Diff for /imach/src/imach.c between versions 1.50 and 1.94

version 1.50, 2002/06/26 23:25:02 version 1.94, 2003/06/27 13:00:02
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.93  2003/06/25 16:33:55  brouard
   first survey ("cross") where individuals from different ages are    (Module): On windows (cygwin) function asctime_r doesn't
   interviewed on their health status or degree of disability (in the    exist so I changed back to asctime which exists.
   case of a health survey which is our main interest) -2- at least a    (Module): Version 0.96b
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.92  2003/06/25 16:30:45  brouard
   computed from the time spent in each health state according to a    (Module): On windows (cygwin) function asctime_r doesn't
   model. More health states you consider, more time is necessary to reach the    exist so I changed back to asctime which exists.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.91  2003/06/25 15:30:29  brouard
   probability to be observed in state j at the second wave    * imach.c (Repository): Duplicated warning errors corrected.
   conditional to be observed in state i at the first wave. Therefore    (Repository): Elapsed time after each iteration is now output. It
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    helps to forecast when convergence will be reached. Elapsed time
   'age' is age and 'sex' is a covariate. If you want to have a more    is stamped in powell.  We created a new html file for the graphs
   complex model than "constant and age", you should modify the program    concerning matrix of covariance. It has extension -cov.htm.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.90  2003/06/24 12:34:15  brouard
   convergence.    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   The advantage of this computer programme, compared to a simple    of the covariance matrix to be input.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.89  2003/06/24 12:30:52  brouard
   intermediate interview, the information is lost, but taken into    (Module): Some bugs corrected for windows. Also, when
   account using an interpolation or extrapolation.      mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.88  2003/06/23 17:54:56  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.87  2003/06/18 12:26:01  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.96
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
   Also this programme outputs the covariance matrix of the parameters but also    routine fileappend.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.85  2003/06/17 13:12:43  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    * imach.c (Repository): Check when date of death was earlier that
            Institut national d'études démographiques, Paris.    current date of interview. It may happen when the death was just
   This software have been partly granted by Euro-REVES, a concerted action    prior to the death. In this case, dh was negative and likelihood
   from the European Union.    was wrong (infinity). We still send an "Error" but patch by
   It is copyrighted identically to a GNU software product, ie programme and    assuming that the date of death was just one stepm after the
   software can be distributed freely for non commercial use. Latest version    interview.
   can be accessed at http://euroreves.ined.fr/imach .    (Repository): Because some people have very long ID (first column)
   **********************************************************************/    we changed int to long in num[] and we added a new lvector for
      memory allocation. But we also truncated to 8 characters (left
 #include <math.h>    truncation)
 #include <stdio.h>    (Repository): No more line truncation errors.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define MAXLINE 256    place. It differs from routine "prevalence" which may be called
 #define GNUPLOTPROGRAM "gnuplot"    many times. Probs is memory consuming and must be used with
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    parcimony.
 #define FILENAMELENGTH 80    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /*#define DEBUG*/  
 #define windows    Revision 1.83  2003/06/10 13:39:11  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    *** empty log message ***
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Add log in  imach.c and  fullversion number is now printed.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
   */
 #define NINTERVMAX 8  /*
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */     Interpolated Markov Chain
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Short summary of the programme:
 #define MAXN 20000    
 #define YEARM 12. /* Number of months per year */    This program computes Healthy Life Expectancies from
 #define AGESUP 130    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define AGEBASE 40    first survey ("cross") where individuals from different ages are
 #ifdef windows    interviewed on their health status or degree of disability (in the
 #define DIRSEPARATOR '\\'    case of a health survey which is our main interest) -2- at least a
 #define ODIRSEPARATOR '/'    second wave of interviews ("longitudinal") which measure each change
 #else    (if any) in individual health status.  Health expectancies are
 #define DIRSEPARATOR '/'    computed from the time spent in each health state according to a
 #define ODIRSEPARATOR '\\'    model. More health states you consider, more time is necessary to reach the
 #endif    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    probability to be observed in state j at the second wave
 int erreur; /* Error number */    conditional to be observed in state i at the first wave. Therefore
 int nvar;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    'age' is age and 'sex' is a covariate. If you want to have a more
 int npar=NPARMAX;    complex model than "constant and age", you should modify the program
 int nlstate=2; /* Number of live states */    where the markup *Covariates have to be included here again* invites
 int ndeath=1; /* Number of dead states */    you to do it.  More covariates you add, slower the
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    convergence.
