Diff for /imach/src/imach.c between versions 1.48 and 1.95

version 1.48, 2002/06/10 13:12:49 version 1.95, 2003/07/08 07:54:34
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.95  2003/07/08 07:54:34  brouard
      * imach.c (Repository):
   This program computes Healthy Life Expectancies from    (Repository): Using imachwizard code to output a more meaningful covariance
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    matrix (cov(a12,c31) instead of numbers.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.94  2003/06/27 13:00:02  brouard
   case of a health survey which is our main interest) -2- at least a    Just cleaning
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.93  2003/06/25 16:33:55  brouard
   computed from the time spent in each health state according to a    (Module): On windows (cygwin) function asctime_r doesn't
   model. More health states you consider, more time is necessary to reach the    exist so I changed back to asctime which exists.
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Version 0.96b
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.92  2003/06/25 16:30:45  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): On windows (cygwin) function asctime_r doesn't
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    exist so I changed back to asctime which exists.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.91  2003/06/25 15:30:29  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Duplicated warning errors corrected.
   you to do it.  More covariates you add, slower the    (Repository): Elapsed time after each iteration is now output. It
   convergence.    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
   The advantage of this computer programme, compared to a simple    concerning matrix of covariance. It has extension -cov.htm.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.90  2003/06/24 12:34:15  brouard
   intermediate interview, the information is lost, but taken into    (Module): Some bugs corrected for windows. Also, when
   account using an interpolation or extrapolation.      mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.89  2003/06/24 12:30:52  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): Some bugs corrected for windows. Also, when
   states. This elementary transition (by month or quarter trimester,    mle=-1 a template is output in file "or"mypar.txt with the design
   semester or year) is model as a multinomial logistic.  The hPx    of the covariance matrix to be input.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.88  2003/06/23 17:54:56  brouard
   hPijx.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.87  2003/06/18 12:26:01  brouard
   of the life expectancies. It also computes the prevalence limits.    Version 0.96
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.86  2003/06/17 20:04:08  brouard
            Institut national d'études démographiques, Paris.    (Module): Change position of html and gnuplot routines and added
   This software have been partly granted by Euro-REVES, a concerted action    routine fileappend.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.85  2003/06/17 13:12:43  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Check when date of death was earlier that
   can be accessed at http://euroreves.ined.fr/imach .    current date of interview. It may happen when the death was just
   **********************************************************************/    prior to the death. In this case, dh was negative and likelihood
      was wrong (infinity). We still send an "Error" but patch by
 #include <math.h>    assuming that the date of death was just one stepm after the
 #include <stdio.h>    interview.
 #include <stdlib.h>    (Repository): Because some people have very long ID (first column)
 #include <unistd.h>    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define MAXLINE 256    truncation)
 #define GNUPLOTPROGRAM "gnuplot"    (Repository): No more line truncation errors.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.84  2003/06/13 21:44:43  brouard
 /*#define DEBUG*/    * imach.c (Repository): Replace "freqsummary" at a correct
 #define windows    place. It differs from routine "prevalence" which may be called
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    many times. Probs is memory consuming and must be used with
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.82  2003/06/05 15:57:20  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add log in  imach.c and  fullversion number is now printed.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000  */
 #define YEARM 12. /* Number of months per year */  /*
 #define AGESUP 130     Interpolated Markov Chain
 #define AGEBASE 40  
 #ifdef windows    Short summary of the programme:
 #define DIRSEPARATOR '\\'    
 #else    This program computes Healthy Life Expectancies from
 #define DIRSEPARATOR '/'    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #endif    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    case of a health survey which is our main interest) -2- at least a
 int erreur; /* Error number */    second wave of interviews ("longitudinal") which measure each change
 int nvar;    (if any) in individual health status.  Health expectancies are
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    computed from the time spent in each health state according to a
 int npar=NPARMAX;    model. More health states you consider, more time is necessary to reach the
 int nlstate=2; /* Number of live states */    Maximum Likelihood of the parameters involved in the model.  The
 int ndeath=1; /* Number of dead states */    simplest model is the multinomial logistic model where pij is the
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    probability to be observed in state j at the second wave
 int popbased=0;    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int *wav; /* Number of waves for this individuual 0 is possible */    'age' is age and 'sex' is a covariate. If you want to have a more
 int maxwav; /* Maxim number of waves */    complex model than "constant and age", you should modify the program
 int jmin, jmax; /* min, max spacing between 2 waves */    where the markup *Covariates have to be included here again* invites
 int mle, weightopt;    you to do it.  More covariates you add, slower the
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    convergence.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    The advantage of this computer programme, compared to a simple
 double **oldm, **newm, **savm; /* Working pointers to matrices */    multinomial logistic model, is clear when the delay between waves is not
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    identical for each individual. Also, if a individual missed an
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    intermediate interview, the information is lost, but taken into
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    account using an interpolation or extrapolation.  
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    hPijx is the probability to be observed in state i at age x+h
 char filerese[FILENAMELENGTH];    conditional to the observed state i at age x. The delay 'h' can be
 FILE  *ficresvij;    split into an exact number (nh*stepm) of unobserved intermediate
 char fileresv[FILENAMELENGTH];    states. This elementary transition (by month, quarter,
 FILE  *ficresvpl;    semester or year) is modelled as a multinomial logistic.  The hPx
 char fileresvpl[FILENAMELENGTH];    matrix is simply the matrix product of nh*stepm elementary matrices
 char title[MAXLINE];    and the contribution of each individual to the likelihood is simply
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    hPijx.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Also this programme outputs the covariance matrix of the parameters but also
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    of the life expectancies. It also computes the stable prevalence. 
     
 char filerest[FILENAMELENGTH];    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 char fileregp[FILENAMELENGTH];             Institut national d'études démographiques, Paris.
 char popfile[FILENAMELENGTH];    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define NR_END 1    can be accessed at http://euroreves.ined.fr/imach .
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define NRANSI    
 #define ITMAX 200    **********************************************************************/
   /*
 #define TOL 2.0e-4    main
     read parameterfile
 #define CGOLD 0.3819660    read datafile
 #define ZEPS 1.0e-10    concatwav
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    freqsummary
     if (mle >= 1)
 #define GOLD 1.618034      mlikeli
 #define GLIMIT 100.0    print results files
 #define TINY 1.0e-20    if mle==1 
        computes hessian
 static double maxarg1,maxarg2;    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))        begin-prev-date,...
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    open gnuplot file
      open html file
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    stable prevalence
 #define rint(a) floor(a+0.5)     for age prevalim()
     h Pij x
 static double sqrarg;    variance of p varprob
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    forecasting if prevfcast==1 prevforecast call prevalence()
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    health expectancies
     Variance-covariance of DFLE
 int imx;    prevalence()
 int stepm;     movingaverage()
 /* Stepm, step in month: minimum step interpolation*/    varevsij() 
     if popbased==1 varevsij(,popbased)
 int estepm;    total life expectancies
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Variance of stable prevalence
    end
 int m,nb;  */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;   
   #include <math.h>
 double *weight;  #include <stdio.h>
 int **s; /* Status */  #include <stdlib.h>
 double *agedc, **covar, idx;  #include <unistd.h>
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   #include <sys/time.h>
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #include <time.h>
 double ftolhess; /* Tolerance for computing hessian */  #include "timeval.h"
   
 /**************** split *************************/  /* #include <libintl.h> */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  /* #define _(String) gettext (String) */
 {  
    char *s;                             /* pointer */  #define MAXLINE 256
    int  l1, l2;                         /* length counters */  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    l1 = strlen( path );                 /* length of path */  #define FILENAMELENGTH 132
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  /*#define DEBUG*/
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  /*#define windows*/
    if ( s == NULL ) {                   /* no directory, so use current */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #if     defined(__bsd__)                /* get current working directory */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       extern char       *getwd( );  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
       if ( getwd( dirc ) == NULL ) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #else  
       extern char       *getcwd( );  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #endif  #define NCOVMAX 8 /* Maximum number of covariates */
          return( GLOCK_ERROR_GETCWD );  #define MAXN 20000
       }  #define YEARM 12. /* Number of months per year */
       strcpy( name, path );             /* we've got it */  #define AGESUP 130
    } else {                             /* strip direcotry from path */  #define AGEBASE 40
       s++;                              /* after this, the filename */  #ifdef unix
       l2 = strlen( s );                 /* length of filename */  #define DIRSEPARATOR '/'
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define ODIRSEPARATOR '\\'
       strcpy( name, s );                /* save file name */  #else
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define DIRSEPARATOR '\\'
       dirc[l1-l2] = 0;                  /* add zero */  #define ODIRSEPARATOR '/'
    }  #endif
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows  /* $Id$ */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  /* $State$ */
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
 #endif  char fullversion[]="$Revision$ $Date$"; 
    s = strrchr( name, '.' );            /* find last / */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    s++;  int nvar;
    strcpy(ext,s);                       /* save extension */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    l1= strlen( name);  int npar=NPARMAX;
    l2= strlen( s)+1;  int nlstate=2; /* Number of live states */
    strncpy( finame, name, l1-l2);  int ndeath=1; /* Number of dead states */
    finame[l1-l2]= 0;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    return( 0 );                         /* we're done */  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /******************************************/  int jmin, jmax; /* min, max spacing between 2 waves */
   int gipmx, gsw; /* Global variables on the number of contributions 
 void replace(char *s, char*t)                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle, weightopt;
   int i;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int lg=20;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   i=0;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   lg=strlen(t);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for(i=0; i<= lg; i++) {  double jmean; /* Mean space between 2 waves */
     (s[i] = t[i]);  double **oldm, **newm, **savm; /* Working pointers to matrices */
     if (t[i]== '\\') s[i]='/';  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 int nbocc(char *s, char occ)  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   int i,j=0;  double sw; /* Sum of weights */
   int lg=20;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   i=0;  FILE *ficresilk;
   lg=strlen(s);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   for(i=0; i<= lg; i++) {  FILE *ficresprobmorprev;
   if  (s[i] == occ ) j++;  FILE *fichtm, *fichtmcov; /* Html File */
   }  FILE *ficreseij;
   return j;  char filerese[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 void cutv(char *u,char *v, char*t, char occ)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   int i,lg,j,p=0;  char title[MAXLINE];
   i=0;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for(j=0; j<=strlen(t)-1; j++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char tmpout[FILENAMELENGTH]; 
   }  char command[FILENAMELENGTH];
   int  outcmd=0;
   lg=strlen(t);  
   for(j=0; j<p; j++) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     (u[j] = t[j]);  
   }  char filelog[FILENAMELENGTH]; /* Log file */
      u[p]='\0';  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
    for(j=0; j<= lg; j++) {  char popfile[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /********************** nrerror ********************/  struct timezone tzp;
   extern int gettimeofday();
 void nrerror(char error_text[])  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   fprintf(stderr,"ERREUR ...\n");  extern long time();
   fprintf(stderr,"%s\n",error_text);  char strcurr[80], strfor[80];
   exit(1);  
 }  #define NR_END 1
 /*********************** vector *******************/  #define FREE_ARG char*
 double *vector(int nl, int nh)  #define FTOL 1.0e-10
 {  
   double *v;  #define NRANSI 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define ITMAX 200 
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /************************ free vector ******************/  #define ZEPS 1.0e-10 
 void free_vector(double*v, int nl, int nh)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   int *v;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    
   if (!v) nrerror("allocation failure in ivector");  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   return v-nl+NR_END;  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 /******************free ivector **************************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 void free_ivector(int *v, long nl, long nh)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  
   free((FREE_ARG)(v+nl-NR_END));  int imx; 
 }  int stepm;
   /* Stepm, step in month: minimum step interpolation*/
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int estepm;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int m,nb;
   int **m;  long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   /* allocate pointers to rows */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double **pmmij, ***probs;
   if (!m) nrerror("allocation failure 1 in matrix()");  double dateintmean=0;
   m += NR_END;  
   m -= nrl;  double *weight;
    int **s; /* Status */
    double *agedc, **covar, idx;
   /* allocate rows and set pointers to them */  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m[nrl] += NR_END;  double ftolhess; /* Tolerance for computing hessian */
   m[nrl] -= ncl;  
    /**************** split *************************/
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
    {
   /* return pointer to array of pointers to rows */    char  *ss;                            /* pointer */
   return m;    int   l1, l2;                         /* length counters */
 }  
     l1 = strlen(path );                   /* length of path */
 /****************** free_imatrix *************************/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void free_imatrix(m,nrl,nrh,ncl,nch)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       int **m;    if ( ss == NULL ) {                   /* no directory, so use current */
       long nch,ncl,nrh,nrl;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
      /* free an int matrix allocated by imatrix() */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      /*    extern  char* getcwd ( char *buf , int len);*/
   free((FREE_ARG) (m+nrl-NR_END));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /******************* matrix *******************************/      strcpy( name, path );               /* we've got it */
 double **matrix(long nrl, long nrh, long ncl, long nch)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      l2 = strlen( ss );                  /* length of filename */
   double **m;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   if (!m) nrerror("allocation failure 1 in matrix()");      dirc[l1-l2] = 0;                    /* add zero */
   m += NR_END;    }
   m -= nrl;    l1 = strlen( dirc );                  /* length of directory */
     /*#ifdef windows
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #else
   m[nrl] += NR_END;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m[nrl] -= ncl;  #endif
     */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    ss = strrchr( name, '.' );            /* find last / */
   return m;    ss++;
 }    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
 /*************************free matrix ************************/    l2= strlen(ss)+1;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    strncpy( finame, name, l1-l2);
 {    finame[l1-l2]= 0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    return( 0 );                          /* we're done */
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   
 /******************* ma3x *******************************/  /******************************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  void replace_back_to_slash(char *s, char*t)
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  {
   double ***m;    int i;
     int lg=0;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    i=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    lg=strlen(t);
   m += NR_END;    for(i=0; i<= lg; i++) {
   m -= nrl;      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int nbocc(char *s, char occ)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int i,j=0;
     int lg=20;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    i=0;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    lg=strlen(s);
   m[nrl][ncl] += NR_END;    for(i=0; i<= lg; i++) {
   m[nrl][ncl] -= nll;    if  (s[i] == occ ) j++;
   for (j=ncl+1; j<=nch; j++)    }
     m[nrl][j]=m[nrl][j-1]+nlay;    return j;
    }
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  void cutv(char *u,char *v, char*t, char occ)
     for (j=ncl+1; j<=nch; j++)  {
       m[i][j]=m[i][j-1]+nlay;    /* cuts string t into u and v where u is ended by char occ excluding it
   }       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   return m;       gives u="abcedf" and v="ghi2j" */
 }    int i,lg,j,p=0;
     i=0;
 /*************************free ma3x ************************/    for(j=0; j<=strlen(t)-1; j++) {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 {    }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lg=strlen(t);
   free((FREE_ARG)(m+nrl-NR_END));    for(j=0; j<p; j++) {
 }      (u[j] = t[j]);
     }
 /***************** f1dim *************************/       u[p]='\0';
 extern int ncom;  
 extern double *pcom,*xicom;     for(j=0; j<= lg; j++) {
 extern double (*nrfunc)(double []);      if (j>=(p+1))(v[j-p-1] = t[j]);
      }
 double f1dim(double x)  }
 {  
   int j;  /********************** nrerror ********************/
   double f;  
   double *xt;  void nrerror(char error_text[])
    {
   xt=vector(1,ncom);    fprintf(stderr,"ERREUR ...\n");
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    fprintf(stderr,"%s\n",error_text);
   f=(*nrfunc)(xt);    exit(EXIT_FAILURE);
   free_vector(xt,1,ncom);  }
   return f;  /*********************** vector *******************/
 }  double *vector(int nl, int nh)
   {
 /*****************brent *************************/    double *v;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {    if (!v) nrerror("allocation failure in vector");
   int iter;    return v-nl+NR_END;
   double a,b,d,etemp;  }
   double fu,fv,fw,fx;  
   double ftemp;  /************************ free vector ******************/
   double p,q,r,tol1,tol2,u,v,w,x,xm;  void free_vector(double*v, int nl, int nh)
   double e=0.0;  {
      free((FREE_ARG)(v+nl-NR_END));
   a=(ax < cx ? ax : cx);  }
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  /************************ivector *******************************/
   fw=fv=fx=(*f)(x);  int *ivector(long nl,long nh)
   for (iter=1;iter<=ITMAX;iter++) {  {
     xm=0.5*(a+b);    int *v;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    if (!v) nrerror("allocation failure in ivector");
     printf(".");fflush(stdout);    return v-nl+NR_END;
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /******************free ivector **************************/
 #endif  void free_ivector(int *v, long nl, long nh)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    free((FREE_ARG)(v+nl-NR_END));
       return fx;  }
     }  
     ftemp=fu;  /************************lvector *******************************/
     if (fabs(e) > tol1) {  long *lvector(long nl,long nh)
       r=(x-w)*(fx-fv);  {
       q=(x-v)*(fx-fw);    long *v;
       p=(x-v)*q-(x-w)*r;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       q=2.0*(q-r);    if (!v) nrerror("allocation failure in ivector");
       if (q > 0.0) p = -p;    return v-nl+NR_END;
       q=fabs(q);  }
       etemp=e;  
       e=d;  /******************free lvector **************************/
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  void free_lvector(long *v, long nl, long nh)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
       else {    free((FREE_ARG)(v+nl-NR_END));
         d=p/q;  }
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  /******************* imatrix *******************************/
           d=SIGN(tol1,xm-x);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     } else {  { 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     }    int **m; 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    
     fu=(*f)(u);    /* allocate pointers to rows */ 
     if (fu <= fx) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       if (u >= x) a=x; else b=x;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       SHFT(v,w,x,u)    m += NR_END; 
         SHFT(fv,fw,fx,fu)    m -= nrl; 
         } else {    
           if (u < x) a=u; else b=u;    
           if (fu <= fw || w == x) {    /* allocate rows and set pointers to them */ 
             v=w;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
             w=u;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
             fv=fw;    m[nrl] += NR_END; 
             fw=fu;    m[nrl] -= ncl; 
           } else if (fu <= fv || v == x || v == w) {    
             v=u;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
             fv=fu;    
           }    /* return pointer to array of pointers to rows */ 
         }    return m; 
   }  } 
   nrerror("Too many iterations in brent");  
   *xmin=x;  /****************** free_imatrix *************************/
   return fx;  void free_imatrix(m,nrl,nrh,ncl,nch)
 }        int **m;
         long nch,ncl,nrh,nrl; 
 /****************** mnbrak ***********************/       /* free an int matrix allocated by imatrix() */ 
   { 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
             double (*func)(double))    free((FREE_ARG) (m+nrl-NR_END)); 
 {  } 
   double ulim,u,r,q, dum;  
   double fu;  /******************* matrix *******************************/
    double **matrix(long nrl, long nrh, long ncl, long nch)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   if (*fb > *fa) {    double **m;
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
   *cx=(*bx)+GOLD*(*bx-*ax);    m += NR_END;
   *fc=(*func)(*cx);    m -= nrl;
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     q=(*bx-*cx)*(*fb-*fa);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    m[nrl] += NR_END;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m[nrl] -= ncl;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fu=(*func)(u);    return m;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       fu=(*func)(u);     */
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /*************************free matrix ************************/
           }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       fu=(*func)(u);    free((FREE_ARG)(m+nrl-NR_END));
     } else {  }
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  /******************* ma3x *******************************/
     }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       }    double ***m;
 }  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /*************** linmin ************************/    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 int ncom;    m -= nrl;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
               double *fc, double (*func)(double));    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   int j;    m[nrl][ncl] += NR_END;
   double xx,xmin,bx,ax;    m[nrl][ncl] -= nll;
   double fx,fb,fa;    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
   ncom=n;    
   pcom=vector(1,n);    for (i=nrl+1; i<=nrh; i++) {
   xicom=vector(1,n);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   nrfunc=func;      for (j=ncl+1; j<=nch; j++) 
   for (j=1;j<=n;j++) {        m[i][j]=m[i][j-1]+nlay;
     pcom[j]=p[j];    }
     xicom[j]=xi[j];    return m; 
   }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   ax=0.0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   xx=1.0;    */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  /*************************free ma3x ************************/
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #endif  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     xi[j] *= xmin;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     p[j] += xi[j];    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /*************** function subdirf ***********/
 }  char *subdirf(char fileres[])
   {
 /*************** powell ************************/    /* Caution optionfilefiname is hidden */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    strcpy(tmpout,optionfilefiname);
             double (*func)(double []))    strcat(tmpout,"/"); /* Add to the right */
 {    strcat(tmpout,fileres);
   void linmin(double p[], double xi[], int n, double *fret,    return tmpout;
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /*************** function subdirf2 ***********/
   double fp,fptt;  char *subdirf2(char fileres[], char *preop)
   double *xits;  {
   pt=vector(1,n);    
   ptt=vector(1,n);    /* Caution optionfilefiname is hidden */
   xit=vector(1,n);    strcpy(tmpout,optionfilefiname);
   xits=vector(1,n);    strcat(tmpout,"/");
   *fret=(*func)(p);    strcat(tmpout,preop);
   for (j=1;j<=n;j++) pt[j]=p[j];    strcat(tmpout,fileres);
   for (*iter=1;;++(*iter)) {    return tmpout;
     fp=(*fret);  }
     ibig=0;  
     del=0.0;  /*************** function subdirf3 ***********/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char *subdirf3(char fileres[], char *preop, char *preop2)
     for (i=1;i<=n;i++)  {
       printf(" %d %.12f",i, p[i]);    
     printf("\n");    /* Caution optionfilefiname is hidden */
     for (i=1;i<=n;i++) {    strcpy(tmpout,optionfilefiname);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    strcat(tmpout,"/");
       fptt=(*fret);    strcat(tmpout,preop);
 #ifdef DEBUG    strcat(tmpout,preop2);
       printf("fret=%lf \n",*fret);    strcat(tmpout,fileres);
 #endif    return tmpout;
       printf("%d",i);fflush(stdout);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /***************** f1dim *************************/
         del=fabs(fptt-(*fret));  extern int ncom; 
         ibig=i;  extern double *pcom,*xicom;
       }  extern double (*nrfunc)(double []); 
 #ifdef DEBUG   
       printf("%d %.12e",i,(*fret));  double f1dim(double x) 
       for (j=1;j<=n;j++) {  { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    int j; 
         printf(" x(%d)=%.12e",j,xit[j]);    double f;
       }    double *xt; 
       for(j=1;j<=n;j++)   
         printf(" p=%.12e",p[j]);    xt=vector(1,ncom); 
       printf("\n");    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 #endif    f=(*nrfunc)(xt); 
     }    free_vector(xt,1,ncom); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    return f; 
 #ifdef DEBUG  } 
       int k[2],l;  
       k[0]=1;  /*****************brent *************************/
       k[1]=-1;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       printf("Max: %.12e",(*func)(p));  { 
       for (j=1;j<=n;j++)    int iter; 
         printf(" %.12e",p[j]);    double a,b,d,etemp;
       printf("\n");    double fu,fv,fw,fx;
       for(l=0;l<=1;l++) {    double ftemp;
         for (j=1;j<=n;j++) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    double e=0.0; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);   
         }    a=(ax < cx ? ax : cx); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    b=(ax > cx ? ax : cx); 
       }    x=w=v=bx; 
 #endif    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
       free_vector(xit,1,n);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       free_vector(xits,1,n);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       free_vector(ptt,1,n);      printf(".");fflush(stdout);
       free_vector(pt,1,n);      fprintf(ficlog,".");fflush(ficlog);
       return;  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (j=1;j<=n;j++) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       ptt[j]=2.0*p[j]-pt[j];  #endif
       xit[j]=p[j]-pt[j];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       pt[j]=p[j];        *xmin=x; 
     }        return fx; 
     fptt=(*func)(ptt);      } 
     if (fptt < fp) {      ftemp=fu;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      if (fabs(e) > tol1) { 
       if (t < 0.0) {        r=(x-w)*(fx-fv); 
         linmin(p,xit,n,fret,func);        q=(x-v)*(fx-fw); 
         for (j=1;j<=n;j++) {        p=(x-v)*q-(x-w)*r; 
           xi[j][ibig]=xi[j][n];        q=2.0*(q-r); 
           xi[j][n]=xit[j];        if (q > 0.0) p = -p; 
         }        q=fabs(q); 
 #ifdef DEBUG        etemp=e; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        e=d; 
         for(j=1;j<=n;j++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           printf(" %.12e",xit[j]);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         printf("\n");        else { 
 #endif          d=p/q; 
       }          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
   }            d=SIGN(tol1,xm-x); 
 }        } 
       } else { 
 /**** Prevalence limit ****************/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 {      fu=(*f)(u); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      if (fu <= fx) { 
      matrix by transitions matrix until convergence is reached */        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   int i, ii,j,k;          SHFT(fv,fw,fx,fu) 
   double min, max, maxmin, maxmax,sumnew=0.;          } else { 
   double **matprod2();            if (u < x) a=u; else b=u; 
   double **out, cov[NCOVMAX], **pmij();            if (fu <= fw || w == x) { 
   double **newm;              v=w; 
   double agefin, delaymax=50 ; /* Max number of years to converge */              w=u; 
               fv=fw; 
   for (ii=1;ii<=nlstate+ndeath;ii++)              fw=fu; 
     for (j=1;j<=nlstate+ndeath;j++){            } else if (fu <= fv || v == x || v == w) { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);              v=u; 
     }              fv=fu; 
             } 
    cov[1]=1.;          } 
      } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    nrerror("Too many iterations in brent"); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    *xmin=x; 
     newm=savm;    return fx; 
     /* Covariates have to be included here again */  } 
      cov[2]=agefin;  
    /****************** mnbrak ***********************/
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/              double (*func)(double)) 
       }  { 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double ulim,u,r,q, dum;
       for (k=1; k<=cptcovprod;k++)    double fu; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];   
     *fa=(*func)(*ax); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    *fb=(*func)(*bx); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    if (*fb > *fa) { 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      SHFT(dum,*ax,*bx,dum) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        SHFT(dum,*fb,*fa,dum) 
         } 
     savm=oldm;    *cx=(*bx)+GOLD*(*bx-*ax); 
     oldm=newm;    *fc=(*func)(*cx); 
     maxmax=0.;    while (*fb > *fc) { 
     for(j=1;j<=nlstate;j++){      r=(*bx-*ax)*(*fb-*fc); 
       min=1.;      q=(*bx-*cx)*(*fb-*fa); 
       max=0.;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       for(i=1; i<=nlstate; i++) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         sumnew=0;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      if ((*bx-u)*(u-*cx) > 0.0) { 
         prlim[i][j]= newm[i][j]/(1-sumnew);        fu=(*func)(u); 
         max=FMAX(max,prlim[i][j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         min=FMIN(min,prlim[i][j]);        fu=(*func)(u); 
       }        if (fu < *fc) { 
       maxmin=max-min;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       maxmax=FMAX(maxmax,maxmin);            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
     if(maxmax < ftolpl){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       return prlim;        u=ulim; 
     }        fu=(*func)(u); 
   }      } else { 
 }        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
 /*************** transition probabilities ***************/      } 
       SHFT(*ax,*bx,*cx,u) 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        SHFT(*fa,*fb,*fc,fu) 
 {        } 
   double s1, s2;  } 
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /*************** linmin ************************/
   
