres,"#%s\n",version);            }
              }
     /*-------- data file ----------*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     if((fic=fopen(datafile,"r"))==NULL)    {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       printf("Problem with datafile: %s\n", datafile);goto end;              varpij[i][j][(int)age] = doldm[i][j];
     }  
           /*printf("\n%d ",(int)age);
     n= lastobs;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     severity = vector(1,maxwav);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     outcome=imatrix(1,maxwav+1,1,n);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     num=ivector(1,n);            }*/
     moisnais=vector(1,n);  
     annais=vector(1,n);          fprintf(ficresprob,"\n%d ",(int)age);
     moisdc=vector(1,n);          fprintf(ficresprobcov,"\n%d ",(int)age);
     andc=vector(1,n);          fprintf(ficresprobcor,"\n%d ",(int)age);
     agedc=vector(1,n);  
     cod=ivector(1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     weight=vector(1,n);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     mint=matrix(1,maxwav,1,n);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     anint=matrix(1,maxwav,1,n);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     s=imatrix(1,maxwav+1,1,n);          }
     adl=imatrix(1,maxwav+1,1,n);              i=0;
     tab=ivector(1,NCOVMAX);          for (k=1; k<=(nlstate);k++){
     ncodemax=ivector(1,8);            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
     i=1;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     while (fgets(line, MAXLINE, fic) != NULL)    {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       if ((i >= firstobs) && (i <=lastobs)) {              for (j=1; j<=i;j++){
                        fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         for (j=maxwav;j>=1;j--){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              }
           strcpy(line,stra);            }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }/* end of loop for state */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        } /* end of loop for age */
         }  
                /* Confidence intervalle of pij  */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        /*
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         for (j=ncovcol;j>=1;j--){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        */
         }  
         num[i]=atol(stra);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                first1=1;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        for (k2=1; k2<=(nlstate);k2++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
         i=i+1;            j=(k2-1)*(nlstate+ndeath)+l2;
       }            for (k1=1; k1<=(nlstate);k1++){
     }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     /* printf("ii=%d", ij);                if(l1==k1) continue;
        scanf("%d",i);*/                i=(k1-1)*(nlstate+ndeath)+l1;
   imx=i-1; /* Number of individuals */                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
   /* for (i=1; i<=imx; i++){                  if ((int)age %5==0){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     }*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
    /*  for (i=1; i<=imx; i++){                    mu2=mu[j][(int) age]/stepm*YEARM;
      if (s[4][i]==9)  s[4][i]=-1;                    c12=cv12/sqrt(v1*v2);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                    /* Computing eigen value of matrix of covariance */
                      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /* Calculation of the number of parameter from char model*/                    /* Eigen vectors */
   Tvar=ivector(1,15);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   Tprod=ivector(1,15);                    /*v21=sqrt(1.-v11*v11); *//* error */
   Tvaraff=ivector(1,15);                    v21=(lc1-v1)/cv12*v11;
   Tvard=imatrix(1,15,1,2);                    v12=-v21;
   Tage=ivector(1,15);                          v22=v11;
                        tnalp=v21/v11;
   if (strlen(model) >1){                    if(first1==1){
     j=0, j1=0, k1=1, k2=1;                      first1=0;
     j=nbocc(model,'+');                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     j1=nbocc(model,'*');                    }
     cptcovn=j+1;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     cptcovprod=j1;                    /*printf(fignu*/
                        /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     strcpy(modelsav,model);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                    if(first==1){
       printf("Error. Non available option model=%s ",model);                      first=0;
       goto end;                      fprintf(ficgp,"\nset parametric;unset label");