 int popbased=0;  
     The advantage of this computer programme, compared to a simple
 int *wav; /* Number of waves for this individuual 0 is possible */    multinomial logistic model, is clear when the delay between waves is not
 int maxwav; /* Maxim number of waves */    identical for each individual. Also, if a individual missed an
 int jmin, jmax; /* min, max spacing between 2 waves */    intermediate interview, the information is lost, but taken into
 int mle, weightopt;    account using an interpolation or extrapolation.  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    hPijx is the probability to be observed in state i at age x+h
 double jmean; /* Mean space between 2 waves */    conditional to the observed state i at age x. The delay 'h' can be
 double **oldm, **newm, **savm; /* Working pointers to matrices */    split into an exact number (nh*stepm) of unobserved intermediate
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    states. This elementary transition (by month, quarter,
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    semester or year) is modelled as a multinomial logistic.  The hPx
 FILE *ficlog;    matrix is simply the matrix product of nh*stepm elementary matrices
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    and the contribution of each individual to the likelihood is simply
 FILE *ficresprobmorprev;    hPijx.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Also this programme outputs the covariance matrix of the parameters but also
 char filerese[FILENAMELENGTH];    of the life expectancies. It also computes the stable prevalence. 
 FILE  *ficresvij;    
 char fileresv[FILENAMELENGTH];    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 FILE  *ficresvpl;             Institut national d'études démographiques, Paris.
 char fileresvpl[FILENAMELENGTH];    This software have been partly granted by Euro-REVES, a concerted action
 char title[MAXLINE];    from the European Union.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    It is copyrighted identically to a GNU software product, ie programme and
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 char filerest[FILENAMELENGTH];    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 char fileregp[FILENAMELENGTH];    
 char popfile[FILENAMELENGTH];    **********************************************************************/
   /*
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    main
     read parameterfile
 #define NR_END 1    read datafile
 #define FREE_ARG char*    concatwav
 #define FTOL 1.0e-10    freqsummary
     if (mle >= 1)
 #define NRANSI      mlikeli
 #define ITMAX 200    print results files
     if mle==1 
 #define TOL 2.0e-4       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 #define CGOLD 0.3819660        begin-prev-date,...
 #define ZEPS 1.0e-10    open gnuplot file
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    open html file
     stable prevalence
 #define GOLD 1.618034     for age prevalim()
 #define GLIMIT 100.0    h Pij x
 #define TINY 1.0e-20    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 static double maxarg1,maxarg2;    health expectancies
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Variance-covariance of DFLE
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    prevalence()
       movingaverage()
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    varevsij() 
 #define rint(a) floor(a+0.5)    if popbased==1 varevsij(,popbased)
     total life expectancies
 static double sqrarg;    Variance of stable prevalence
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)   end
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  */
   
 int imx;  
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/   
   #include <math.h>
 int estepm;  #include <stdio.h>
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #include <stdlib.h>
   #include <unistd.h>
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #include <sys/time.h>
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #include <time.h>
 double **pmmij, ***probs, ***mobaverage;  #include "timeval.h"
 double dateintmean=0;  
   #define MAXLINE 256
 double *weight;  #define GNUPLOTPROGRAM "gnuplot"
 int **s; /* Status */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 double *agedc, **covar, idx;  #define FILENAMELENGTH 132
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  /*#define DEBUG*/
   /*#define windows*/
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double ftolhess; /* Tolerance for computing hessian */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /**************** split *************************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
    char *s;                             /* pointer */  #define NINTERVMAX 8
    int  l1, l2;                         /* length counters */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    l1 = strlen( path );                 /* length of path */  #define NCOVMAX 8 /* Maximum number of covariates */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define MAXN 20000
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  #define YEARM 12. /* Number of months per year */
    if ( s == NULL ) {                   /* no directory, so use current */  #define AGESUP 130