     for(i=1; i<= nlstate; i++){  int ncom; 
     for(j=1; j<i;j++){  double *pcom,*xicom;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double (*nrfunc)(double []); 
         /*s2 += param[i][j][nc]*cov[nc];*/   
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  { 
       }    double brent(double ax, double bx, double cx, 
       ps[i][j]=s2;                 double (*f)(double), double tol, double *xmin); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     for(j=i+1; j<=nlstate+ndeath;j++){                double *fc, double (*func)(double)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    int j; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double xx,xmin,bx,ax; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double fx,fb,fa;
       }   
       ps[i][j]=s2;    ncom=n; 
     }    pcom=vector(1,n); 
   }    xicom=vector(1,n); 
     /*ps[3][2]=1;*/    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   for(i=1; i<= nlstate; i++){      pcom[j]=p[j]; 
      s1=0;      xicom[j]=xi[j]; 
     for(j=1; j<i; j++)    } 
       s1+=exp(ps[i][j]);    ax=0.0; 
     for(j=i+1; j<=nlstate+ndeath; j++)    xx=1.0; 
       s1+=exp(ps[i][j]);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     ps[i][i]=1./(s1+1.);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     for(j=1; j<i; j++)  #ifdef DEBUG
       ps[i][j]= exp(ps[i][j])*ps[i][i];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(j=i+1; j<=nlstate+ndeath; j++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #endif
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for (j=1;j<=n;j++) { 
   } /* end i */      xi[j] *= xmin; 
       p[j] += xi[j]; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    } 
     for(jj=1; jj<= nlstate+ndeath; jj++){    free_vector(xicom,1,n); 
       ps[ii][jj]=0;    free_vector(pcom,1,n); 
       ps[ii][ii]=1;  } 
     }  
   }  char *asc_diff_time(long time_sec, char ascdiff[])
   {
     long sec_left, days, hours, minutes;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    days = (time_sec) / (60*60*24);
     for(jj=1; jj<= nlstate+ndeath; jj++){    sec_left = (time_sec) % (60*60*24);
      printf("%lf ",ps[ii][jj]);    hours = (sec_left) / (60*60) ;
    }    sec_left = (sec_left) %(60*60);
     printf("\n ");    minutes = (sec_left) /60;
     }    sec_left = (sec_left) % (60);
     printf("\n ");printf("%lf ",cov[2]);*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 /*    return ascdiff;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  }
   goto end;*/  
     return ps;  /*************** powell ************************/
 }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
 /**************** Product of 2 matrices ******************/  { 
     void linmin(double p[], double xi[], int n, double *fret, 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)                double (*func)(double [])); 
 {    int i,ibig,j; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double del,t,*pt,*ptt,*xit;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double fp,fptt;
   /* in, b, out are matrice of pointers which should have been initialized    double *xits;
      before: only the contents of out is modified. The function returns    int niterf, itmp;
      a pointer to pointers identical to out */  
   long i, j, k;    pt=vector(1,n); 
   for(i=nrl; i<= nrh; i++)    ptt=vector(1,n); 
     for(k=ncolol; k<=ncoloh; k++)    xit=vector(1,n); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    xits=vector(1,n); 
         out[i][k] +=in[i][j]*b[j][k];    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   return out;    for (*iter=1;;++(*iter)) { 
 }      fp=(*fret); 
       ibig=0; 
       del=0.0; 
 /************* Higher Matrix Product ***************/      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
      duration (i.e. until      for (i=1;i<=n;i++) {
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        printf(" %d %.12f",i, p[i]);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        fprintf(ficlog," %d %.12lf",i, p[i]);
      (typically every 2 years instead of every month which is too big).        fprintf(ficrespow," %.12lf", p[i]);
      Model is determined by parameters x and covariates have to be      }
      included manually here.      printf("\n");
       fprintf(ficlog,"\n");
      */      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   int i, j, d, h, k;        tm = *localtime(&curr_time.tv_sec);
   double **out, cov[NCOVMAX];        strcpy(strcurr,asctime(&tmf));
   double **newm;  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time;
   /* Hstepm could be zero and should return the unit matrix */        itmp = strlen(strcurr);
   for (i=1;i<=nlstate+ndeath;i++)        if(strcurr[itmp-1]=='\n')
     for (j=1;j<=nlstate+ndeath;j++){          strcurr[itmp-1]='\0';
       oldm[i][j]=(i==j ? 1.0 : 0.0);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     }        for(niterf=10;niterf<=30;niterf+=10){
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   for(h=1; h <=nhstepm; h++){          tmf = *localtime(&forecast_time.tv_sec);
     for(d=1; d <=hstepm; d++){  /*      asctime_r(&tmf,strfor); */
       newm=savm;          strcpy(strfor,asctime(&tmf));
       /* Covariates have to be included here again */          itmp = strlen(strfor);
       cov[1]=1.;          if(strfor[itmp-1]=='\n')
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          strfor[itmp-1]='\0';
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for (k=1; k<=cptcovage;k++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        }
       for (k=1; k<=cptcovprod;k++)      }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #ifdef DEBUG
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        printf("fret=%lf \n",*fret);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficlog,"fret=%lf \n",*fret);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
       savm=oldm;        printf("%d",i);fflush(stdout);
       oldm=newm;        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
     for(i=1; i<=nlstate+ndeath; i++)        if (fabs(fptt-(*fret)) > del) { 
       for(j=1;j<=nlstate+ndeath;j++) {          del=fabs(fptt-(*fret)); 
         po[i][j][h]=newm[i][j];          ibig=i; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        } 
          */  #ifdef DEBUG
       }        printf("%d %.12e",i,(*fret));
   } /* end h */        fprintf(ficlog,"%d %.12e",i,(*fret));
   return po;        for (j=1;j<=n;j++) {
 }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 /*************** log-likelihood *************/        }
 double func( double *x)        for(j=1;j<=n;j++) {
 {          printf(" p=%.12e",p[j]);
   int i, ii, j, k, mi, d, kk;          fprintf(ficlog," p=%.12e",p[j]);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        }
   double **out;        printf("\n");
   double sw; /* Sum of weights */        fprintf(ficlog,"\n");
   double lli; /* Individual log likelihood */  #endif
   long ipmx;      } 
   /*extern weight */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   /* We are differentiating ll according to initial status */  #ifdef DEBUG
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        int k[2],l;
   /*for(i=1;i<imx;i++)        k[0]=1;
     printf(" %d\n",s[4][i]);        k[1]=-1;
   */        printf("Max: %.12e",(*func)(p));
   cov[1]=1.;        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
   for(k=1; k<=nlstate; k++) ll[k]=0.;          printf(" %.12e",p[j]);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          fprintf(ficlog," %.12e",p[j]);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        }
     for(mi=1; mi<= wav[i]-1; mi++){        printf("\n");
       for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficlog,"\n");
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(l=0;l<=1;l++) {
       for(d=0; d<dh[mi][i]; d++){          for (j=1;j<=n;j++) {
         newm=savm;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         for (kk=1; kk<=cptcovage;kk++) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          }
         }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                  fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
         savm=oldm;  
         oldm=newm;  
                free_vector(xit,1,n); 
                free_vector(xits,1,n); 
       } /* end mult */        free_vector(ptt,1,n); 
              free_vector(pt,1,n); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        return; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      } 
       ipmx +=1;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       sw += weight[i];      for (j=1;j<=n;j++) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        ptt[j]=2.0*p[j]-pt[j]; 
     } /* end of wave */        xit[j]=p[j]-pt[j]; 
   } /* end of individual */        pt[j]=p[j]; 
       } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      fptt=(*func)(ptt); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      if (fptt < fp) { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   return -l;        if (t < 0.0) { 
 }          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
 /*********** Maximum Likelihood Estimation ***************/            xi[j][n]=xit[j]; 
           }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  #ifdef DEBUG
 {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i,j, iter;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double **xi,*delti;          for(j=1;j<=n;j++){
   double fret;            printf(" %.12e",xit[j]);
   xi=matrix(1,npar,1,npar);            fprintf(ficlog," %.12e",xit[j]);
   for (i=1;i<=npar;i++)          }
     for (j=1;j<=npar;j++)          printf("\n");
       xi[i][j]=(i==j ? 1.0 : 0.0);          fprintf(ficlog,"\n");
   printf("Powell\n");  #endif
   powell(p,xi,npar,ftol,&iter,&fret,func);        }
       } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    } 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  } 
   