     }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     for(i=(j+1); i>=1;i--){                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       cutv(stra,strb,modelsav,'+');   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       /*scanf("%d",i);*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       if (strchr(strb,'*')) {                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         cutv(strd,strc,strb,'*');                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         if (strcmp(strc,"age")==0) {                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           cptcovprod--;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           cutv(strb,stre,strd,'V');                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           Tvar[i]=atoi(stre);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           cptcovage++;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             Tage[cptcovage]=i;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             /*printf("stre=%s ", stre);*/                    }else{
         }                      first=0;
         else if (strcmp(strd,"age")==0) {                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           cptcovprod--;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           cutv(strb,stre,strc,'V');                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           Tvar[i]=atoi(stre);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           cptcovage++;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           Tage[cptcovage]=i;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         }                    }/* if first */
         else {                  } /* age mod 5 */
           cutv(strb,stre,strc,'V');                } /* end loop age */
           Tvar[i]=ncovcol+k1;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           cutv(strb,strc,strd,'V');                first=1;
           Tprod[k1]=i;              } /*l12 */
           Tvard[k1][1]=atoi(strc);            } /* k12 */
           Tvard[k1][2]=atoi(stre);          } /*l1 */
           Tvar[cptcovn+k2]=Tvard[k1][1];        }/* k1 */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      } /* loop covariates */
           for (k=1; k<=lastobs;k++)    }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           k1++;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           k2=k2+2;    free_vector(xp,1,npar);
         }    fclose(ficresprob);
       }    fclose(ficresprobcov);
       else {    fclose(ficresprobcor);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fflush(ficgp);
        /*  scanf("%d",i);*/    fflush(fichtmcov);
       cutv(strd,strc,strb,'V');  }
       Tvar[i]=atoi(strc);  
       }  
       strcpy(modelsav,stra);    /******************* Printing html file ***********/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         scanf("%d",i);*/                    int lastpass, int stepm, int weightopt, char model[],\
     }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 }                    int popforecast, int estepm ,\
                      double jprev1, double mprev1,double anprev1, \
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                    double jprev2, double mprev2,double anprev2){
   printf("cptcovprod=%d ", cptcovprod);    int jj1, k1, i1, cpt;
   scanf("%d ",i);*/    /*char optionfilehtm[FILENAMELENGTH];*/
     fclose(fic);  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
     /*  if(mle==1){*/  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
     if (weightopt != 1) { /* Maximisation without weights*/  /*   } */
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     /*-calculation of age at interview from date of interview and age at death -*/   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
     agev=matrix(1,maxwav,1,imx);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
     for (i=1; i<=imx; i++) {   - Life expectancies by age and initial health status (estepm=%2d months): \
       for(m=2; (m<= maxwav); m++) {     <a href=\"%s\">%s</a> <br>\n</li>", \
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
          anint[m][i]=9999;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
          s[m][i]=-1;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
        }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     }  
    m=cptcoveff;
     for (i=1; i<=imx; i++)  {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){   jj1=0;
         if(s[m][i] >0){   for(k1=1; k1<=m;k1++){
           if (s[m][i] >= nlstate+1) {     for(i1=1; i1<=ncodemax[k1];i1++){
             if(agedc[i]>0)       jj1++;
               if(moisdc[i]!=99 && andc[i]!=9999)       if (cptcovn > 0) {
                 agev[m][i]=agedc[i];         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
            else {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
               if (andc[i]!=9999){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);       }
               agev[m][i]=-1;       /* Pij */
               }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
             }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           }       /* Quasi-incidences */
           else if(s[m][i] !=9){ /* Should no more exist */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
             if(mint[m][i]==99 || anint[m][i]==9999)  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