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  #define AGEBASE 40
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #ifdef unix
 #if     defined(__bsd__)                /* get current working directory */  #define DIRSEPARATOR '/'
       extern char       *getwd( );  #define ODIRSEPARATOR '\\'
   #else
       if ( getwd( dirc ) == NULL ) {  #define DIRSEPARATOR '\\'
 #else  #define ODIRSEPARATOR '/'
       extern char       *getcwd( );  #endif
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /* $Id$ */
 #endif  /* $State$ */
          return( GLOCK_ERROR_GETCWD );  
       }  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
       strcpy( name, path );             /* we've got it */  char fullversion[]="$Revision$ $Date$"; 
    } else {                             /* strip direcotry from path */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       s++;                              /* after this, the filename */  int nvar;
       l2 = strlen( s );                 /* length of filename */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int npar=NPARMAX;
       strcpy( name, s );                /* save file name */  int nlstate=2; /* Number of live states */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int ndeath=1; /* Number of dead states */
       dirc[l1-l2] = 0;                  /* add zero */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    }  int popbased=0;
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows  int *wav; /* Number of waves for this individuual 0 is possible */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int maxwav; /* Maxim number of waves */
 #else  int jmin, jmax; /* min, max spacing between 2 waves */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int gipmx, gsw; /* Global variables on the number of contributions 
 #endif                     to the likelihood and the sum of weights (done by funcone)*/
    s = strrchr( name, '.' );            /* find last / */  int mle, weightopt;
    s++;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    strcpy(ext,s);                       /* save extension */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    l1= strlen( name);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    l2= strlen( s)+1;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    strncpy( finame, name, l1-l2);  double jmean; /* Mean space between 2 waves */
    finame[l1-l2]= 0;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    return( 0 );                         /* we're done */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /******************************************/  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 void replace(char *s, char*t)  double sw; /* Sum of weights */
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   int i;  FILE *ficresilk;
   int lg=20;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   i=0;  FILE *ficresprobmorprev;
   lg=strlen(t);  FILE *fichtm, *fichtmcov; /* Html File */
   for(i=0; i<= lg; i++) {  FILE *ficreseij;
     (s[i] = t[i]);  char filerese[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  FILE  *ficresvij;
   }  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 int nbocc(char *s, char occ)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   int i,j=0;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   int lg=20;  char tmpout[FILENAMELENGTH]; 
   i=0;  char command[FILENAMELENGTH];
   lg=strlen(s);  int  outcmd=0;
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   }  
   return j;  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 void cutv(char *u,char *v, char*t, char occ)  char popfile[FILENAMELENGTH];
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   int i,lg,j,p=0;  struct timezone tzp;
   i=0;  extern int gettimeofday();
   for(j=0; j<=strlen(t)-1; j++) {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  long time_value;
   }  extern long time();
   char strcurr[80], strfor[80];
   lg=strlen(t);  
   for(j=0; j<p; j++) {  #define NR_END 1
     (u[j] = t[j]);  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
      u[p]='\0';  
   #define NRANSI 
    for(j=0; j<= lg; j++) {  #define ITMAX 200 
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /********************** nrerror ********************/  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 void nrerror(char error_text[])  
 {  #define GOLD 1.618034 
   fprintf(stderr,"ERREUR ...\n");  #define GLIMIT 100.0 
   fprintf(stderr,"%s\n",error_text);  #define TINY 1.0e-20 
   exit(1);  
 }  static double maxarg1,maxarg2;
 /*********************** vector *******************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double *vector(int nl, int nh)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   double *v;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define rint(a) floor(a+0.5)
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  int imx; 
 {  int stepm;
   free((FREE_ARG)(v+nl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /************************ivector *******************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 int *ivector(long nl,long nh)  
 {  int m,nb;