 }  /**** Prevalence limit (stable prevalence)  ****************/
   
 /**** Computes Hessian and covariance matrix ***/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  {
 {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double  **a,**y,*x,pd;       matrix by transitions matrix until convergence is reached */
   double **hess;  
   int i, j,jk;    int i, ii,j,k;
   int *indx;    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   double hessii(double p[], double delta, int theta, double delti[]);    double **out, cov[NCOVMAX], **pmij();
   double hessij(double p[], double delti[], int i, int j);    double **newm;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double agefin, delaymax=50 ; /* Max number of years to converge */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
     for (ii=1;ii<=nlstate+ndeath;ii++)
   hess=matrix(1,npar,1,npar);      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("\nCalculation of the hessian matrix. Wait...\n");      }
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);     cov[1]=1.;
     hess[i][i]=hessii(p,ftolhess,i,delti);   
     /*printf(" %f ",p[i]);*/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     /*printf(" %lf ",hess[i][i]);*/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   }      newm=savm;
        /* Covariates have to be included here again */
   for (i=1;i<=npar;i++) {       cov[2]=agefin;
     for (j=1;j<=npar;j++)  {    
       if (j>i) {        for (k=1; k<=cptcovn;k++) {
         printf(".%d%d",i,j);fflush(stdout);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         hess[i][j]=hessij(p,delti,i,j);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         hess[j][i]=hess[i][j];            }
         /*printf(" %lf ",hess[i][j]);*/        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   printf("\n");        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);      savm=oldm;
   x=vector(1,npar);      oldm=newm;
   indx=ivector(1,npar);      maxmax=0.;
   for (i=1;i<=npar;i++)      for(j=1;j<=nlstate;j++){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        min=1.;
   ludcmp(a,npar,indx,&pd);        max=0.;
         for(i=1; i<=nlstate; i++) {
   for (j=1;j<=npar;j++) {          sumnew=0;
     for (i=1;i<=npar;i++) x[i]=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     x[j]=1;          prlim[i][j]= newm[i][j]/(1-sumnew);
     lubksb(a,npar,indx,x);          max=FMAX(max,prlim[i][j]);
     for (i=1;i<=npar;i++){          min=FMIN(min,prlim[i][j]);
       matcov[i][j]=x[i];        }
     }        maxmin=max-min;
   }        maxmax=FMAX(maxmax,maxmin);
       }
   printf("\n#Hessian matrix#\n");      if(maxmax < ftolpl){
   for (i=1;i<=npar;i++) {        return prlim;
     for (j=1;j<=npar;j++) {      }
       printf("%.3e ",hess[i][j]);    }
     }  }
     printf("\n");  
   }  /*************** transition probabilities ***************/ 
   
   /* Recompute Inverse */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double s1, s2;
   ludcmp(a,npar,indx,&pd);    /*double t34;*/
     int i,j,j1, nc, ii, jj;
   /*  printf("\n#Hessian matrix recomputed#\n");  
       for(i=1; i<= nlstate; i++){
   for (j=1;j<=npar;j++) {      for(j=1; j<i;j++){
     for (i=1;i<=npar;i++) x[i]=0;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     x[j]=1;          /*s2 += param[i][j][nc]*cov[nc];*/
     lubksb(a,npar,indx,x);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (i=1;i<=npar;i++){          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);        ps[i][j]=s2;
     }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     printf("\n");      }
   }      for(j=i+1; j<=nlstate+ndeath;j++){
   */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   free_matrix(a,1,npar,1,npar);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   free_matrix(y,1,npar,1,npar);        }
   free_vector(x,1,npar);        ps[i][j]=s2;
   free_ivector(indx,1,npar);      }
   free_matrix(hess,1,npar,1,npar);    }
       /*ps[3][2]=1;*/
   
 }    for(i=1; i<= nlstate; i++){
        s1=0;
 /*************** hessian matrix ****************/      for(j=1; j<i; j++)
 double hessii( double x[], double delta, int theta, double delti[])        s1+=exp(ps[i][j]);
 {      for(j=i+1; j<=nlstate+ndeath; j++)
   int i;        s1+=exp(ps[i][j]);
   int l=1, lmax=20;      ps[i][i]=1./(s1+1.);
   double k1,k2;      for(j=1; j<i; j++)
   double p2[NPARMAX+1];        ps[i][j]= exp(ps[i][j])*ps[i][i];
   double res;      for(j=i+1; j<=nlstate+ndeath; j++)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        ps[i][j]= exp(ps[i][j])*ps[i][i];
   double fx;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   int k=0,kmax=10;    } /* end i */
   double l1;  
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   fx=func(x);      for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1;i<=npar;i++) p2[i]=x[i];        ps[ii][jj]=0;
   for(l=0 ; l <=lmax; l++){        ps[ii][ii]=1;
     l1=pow(10,l);      }
     delts=delt;    }
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       k1=func(p2)-fx;      for(jj=1; jj<= nlstate+ndeath; jj++){
       p2[theta]=x[theta]-delt;       printf("%lf ",ps[ii][jj]);
       k2=func(p2)-fx;     }
       /*res= (k1-2.0*fx+k2)/delt/delt; */      printf("\n ");
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      }
            printf("\n ");printf("%lf ",cov[2]);*/
 #ifdef DEBUG  /*
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
 #endif    goto end;*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      return ps;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  }
         k=kmax;  
       }  /**************** Product of 2 matrices ******************/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       }  {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         delts=delt;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       }    /* in, b, out are matrice of pointers which should have been initialized 
     }       before: only the contents of out is modified. The function returns
   }       a pointer to pointers identical to out */
   delti[theta]=delts;    long i, j, k;
   return res;    for(i=nrl; i<= nrh; i++)
        for(k=ncolol; k<=ncoloh; k++)
 }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {    return out;
   int i;  }
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  /************* Higher Matrix Product ***************/
   int k;  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   fx=func(x);  {
   for (k=1; k<=2; k++) {    /* Computes the transition matrix starting at age 'age' over 
     for (i=1;i<=npar;i++) p2[i]=x[i];       'nhstepm*hstepm*stepm' months (i.e. until
     p2[thetai]=x[thetai]+delti[thetai]/k;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       nhstepm*hstepm matrices. 
     k1=func(p2)-fx;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         (typically every 2 years instead of every month which is too big 
     p2[thetai]=x[thetai]+delti[thetai]/k;       for the memory).
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       Model is determined by parameters x and covariates have to be 
     k2=func(p2)-fx;       included manually here. 
    
     p2[thetai]=x[thetai]-delti[thetai]/k;       */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;    int i, j, d, h, k;
      double **out, cov[NCOVMAX];
     p2[thetai]=x[thetai]-delti[thetai]/k;    double **newm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;    /* Hstepm could be zero and should return the unit matrix */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for (i=1;i<=nlstate+ndeath;i++)
 #ifdef DEBUG      for (j=1;j<=nlstate+ndeath;j++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        oldm[i][j]=(i==j ? 1.0 : 0.0);
 #endif        po[i][j][0]=(i==j ? 1.0 : 0.0);
   }      }
   return res;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 }    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
 /************** Inverse of matrix **************/        newm=savm;
 void ludcmp(double **a, int n, int *indx, double *d)        /* Covariates have to be included here again */
 {        cov[1]=1.;
   int i,imax,j,k;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double big,dum,sum,temp;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double *vv;        for (k=1; k<=cptcovage;k++)
            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   vv=vector(1,n);        for (k=1; k<=cptcovprod;k++)
   *d=1.0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (i=1;i<=n;i++) {  
     big=0.0;  
     for (j=1;j<=n;j++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       if ((temp=fabs(a[i][j])) > big) big=temp;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     vv[i]=1.0/big;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   }        savm=oldm;
   for (j=1;j<=n;j++) {        oldm=newm;
     for (i=1;i<j;i++) {      }
       sum=a[i][j];      for(i=1; i<=nlstate+ndeath; i++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for(j=1;j<=nlstate+ndeath;j++) {
       a[i][j]=sum;          po[i][j][h]=newm[i][j];
     }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     big=0.0;           */
     for (i=j;i<=n;i++) {        }
       sum=a[i][j];    } /* end h */
       for (k=1;k<j;k++)    return po;
         sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  /*************** log-likelihood *************/
         imax=i;  double func( double *x)
       }  {
     }    int i, ii, j, k, mi, d, kk;
     if (j != imax) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       for (k=1;k<=n;k++) {    double **out;
         dum=a[imax][k];    double sw; /* Sum of weights */
         a[imax][k]=a[j][k];    double lli; /* Individual log likelihood */
         a[j][k]=dum;    int s1, s2;
       }    double bbh, survp;
       *d = -(*d);    long ipmx;
       vv[imax]=vv[j];    /*extern weight */
     }    /* We are differentiating ll according to initial status */
     indx[j]=imax;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     if (a[j][j] == 0.0) a[j][j]=TINY;    /*for(i=1;i<imx;i++) 
     if (j != n) {      printf(" %d\n",s[4][i]);
       dum=1.0/(a[j][j]);    */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    cov[1]=1.;
     }  
   }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   free_vector(vv,1,n);  /* Doesn't work */  
 ;    if(mle==1){
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void lubksb(double **a, int n, int *indx, double b[])        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   int i,ii=0,ip,j;            for (j=1;j<=nlstate+ndeath;j++){
   double sum;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=n;i++) {            }
     ip=indx[i];          for(d=0; d<dh[mi][i]; d++){
     sum=b[ip];            newm=savm;
     b[ip]=b[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (ii)            for (kk=1; kk<=cptcovage;kk++) {
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     else if (sum) ii=i;            }
     b[i]=sum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=n;i>=1;i--) {            savm=oldm;
     sum=b[i];            oldm=newm;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          } /* end mult */
     b[i]=sum/a[i][i];        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 }          /* But now since version 0.9 we anticipate for bias and large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
 /************ Frequencies ********************/           * (in months) between two waves is not a multiple of stepm, we rounded to 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)           * the nearest (and in case of equal distance, to the lowest) interval but now
 {  /* Some frequencies */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * probability in order to take into account the bias as a fraction of the way
   double ***freq; /* Frequencies */           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double *pp;           * -stepm/2 to stepm/2 .
   double pos, k2, dateintsum=0,k2cpt=0;           * For stepm=1 the results are the same as for previous versions of Imach.
   FILE *ficresp;           * For stepm > 1 the results are less biased than in previous versions. 
   char fileresp[FILENAMELENGTH];           */
            s1=s[mw[mi][i]][i];
   pp=vector(1,nlstate);          s2=s[mw[mi+1][i]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          bbh=(double)bh[mi][i]/(double)stepm; 
   strcpy(fileresp,"p");          /* bias is positive if real duration
   strcat(fileresp,fileres);           * is higher than the multiple of stepm and negative otherwise.
   if((ficresp=fopen(fileresp,"w"))==NULL) {           */
     printf("Problem with prevalence resultfile: %s\n", fileresp);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     exit(0);          if( s2 > nlstate){ 
   }            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);               to the likelihood is the probability to die between last step unit time and current 
   j1=0;               step unit time, which is also the differences between probability to die before dh 
                 and probability to die before dh-stepm . 
   j=cptcoveff;               In version up to 0.92 likelihood was computed
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          as if date of death was unknown. Death was treated as any other
            health state: the date of the interview describes the actual state
   for(k1=1; k1<=j;k1++){          and not the date of a change in health state. The former idea was
     for(i1=1; i1<=ncodemax[k1];i1++){          to consider that at each interview the state was recorded
       j1++;          (healthy, disable or death) and IMaCh was corrected; but when we
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          introduced the exact date of death then we should have modified
         scanf("%d", i);*/          the contribution of an exact death to the likelihood. This new
       for (i=-1; i<=nlstate+ndeath; i++)            contribution is smaller and very dependent of the step unit
         for (jk=-1; jk<=nlstate+ndeath; jk++)            stepm. It is no more the probability to die between last interview
           for(m=agemin; m <= agemax+3; m++)          and month of death but the probability to survive from last
             freq[i][jk][m]=0;          interview up to one month before death multiplied by the
                probability to die within a month. Thanks to Chris
       dateintsum=0;          Jackson for correcting this bug.  Former versions increased
       k2cpt=0;          mortality artificially. The bad side is that we add another loop
       for (i=1; i<=imx; i++) {          which slows down the processing. The difference can be up to 10%
         bool=1;          lower mortality.
         if  (cptcovn>0) {            */
           for (z1=1; z1<=cptcoveff; z1++)            lli=log(out[s1][s2] - savm[s1][s2]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          }else{
               bool=0;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         if (bool==1) {          } 
           for(m=firstpass; m<=lastpass; m++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             k2=anint[m][i]+(mint[m][i]/12.);          /*if(lli ==000.0)*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          ipmx +=1;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          sw += weight[i];
               if (m<lastpass) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        } /* end of wave */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      } /* end of individual */
               }    }  else if(mle==2){
                    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 dateintsum=dateintsum+k2;        for(mi=1; mi<= wav[i]-1; mi++){
                 k2cpt++;          for (ii=1;ii<=nlstate+ndeath;ii++)
               }            for (j=1;j<=nlstate+ndeath;j++){
             }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<=dh[mi][i]; d++){
                    newm=savm;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
       if  (cptcovn>0) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresp, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficresp, "**********\n#");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
       for(i=1; i<=nlstate;i++)            oldm=newm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          } /* end mult */
       fprintf(ficresp, "\n");        
                s1=s[mw[mi][i]][i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){          s2=s[mw[mi+1][i]][i];
         if(i==(int)agemax+3)          bbh=(double)bh[mi][i]/(double)stepm; 
           printf("Total");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         else          ipmx +=1;
           printf("Age %d", i);          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        } /* end of wave */
             pp[jk] += freq[jk][m][i];      } /* end of individual */
         }    }  else if(mle==3){  /* exponential inter-extrapolation */
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pos += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
           if(pp[jk]>=1.e-10)          for (ii=1;ii<=nlstate+ndeath;ii++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            for (j=1;j<=nlstate+ndeath;j++){
           else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<dh[mi][i]; d++){
         for(jk=1; jk <=nlstate ; jk++){            newm=savm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
         for(jk=1,pos=0; jk <=nlstate ; jk++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           pos += pp[jk];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
           if(pos>=1.e-5)            oldm=newm;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          } /* end mult */
           else        
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          s1=s[mw[mi][i]][i];
           if( i <= (int) agemax){          s2=s[mw[mi+1][i]][i];
             if(pos>=1.e-5){          bbh=(double)bh[mi][i]/(double)stepm; 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               probs[i][jk][j1]= pp[jk]/pos;          ipmx +=1;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             else        } /* end of wave */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      } /* end of individual */
           }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=-1; jk <=nlstate+ndeath; jk++)        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=-1; m <=nlstate+ndeath; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            for (j=1;j<=nlstate+ndeath;j++){
         if(i <= (int) agemax)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresp,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf("\n");            }
       }          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   dateintmean=dateintsum/k2cpt;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fclose(ficresp);            }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          
   free_vector(pp,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* End of Freq */            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /************ Prevalence ********************/        
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          s1=s[mw[mi][i]][i];
 {  /* Some frequencies */          s2=s[mw[mi+1][i]][i];
            if( s2 > nlstate){ 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            lli=log(out[s1][s2] - savm[s1][s2]);
   double ***freq; /* Frequencies */          }else{
   double *pp;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double pos, k2;          }
           ipmx +=1;
   pp=vector(1,nlstate);          sw += weight[i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        } /* end of wave */
   j1=0;      } /* end of individual */
      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   j=cptcoveff;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   for(k1=1; k1<=j;k1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i1=1; i1<=ncodemax[k1];i1++){            for (j=1;j<=nlstate+ndeath;j++){
       j1++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)              }
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for(d=0; d<dh[mi][i]; d++){
           for(m=agemin; m <= agemax+3; m++)            newm=savm;
             freq[i][jk][m]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       for (i=1; i<=imx; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         bool=1;            }
         if  (cptcovn>0) {          
           for (z1=1; z1<=cptcoveff; z1++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               bool=0;            savm=oldm;
         }            oldm=newm;
         if (bool==1) {          } /* end mult */
           for(m=firstpass; m<=lastpass; m++){        
             k2=anint[m][i]+(mint[m][i]/12.);          s1=s[mw[mi][i]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          s2=s[mw[mi+1][i]][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ipmx +=1;
               if (m<lastpass) {          sw += weight[i];
                 if (calagedate>0)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                 else        } /* end of wave */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      } /* end of individual */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    } /* End of if */
               }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         }    return -l;
       }  }
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         for(jk=1; jk <=nlstate ; jk++){  /*************** log-likelihood *************/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  double funcone( double *x)
             pp[jk] += freq[jk][m][i];  {
         }    /* Same as likeli but slower because of a lot of printf and if */
         for(jk=1; jk <=nlstate ; jk++){    int i, ii, j, k, mi, d, kk;
           for(m=-1, pos=0; m <=0 ; m++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             pos += freq[jk][m][i];    double **out;
         }    double lli; /* Individual log likelihood */
            double llt;
         for(jk=1; jk <=nlstate ; jk++){    int s1, s2;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double bbh, survp;
             pp[jk] += freq[jk][m][i];    /*extern weight */
         }    /* We are differentiating ll according to initial status */
            /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    /*for(i=1;i<imx;i++) 
              printf(" %d\n",s[4][i]);
         for(jk=1; jk <=nlstate ; jk++){        */
           if( i <= (int) agemax){    cov[1]=1.;
             if(pos>=1.e-5){  
               probs[i][jk][j1]= pp[jk]/pos;    for(k=1; k<=nlstate; k++) ll[k]=0.;
             }  
           }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       }        for (ii=1;ii<=nlstate+ndeath;ii++)
     }          for (j=1;j<=nlstate+ndeath;j++){
   }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for(d=0; d<dh[mi][i]; d++){
   free_vector(pp,1,nlstate);          newm=savm;
            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }  /* End of Freq */          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************* Waves Concatenation ***************/          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {          savm=oldm;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          oldm=newm;
      Death is a valid wave (if date is known).        } /* end mult */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        s1=s[mw[mi][i]][i];
      and mw[mi+1][i]. dh depends on stepm.        s2=s[mw[mi+1][i]][i];
      */        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   int i, mi, m;         * is higher than the multiple of stepm and negative otherwise.
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;         */
      double sum=0., jmean=0.;*/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   int j, k=0,jk, ju, jl;        } else if (mle==1){
   double sum=0.;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   jmin=1e+5;        } else if(mle==2){
   jmax=-1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   jmean=0.;        } else if(mle==3){  /* exponential inter-extrapolation */
   for(i=1; i<=imx; i++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     mi=0;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     m=firstpass;          lli=log(out[s1][s2]); /* Original formula */
     while(s[m][i] <= nlstate){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       if(s[m][i]>=1)          lli=log(out[s1][s2]); /* Original formula */
         mw[++mi][i]=m;        } /* End of if */
       if(m >=lastpass)        ipmx +=1;
         break;        sw += weight[i];
       else        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         m++;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }/* end while */        if(globpr){
     if (s[m][i] > nlstate){          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       mi++;     /* Death is another wave */   %10.6f %10.6f %10.6f ", \
       /* if(mi==0)  never been interviewed correctly before death */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
          /* Only death is a correct wave */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       mw[mi][i]=m;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     }            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     wav[i]=mi;          }
     if(mi==0)          fprintf(ficresilk," %10.6f\n", -llt);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        }
   }      } /* end of wave */
     } /* end of individual */
   for(i=1; i<=imx; i++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(mi=1; mi<wav[i];mi++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       if (stepm <=0)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         dh[mi][i]=1;    if(globpr==0){ /* First time we count the contributions and weights */
       else{      gipmx=ipmx;
         if (s[mw[mi+1][i]][i] > nlstate) {      gsw=sw;
           if (agedc[i] < 2*AGESUP) {    }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    return -l;
           if(j==0) j=1;  /* Survives at least one month after exam */  }
           k=k+1;  
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;  /*************** function likelione ***********/
           sum=sum+j;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  {
           }    /* This routine should help understanding what is done with 
         }       the selection of individuals/waves and
         else{       to check the exact contribution to the likelihood.
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));       Plotting could be done.
           k=k+1;     */
           if (j >= jmax) jmax=j;    int k;
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    if(*globpri !=0){ /* Just counts and sums, no printings */
           sum=sum+j;      strcpy(fileresilk,"ilk"); 
         }      strcat(fileresilk,fileres);
         jk= j/stepm;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         jl= j -jk*stepm;        printf("Problem with resultfile: %s\n", fileresilk);
         ju= j -(jk+1)*stepm;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         if(jl <= -ju)      }
           dh[mi][i]=jk;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         else      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           dh[mi][i]=jk+1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         if(dh[mi][i]==0)      for(k=1; k<=nlstate; k++) 
           dh[mi][i]=1; /* At least one step */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }    }
   }  
   jmean=sum/k;    *fretone=(*funcone)(p);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    if(*globpri !=0){
  }      fclose(ficresilk);
 /*********** Tricode ****************************/      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 void tricode(int *Tvar, int **nbcode, int imx)      fflush(fichtm); 
 {    } 
   int Ndum[20],ij=1, k, j, i;    return;
   int cptcode=0;  }
   cptcoveff=0;  
    