               agev[m][i]=1;         /* Stable prevalence in each health state */
             else if(agev[m][i] <agemin){         for(cpt=1; cpt<nlstate;cpt++){
               agemin=agev[m][i];           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
             }         }
             else if(agev[m][i] >agemax){       for(cpt=1; cpt<=nlstate;cpt++) {
               agemax=agev[m][i];          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
             }       }
             /*agev[m][i]=anint[m][i]-annais[i];*/       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
             /*   agev[m][i] = age[i]+2*m;*/  health expectancies in states (1) and (2): %s%d.png<br>\
           }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           else { /* =9 */     } /* end i1 */
             agev[m][i]=1;   }/* End k1 */
             s[m][i]=-1;   fprintf(fichtm,"</ul>");
           }  
         }  
         else /*= 0 Unknown */   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
           agev[m][i]=1;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
       }   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
       - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     for (i=1; i<=imx; i++)  {   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
       for(m=1; (m<= maxwav); m++){   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
         if (s[m][i] > (nlstate+ndeath)) {   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
           printf("Error: Wrong value in nlstate or ndeath\n");             rfileres,rfileres,\
           goto end;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
         }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
       }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
     }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
     free_vector(severity,1,maxwav);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     free_imatrix(outcome,1,maxwav+1,1,n);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     free_vector(moisnais,1,n);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     free_vector(annais,1,n);  /*      <br>",fileres,fileres,fileres,fileres); */
     /* free_matrix(mint,1,maxwav,1,n);  /*  else  */
        free_matrix(anint,1,maxwav,1,n);*/  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     free_vector(moisdc,1,n);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     free_vector(andc,1,n);  
    m=cptcoveff;
       if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   jj1=0;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   for(k1=1; k1<=m;k1++){
         for(i1=1; i1<=ncodemax[k1];i1++){
     /* Concatenates waves */       jj1++;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
       Tcode=ivector(1,100);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       ncodemax[1]=1;       }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);       for(cpt=1; cpt<=nlstate;cpt++) {
               fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
    codtab=imatrix(1,100,1,10);  interval) in state (%d): %s%d%d.png <br>\
    h=0;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
    m=pow(2,cptcoveff);       }
       } /* end i1 */
    for(k=1;k<=cptcoveff; k++){   }/* End k1 */
      for(i=1; i <=(m/pow(2,k));i++){   fprintf(fichtm,"</ul>");
        for(j=1; j <= ncodemax[k]; j++){   fflush(fichtm);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  }
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  /******************* Gnuplot file **************/
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
          }  
        }    char dirfileres[132],optfileres[132];
      }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
    }    int ng;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       codtab[1][2]=1;codtab[2][2]=2; */  /*     printf("Problem with file %s",optionfilegnuplot); */
    /* for(i=1; i <=m ;i++){  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       for(k=1; k <=cptcovn; k++){  /*   } */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }    /*#ifdef windows */
       printf("\n");    fprintf(ficgp,"cd \"%s\" \n",pathc);
       }      /*#endif */
       scanf("%d",i);*/    m=pow(2,cptcoveff);
      
    /* Calculates basic frequencies. Computes observed prevalence at single age    strcpy(dirfileres,optionfilefiname);
        and prints on file fileres'p'. */    strcpy(optfileres,"vpl");
    /* 1eme*/
        for (cpt=1; cpt<= nlstate ; cpt ++) {
         for (k1=1; k1<= m ; k1 ++) {
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"set xlabel \"Age\" \n\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  set ylabel \"Probability\" \n\
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  set ter png small\n\
        set size 0.65,0.65\n\
     /* For Powell, parameters are in a vector p[] starting at p[1]  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     if(mle==1){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       }
     }       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           for (i=1; i<= nlstate ; i ++) {
     /*--------- results files --------------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