   int *v;  long *num;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   if (!v) nrerror("allocation failure in ivector");  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return v-nl+NR_END;  double **pmmij, ***probs;
 }  double dateintmean=0;
   
 /******************free ivector **************************/  double *weight;
 void free_ivector(int *v, long nl, long nh)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   free((FREE_ARG)(v+nl-NR_END));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /******************* imatrix *******************************/  double ftolhess; /* Tolerance for computing hessian */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  {
   int **m;    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    l1 = strlen(path );                   /* length of path */
   if (!m) nrerror("allocation failure 1 in matrix()");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m += NR_END;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m -= nrl;    if ( ss == NULL ) {                   /* no directory, so use current */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
          printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   /* allocate rows and set pointers to them */      /* get current working directory */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      /*    extern  char* getcwd ( char *buf , int len);*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl] += NR_END;        return( GLOCK_ERROR_GETCWD );
   m[nrl] -= ncl;      }
        strcpy( name, path );               /* we've got it */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    } else {                              /* strip direcotry from path */
        ss++;                               /* after this, the filename */
   /* return pointer to array of pointers to rows */      l2 = strlen( ss );                  /* length of filename */
   return m;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /****************** free_imatrix *************************/      dirc[l1-l2] = 0;                    /* add zero */
 void free_imatrix(m,nrl,nrh,ncl,nch)    }
       int **m;    l1 = strlen( dirc );                  /* length of directory */
       long nch,ncl,nrh,nrl;    /*#ifdef windows
      /* free an int matrix allocated by imatrix() */    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 {  #else
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   free((FREE_ARG) (m+nrl-NR_END));  #endif
 }    */
     ss = strrchr( name, '.' );            /* find last / */
 /******************* matrix *******************************/    ss++;
 double **matrix(long nrl, long nrh, long ncl, long nch)    strcpy(ext,ss);                       /* save extension */
 {    l1= strlen( name);
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    l2= strlen(ss)+1;
   double **m;    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    return( 0 );                          /* we're done */
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  
   /******************************************/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void replace_back_to_slash(char *s, char*t)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    int i;
     int lg=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    i=0;
   return m;    lg=strlen(t);
 }    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 /*************************free matrix ************************/      if (t[i]== '\\') s[i]='/';
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    }
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /******************* ma3x *******************************/    int lg=20;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    i=0;
 {    lg=strlen(s);
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    for(i=0; i<= lg; i++) {
   double ***m;    if  (s[i] == occ ) j++;
     }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    return j;
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  void cutv(char *u,char *v, char*t, char occ)
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    /* cuts string t into u and v where u is ended by char occ excluding it
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m[nrl] += NR_END;       gives u="abcedf" and v="ghi2j" */
   m[nrl] -= ncl;    int i,lg,j,p=0;
     i=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    lg=strlen(t);
   m[nrl][ncl] -= nll;    for(j=0; j<p; j++) {
   for (j=ncl+1; j<=nch; j++)      (u[j] = t[j]);
     m[nrl][j]=m[nrl][j-1]+nlay;    }
         u[p]='\0';
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;     for(j=0; j<= lg; j++) {
     for (j=ncl+1; j<=nch; j++)      if (j>=(p+1))(v[j-p-1] = t[j]);
       m[i][j]=m[i][j-1]+nlay;    }
   }  }
   return m;  
 }  /********************** nrerror ********************/
   
 /*************************free ma3x ************************/  void nrerror(char error_text[])
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    fprintf(stderr,"ERREUR ...\n");
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    fprintf(stderr,"%s\n",error_text);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    exit(EXIT_FAILURE);
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 /***************** f1dim *************************/  {
 extern int ncom;    double *v;