   for (k=0; k<19; k++) Ndum[k]=0;  /*********** Maximum Likelihood Estimation ***************/
   for (k=1; k<=7; k++) ncodemax[k]=0;  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  {
     for (i=1; i<=imx; i++) {    int i,j, iter;
       ij=(int)(covar[Tvar[j]][i]);    double **xi;
       Ndum[ij]++;    double fret;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double fretone; /* Only one call to likelihood */
       if (ij > cptcode) cptcode=ij;    char filerespow[FILENAMELENGTH];
     }    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
     for (i=0; i<=cptcode; i++) {      for (j=1;j<=npar;j++)
       if(Ndum[i]!=0) ncodemax[j]++;        xi[i][j]=(i==j ? 1.0 : 0.0);
     }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     ij=1;    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for (i=1; i<=ncodemax[j]; i++) {      printf("Problem with resultfile: %s\n", filerespow);
       for (k=0; k<=19; k++) {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         if (Ndum[k] != 0) {    }
           nbcode[Tvar[j]][ij]=k;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
              for (i=1;i<=nlstate;i++)
           ij++;      for(j=1;j<=nlstate+ndeath;j++)
         }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         if (ij > ncodemax[j]) break;    fprintf(ficrespow,"\n");
       }    
     }    powell(p,xi,npar,ftol,&iter,&fret,func);
   }    
     fclose(ficrespow);
  for (k=0; k<19; k++) Ndum[k]=0;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
  for (i=1; i<=ncovmodel-2; i++) {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       ij=Tvar[i];  
       Ndum[ij]++;  }
     }  
   /**** Computes Hessian and covariance matrix ***/
  ij=1;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
  for (i=1; i<=10; i++) {  {
    if((Ndum[i]!=0) && (i<=ncovcol)){    double  **a,**y,*x,pd;
      Tvaraff[ij]=i;    double **hess;
      ij++;    int i, j,jk;
    }    int *indx;
  }  
      double hessii(double p[], double delta, int theta, double delti[]);
     cptcoveff=ij-1;    double hessij(double p[], double delti[], int i, int j);
 }    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
 /*********** Health Expectancies ****************/  
     hess=matrix(1,npar,1,npar);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
     printf("\nCalculation of the hessian matrix. Wait...\n");
 {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   /* Health expectancies */    for (i=1;i<=npar;i++){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      printf("%d",i);fflush(stdout);
   double age, agelim, hf;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double ***p3mat,***varhe;      hess[i][i]=hessii(p,ftolhess,i,delti);
   double **dnewm,**doldm;      /*printf(" %f ",p[i]);*/
   double *xp;      /*printf(" %lf ",hess[i][i]);*/
   double **gp, **gm;    }
   double ***gradg, ***trgradg;    
   int theta;    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        if (j>i) { 
   xp=vector(1,npar);          printf(".%d%d",i,j);fflush(stdout);
   dnewm=matrix(1,nlstate*2,1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   doldm=matrix(1,nlstate*2,1,nlstate*2);          hess[i][j]=hessij(p,delti,i,j);
            hess[j][i]=hess[i][j];    
   fprintf(ficreseij,"# Health expectancies\n");          /*printf(" %lf ",hess[i][j]);*/
   fprintf(ficreseij,"# Age");        }
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=nlstate;j++)    }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    printf("\n");
   fprintf(ficreseij,"\n");    fprintf(ficlog,"\n");
   
   if(estepm < stepm){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    
   else  hstepm=estepm;      a=matrix(1,npar,1,npar);
   /* We compute the life expectancy from trapezoids spaced every estepm months    y=matrix(1,npar,1,npar);
    * This is mainly to measure the difference between two models: for example    x=vector(1,npar);
    * if stepm=24 months pijx are given only every 2 years and by summing them    indx=ivector(1,npar);
    * we are calculating an estimate of the Life Expectancy assuming a linear    for (i=1;i<=npar;i++)
    * progression inbetween and thus overestimating or underestimating according      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
    * to the curvature of the survival function. If, for the same date, we    ludcmp(a,npar,indx,&pd);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear    for (j=1;j<=npar;j++) {
    * hypothesis. A more precise result, taking into account a more precise      for (i=1;i<=npar;i++) x[i]=0;
    * curvature will be obtained if estepm is as small as stepm. */      x[j]=1;
       lubksb(a,npar,indx,x);
   /* For example we decided to compute the life expectancy with the smallest unit */      for (i=1;i<=npar;i++){ 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        matcov[i][j]=x[i];
      nhstepm is the number of hstepm from age to agelim      }
      nstepm is the number of stepm from age to agelin.    }
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */    printf("\n#Hessian matrix#\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    fprintf(ficlog,"\n#Hessian matrix#\n");
      survival function given by stepm (the optimization length). Unfortunately it    for (i=1;i<=npar;i++) { 
      means that if the survival funtion is printed only each two years of age and if      for (j=1;j<=npar;j++) { 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        printf("%.3e ",hess[i][j]);
      results. So we changed our mind and took the option of the best precision.        fprintf(ficlog,"%.3e ",hess[i][j]);
   */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      printf("\n");
       fprintf(ficlog,"\n");
   agelim=AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */    /* Recompute Inverse */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    for (i=1;i<=npar;i++)
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     /* if (stepm >= YEARM) hstepm=1;*/    ludcmp(a,npar,indx,&pd);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  printf("\n#Hessian matrix recomputed#\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  
     gp=matrix(0,nhstepm,1,nlstate*2);    for (j=1;j<=npar;j++) {
     gm=matrix(0,nhstepm,1,nlstate*2);      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      lubksb(a,npar,indx,x);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      for (i=1;i<=npar;i++){ 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          y[i][j]=x[i];
          printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
       printf("\n");
     /* Computing Variances of health expectancies */      fprintf(ficlog,"\n");
     }
      for(theta=1; theta <=npar; theta++){    */
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_matrix(a,1,npar,1,npar);
       }    free_matrix(y,1,npar,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_vector(x,1,npar);
      free_ivector(indx,1,npar);
       cptj=0;    free_matrix(hess,1,npar,1,npar);
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){  
           cptj=cptj+1;  }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  /*************** hessian matrix ****************/
           }  double hessii( double x[], double delta, int theta, double delti[])
         }  {
       }    int i;
          int l=1, lmax=20;
          double k1,k2;
       for(i=1; i<=npar; i++)    double p2[NPARMAX+1];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double res;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
          double fx;
       cptj=0;    int k=0,kmax=10;
       for(j=1; j<= nlstate; j++){    double l1;
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;    fx=func(x);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    for (i=1;i<=npar;i++) p2[i]=x[i];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for(l=0 ; l <=lmax; l++){
           }      l1=pow(10,l);
         }      delts=delt;
       }      for(k=1 ; k <kmax; k=k+1){
       for(j=1; j<= nlstate*2; j++)        delt = delta*(l1*k);
         for(h=0; h<=nhstepm-1; h++){        p2[theta]=x[theta] +delt;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        k1=func(p2)-fx;
         }        p2[theta]=x[theta]-delt;
      }        k2=func(p2)-fx;
            /*res= (k1-2.0*fx+k2)/delt/delt; */
 /* End theta */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      for(h=0; h<=nhstepm-1; h++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(j=1; j<=nlstate*2;j++)  #endif
         for(theta=1; theta <=npar; theta++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           trgradg[h][j][theta]=gradg[h][theta][j];        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                k=kmax;
         }
      for(i=1;i<=nlstate*2;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       for(j=1;j<=nlstate*2;j++)          k=kmax; l=lmax*10.;
         varhe[i][j][(int)age] =0.;        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
      printf("%d|",(int)age);fflush(stdout);          delts=delt;
      for(h=0;h<=nhstepm-1;h++){        }
       for(k=0;k<=nhstepm-1;k++){      }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    delti[theta]=delts;
         for(i=1;i<=nlstate*2;i++)    return res; 
           for(j=1;j<=nlstate*2;j++)    
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  }
       }  
     }  double hessij( double x[], double delti[], int thetai,int thetaj)
     /* Computing expectancies */  {
     for(i=1; i<=nlstate;i++)    int i;
       for(j=1; j<=nlstate;j++)    int l=1, l1, lmax=20;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double k1,k2,k3,k4,res,fx;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double p2[NPARMAX+1];
              int k;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
     fx=func(x);
         }    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficreseij,"%3.0f",age );      p2[thetai]=x[thetai]+delti[thetai]/k;
     cptj=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(i=1; i<=nlstate;i++)      k1=func(p2)-fx;
       for(j=1; j<=nlstate;j++){    
         cptj++;      p2[thetai]=x[thetai]+delti[thetai]/k;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k2=func(p2)-fx;
     fprintf(ficreseij,"\n");    
          p2[thetai]=x[thetai]-delti[thetai]/k;
     free_matrix(gm,0,nhstepm,1,nlstate*2);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_matrix(gp,0,nhstepm,1,nlstate*2);      k3=func(p2)-fx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
   printf("\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
   free_vector(xp,1,npar);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   free_matrix(dnewm,1,nlstate*2,1,npar);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  #endif
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    }
 }    return res;
   }
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  /************** Inverse of matrix **************/
 {  void ludcmp(double **a, int n, int *indx, double *d) 
   /* Variance of health expectancies */  { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int i,imax,j,k; 
   double **newm;    double big,dum,sum,temp; 
   double **dnewm,**doldm;    double *vv; 
   int i, j, nhstepm, hstepm, h, nstepm ;   
   int k, cptcode;    vv=vector(1,n); 
   double *xp;    *d=1.0; 
   double **gp, **gm;    for (i=1;i<=n;i++) { 
   double ***gradg, ***trgradg;      big=0.0; 
   double ***p3mat;      for (j=1;j<=n;j++) 
   double age,agelim, hf;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   int theta;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    } 
   fprintf(ficresvij,"# Age");    for (j=1;j<=n;j++) { 
   for(i=1; i<=nlstate;i++)      for (i=1;i<j;i++) { 
     for(j=1; j<=nlstate;j++)        sum=a[i][j]; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   fprintf(ficresvij,"\n");        a[i][j]=sum; 
       } 
   xp=vector(1,npar);      big=0.0; 
   dnewm=matrix(1,nlstate,1,npar);      for (i=j;i<=n;i++) { 
   doldm=matrix(1,nlstate,1,nlstate);        sum=a[i][j]; 
          for (k=1;k<j;k++) 
   if(estepm < stepm){          sum -= a[i][k]*a[k][j]; 
     printf ("Problem %d lower than %d\n",estepm, stepm);        a[i][j]=sum; 
   }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   else  hstepm=estepm;            big=dum; 
   /* For example we decided to compute the life expectancy with the smallest unit */          imax=i; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        } 
      nhstepm is the number of hstepm from age to agelim      } 
      nstepm is the number of stepm from age to agelin.      if (j != imax) { 
      Look at hpijx to understand the reason of that which relies in memory size        for (k=1;k<=n;k++) { 
      and note for a fixed period like k years */          dum=a[imax][k]; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          a[imax][k]=a[j][k]; 
      survival function given by stepm (the optimization length). Unfortunately it          a[j][k]=dum; 
      means that if the survival funtion is printed only each two years of age and if        } 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        *d = -(*d); 
      results. So we changed our mind and took the option of the best precision.        vv[imax]=vv[j]; 
   */      } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      indx[j]=imax; 
   agelim = AGESUP;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      if (j != n) { 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        dum=1.0/(a[j][j]); 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    } 
     gp=matrix(0,nhstepm,1,nlstate);    free_vector(vv,1,n);  /* Doesn't work */
     gm=matrix(0,nhstepm,1,nlstate);  ;
   } 
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  void lubksb(double **a, int n, int *indx, double b[]) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  { 
       }    int i,ii=0,ip,j; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double sum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   
     for (i=1;i<=n;i++) { 
       if (popbased==1) {      ip=indx[i]; 
         for(i=1; i<=nlstate;i++)      sum=b[ip]; 
           prlim[i][i]=probs[(int)age][i][ij];      b[ip]=b[i]; 
       }      if (ii) 
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       for(j=1; j<= nlstate; j++){      else if (sum) ii=i; 
         for(h=0; h<=nhstepm; h++){      b[i]=sum; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    } 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=n;i>=1;i--) { 
         }      sum=b[i]; 
       }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
          b[i]=sum/a[i][i]; 
       for(i=1; i<=npar; i++) /* Computes gradient */    } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /************ Frequencies ********************/
    void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       if (popbased==1) {  {  /* Some frequencies */
         for(i=1; i<=nlstate;i++)    
           prlim[i][i]=probs[(int)age][i][ij];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       }    int first;
     double ***freq; /* Frequencies */
       for(j=1; j<= nlstate; j++){    double *pp, **prop;
         for(h=0; h<=nhstepm; h++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    FILE *ficresp;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    char fileresp[FILENAMELENGTH];
         }    
       }    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
       for(j=1; j<= nlstate; j++)    strcpy(fileresp,"p");
         for(h=0; h<=nhstepm; h++){    strcat(fileresp,fileres);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    if((ficresp=fopen(fileresp,"w"))==NULL) {
         }      printf("Problem with prevalence resultfile: %s\n", fileresp);
     } /* End theta */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    }
     freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     for(h=0; h<=nhstepm; h++)    j1=0;
       for(j=1; j<=nlstate;j++)    
         for(theta=1; theta <=npar; theta++)    j=cptcoveff;
           trgradg[h][j][theta]=gradg[h][theta][j];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    first=1;
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    for(k1=1; k1<=j;k1++){
         vareij[i][j][(int)age] =0.;      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
     for(h=0;h<=nhstepm;h++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(k=0;k<=nhstepm;k++){          scanf("%d", i);*/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for (i=-1; i<=nlstate+ndeath; i++)  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         for(i=1;i<=nlstate;i++)            for(m=iagemin; m <= iagemax+3; m++)
           for(j=1;j<=nlstate;j++)              freq[i][jk][m]=0;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }      for (i=1; i<=nlstate; i++)  
     }        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
     fprintf(ficresvij,"%.0f ",age );        
     for(i=1; i<=nlstate;i++)        dateintsum=0;
       for(j=1; j<=nlstate;j++){        k2cpt=0;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        for (i=1; i<=imx; i++) {
       }          bool=1;
     fprintf(ficresvij,"\n");          if  (cptcovn>0) {
     free_matrix(gp,0,nhstepm,1,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
     free_matrix(gm,0,nhstepm,1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                bool=0;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (bool==1){
   } /* End age */            for(m=firstpass; m<=lastpass; m++){
                k2=anint[m][i]+(mint[m][i]/12.);
   free_vector(xp,1,npar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   free_matrix(doldm,1,nlstate,1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   free_matrix(dnewm,1,nlstate,1,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 }                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 /************ Variance of prevlim ******************/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                }
 {                
   /* Variance of prevalence limit */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                  dateintsum=dateintsum+k2;
   double **newm;                  k2cpt++;
   double **dnewm,**doldm;                }
   int i, j, nhstepm, hstepm;                /*}*/
   int k, cptcode;            }
   double *xp;          }
   double *gp, *gm;        }
   double **gradg, **trgradg;         
   double age,agelim;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   int theta;  
            if  (cptcovn>0) {
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          fprintf(ficresp, "\n#********** Variable "); 
   fprintf(ficresvpl,"# Age");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(i=1; i<=nlstate;i++)          fprintf(ficresp, "**********\n#");
       fprintf(ficresvpl," %1d-%1d",i,i);        }
   fprintf(ficresvpl,"\n");        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   xp=vector(1,npar);        fprintf(ficresp, "\n");
   dnewm=matrix(1,nlstate,1,npar);        
   doldm=matrix(1,nlstate,1,nlstate);        for(i=iagemin; i <= iagemax+3; i++){
            if(i==iagemax+3){
   hstepm=1*YEARM; /* Every year of age */            fprintf(ficlog,"Total");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          }else{
   agelim = AGESUP;            if(first==1){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              first=0;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              printf("See log file for details...\n");
     if (stepm >= YEARM) hstepm=1;            }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            fprintf(ficlog,"Age %d", i);
     gradg=matrix(1,npar,1,nlstate);          }
     gp=vector(1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     gm=vector(1,nlstate);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
     for(theta=1; theta <=npar; theta++){          }
       for(i=1; i<=npar; i++){ /* Computes gradient */          for(jk=1; jk <=nlstate ; jk++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for(m=-1, pos=0; m <=0 ; m++)
       }              pos += freq[jk][m][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            if(pp[jk]>=1.e-10){
       for(i=1;i<=nlstate;i++)              if(first==1){
         gp[i] = prlim[i][i];              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                  }
       for(i=1; i<=npar; i++) /* Computes gradient */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }else{
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              if(first==1)
       for(i=1;i<=nlstate;i++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         gm[i] = prlim[i][i];              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
       for(i=1;i<=nlstate;i++)          }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     trgradg =matrix(1,nlstate,1,npar);              pp[jk] += freq[jk][m][i];
           }       
     for(j=1; j<=nlstate;j++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       for(theta=1; theta <=npar; theta++)            pos += pp[jk];
         trgradg[j][theta]=gradg[theta][j];            posprop += prop[jk][i];
           }
     for(i=1;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
       varpl[i][(int)age] =0.;            if(pos>=1.e-5){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              if(first==1)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for(i=1;i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            }else{
               if(first==1)
     fprintf(ficresvpl,"%.0f ",age );                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(i=1; i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            }
     fprintf(ficresvpl,"\n");            if( i <= iagemax){
     free_vector(gp,1,nlstate);              if(pos>=1.e-5){
     free_vector(gm,1,nlstate);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     free_matrix(gradg,1,npar,1,nlstate);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     free_matrix(trgradg,1,nlstate,1,npar);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   } /* End age */              }
               else
   free_vector(xp,1,npar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   free_matrix(doldm,1,nlstate,1,npar);            }
   free_matrix(dnewm,1,nlstate,1,nlstate);          }
           