    jk=1;       for (i=1; i<= nlstate ; i ++) {
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
    for(i=1,jk=1; i <=nlstate; i++){       }  
      for(k=1; k <=(nlstate+ndeath); k++){       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
        if (k != i)     }
          {    }
            printf("%d%d ",i,k);    /*2 eme*/
            fprintf(ficres,"%1d%1d ",i,k);    
            for(j=1; j <=ncovmodel; j++){    for (k1=1; k1<= m ; k1 ++) { 
              printf("%f ",p[jk]);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
              fprintf(ficres,"%f ",p[jk]);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
              jk++;      
            }      for (i=1; i<= nlstate+1 ; i ++) {
            printf("\n");        k=2*i;
            fprintf(ficres,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          }        for (j=1; j<= nlstate+1 ; j ++) {
      }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
    }          else fprintf(ficgp," \%%*lf (\%%*lf)");
  if(mle==1){        }   
     /* Computing hessian and covariance matrix */        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     ftolhess=ftol; /* Usually correct */        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  }        for (j=1; j<= nlstate+1 ; j ++) {
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     printf("# Scales (for hessian or gradient estimation)\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
      for(i=1,jk=1; i <=nlstate; i++){        }   
       for(j=1; j <=nlstate+ndeath; j++){        fprintf(ficgp,"\" t\"\" w l 0,");
         if (j!=i) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           fprintf(ficres,"%1d%1d",i,j);        for (j=1; j<= nlstate+1 ; j ++) {
           printf("%1d%1d",i,j);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           for(k=1; k<=ncovmodel;k++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
             printf(" %.5e",delti[jk]);        }   
             fprintf(ficres," %.5e",delti[jk]);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
             jk++;        else fprintf(ficgp,"\" t\"\" w l 0,");
           }      }
           printf("\n");    }
           fprintf(ficres,"\n");    
         }    /*3eme*/
       }    
      }    for (k1=1; k1<= m ; k1 ++) { 
          for (cpt=1; cpt<= nlstate ; cpt ++) {
     k=1;        k=2+nlstate*(2*cpt-2);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficgp,"set ter png small\n\
     for(i=1;i<=npar;i++){  set size 0.65,0.65\n\
       /*  if (k>nlstate) k=1;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       i1=(i-1)/(ncovmodel*nlstate)+1;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       printf("%s%d%d",alph[k],i1,tab[i]);*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficres,"%3d",i);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       printf("%3d",i);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for(j=1; j<=i;j++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         fprintf(ficres," %.5e",matcov[i][j]);          
         printf(" %.5e",matcov[i][j]);        */
       }        for (i=1; i< nlstate ; i ++) {
       fprintf(ficres,"\n");          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
       printf("\n");          
       k++;        } 
     }      }
        }
     while((c=getc(ficpar))=='#' && c!= EOF){    
       ungetc(c,ficpar);    /* CV preval stable (period) */
       fgets(line, MAXLINE, ficpar);    for (k1=1; k1<= m ; k1 ++) { 
       puts(line);      for (cpt=1; cpt<=nlstate ; cpt ++) {
       fputs(line,ficparo);        k=3;
     }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     ungetc(c,ficpar);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     estepm=0;  set ter png small\nset size 0.65,0.65\n\
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  unset log y\n\
     if (estepm==0 || estepm < stepm) estepm=stepm;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     if (fage <= 2) {        
       bage = ageminpar;        for (i=1; i< nlstate ; i ++)
       fage = agemaxpar;          fprintf(ficgp,"+$%d",k+i+1);
     }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
            
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        l=3+(nlstate+ndeath)*cpt;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for (i=1; i< nlstate ; i ++) {
            l=3+(nlstate+ndeath)*cpt;
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"+$%d",l+i+1);
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     puts(line);      } 
     fputs(line,ficparo);    }  
   }    
   ungetc(c,ficpar);    /* proba elementaires */
      for(i=1,jk=1; i <=nlstate; i++){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      for(k=1; k <=(nlstate+ndeath); k++){
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        if (k != i) {
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for(j=1; j <=ncovmodel; j++){
                  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   while((c=getc(ficpar))=='#' && c!= EOF){            jk++; 
     ungetc(c,ficpar);            fprintf(ficgp,"\n");
     fgets(line, MAXLINE, ficpar);          }
     puts(line);        }