 extern double *pcom,*xicom;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 extern double (*nrfunc)(double []);    if (!v) nrerror("allocation failure in vector");
      return v-nl+NR_END;
 double f1dim(double x)  }
 {  
   int j;  /************************ free vector ******************/
   double f;  void free_vector(double*v, int nl, int nh)
   double *xt;  {
      free((FREE_ARG)(v+nl-NR_END));
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /************************ivector *******************************/
   free_vector(xt,1,ncom);  int *ivector(long nl,long nh)
   return f;  {
 }    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 /*****************brent *************************/    if (!v) nrerror("allocation failure in ivector");
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    return v-nl+NR_END;
 {  }
   int iter;  
   double a,b,d,etemp;  /******************free ivector **************************/
   double fu,fv,fw,fx;  void free_ivector(int *v, long nl, long nh)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    free((FREE_ARG)(v+nl-NR_END));
   double e=0.0;  }
    
   a=(ax < cx ? ax : cx);  /************************lvector *******************************/
   b=(ax > cx ? ax : cx);  long *lvector(long nl,long nh)
   x=w=v=bx;  {
   fw=fv=fx=(*f)(x);    long *v;
   for (iter=1;iter<=ITMAX;iter++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     xm=0.5*(a+b);    if (!v) nrerror("allocation failure in ivector");
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    return v-nl+NR_END;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  /******************free lvector **************************/
 #ifdef DEBUG  void free_lvector(long *v, long nl, long nh)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    free((FREE_ARG)(v+nl-NR_END));
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  }
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  /******************* imatrix *******************************/
       *xmin=x;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       return fx;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     }  { 
     ftemp=fu;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     if (fabs(e) > tol1) {    int **m; 
       r=(x-w)*(fx-fv);    
       q=(x-v)*(fx-fw);    /* allocate pointers to rows */ 
       p=(x-v)*q-(x-w)*r;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       q=2.0*(q-r);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       if (q > 0.0) p = -p;    m += NR_END; 
       q=fabs(q);    m -= nrl; 
       etemp=e;    
       e=d;    
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    /* allocate rows and set pointers to them */ 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       else {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         d=p/q;    m[nrl] += NR_END; 
         u=x+d;    m[nrl] -= ncl; 
         if (u-a < tol2 || b-u < tol2)    
           d=SIGN(tol1,xm-x);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       }    
     } else {    /* return pointer to array of pointers to rows */ 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    return m; 
     }  } 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  /****************** free_imatrix *************************/
     if (fu <= fx) {  void free_imatrix(m,nrl,nrh,ncl,nch)
       if (u >= x) a=x; else b=x;        int **m;
       SHFT(v,w,x,u)        long nch,ncl,nrh,nrl; 
         SHFT(fv,fw,fx,fu)       /* free an int matrix allocated by imatrix() */ 
         } else {  { 
           if (u < x) a=u; else b=u;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           if (fu <= fw || w == x) {    free((FREE_ARG) (m+nrl-NR_END)); 
             v=w;  } 
             w=u;  
             fv=fw;  /******************* matrix *******************************/
             fw=fu;  double **matrix(long nrl, long nrh, long ncl, long nch)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             fv=fu;    double **m;
           }  
         }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
   nrerror("Too many iterations in brent");    m += NR_END;
   *xmin=x;    m -= nrl;
   return fx;  
 }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /****************** mnbrak ***********************/    m[nrl] += NR_END;
     m[nrl] -= ncl;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {    return m;
   double ulim,u,r,q, dum;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double fu;     */
    }
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  /*************************free matrix ************************/
   if (*fb > *fa) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     SHFT(dum,*ax,*bx,dum)  {
       SHFT(dum,*fb,*fa,dum)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
   *cx=(*bx)+GOLD*(*bx-*ax);  }
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  /******************* ma3x *******************************/
     r=(*bx-*ax)*(*fb-*fc);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     q=(*bx-*cx)*(*fb-*fa);  {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    double ***m;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()");
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m += NR_END;