 }          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
 /************ Variance of one-step probabilities  ******************/              if(freq[jk][m][i] !=0 ) {
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              if(first==1)
 {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int i, j,  i1, k1, l1;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   int k2, l2, j1,  z1;              }
   int k=0,l, cptcode;          if(i <= iagemax)
   int first=1;            fprintf(ficresp,"\n");
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;          if(first==1)
   double **dnewm,**doldm;            printf("Others in log...\n");
   double *xp;          fprintf(ficlog,"\n");
   double *gp, *gm;        }
   double **gradg, **trgradg;      }
   double **mu;    }
   double age,agelim, cov[NCOVMAX];    dateintmean=dateintsum/k2cpt; 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */   
   int theta;    fclose(ficresp);
   char fileresprob[FILENAMELENGTH];    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   char fileresprobcov[FILENAMELENGTH];    free_vector(pp,1,nlstate);
   char fileresprobcor[FILENAMELENGTH];    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
   double ***varpij;  }
   
   strcpy(fileresprob,"prob");  /************ Prevalence ********************/
   strcat(fileresprob,fileres);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  {  
     printf("Problem with resultfile: %s\n", fileresprob);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   }       in each health status at the date of interview (if between dateprev1 and dateprev2).
   strcpy(fileresprobcov,"probcov");       We still use firstpass and lastpass as another selection.
   strcat(fileresprobcov,fileres);    */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {   
     printf("Problem with resultfile: %s\n", fileresprobcov);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   }    double ***freq; /* Frequencies */
   strcpy(fileresprobcor,"probcor");    double *pp, **prop;
   strcat(fileresprobcor,fileres);    double pos,posprop; 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    double  y2; /* in fractional years */
     printf("Problem with resultfile: %s\n", fileresprobcor);    int iagemin, iagemax;
   }  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    iagemin= (int) agemin;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    iagemax= (int) agemax;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fprintf(ficresprob,"# Age");    j1=0;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    
   fprintf(ficresprobcov,"# Age");    j=cptcoveff;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficresprobcov,"# Age");    
     for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   for(i=1; i<=nlstate;i++)        j1++;
     for(j=1; j<=(nlstate+ndeath);j++){        
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        for (i=1; i<=nlstate; i++)  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            prop[i][m]=0.0;
     }         
   fprintf(ficresprob,"\n");        for (i=1; i<=imx; i++) { /* Each individual */
   fprintf(ficresprobcov,"\n");          bool=1;
   fprintf(ficresprobcor,"\n");          if  (cptcovn>0) {
   xp=vector(1,npar);            for (z1=1; z1<=cptcoveff; z1++) 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                bool=0;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          } 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          if (bool==1) { 
   first=1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     exit(0);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   else{                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     fprintf(ficgp,"\n# Routine varprob");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     printf("Problem with html file: %s\n", optionfilehtm);                  prop[s[m][i]][iagemax+3] += weight[i]; 
     exit(0);                } 
   }              }
   else{            } /* end selection of waves */
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");          }
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        }
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        for(i=iagemin; i <= iagemax+3; i++){  
           
   }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   cov[1]=1;            posprop += prop[jk][i]; 
   j=cptcoveff;          } 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
   j1=0;          for(jk=1; jk <=nlstate ; jk++){     
   for(k1=1; k1<=1;k1++){            if( i <=  iagemax){ 
     for(i1=1; i1<=ncodemax[k1];i1++){              if(posprop>=1.e-5){ 
     j1++;                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
     if  (cptcovn>0) {            } 
       fprintf(ficresprob, "\n#********** Variable ");          }/* end jk */ 
       fprintf(ficresprobcov, "\n#********** Variable ");        }/* end i */ 
       fprintf(ficgp, "\n#********** Variable ");      } /* end i1 */
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");    } /* end k1 */
       fprintf(ficresprobcor, "\n#********** Variable ");    
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       fprintf(ficresprob, "**********\n#");    /*free_vector(pp,1,nlstate);*/
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fprintf(ficresprobcov, "**********\n#");  }  /* End of prevalence */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficgp, "**********\n#");  /************* Waves Concatenation ***************/
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficgp, "**********\n#");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  {
       fprintf(fichtm, "**********\n#");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     }       Death is a valid wave (if date is known).
           mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       for (age=bage; age<=fage; age ++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         cov[2]=age;       and mw[mi+1][i]. dh depends on stepm.
         for (k=1; k<=cptcovn;k++) {       */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }    int i, mi, m;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         for (k=1; k<=cptcovprod;k++)       double sum=0., jmean=0.;*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int first;
            int j, k=0,jk, ju, jl;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    double sum=0.;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    first=0;
         gp=vector(1,(nlstate)*(nlstate+ndeath));    jmin=1e+5;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    jmax=-1;
        jmean=0.;
         for(theta=1; theta <=npar; theta++){    for(i=1; i<=imx; i++){
           for(i=1; i<=npar; i++)      mi=0;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      m=firstpass;
                while(s[m][i] <= nlstate){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        if(s[m][i]>=1)
                    mw[++mi][i]=m;
           k=0;        if(m >=lastpass)
           for(i=1; i<= (nlstate); i++){          break;
             for(j=1; j<=(nlstate+ndeath);j++){        else
               k=k+1;          m++;
               gp[k]=pmmij[i][j];      }/* end while */
             }      if (s[m][i] > nlstate){
           }        mi++;     /* Death is another wave */
                  /* if(mi==0)  never been interviewed correctly before death */
           for(i=1; i<=npar; i++)           /* Only death is a correct wave */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        mw[mi][i]=m;
          }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;      wav[i]=mi;
           for(i=1; i<=(nlstate); i++){      if(mi==0){
             for(j=1; j<=(nlstate+ndeath);j++){        nbwarn++;
               k=k+1;        if(first==0){
               gm[k]=pmmij[i][j];          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             }          first=1;
           }        }
              if(first==1){
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          }
         }      } /* end mi==0 */
     } /* End individuals */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)    for(i=1; i<=imx; i++){
             trgradg[j][theta]=gradg[theta][j];      for(mi=1; mi<wav[i];mi++){
                if (stepm <=0)
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          dh[mi][i]=1;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        else{
                  if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         pmij(pmmij,cov,ncovmodel,x,nlstate);            if (agedc[i] < 2*AGESUP) {
                      j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         k=0;              if(j==0) j=1;  /* Survives at least one month after exam */
         for(i=1; i<=(nlstate); i++){              else if(j<0){
           for(j=1; j<=(nlstate+ndeath);j++){                nberr++;
             k=k+1;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             mu[k][(int) age]=pmmij[i][j];                j=1; /* Temporary Dangerous patch */
           }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              }
             varpij[i][j][(int)age] = doldm[i][j];              k=k+1;
               if (j >= jmax) jmax=j;
         /*printf("\n%d ",(int)age);              if (j <= jmin) jmin=j;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              sum=sum+j;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
      }*/              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
         fprintf(ficresprob,"\n%d ",(int)age);          }
         fprintf(ficresprobcov,"\n%d ",(int)age);          else{
         fprintf(ficresprobcor,"\n%d ",(int)age);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            k=k+1;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            if (j >= jmax) jmax=j;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            else if (j <= jmin)jmin=j;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         }            if(j<0){
         i=0;              nberr++;
         for (k=1; k<=(nlstate);k++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for (l=1; l<=(nlstate+ndeath);l++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             i=i++;            }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            sum=sum+j;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          }
             for (j=1; j<=i;j++){          jk= j/stepm;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          jl= j -jk*stepm;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          ju= j -(jk+1)*stepm;
             }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           }            if(jl==0){
         }/* end of loop for state */              dh[mi][i]=jk;
       } /* end of loop for age */              bh[mi][i]=0;
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            }else{ /* We want a negative bias in order to only have interpolation ie
       for (k1=1; k1<=(nlstate);k1++){                    * at the price of an extra matrix product in likelihood */
         for (l1=1; l1<=(nlstate+ndeath);l1++){              dh[mi][i]=jk+1;
           if(l1==k1) continue;              bh[mi][i]=ju;
           i=(k1-1)*(nlstate+ndeath)+l1;            }
           for (k2=1; k2<=(nlstate);k2++){          }else{
             for (l2=1; l2<=(nlstate+ndeath);l2++){            if(jl <= -ju){
               if(l2==k2) continue;              dh[mi][i]=jk;
               j=(k2-1)*(nlstate+ndeath)+l2;              bh[mi][i]=jl;       /* bias is positive if real duration
               if(j<=i) continue;                                   * is higher than the multiple of stepm and negative otherwise.
               for (age=bage; age<=fage; age ++){                                   */
                 if ((int)age %5==0){            }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            else{
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              dh[mi][i]=jk+1;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              bh[mi][i]=ju;
                   mu1=mu[i][(int) age]/stepm*YEARM ;            }
                   mu2=mu[j][(int) age]/stepm*YEARM;            if(dh[mi][i]==0){
                   /* Computing eigen value of matrix of covariance */              dh[mi][i]=1; /* At least one step */
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              bh[mi][i]=ju; /* At least one step */
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);            }
                   /* Eigen vectors */          } /* end if mle */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        }
                   v21=sqrt(1.-v11*v11);      } /* end wave */
                   v12=-v21;    }
                   v22=v11;    jmean=sum/k;
                   /*printf(fignu*/    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */   }
                   if(first==1){  
                     first=0;  /*********** Tricode ****************************/
                     fprintf(ficgp,"\nset parametric;set nolabel");  void tricode(int *Tvar, int **nbcode, int imx)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);  {
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);    int cptcode=0;
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);    cptcoveff=0; 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);   
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    for (k=1; k<=7; k++) ncodemax[k]=0;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
                   }else{      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                     first=0;                                 modality*/ 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        Ndum[ij]++; /*store the modality */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);                                         Tvar[j]. If V=sex and male is 0 and 
                   }/* if first */                                         female is 1, then  cptcode=1.*/
                 } /* age mod 5 */      }
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);      for (i=0; i<=cptcode; i++) {
               first=1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             } /*l12 */      }
           } /* k12 */  
         } /*l1 */      ij=1; 
       }/* k1 */      for (i=1; i<=ncodemax[j]; i++) {
     } /* loop covariates */        for (k=0; k<= maxncov; k++) {
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          if (Ndum[k] != 0) {
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            nbcode[Tvar[j]][ij]=k; 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            ij++;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
   }          if (ij > ncodemax[j]) break; 
   free_vector(xp,1,npar);        }  
   fclose(ficresprob);      } 
   fclose(ficresprobcov);    }  
   fclose(ficresprobcor);  
   fclose(ficgp);   for (k=0; k< maxncov; k++) Ndum[k]=0;
   fclose(fichtm);  
 }   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
 /******************* Printing html file ***********/     Ndum[ij]++;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \   }
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\   ij=1;
                   int popforecast, int estepm ,\   for (i=1; i<= maxncov; i++) {
                   double jprev1, double mprev1,double anprev1, \     if((Ndum[i]!=0) && (i<=ncovcol)){
                   double jprev2, double mprev2,double anprev2){       Tvaraff[ij]=i; /*For printing */
   int jj1, k1, i1, cpt;       ij++;
   /*char optionfilehtm[FILENAMELENGTH];*/     }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {   }
     printf("Problem with %s \n",optionfilehtm), exit(0);   
   }   cptcoveff=ij-1; /*Number of simple covariates*/
   }
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  /*********** Health Expectancies ****************/
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
  - Life expectancies by age and initial health status (estepm=%2d months):  
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  {
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    double age, agelim, hf;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    double ***p3mat,***varhe;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    double **dnewm,**doldm;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    double *xp;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    double **gp, **gm;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    double ***gradg, ***trgradg;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    int theta;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
  if(popforecast==1) fprintf(fichtm,"\n    xp=vector(1,npar);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    dnewm=matrix(1,nlstate*nlstate,1,npar);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         <br>",fileres,fileres,fileres,fileres);    
  else    fprintf(ficreseij,"# Health expectancies\n");
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    fprintf(ficreseij,"# Age");
 fprintf(fichtm," <li>Graphs</li><p>");    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
  m=cptcoveff;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(ficreseij,"\n");
   