     fputs(line,ficparo);      }
   }     }
   ungetc(c,ficpar);  
       for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   fscanf(ficpar,"pop_based=%d\n",&popbased);         else
   fprintf(ficparo,"pop_based=%d\n",popbased);             fprintf(ficgp,"\nset title \"Probability\"\n");
   fprintf(ficres,"pop_based=%d\n",popbased);           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           i=1;
   while((c=getc(ficpar))=='#' && c!= EOF){         for(k2=1; k2<=nlstate; k2++) {
     ungetc(c,ficpar);           k3=i;
     fgets(line, MAXLINE, ficpar);           for(k=1; k<=(nlstate+ndeath); k++) {
     puts(line);             if (k != k2){
     fputs(line,ficparo);               if(ng==2)
   }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   ungetc(c,ficpar);               else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);               ij=1;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);               for(j=3; j <=ncovmodel; j++) {
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
 while((c=getc(ficpar))=='#' && c!= EOF){                 }
     ungetc(c,ficpar);                 else
     fgets(line, MAXLINE, ficpar);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     puts(line);               }
     fputs(line,ficparo);               fprintf(ficgp,")/(1");
   }               
   ungetc(c,ficpar);               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                 ij=1;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                 for(j=3; j <=ncovmodel; j++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                     ij++;
                    }
 /*------------ gnuplot -------------*/                   else
   strcpy(optionfilegnuplot,optionfilefiname);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   strcat(optionfilegnuplot,".gp");                 }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                 fprintf(ficgp,")");
     printf("Problem with file %s",optionfilegnuplot);               }
   }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fclose(ficgp);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);               i=i+ncovmodel;
 /*--------- index.htm --------*/             }
            } /* end k */
   strcpy(optionfilehtm,optionfile);         } /* end k2 */
   strcat(optionfilehtm,".htm");       } /* end jk */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {     } /* end ng */
     printf("Problem with %s \n",optionfilehtm), exit(0);     fflush(ficgp); 
   }  }  /* end gnuplot */
   
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  /*************** Moving average **************/
 \n  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 Total number of observations=%d <br>\n  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    int i, cpt, cptcod;
 <hr  size=\"2\" color=\"#EC5E5E\">    int modcovmax =1;
  <ul><li>Parameter files<br>\n    int mobilavrange, mob;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double age;
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);  
   fclose(fichtm);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
    
 /*------------ free_vector  -------------*/    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
  chdir(path);      if(mobilav==1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
  free_ivector(wav,1,imx);      for (age=bage; age<=fage; age++)
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        for (i=1; i<=nlstate;i++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            for (cptcod=1;cptcod<=modcovmax;cptcod++)
  free_ivector(num,1,n);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
  free_vector(agedc,1,n);      /* We keep the original values on the extreme ages bage, fage and for 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
  fclose(ficparo);         we use a 5 terms etc. until the borders are no more concerned. 
  fclose(ficres);      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   /*--------------- Prevalence limit --------------*/          for (i=1; i<=nlstate;i++){
              for (cptcod=1;cptcod<=modcovmax;cptcod++){
   strcpy(filerespl,"pl");              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   strcat(filerespl,fileres);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   }                }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   fprintf(ficrespl,"#Prevalence limit\n");            }
   fprintf(ficrespl,"#Age ");          }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        }/* end age */
   fprintf(ficrespl,"\n");      }/* end mob */
      }else return -1;
   prlim=matrix(1,nlstate,1,nlstate);    return 0;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }/* End movingaverage */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************** Forecasting ******************/
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   k=0;    /* proj1, year, month, day of starting projection 
   agebase=ageminpar;       agemin, agemax range of age
   agelim=agemaxpar;       dateprev1 dateprev2 range of dates during which prevalence is computed
   ftolpl=1.e-10;       anproj2 year of en of projection (same day and month as proj1).