  jj1=0;    if(estepm < stepm){
  for(k1=1; k1<=m;k1++){      printf ("Problem %d lower than %d\n",estepm, stepm);
    for(i1=1; i1<=ncodemax[k1];i1++){    }
      jj1++;    else  hstepm=estepm;   
      if (cptcovn > 0) {    /* We compute the life expectancy from trapezoids spaced every estepm months
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");     * This is mainly to measure the difference between two models: for example
        for (cpt=1; cpt<=cptcoveff;cpt++)     * if stepm=24 months pijx are given only every 2 years and by summing them
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);     * we are calculating an estimate of the Life Expectancy assuming a linear 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");     * progression in between and thus overestimating or underestimating according
      }     * to the curvature of the survival function. If, for the same date, we 
      /* Pij */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>     * to compare the new estimate of Life expectancy with the same linear 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         * hypothesis. A more precise result, taking into account a more precise
      /* Quasi-incidences */     * curvature will be obtained if estepm is as small as stepm. */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /* For example we decided to compute the life expectancy with the smallest unit */
        /* Stable prevalence in each health state */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        for(cpt=1; cpt<nlstate;cpt++){       nhstepm is the number of hstepm from age to agelim 
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>       nstepm is the number of stepm from age to agelin. 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       Look at hpijx to understand the reason of that which relies in memory size
        }       and note for a fixed period like estepm months */
     for(cpt=1; cpt<=nlstate;cpt++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident       survival function given by stepm (the optimization length). Unfortunately it
 interval) in state (%d): v%s%d%d.png <br>       means that if the survival funtion is printed only each two years of age and if
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      }       results. So we changed our mind and took the option of the best precision.
      for(cpt=1; cpt<=nlstate;cpt++) {    */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }    agelim=AGESUP;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 health expectancies in states (1) and (2): e%s%d.png<br>      /* nhstepm age range expressed in number of stepm */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
    }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  }      /* if (stepm >= YEARM) hstepm=1;*/
 fclose(fichtm);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 /******************* Gnuplot file **************/      gp=matrix(0,nhstepm,1,nlstate*nlstate);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   int ng;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     printf("Problem with file %s",optionfilegnuplot);   
   }  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);      /* Computing  Variances of health expectancies */
 #endif  
 m=pow(2,cptcoveff);       for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
  /* 1eme*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for (cpt=1; cpt<= nlstate ; cpt ++) {        }
    for (k1=1; k1<= m ; k1 ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     
 #ifdef windows        cptj=0;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(j=1; j<= nlstate; j++){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          for(i=1; i<=nlstate; i++){
 #endif            cptj=cptj+1;
 #ifdef unix            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            }
 #endif          }
         }
 for (i=1; i<= nlstate ; i ++) {       
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<=npar; i++) 
 }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for (i=1; i<= nlstate ; i ++) {        
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        cptj=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<= nlstate; j++){
 }          for(i=1;i<=nlstate;i++){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            cptj=cptj+1;
      for (i=1; i<= nlstate ; i ++) {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 }              }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          }
 #ifdef unix        }
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        for(j=1; j<= nlstate*nlstate; j++)
 #endif          for(h=0; h<=nhstepm-1; h++){
    }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
   /*2 eme*/       } 
      
   for (k1=1; k1<= m ; k1 ++) {  /* End theta */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      
     for (i=1; i<= nlstate+1 ; i ++) {       for(h=0; h<=nhstepm-1; h++)
       k=2*i;        for(j=1; j<=nlstate*nlstate;j++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          for(theta=1; theta <=npar; theta++)
       for (j=1; j<= nlstate+1 ; j ++) {            trgradg[h][j][theta]=gradg[h][theta][j];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }         for(i=1;i<=nlstate*nlstate;i++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        for(j=1;j<=nlstate*nlstate;j++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          varhe[i][j][(int)age] =0.;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {       printf("%d|",(int)age);fflush(stdout);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         else fprintf(ficgp," \%%*lf (\%%*lf)");       for(h=0;h<=nhstepm-1;h++){
 }          for(k=0;k<=nhstepm-1;k++){
       fprintf(ficgp,"\" t\"\" w l 0,");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       for (j=1; j<= nlstate+1 ; j ++) {          for(i=1;i<=nlstate*nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(j=1;j<=nlstate*nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 }          }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      }
       else fprintf(ficgp,"\" t\"\" w l 0,");      /* Computing expectancies */
     }      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /*3eme*/            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   for (k1=1; k1<= m ; k1 ++) {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);          }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      fprintf(ficreseij,"%3.0f",age );
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      cptj=0;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for(i=1; i<=nlstate;i++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for(j=1; j<=nlstate;j++){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          cptj++;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        }
       fprintf(ficreseij,"\n");
 */     
       for (i=1; i< nlstate ; i ++) {      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    }
      printf("\n");
   /* CV preval stat */    fprintf(ficlog,"\n");
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {    free_vector(xp,1,npar);
       k=3;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);  /************ Variance ******************/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
        {
       l=3+(nlstate+ndeath)*cpt;    /* Variance of health expectancies */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       for (i=1; i< nlstate ; i ++) {    /* double **newm;*/
         l=3+(nlstate+ndeath)*cpt;    double **dnewm,**doldm;
         fprintf(ficgp,"+$%d",l+i+1);    double **dnewmp,**doldmp;
       }    int i, j, nhstepm, hstepm, h, nstepm ;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      int k, cptcode;
     }    double *xp;
   }      double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
   /* proba elementaires */    double **gradgp, **trgradgp; /* for var p point j */
    for(i=1,jk=1; i <=nlstate; i++){    double *gpp, *gmp; /* for var p point j */
     for(k=1; k <=(nlstate+ndeath); k++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       if (k != i) {    double ***p3mat;
         for(j=1; j <=ncovmodel; j++){    double age,agelim, hf;
            double ***mobaverage;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    int theta;
           jk++;    char digit[4];
           fprintf(ficgp,"\n");    char digitp[25];
         }  
       }    char fileresprobmorprev[FILENAMELENGTH];
     }  
    }    if(popbased==1){
       if(mobilav!=0)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        strcpy(digitp,"-populbased-mobilav-");
      for(jk=1; jk <=m; jk++) {      else strcpy(digitp,"-populbased-nomobil-");
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    }
        if (ng==2)    else 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      strcpy(digitp,"-stablbased-");
        else  
          fprintf(ficgp,"\nset title \"Probability\"\n");    if (mobilav!=0) {
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        i=1;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
        for(k2=1; k2<=nlstate; k2++) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          k3=i;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
          for(k=1; k<=(nlstate+ndeath); k++) {      }
            if (k != k2){    }
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    strcpy(fileresprobmorprev,"prmorprev"); 
              else    sprintf(digit,"%-d",ij);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
              ij=1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
              for(j=3; j <=ncovmodel; j++) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    strcat(fileresprobmorprev,fileres);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                  ij++;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                else    }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
              }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
              fprintf(ficgp,")/(1");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                  fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
              for(k1=1; k1 <=nlstate; k1++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      fprintf(ficresprobmorprev," p.%-d SE",j);
                ij=1;      for(i=1; i<=nlstate;i++)
                for(j=3; j <=ncovmodel; j++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficresprobmorprev,"\n");
                    ij++;    fprintf(ficgp,"\n# Routine varevsij");
                  }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                  else    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  /*   } */
                }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                fprintf(ficgp,")");  
              }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficresvij,"# Age");
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    for(i=1; i<=nlstate;i++)
              i=i+ncovmodel;      for(j=1; j<=nlstate;j++)
            }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
          }    fprintf(ficresvij,"\n");
        }  
      }    xp=vector(1,npar);
    }    dnewm=matrix(1,nlstate,1,npar);
    fclose(ficgp);    doldm=matrix(1,nlstate,1,nlstate);
 }  /* end gnuplot */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
 /*************** Moving average **************/    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   int i, cpt, cptcod;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    
       for (i=1; i<=nlstate;i++)    if(estepm < stepm){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      printf ("Problem %d lower than %d\n",estepm, stepm);
           mobaverage[(int)agedeb][i][cptcod]=0.;    }
        else  hstepm=estepm;   
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    /* For example we decided to compute the life expectancy with the smallest unit */
       for (i=1; i<=nlstate;i++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       nhstepm is the number of hstepm from age to agelim 
           for (cpt=0;cpt<=4;cpt++){       nstepm is the number of stepm from age to agelin. 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];       Look at hpijx to understand the reason of that which relies in memory size
           }       and note for a fixed period like k years */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed every two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
 }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
 /************** Forecasting ******************/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int *popage;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      gp=matrix(0,nhstepm,1,nlstate);
   double *popeffectif,*popcount;      gm=matrix(0,nhstepm,1,nlstate);
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];  
       for(theta=1; theta <=npar; theta++){
  agelim=AGESUP;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   strcpy(fileresf,"f");        if (popbased==1) {
   strcat(fileresf,fileres);          if(mobilav ==0){
   if((ficresf=fopen(fileresf,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
     printf("Problem with forecast resultfile: %s\n", fileresf);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
   printf("Computing forecasting: result on file '%s' \n", fileresf);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          }
         }
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<= nlstate; j++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   if (stepm<=12) stepsize=1;        }
          /* This for computing probability of death (h=1 means
   agelim=AGESUP;           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   hstepm=1;        */
   hstepm=hstepm/stepm;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   yp1=modf(dateintmean,&yp);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   anprojmean=yp;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   yp2=modf((yp1*12),&yp);        }    
   mprojmean=yp;        /* end probability of death */
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   if(jprojmean==0) jprojmean=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if(mprojmean==0) jprojmean=1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);   
          if (popbased==1) {
   for(cptcov=1;cptcov<=i2;cptcov++){          if(mobilav ==0){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            for(i=1; i<=nlstate;i++)
       k=k+1;              prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficresf,"\n#******");          }else{ /* mobilav */ 
       for(j=1;j<=cptcoveff;j++) {            for(i=1; i<=nlstate;i++)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
       fprintf(ficresf,"******\n");        }
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        for(j=1; j<= nlstate; j++){
                for(h=0; h<=nhstepm; h++){
                  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficresf,"\n");          }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          }
         /* This for computing probability of death (h=1 means
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){           computed over hstepm matrices product = hstepm*stepm months) 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           as a weighted average of prlim.
           nhstepm = nhstepm/hstepm;        */
                  for(j=nlstate+1;j<=nlstate+ndeath;j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           oldm=oldms;savm=savms;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }    
                /* end probability of death */
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {        for(j=1; j<= nlstate; j++) /* vareij */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          for(h=0; h<=nhstepm; h++){
             }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             for(j=1; j<=nlstate+ndeath;j++) {          }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                      for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                 if (mobilav==1)          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        }
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      } /* End theta */
                 }  
                      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
               }  
               if (h==(int)(calagedate+12*cpt)){      for(h=0; h<=nhstepm; h++) /* veij */
                 fprintf(ficresf," %.3f", kk1);        for(j=1; j<=nlstate;j++)
                                  for(theta=1; theta <=npar; theta++)
               }            trgradg[h][j][theta]=gradg[h][theta][j];
             }  
           }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(theta=1; theta <=npar; theta++)
         }          trgradgp[j][theta]=gradgp[theta][j];
       }    
     }  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              for(i=1;i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   fclose(ficresf);  
 }      for(h=0;h<=nhstepm;h++){
 /************** Forecasting ******************/        for(k=0;k<=nhstepm;k++){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          for(i=1;i<=nlstate;i++)
   int *popage;            for(j=1;j<=nlstate;j++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   double *popeffectif,*popcount;        }
   double ***p3mat,***tabpop,***tabpopprev;      }
   char filerespop[FILENAMELENGTH];    
       /* pptj */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   agelim=AGESUP;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
            varppt[j][i]=doldmp[j][i];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      /* end ppptj */
        /*  x centered again */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   strcpy(filerespop,"pop");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   strcat(filerespop,fileres);   
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      if (popbased==1) {
     printf("Problem with forecast resultfile: %s\n", filerespop);        if(mobilav ==0){
   }          for(i=1; i<=nlstate;i++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
   if (mobilav==1) {        }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
     movingaverage(agedeb, fage, ageminpar, mobaverage);               
   }      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   stepsize=(int) (stepm+YEARM-1)/YEARM;         as a weighted average of prlim.
   if (stepm<=12) stepsize=1;      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   agelim=AGESUP;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   hstepm=1;      }    
   hstepm=hstepm/stepm;      /* end probability of death */
    
   if (popforecast==1) {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     if((ficpop=fopen(popfile,"r"))==NULL) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       printf("Problem with population file : %s\n",popfile);exit(0);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     }        for(i=1; i<=nlstate;i++){
     popage=ivector(0,AGESUP);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     popeffectif=vector(0,AGESUP);        }
     popcount=vector(0,AGESUP);      } 
          fprintf(ficresprobmorprev,"\n");
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      fprintf(ficresvij,"%.0f ",age );
          for(i=1; i<=nlstate;i++)
     imx=i;        for(j=1; j<=nlstate;j++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   }        }
       fprintf(ficresvij,"\n");
   for(cptcov=1;cptcov<=i2;cptcov++){      free_matrix(gp,0,nhstepm,1,nlstate);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      free_matrix(gm,0,nhstepm,1,nlstate);
       k=k+1;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       fprintf(ficrespop,"\n#******");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       for(j=1;j<=cptcoveff;j++) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    } /* End age */
       }    free_vector(gpp,nlstate+1,nlstate+ndeath);
       fprintf(ficrespop,"******\n");    free_vector(gmp,nlstate+1,nlstate+ndeath);
       fprintf(ficrespop,"# Age");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       if (popforecast==1)  fprintf(ficrespop," [Population]");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
          /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       for (cpt=0; cpt<=0;cpt++) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
          /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           nhstepm = nhstepm/hstepm;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
              fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           oldm=oldms;savm=savms;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
          */
           for (h=0; h<=nhstepm; h++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    free_vector(xp,1,npar);
             for(j=1; j<=nlstate+ndeath;j++) {    free_matrix(doldm,1,nlstate,1,nlstate);
               kk1=0.;kk2=0;    free_matrix(dnewm,1,nlstate,1,npar);
               for(i=1; i<=nlstate;i++) {                  free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 if (mobilav==1)    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 else {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fclose(ficresprobmorprev);
                 }    fflush(ficgp);
               }    fflush(fichtm); 
               if (h==(int)(calagedate+12*cpt)){  }  /* end varevsij */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);  /************ Variance of prevlim ******************/
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
               }  {
             }    /* Variance of prevalence limit */
             for(i=1; i<=nlstate;i++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
               kk1=0.;    double **newm;
                 for(j=1; j<=nlstate;j++){    double **dnewm,**doldm;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    int i, j, nhstepm, hstepm;
                 }    int k, cptcode;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    double *xp;
             }    double *gp, *gm;
     double **gradg, **trgradg;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    double age,agelim;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    int theta;
           }     
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
         }    fprintf(ficresvpl,"# Age");
       }    for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %1d-%1d",i,i);
   /******/    fprintf(ficresvpl,"\n");
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    xp=vector(1,npar);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      dnewm=matrix(1,nlstate,1,npar);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    doldm=matrix(1,nlstate,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;    hstepm=1*YEARM; /* Every year of age */
              hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agelim = AGESUP;
           oldm=oldms;savm=savms;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           for (h=0; h<=nhstepm; h++){      if (stepm >= YEARM) hstepm=1;
             if (h==(int) (calagedate+YEARM*cpt)) {      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      gradg=matrix(1,npar,1,nlstate);
             }      gp=vector(1,nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {      gm=vector(1,nlstate);
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                    for(theta=1; theta <=npar; theta++){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            for(i=1; i<=npar; i++){ /* Computes gradient */
               }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }
             }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           }        for(i=1;i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          gp[i] = prlim[i][i];
         }      
       }        for(i=1; i<=npar; i++) /* Computes gradient */
    }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gm[i] = prlim[i][i];
   
   if (popforecast==1) {        for(i=1;i<=nlstate;i++)
     free_ivector(popage,0,AGESUP);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     free_vector(popeffectif,0,AGESUP);      } /* End theta */
     free_vector(popcount,0,AGESUP);  
   }      trgradg =matrix(1,nlstate,1,npar);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=1; j<=nlstate;j++)
   fclose(ficrespop);        for(theta=1; theta <=npar; theta++)
 }          trgradg[j][theta]=gradg[theta][j];
   
 /***********************************************/      for(i=1;i<=nlstate;i++)
 /**************** Main Program *****************/        varpl[i][(int)age] =0.;
 /***********************************************/      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 int main(int argc, char *argv[])      for(i=1;i<=nlstate;i++)
 {        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      fprintf(ficresvpl,"%.0f ",age );
   double agedeb, agefin,hf;      for(i=1; i<=nlstate;i++)
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
   double fret;      free_vector(gp,1,nlstate);
   double **xi,tmp,delta;      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   double dum; /* Dummy variable */      free_matrix(trgradg,1,nlstate,1,npar);
   double ***p3mat;    } /* End age */
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];    free_vector(xp,1,npar);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    free_matrix(doldm,1,nlstate,1,npar);
   int firstobs=1, lastobs=10;    free_matrix(dnewm,1,nlstate,1,nlstate);
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;  }
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  /************ Variance of one-step probabilities  ******************/
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   int mobilav=0,popforecast=0;  {
   int hstepm, nhstepm;    int i, j=0,  i1, k1, l1, t, tj;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   double bage, fage, age, agelim, agebase;    int first=1, first1;
   double ftolpl=FTOL;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   double **prlim;    double **dnewm,**doldm;
   double *severity;    double *xp;
   double ***param; /* Matrix of parameters */    double *gp, *gm;
   double  *p;    double **gradg, **trgradg;
   double **matcov; /* Matrix of covariance */    double **mu;
   double ***delti3; /* Scale */    double age,agelim, cov[NCOVMAX];
   double *delti; /* Scale */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   double ***eij, ***vareij;    int theta;
   double **varpl; /* Variances of prevalence limits by age */    char fileresprob[FILENAMELENGTH];
   double *epj, vepp;    char fileresprobcov[FILENAMELENGTH];
   double kk1, kk2;    char fileresprobcor[FILENAMELENGTH];
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
      double ***varpij;
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   char z[1]="c", occ;      printf("Problem with resultfile: %s\n", fileresprob);
 #include <sys/time.h>      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 #include <time.h>    }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    strcpy(fileresprobcov,"probcov"); 
      strcat(fileresprobcov,fileres);
   /* long total_usecs;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   struct timeval start_time, end_time;      printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    }
   getcwd(pathcd, size);    strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
   printf("\n%s",version);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   if(argc <=1){      printf("Problem with resultfile: %s\n", fileresprobcor);
     printf("\nEnter the parameter file name: ");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     scanf("%s",pathtot);    }
   }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   else{    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     strcpy(pathtot,argv[1]);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   /*cygwin_split_path(pathtot,path,optionfile);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficresprobcov,"# Age");
   chdir(path);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   replace(pathc,path);    fprintf(ficresprobcov,"# Age");
   
 /*-------- arguments in the command line --------*/  
     for(i=1; i<=nlstate;i++)
   strcpy(fileres,"r");      for(j=1; j<=(nlstate+ndeath);j++){
   strcat(fileres, optionfilefiname);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   strcat(fileres,".txt");    /* Other files have txt extension */        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   /*---------arguments file --------*/      }  
    /* fprintf(ficresprob,"\n");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    fprintf(ficresprobcov,"\n");
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficresprobcor,"\n");
     goto end;   */
   }   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   strcpy(filereso,"o");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   strcat(filereso,fileres);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   if((ficparo=fopen(filereso,"w"))==NULL) {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    first=1;
   }    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   /* Reads comments: lines beginning with '#' */    fprintf(fichtm,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fgets(line, MAXLINE, ficpar);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     puts(line);    file %s<br>\n",optionfilehtmcov);
     fputs(line,ficparo);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   }  and drawn. It helps understanding how is the covariance between two incidences.\
   ungetc(c,ficpar);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  standard deviations wide on each axis. <br>\
 while((c=getc(ficpar))=='#' && c!= EOF){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     ungetc(c,ficpar);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     fgets(line, MAXLINE, ficpar);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     puts(line);  
     fputs(line,ficparo);    cov[1]=1;
   }    tj=cptcoveff;
   ungetc(c,ficpar);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      j1=0;
        for(t=1; t<=tj;t++){
   covar=matrix(0,NCOVMAX,1,n);      for(i1=1; i1<=ncodemax[t];i1++){ 
   cptcovn=0;        j1++;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
   ncovmodel=2+cptcovn;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          fprintf(ficresprob, "**********\n#\n");
            fprintf(ficresprobcov, "\n#********** Variable "); 
   /* Read guess parameters */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* Reads comments: lines beginning with '#' */          fprintf(ficresprobcov, "**********\n#\n");
   while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);          fprintf(ficgp, "\n#********** Variable "); 
     fgets(line, MAXLINE, ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     puts(line);          fprintf(ficgp, "**********\n#\n");
     fputs(line,ficparo);          
   }          
   ungetc(c,ficpar);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     for(i=1; i <=nlstate; i++)          
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficresprobcor, "\n#********** Variable ");    
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficresprobcor, "**********\n#");    
       printf("%1d%1d",i,j);        }
       for(k=1; k<=ncovmodel;k++){        
         fscanf(ficpar," %lf",&param[i][j][k]);        for (age=bage; age<=fage; age ++){ 
         printf(" %lf",param[i][j][k]);          cov[2]=age;
         fprintf(ficparo," %lf",param[i][j][k]);          for (k=1; k<=cptcovn;k++) {
       }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       fscanf(ficpar,"\n");          }
       printf("\n");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       fprintf(ficparo,"\n");          for (k=1; k<=cptcovprod;k++)
     }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   p=param[1][1];          gp=vector(1,(nlstate)*(nlstate+ndeath));
            gm=vector(1,(nlstate)*(nlstate+ndeath));
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){          for(theta=1; theta <=npar; theta++){
     ungetc(c,ficpar);            for(i=1; i<=npar; i++)
     fgets(line, MAXLINE, ficpar);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     puts(line);            
     fputs(line,ficparo);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   }            
   ungetc(c,ficpar);            k=0;
             for(i=1; i<= (nlstate); i++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              for(j=1; j<=(nlstate+ndeath);j++){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                k=k+1;
   for(i=1; i <=nlstate; i++){                gp[k]=pmmij[i][j];
     for(j=1; j <=nlstate+ndeath-1; j++){              }
       fscanf(ficpar,"%1d%1d",&i1,&j1);            }
       printf("%1d%1d",i,j);            
       fprintf(ficparo,"%1d%1d",i1,j1);            for(i=1; i<=npar; i++)
       for(k=1; k<=ncovmodel;k++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      
         printf(" %le",delti3[i][j][k]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         fprintf(ficparo," %le",delti3[i][j][k]);            k=0;
       }            for(i=1; i<=(nlstate); i++){
       fscanf(ficpar,"\n");              for(j=1; j<=(nlstate+ndeath);j++){
       printf("\n");                k=k+1;
       fprintf(ficparo,"\n");                gm[k]=pmmij[i][j];
     }              }
   }            }
   delti=delti3[1][1];       
              for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   /* Reads comments: lines beginning with '#' */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     puts(line);            for(theta=1; theta <=npar; theta++)
     fputs(line,ficparo);              trgradg[j][theta]=gradg[theta][j];
   }          
   ungetc(c,ficpar);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
            matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   matcov=matrix(1,npar,1,npar);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   for(i=1; i <=npar; i++){          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     fscanf(ficpar,"%s",&str);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     printf("%s",str);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
       fscanf(ficpar," %le",&matcov[i][j]);          
       printf(" %.5le",matcov[i][j]);          k=0;
       fprintf(ficparo," %.5le",matcov[i][j]);          for(i=1; i<=(nlstate); i++){
     }            for(j=1; j<=(nlstate+ndeath);j++){
     fscanf(ficpar,"\n");              k=k+1;
     printf("\n");              mu[k][(int) age]=pmmij[i][j];
     fprintf(ficparo,"\n");            }
   }          }
   for(i=1; i <=npar; i++)          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     for(j=i+1;j<=npar;j++)            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       matcov[i][j]=matcov[j][i];              varpij[i][j][(int)age] = doldm[i][j];
      
   printf("\n");          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     /*-------- Rewriting paramater file ----------*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      strcpy(rfileres,"r");    /* "Rparameterfile */            }*/
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */          fprintf(ficresprob,"\n%d ",(int)age);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          fprintf(ficresprobcov,"\n%d ",(int)age);
     if((ficres =fopen(rfileres,"w"))==NULL) {          fprintf(ficresprobcor,"\n%d ",(int)age);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     fprintf(ficres,"#%s\n",version);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     /*-------- data file ----------*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     if((fic=fopen(datafile,"r"))==NULL)    {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       printf("Problem with datafile: %s\n", datafile);goto end;          }
     }          i=0;
           for (k=1; k<=(nlstate);k++){
     n= lastobs;            for (l=1; l<=(nlstate+ndeath);l++){ 
     severity = vector(1,maxwav);              i=i++;
     outcome=imatrix(1,maxwav+1,1,n);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     num=ivector(1,n);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     moisnais=vector(1,n);              for (j=1; j<=i;j++){
     annais=vector(1,n);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     moisdc=vector(1,n);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     andc=vector(1,n);              }
     agedc=vector(1,n);            }
     cod=ivector(1,n);          }/* end of loop for state */
     weight=vector(1,n);        } /* end of loop for age */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);        /* Confidence intervalle of pij  */
     anint=matrix(1,maxwav,1,n);        /*
     s=imatrix(1,maxwav+1,1,n);          fprintf(ficgp,"\nset noparametric;unset label");
     adl=imatrix(1,maxwav+1,1,n);              fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     tab=ivector(1,NCOVMAX);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     ncodemax=ivector(1,8);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     i=1;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     while (fgets(line, MAXLINE, fic) != NULL)    {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       if ((i >= firstobs) && (i <=lastobs)) {        */
          
         for (j=maxwav;j>=1;j--){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        first1=1;
           strcpy(line,stra);        for (k2=1; k2<=(nlstate);k2++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if(l2==k2) continue;
         }            j=(k2-1)*(nlstate+ndeath)+l2;
                    for (k1=1; k1<=(nlstate);k1++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                if(i<=j) continue;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         for (j=ncovcol;j>=1;j--){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    mu1=mu[i][(int) age]/stepm*YEARM ;
         num[i]=atol(stra);                    mu2=mu[j][(int) age]/stepm*YEARM;
                            c12=cv12/sqrt(v1*v2);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                    /* Computing eigen value of matrix of covariance */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         i=i+1;                    /* Eigen vectors */
       }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     }                    /*v21=sqrt(1.-v11*v11); *//* error */
     /* printf("ii=%d", ij);                    v21=(lc1-v1)/cv12*v11;
        scanf("%d",i);*/                    v12=-v21;
   imx=i-1; /* Number of individuals */                    v22=v11;
                     tnalp=v21/v11;
   /* for (i=1; i<=imx; i++){                    if(first1==1){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                      first1=0;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                    }
     }*/                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
    /*  for (i=1; i<=imx; i++){                    /*printf(fignu*/
      if (s[4][i]==9)  s[4][i]=-1;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                      if(first==1){
                        first=0;
   /* Calculation of the number of parameter from char model*/                      fprintf(ficgp,"\nset parametric;unset label");
   Tvar=ivector(1,15);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   Tprod=ivector(1,15);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   Tvaraff=ivector(1,15);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   Tvard=imatrix(1,15,1,2);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   Tage=ivector(1,15);        %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                                  subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   if (strlen(model) >1){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     j=0, j1=0, k1=1, k2=1;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     j=nbocc(model,'+');                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     j1=nbocc(model,'*');                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     cptcovn=j+1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     cptcovprod=j1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                          fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     strcpy(modelsav,model);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       printf("Error. Non available option model=%s ",model);                    }else{
       goto end;                      first=0;
     }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                          fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     for(i=(j+1); i>=1;i--){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       cutv(stra,strb,modelsav,'+');                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       /*scanf("%d",i);*/                    }/* if first */
       if (strchr(strb,'*')) {                  } /* age mod 5 */
         cutv(strd,strc,strb,'*');                } /* end loop age */
         if (strcmp(strc,"age")==0) {                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           cptcovprod--;                first=1;
           cutv(strb,stre,strd,'V');              } /*l12 */
           Tvar[i]=atoi(stre);            } /* k12 */
           cptcovage++;          } /*l1 */
             Tage[cptcovage]=i;        }/* k1 */
             /*printf("stre=%s ", stre);*/      } /* loop covariates */
         }    }
         else if (strcmp(strd,"age")==0) {    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           cptcovprod--;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           cutv(strb,stre,strc,'V');    free_vector(xp,1,npar);
           Tvar[i]=atoi(stre);    fclose(ficresprob);
           cptcovage++;    fclose(ficresprobcov);
           Tage[cptcovage]=i;    fclose(ficresprobcor);
         }    fflush(ficgp);
         else {    fflush(fichtmcov);
           cutv(strb,stre,strc,'V');  }
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;  /******************* Printing html file ***********/
           Tvard[k1][1]=atoi(strc);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           Tvard[k1][2]=atoi(stre);                    int lastpass, int stepm, int weightopt, char model[],\
           Tvar[cptcovn+k2]=Tvard[k1][1];                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                    int popforecast, int estepm ,\
           for (k=1; k<=lastobs;k++)                    double jprev1, double mprev1,double anprev1, \
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                    double jprev2, double mprev2,double anprev2){
           k1++;    int jj1, k1, i1, cpt;
           k2=k2+2;    /*char optionfilehtm[FILENAMELENGTH];*/
         }  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
       }  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
       else {  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  /*   } */
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
       Tvar[i]=atoi(strc);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
       }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
       strcpy(modelsav,stra);     - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);   - Life expectancies by age and initial health status (estepm=%2d months): \
         scanf("%d",i);*/     <a href=\"%s\">%s</a> <br>\n</li>", \
     }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
 }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
               subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     fclose(fic);  
    m=cptcoveff;
     /*  if(mle==1){*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;   jj1=0;
     }   for(k1=1; k1<=m;k1++){
     /*-calculation of age at interview from date of interview and age at death -*/     for(i1=1; i1<=ncodemax[k1];i1++){
     agev=matrix(1,maxwav,1,imx);       jj1++;
        if (cptcovn > 0) {
     for (i=1; i<=imx; i++) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       for(m=2; (m<= maxwav); m++) {         for (cpt=1; cpt<=cptcoveff;cpt++) 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          anint[m][i]=9999;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          s[m][i]=-1;       }
        }       /* Pij */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     }       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     for (i=1; i<=imx; i++)  {   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       for(m=1; (m<= maxwav); m++){         /* Stable prevalence in each health state */
         if(s[m][i] >0){         for(cpt=1; cpt<nlstate;cpt++){
           if (s[m][i] >= nlstate+1) {           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
             if(agedc[i]>0)  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
               if(moisdc[i]!=99 && andc[i]!=9999)         }
                 agev[m][i]=agedc[i];       for(cpt=1; cpt<=nlstate;cpt++) {
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
            else {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
               if (andc[i]!=9999){       }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
               agev[m][i]=-1;  health expectancies in states (1) and (2): %s%d.png<br>\
               }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
             }     } /* end i1 */
           }   }/* End k1 */
           else if(s[m][i] !=9){ /* Should no more exist */   fprintf(fichtm,"</ul>");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
             else if(agev[m][i] <agemin){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
               agemin=agev[m][i];   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
             }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
             else if(agev[m][i] >agemax){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
               agemax=agev[m][i];   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
             }           rfileres,rfileres,\
             /*agev[m][i]=anint[m][i]-annais[i];*/           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
             /*   agev[m][i] = age[i]+2*m;*/           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
           }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
           else { /* =9 */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
             agev[m][i]=1;           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
             s[m][i]=-1;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
           }  
         }  /*  if(popforecast==1) fprintf(fichtm,"\n */
         else /*= 0 Unknown */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           agev[m][i]=1;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       }  /*      <br>",fileres,fileres,fileres,fileres); */
      /*  else  */
     }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     for (i=1; i<=imx; i++)  {  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {   m=cptcoveff;
           printf("Error: Wrong value in nlstate or ndeath\n");     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           goto end;  
         }   jj1=0;
       }   for(k1=1; k1<=m;k1++){
     }     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     free_vector(severity,1,maxwav);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     free_imatrix(outcome,1,maxwav+1,1,n);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     free_vector(moisnais,1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_vector(annais,1,n);       }
     /* free_matrix(mint,1,maxwav,1,n);       for(cpt=1; cpt<=nlstate;cpt++) {
        free_matrix(anint,1,maxwav,1,n);*/         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     free_vector(moisdc,1,n);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     free_vector(andc,1,n);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
         } /* end i1 */
     wav=ivector(1,imx);   }/* End k1 */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   fprintf(fichtm,"</ul>");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   fflush(fichtm);
      }
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
       Tcode=ivector(1,100);    char dirfileres[132],optfileres[132];
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       ncodemax[1]=1;    int ng;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
        /*     printf("Problem with file %s",optionfilegnuplot); */
    codtab=imatrix(1,100,1,10);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
    h=0;  /*   } */
    m=pow(2,cptcoveff);  
      /*#ifdef windows */
    for(k=1;k<=cptcoveff; k++){    fprintf(ficgp,"cd \"%s\" \n",pathc);
      for(i=1; i <=(m/pow(2,k));i++){      /*#endif */
        for(j=1; j <= ncodemax[k]; j++){    m=pow(2,cptcoveff);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;    strcpy(dirfileres,optionfilefiname);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    strcpy(optfileres,"vpl");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   /* 1eme*/
          }    for (cpt=1; cpt<= nlstate ; cpt ++) {
        }     for (k1=1; k1<= m ; k1 ++) {
      }       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
    }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       fprintf(ficgp,"set xlabel \"Age\" \n\
       codtab[1][2]=1;codtab[2][2]=2; */  set ylabel \"Probability\" \n\
    /* for(i=1; i <=m ;i++){  set ter png small\n\
       for(k=1; k <=cptcovn; k++){  set size 0.65,0.65\n\
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       }  
       printf("\n");       for (i=1; i<= nlstate ; i ++) {
       }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       scanf("%d",i);*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }
    /* Calculates basic frequencies. Computes observed prevalence at single age       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        and prints on file fileres'p'. */       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
           } 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for (i=1; i<= nlstate ; i ++) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         else fprintf(ficgp," \%%*lf (\%%*lf)");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       }  
             fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     /* For Powell, parameters are in a vector p[] starting at p[1]     }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    /*2 eme*/
     
     if(mle==1){    for (k1=1; k1<= m ; k1 ++) { 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
          