   i1=cptcoveff;    */
   if (cptcovn < 1){i1=1;}    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
   for(cptcov=1;cptcov<=i1;cptcov++){    double agec; /* generic age */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         k=k+1;    double *popeffectif,*popcount;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    double ***p3mat;
         fprintf(ficrespl,"\n#******");    double ***mobaverage;
         for(j=1;j<=cptcoveff;j++)    char fileresf[FILENAMELENGTH];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");    agelim=AGESUP;
            prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         for (age=agebase; age<=agelim; age++){   
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcpy(fileresf,"f"); 
           fprintf(ficrespl,"%.0f",age );    strcat(fileresf,fileres);
           for(i=1; i<=nlstate;i++)    if((ficresf=fopen(fileresf,"w"))==NULL) {
           fprintf(ficrespl," %.5f", prlim[i][i]);      printf("Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficrespl,"\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         }    }
       }    printf("Computing forecasting: result on file '%s' \n", fileresf);
     }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   fclose(ficrespl);  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   /*------------- h Pij x at various ages ------------*/  
      if (mobilav!=0) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   printf("Computing pij: result on file '%s' \n", filerespij);      }
      }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   agelim=AGESUP;    if(estepm < stepm){
   hstepm=stepsize*YEARM; /* Every year of age */      printf ("Problem %d lower than %d\n",estepm, stepm);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    }
      else  hstepm=estepm;   
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    hstepm=hstepm/stepm; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       k=k+1;                                 fractional in yp1 */
         fprintf(ficrespij,"\n#****** ");    anprojmean=yp;
         for(j=1;j<=cptcoveff;j++)    yp2=modf((yp1*12),&yp);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    mprojmean=yp;
         fprintf(ficrespij,"******\n");    yp1=modf((yp2*30.5),&yp);
            jprojmean=yp;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    if(jprojmean==0) jprojmean=1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if(mprojmean==0) jprojmean=1;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    i1=cptcoveff;
           oldm=oldms;savm=savms;    if (cptcovn < 1){i1=1;}
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      
           fprintf(ficrespij,"# Age");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
           for(i=1; i<=nlstate;i++)    
             for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficresf,"#****** Routine prevforecast **\n");
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");  /*            if (h==(int)(YEARM*yearp)){ */
            for (h=0; h<=nhstepm; h++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
             for(i=1; i<=nlstate;i++)        k=k+1;
               for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficresf,"\n#******");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespij,"\n");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
              }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresf,"******\n");
           fprintf(ficrespij,"\n");        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         }        for(j=1; j<=nlstate+ndeath;j++){ 
     }          for(i=1; i<=nlstate;i++)              
   }            fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   fclose(ficrespij);          fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
   /*---------- Forecasting ------------------*/          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   if((stepm == 1) && (strcmp(model,".")==0)){            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            nhstepm = nhstepm/hstepm; 
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            oldm=oldms;savm=savms;
   else{            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     erreur=108;          
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            for (h=0; h<=nhstepm; h++){
   }              if (h*hstepm/YEARM*stepm ==yearp) {
                  fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
   /*---------- Health expectancies and variances ------------*/                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   strcpy(filerest,"t");              } 
   strcat(filerest,fileres);              for(j=1; j<=nlstate+ndeath;j++) {
   if((ficrest=fopen(filerest,"w"))==NULL) {                ppij=0.;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                for(i=1; i<=nlstate;i++) {
   }                  if (mobilav==1) 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   strcpy(filerese,"e");                  }
   strcat(filerese,fileres);                  if (h*hstepm/YEARM*stepm== yearp) {
   if((ficreseij=fopen(filerese,"w"))==NULL) {                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                  }
   }                } /* end i */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
  strcpy(fileresv,"v");                }
   strcat(fileresv,fileres);              }/* end j */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            } /* end h */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }          } /* end agec */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        } /* end yearp */
   calagedate=-1;      } /* end cptcod */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    } /* end  cptcov */
          
   k=0;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fclose(ficresf);
       k=k+1;  }
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /************** Forecasting *****not tested NB*************/
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       fprintf(ficrest,"******\n");    
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       fprintf(ficreseij,"\n#****** ");    int *popage;
       for(j=1;j<=cptcoveff;j++)    double calagedatem, agelim, kk1, kk2;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *popeffectif,*popcount;
       fprintf(ficreseij,"******\n");    double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
       fprintf(ficresvij,"\n#****** ");    char filerespop[FILENAMELENGTH];
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficresvij,"******\n");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       oldm=oldms;savm=savms;    
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
      
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    
       oldm=oldms;savm=savms;    strcpy(filerespop,"pop"); 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    strcat(filerespop,fileres);
        if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
        fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    printf("Computing forecasting: result on file '%s' \n", filerespop);
       fprintf(ficrest,"\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
       epj=vector(1,nlstate+1);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if (mobilav!=0) {
         if (popbased==1) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for(i=1; i<=nlstate;i++)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
             prlim[i][i]=probs[(int)age][i][k];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
              }
         fprintf(ficrest," %4.0f",age);    }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    stepsize=(int) (stepm+YEARM-1)/YEARM;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    if (stepm<=12) stepsize=1;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    
           }    agelim=AGESUP;
           epj[nlstate+1] +=epj[j];    
         }    hstepm=1;
     hstepm=hstepm/stepm; 
         for(i=1, vepp=0.;i <=nlstate;i++)    
           for(j=1;j <=nlstate;j++)    if (popforecast==1) {
             vepp += vareij[i][j][(int)age];      if((ficpop=fopen(popfile,"r"))==NULL) {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        printf("Problem with population file : %s\n",popfile);exit(0);
         for(j=1;j <=nlstate;j++){        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      } 
         }      popage=ivector(0,AGESUP);
         fprintf(ficrest,"\n");      popeffectif=vector(0,AGESUP);
       }      popcount=vector(0,AGESUP);
     }      
   }      i=1;   
 free_matrix(mint,1,maxwav,1,n);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);     
     free_vector(weight,1,n);      imx=i;
   fclose(ficreseij);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   fclose(ficresvij);    }
   fclose(ficrest);  
   fclose(ficpar);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   free_vector(epj,1,nlstate+1);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
          k=k+1;
   /*------- Variance limit prevalence------*/          fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
   strcpy(fileresvpl,"vpl");          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   strcat(fileresvpl,fileres);        }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        fprintf(ficrespop,"******\n");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        fprintf(ficrespop,"# Age");
     exit(0);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   }        if (popforecast==1)  fprintf(ficrespop," [Population]");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        
         for (cpt=0; cpt<=0;cpt++) { 
   k=0;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   for(cptcov=1;cptcov<=i1;cptcov++){          
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
       k=k+1;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
       fprintf(ficresvpl,"\n#****** ");            nhstepm = nhstepm/hstepm; 
       for(j=1;j<=cptcoveff;j++)            
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresvpl,"******\n");            oldm=oldms;savm=savms;
                  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          
       oldm=oldms;savm=savms;            for (h=0; h<=nhstepm; h++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              if (h==(int) (calagedatem+YEARM*cpt)) {
     }                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
  }              } 
               for(j=1; j<=nlstate+ndeath;j++) {
   fclose(ficresvpl);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   /*---------- End : free ----------------*/                  if (mobilav==1) 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                    else {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                  }
                  }
                  if (h==(int)(calagedatem+12*cpt)){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                    /*fprintf(ficrespop," %.3f", kk1);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                }
                }
   free_matrix(matcov,1,npar,1,npar);              for(i=1; i<=nlstate;i++){
   free_vector(delti,1,npar);                kk1=0.;
   free_matrix(agev,1,maxwav,1,imx);                  for(j=1; j<=nlstate;j++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
   fprintf(fichtm,"\n</body>");                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   fclose(fichtm);              }
   fclose(ficgp);  
                if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   if(erreur >0)            }
     printf("End of Imach with error or warning %d\n",erreur);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else   printf("End of Imach\n");          }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        }
     
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    /******/
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  end:            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 #ifdef windows            nhstepm = nhstepm/hstepm; 
   /* chdir(pathcd);*/            
 #endif            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  /*system("wgnuplot graph.plt");*/            oldm=oldms;savm=savms;
  /*system("../gp37mgw/wgnuplot graph.plt");*/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
  /*system("cd ../gp37mgw");*/            for (h=0; h<=nhstepm; h++){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/              if (h==(int) (calagedatem+YEARM*cpt)) {
  strcpy(plotcmd,GNUPLOTPROGRAM);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
  strcat(plotcmd," ");              } 
  strcat(plotcmd,optionfilegnuplot);              for(j=1; j<=nlstate+ndeath;j++) {
  system(plotcmd);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
 #ifdef windows                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   while (z[0] != 'q') {                }
     /* chdir(path); */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");              }
     scanf("%s",z);            }
     if (z[0] == 'c') system("./imach");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     else if (z[0] == 'e') system(optionfilehtm);          }
     else if (z[0] == 'g') system(plotcmd);        }
     else if (z[0] == 'q') exit(0);     } 
   }    }
 #endif   
 }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.92


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>