     /*--------- results files --------------*/      for (i=1; i<= nlstate+1 ; i ++) {
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        k=2*i;
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
    jk=1;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }   
    for(i=1,jk=1; i <=nlstate; i++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
      for(k=1; k <=(nlstate+ndeath); k++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
        if (k != i)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          {        for (j=1; j<= nlstate+1 ; j ++) {
            printf("%d%d ",i,k);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            fprintf(ficres,"%1d%1d ",i,k);          else fprintf(ficgp," \%%*lf (\%%*lf)");
            for(j=1; j <=ncovmodel; j++){        }   
              printf("%f ",p[jk]);        fprintf(ficgp,"\" t\"\" w l 0,");
              fprintf(ficres,"%f ",p[jk]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
              jk++;        for (j=1; j<= nlstate+1 ; j ++) {
            }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            printf("\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
            fprintf(ficres,"\n");        }   
          }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
      }        else fprintf(ficgp,"\" t\"\" w l 0,");
    }      }
  if(mle==1){    }
     /* Computing hessian and covariance matrix */    
     ftolhess=ftol; /* Usually correct */    /*3eme*/
     hesscov(matcov, p, npar, delti, ftolhess, func);    
  }    for (k1=1; k1<= m ; k1 ++) { 
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      for (cpt=1; cpt<= nlstate ; cpt ++) {
     printf("# Scales (for hessian or gradient estimation)\n");        k=2+nlstate*(2*cpt-2);
      for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       for(j=1; j <=nlstate+ndeath; j++){        fprintf(ficgp,"set ter png small\n\
         if (j!=i) {  set size 0.65,0.65\n\
           fprintf(ficres,"%1d%1d",i,j);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           printf("%1d%1d",i,j);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for(k=1; k<=ncovmodel;k++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             printf(" %.5e",delti[jk]);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             fprintf(ficres," %.5e",delti[jk]);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             jk++;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           printf("\n");          
           fprintf(ficres,"\n");        */
         }        for (i=1; i< nlstate ; i ++) {
       }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
      }          
            } 
     k=1;      }
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    
     for(i=1;i<=npar;i++){    /* CV preval stable (period) */
       /*  if (k>nlstate) k=1;    for (k1=1; k1<= m ; k1 ++) { 
       i1=(i-1)/(ncovmodel*nlstate)+1;      for (cpt=1; cpt<=nlstate ; cpt ++) {
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        k=3;
       printf("%s%d%d",alph[k],i1,tab[i]);*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       fprintf(ficres,"%3d",i);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       printf("%3d",i);  set ter png small\nset size 0.65,0.65\n\
       for(j=1; j<=i;j++){  unset log y\n\
         fprintf(ficres," %.5e",matcov[i][j]);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         printf(" %.5e",matcov[i][j]);        
       }        for (i=1; i< nlstate ; i ++)
       fprintf(ficres,"\n");          fprintf(ficgp,"+$%d",k+i+1);
       printf("\n");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       k++;        
     }        l=3+(nlstate+ndeath)*cpt;
            fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     while((c=getc(ficpar))=='#' && c!= EOF){        for (i=1; i< nlstate ; i ++) {
       ungetc(c,ficpar);          l=3+(nlstate+ndeath)*cpt;
       fgets(line, MAXLINE, ficpar);          fprintf(ficgp,"+$%d",l+i+1);
       puts(line);        }
       fputs(line,ficparo);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     }      } 
     ungetc(c,ficpar);    }  
     estepm=0;    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    /* proba elementaires */
     if (estepm==0 || estepm < stepm) estepm=stepm;    for(i=1,jk=1; i <=nlstate; i++){
     if (fage <= 2) {      for(k=1; k <=(nlstate+ndeath); k++){
       bage = ageminpar;        if (k != i) {
       fage = agemaxpar;          for(j=1; j <=ncovmodel; j++){
     }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                jk++; 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            fprintf(ficgp,"\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        }
        }
     while((c=getc(ficpar))=='#' && c!= EOF){     }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     puts(line);       for(jk=1; jk <=m; jk++) {
     fputs(line,ficparo);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   }         if (ng==2)
   ungetc(c,ficpar);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           else
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);           fprintf(ficgp,"\nset title \"Probability\"\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         i=1;
               for(k2=1; k2<=nlstate; k2++) {
   while((c=getc(ficpar))=='#' && c!= EOF){           k3=i;
     ungetc(c,ficpar);           for(k=1; k<=(nlstate+ndeath); k++) {
     fgets(line, MAXLINE, ficpar);             if (k != k2){
     puts(line);               if(ng==2)
     fputs(line,ficparo);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   }               else
   ungetc(c,ficpar);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 ij=1;
                for(j=3; j <=ncovmodel; j++) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
   fscanf(ficpar,"pop_based=%d\n",&popbased);                 }
   fprintf(ficparo,"pop_based=%d\n",popbased);                   else
   fprintf(ficres,"pop_based=%d\n",popbased);                     fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                 }
   while((c=getc(ficpar))=='#' && c!= EOF){               fprintf(ficgp,")/(1");
     ungetc(c,ficpar);               
     fgets(line, MAXLINE, ficpar);               for(k1=1; k1 <=nlstate; k1++){   
     puts(line);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     fputs(line,ficparo);                 ij=1;
   }                 for(j=3; j <=ncovmodel; j++){
   ungetc(c,ficpar);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                     ij++;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                   }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                   else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
 while((c=getc(ficpar))=='#' && c!= EOF){                 fprintf(ficgp,")");
     ungetc(c,ficpar);               }
     fgets(line, MAXLINE, ficpar);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     puts(line);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     fputs(line,ficparo);               i=i+ncovmodel;
   }             }
   ungetc(c,ficpar);           } /* end k */
          } /* end k2 */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);       } /* end jk */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     } /* end ng */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     fflush(ficgp); 
   }  /* end gnuplot */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
   
 /*------------ gnuplot -------------*/  /*************** Moving average **************/
   strcpy(optionfilegnuplot,optionfilefiname);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   strcat(optionfilegnuplot,".gp");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    int i, cpt, cptcod;
     printf("Problem with file %s",optionfilegnuplot);    int modcovmax =1;
   }    int mobilavrange, mob;
   fclose(ficgp);    double age;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  
 /*--------- index.htm --------*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
   strcpy(optionfilehtm,optionfile);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     printf("Problem with %s \n",optionfilehtm), exit(0);      if(mobilav==1) mobilavrange=5; /* default */
   }      else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        for (i=1; i<=nlstate;i++)
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          for (cptcod=1;cptcod<=modcovmax;cptcod++)
 \n            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 Total number of observations=%d <br>\n      /* We keep the original values on the extreme ages bage, fage and for 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 <hr  size=\"2\" color=\"#EC5E5E\">         we use a 5 terms etc. until the borders are no more concerned. 
  <ul><li>Parameter files<br>\n      */ 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      for (mob=3;mob <=mobilavrange;mob=mob+2){
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   fclose(fichtm);          for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                  for (cpt=1;cpt<=(mob-1)/2;cpt++){
 /*------------ free_vector  -------------*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
  chdir(path);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                  }
  free_ivector(wav,1,imx);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            }
  free_ivector(num,1,n);        }/* end age */
  free_vector(agedc,1,n);      }/* end mob */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    }else return -1;
  fclose(ficparo);    return 0;
  fclose(ficres);  }/* End movingaverage */
   
   
   /*--------------- Prevalence limit --------------*/  /************** Forecasting ******************/
    prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   strcpy(filerespl,"pl");    /* proj1, year, month, day of starting projection 
   strcat(filerespl,fileres);       agemin, agemax range of age
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       dateprev1 dateprev2 range of dates during which prevalence is computed
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       anproj2 year of en of projection (same day and month as proj1).
   }    */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   fprintf(ficrespl,"#Prevalence limit\n");    int *popage;
   fprintf(ficrespl,"#Age ");    double agec; /* generic age */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   fprintf(ficrespl,"\n");    double *popeffectif,*popcount;
      double ***p3mat;
   prlim=matrix(1,nlstate,1,nlstate);    double ***mobaverage;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char fileresf[FILENAMELENGTH];
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    agelim=AGESUP;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   
   k=0;    strcpy(fileresf,"f"); 
   agebase=ageminpar;    strcat(fileresf,fileres);
   agelim=agemaxpar;    if((ficresf=fopen(fileresf,"w"))==NULL) {
   ftolpl=1.e-10;      printf("Problem with forecast resultfile: %s\n", fileresf);
   i1=cptcoveff;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   if (cptcovn < 1){i1=1;}    }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");    if (mobilav!=0) {
         for(j=1;j<=cptcoveff;j++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficrespl,"******\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                printf(" Error in movingaverage mobilav=%d\n",mobilav);
         for (age=agebase; age<=agelim; age++){      }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)    stepsize=(int) (stepm+YEARM-1)/YEARM;
           fprintf(ficrespl," %.5f", prlim[i][i]);    if (stepm<=12) stepsize=1;
           fprintf(ficrespl,"\n");    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
     }    else  hstepm=estepm;   
   fclose(ficrespl);  
     hstepm=hstepm/stepm; 
   /*------------- h Pij x at various ages ------------*/    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                   fractional in yp1 */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    anprojmean=yp;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    yp2=modf((yp1*12),&yp);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    mprojmean=yp;
   }    yp1=modf((yp2*30.5),&yp);
   printf("Computing pij: result on file '%s' \n", filerespij);    jprojmean=yp;
      if(jprojmean==0) jprojmean=1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if(mprojmean==0) jprojmean=1;
   /*if (stepm<=24) stepsize=2;*/  
     i1=cptcoveff;
   agelim=AGESUP;    if (cptcovn < 1){i1=1;}
   hstepm=stepsize*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
      
   k=0;    fprintf(ficresf,"#****** Routine prevforecast **\n");
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*            if (h==(int)(YEARM*yearp)){ */
       k=k+1;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         fprintf(ficrespij,"\n#****** ");      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         for(j=1;j<=cptcoveff;j++)        k=k+1;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresf,"\n#******");
         fprintf(ficrespij,"******\n");        for(j=1;j<=cptcoveff;j++) {
                  fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficresf,"******\n");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<=nlstate+ndeath;j++){ 
           oldm=oldms;savm=savms;          for(i=1; i<=nlstate;i++)              
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              fprintf(ficresf," p%d%d",i,j);
           fprintf(ficrespij,"# Age");          fprintf(ficresf," p.%d",j);
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
               fprintf(ficrespij," %1d-%1d",i,j);          fprintf(ficresf,"\n");
           fprintf(ficrespij,"\n");          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             for(i=1; i<=nlstate;i++)            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
               for(j=1; j<=nlstate+ndeath;j++)            nhstepm = nhstepm/hstepm; 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");            oldm=oldms;savm=savms;
              }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
           fprintf(ficrespij,"\n");            for (h=0; h<=nhstepm; h++){
         }              if (h*hstepm/YEARM*stepm ==yearp) {
     }                fprintf(ficresf,"\n");
   }                for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
   fclose(ficrespij);              for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
   /*---------- Forecasting ------------------*/                  if (mobilav==1) 
   if((stepm == 1) && (strcmp(model,".")==0)){                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                  else {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   }                  }
   else{                  if (h*hstepm/YEARM*stepm== yearp) {
     erreur=108;                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                  }
   }                } /* end i */
                  if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
   /*---------- Health expectancies and variances ------------*/                }
               }/* end j */
   strcpy(filerest,"t");            } /* end h */
   strcat(filerest,fileres);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficrest=fopen(filerest,"w"))==NULL) {          } /* end agec */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        } /* end yearp */
   }      } /* end cptcod */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(filerese,"e");  
   strcat(filerese,fileres);    fclose(ficresf);
   if((ficreseij=fopen(filerese,"w"))==NULL) {  }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }  /************** Forecasting *****not tested NB*************/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
  strcpy(fileresv,"v");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   strcat(fileresv,fileres);    int *popage;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double calagedatem, agelim, kk1, kk2;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double *popeffectif,*popcount;
   }    double ***p3mat,***tabpop,***tabpopprev;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double ***mobaverage;
   calagedate=-1;    char filerespop[FILENAMELENGTH];
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   k=0;    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(cptcov=1;cptcov<=i1;cptcov++){    agelim=AGESUP;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       k=k+1;    
       fprintf(ficrest,"\n#****** ");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficrest,"******\n");    strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
       fprintf(ficreseij,"\n#****** ");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       for(j=1;j<=cptcoveff;j++)      printf("Problem with forecast resultfile: %s\n", filerespop);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficreseij,"******\n");    }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
       fprintf(ficresvij,"\n#****** ");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       fprintf(ficresvij,"******\n");  
     if (mobilav!=0) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       oldm=oldms;savm=savms;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;    }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  
        stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
      
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    agelim=AGESUP;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    
       fprintf(ficrest,"\n");    hstepm=1;
     hstepm=hstepm/stepm; 
       epj=vector(1,nlstate+1);    
       for(age=bage; age <=fage ;age++){    if (popforecast==1) {
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      if((ficpop=fopen(popfile,"r"))==NULL) {
         if (popbased==1) {        printf("Problem with population file : %s\n",popfile);exit(0);
           for(i=1; i<=nlstate;i++)        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
             prlim[i][i]=probs[(int)age][i][k];      } 
         }      popage=ivector(0,AGESUP);
              popeffectif=vector(0,AGESUP);
         fprintf(ficrest," %4.0f",age);      popcount=vector(0,AGESUP);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      i=1;   
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/     
           }      imx=i;
           epj[nlstate+1] +=epj[j];      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
         }    }
   
         for(i=1, vepp=0.;i <=nlstate;i++)    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
           for(j=1;j <=nlstate;j++)     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
             vepp += vareij[i][j][(int)age];        k=k+1;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        fprintf(ficrespop,"\n#******");
         for(j=1;j <=nlstate;j++){        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }        }
         fprintf(ficrest,"\n");        fprintf(ficrespop,"******\n");
       }        fprintf(ficrespop,"# Age");
     }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   }        if (popforecast==1)  fprintf(ficrespop," [Population]");
 free_matrix(mint,1,maxwav,1,n);        
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        for (cpt=0; cpt<=0;cpt++) { 
     free_vector(weight,1,n);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   fclose(ficreseij);          
   fclose(ficresvij);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   fclose(ficrest);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   fclose(ficpar);            nhstepm = nhstepm/hstepm; 
   free_vector(epj,1,nlstate+1);            
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*------- Variance limit prevalence------*/              oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   strcpy(fileresvpl,"vpl");          
   strcat(fileresvpl,fileres);            for (h=0; h<=nhstepm; h++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              if (h==(int) (calagedatem+YEARM*cpt)) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     exit(0);              } 
   }              for(j=1; j<=nlstate+ndeath;j++) {
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   k=0;                  if (mobilav==1) 
   for(cptcov=1;cptcov<=i1;cptcov++){                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                  else {
       k=k+1;                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
       fprintf(ficresvpl,"\n#****** ");                  }
       for(j=1;j<=cptcoveff;j++)                }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if (h==(int)(calagedatem+12*cpt)){
       fprintf(ficresvpl,"******\n");                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                          /*fprintf(ficrespop," %.3f", kk1);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
       oldm=oldms;savm=savms;                }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              }
     }              for(i=1; i<=nlstate;i++){
  }                kk1=0.;
                   for(j=1; j<=nlstate;j++){
   fclose(ficresvpl);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
   /*---------- End : free ----------------*/                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              }
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
              }
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    /******/
    
   free_matrix(matcov,1,npar,1,npar);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   free_vector(delti,1,npar);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   free_matrix(agev,1,maxwav,1,imx);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
   fprintf(fichtm,"\n</body>");            
   fclose(fichtm);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficgp);            oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
   if(erreur >0)              if (h==(int) (calagedatem+YEARM*cpt)) {
     printf("End of Imach with error or warning %d\n",erreur);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   else   printf("End of Imach\n");              } 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              for(j=1; j<=nlstate+ndeath;j++) {
                  kk1=0.;kk2=0;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                for(i=1; i<=nlstate;i++) {              
   /*printf("Total time was %d uSec.\n", total_usecs);*/                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   /*------ End -----------*/                }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
  end:            }
 #ifdef windows            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* chdir(pathcd);*/          }
 #endif        }
  /*system("wgnuplot graph.plt");*/     } 
  /*system("../gp37mgw/wgnuplot graph.plt");*/    }
  /*system("cd ../gp37mgw");*/   
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  strcpy(plotcmd,GNUPLOTPROGRAM);  
  strcat(plotcmd," ");    if (popforecast==1) {
  strcat(plotcmd,optionfilegnuplot);      free_ivector(popage,0,AGESUP);
  system(plotcmd);      free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
 #ifdef windows    }
   while (z[0] != 'q') {    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     /* chdir(path); */    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    fclose(ficrespop);
     scanf("%s",z);  } /* End of popforecast */
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);  int fileappend(FILE *fichier, char *optionfich)
     else if (z[0] == 'g') system(plotcmd);  {
     else if (z[0] == 'q') exit(0);    if((fichier=fopen(optionfich,"a"))==NULL) {
   }      printf("Problem with file: %s\n", optionfich);
 #endif      fprintf(ficlog,"Problem with file: %s\n", optionfich);
 }      return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);
           for(j=1; j <=ncovmodel; j++){
             printf("%f ",p[jk]);
             fprintf(ficlog,"%f ",p[jk]);
             fprintf(ficres,"%f ",p[jk]);
             jk++; 
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle>=1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   
   
   /* Just to have a covariance matrix which will be more understandable
      even is we still don't want to manage dictionary of variables
   */
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               if(mle>=1)
                 printf("#%1d%1d%d",i,j,k);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);
               fprintf(ficres,"#%1d%1d%d",i,j,k);
             }else{
               if(mle>=1)
                 printf("%1d%1d%d",i,j,k);
               fprintf(ficlog,"%1d%1d%d",i,j,k);
               fprintf(ficres,"%1d%1d%d",i,j,k);
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }else{
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             if(mle>=1)
               printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
     fflush(ficlog);
     fflush(ficres);
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.95


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>