       fu=(*func)(u);    m -= nrl;
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           SHFT(*fb,*fc,fu,(*func)(u))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           }    m[nrl] += NR_END;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m[nrl] -= ncl;
       u=ulim;  
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
     SHFT(*ax,*bx,*cx,u)    m[nrl][ncl] -= nll;
       SHFT(*fa,*fb,*fc,fu)    for (j=ncl+1; j<=nch; j++) 
       }      m[nrl][j]=m[nrl][j-1]+nlay;
 }    
     for (i=nrl+1; i<=nrh; i++) {
 /*************** linmin ************************/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
 int ncom;        m[i][j]=m[i][j-1]+nlay;
 double *pcom,*xicom;    }
 double (*nrfunc)(double []);    return m; 
      /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 {    */
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  /*************************free ma3x ************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
               double *fc, double (*func)(double));  {
   int j;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   double xx,xmin,bx,ax;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double fx,fb,fa;    free((FREE_ARG)(m+nrl-NR_END));
    }
   ncom=n;  
   pcom=vector(1,n);  /*************** function subdirf ***********/
   xicom=vector(1,n);  char *subdirf(char fileres[])
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
     pcom[j]=p[j];    strcpy(tmpout,optionfilefiname);
     xicom[j]=xi[j];    strcat(tmpout,"/"); /* Add to the right */
   }    strcat(tmpout,fileres);
   ax=0.0;    return tmpout;
   xx=1.0;  }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /*************** function subdirf2 ***********/
 #ifdef DEBUG  char *subdirf2(char fileres[], char *preop)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    
 #endif    /* Caution optionfilefiname is hidden */
   for (j=1;j<=n;j++) {    strcpy(tmpout,optionfilefiname);
     xi[j] *= xmin;    strcat(tmpout,"/");
     p[j] += xi[j];    strcat(tmpout,preop);
   }    strcat(tmpout,fileres);
   free_vector(xicom,1,n);    return tmpout;
   free_vector(pcom,1,n);  }
 }  
   /*************** function subdirf3 ***********/
 /*************** powell ************************/  char *subdirf3(char fileres[], char *preop, char *preop2)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    
 {    /* Caution optionfilefiname is hidden */
   void linmin(double p[], double xi[], int n, double *fret,    strcpy(tmpout,optionfilefiname);
               double (*func)(double []));    strcat(tmpout,"/");
   int i,ibig,j;    strcat(tmpout,preop);
   double del,t,*pt,*ptt,*xit;    strcat(tmpout,preop2);
   double fp,fptt;    strcat(tmpout,fileres);
   double *xits;    return tmpout;
   pt=vector(1,n);  }
   ptt=vector(1,n);  
   xit=vector(1,n);  /***************** f1dim *************************/
   xits=vector(1,n);  extern int ncom; 
   *fret=(*func)(p);  extern double *pcom,*xicom;
   for (j=1;j<=n;j++) pt[j]=p[j];  extern double (*nrfunc)(double []); 
   for (*iter=1;;++(*iter)) {   
     fp=(*fret);  double f1dim(double x) 
     ibig=0;  { 
     del=0.0;    int j; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    double f;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    double *xt; 
     for (i=1;i<=n;i++)   
       printf(" %d %.12f",i, p[i]);    xt=vector(1,ncom); 
     fprintf(ficlog," %d %.12f",i, p[i]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     printf("\n");    f=(*nrfunc)(xt); 
     fprintf(ficlog,"\n");    free_vector(xt,1,ncom); 
     for (i=1;i<=n;i++) {    return f; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  } 
       fptt=(*fret);  
 #ifdef DEBUG  /*****************brent *************************/
       printf("fret=%lf \n",*fret);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       fprintf(ficlog,"fret=%lf \n",*fret);  { 
 #endif    int iter; 
       printf("%d",i);fflush(stdout);    double a,b,d,etemp;
       fprintf(ficlog,"%d",i);fflush(ficlog);    double fu,fv,fw,fx;
       linmin(p,xit,n,fret,func);    double ftemp;
       if (fabs(fptt-(*fret)) > del) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         del=fabs(fptt-(*fret));    double e=0.0; 
         ibig=i;   
       }    a=(ax < cx ? ax : cx); 
 #ifdef DEBUG    b=(ax > cx ? ax : cx); 
       printf("%d %.12e",i,(*fret));    x=w=v=bx; 
       fprintf(ficlog,"%d %.12e",i,(*fret));    fw=fv=fx=(*f)(x); 
       for (j=1;j<=n;j++) {    for (iter=1;iter<=ITMAX;iter++) { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      xm=0.5*(a+b); 
         printf(" x(%d)=%.12e",j,xit[j]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       }      printf(".");fflush(stdout);
       for(j=1;j<=n;j++) {      fprintf(ficlog,".");fflush(ficlog);
         printf(" p=%.12e",p[j]);  #ifdef DEBUG
         fprintf(ficlog," p=%.12e",p[j]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf("\n");      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       fprintf(ficlog,"\n");  #endif
 #endif      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        return fx; 
 #ifdef DEBUG      } 
       int k[2],l;      ftemp=fu;
       k[0]=1;      if (fabs(e) > tol1) { 
       k[1]=-1;        r=(x-w)*(fx-fv); 
       printf("Max: %.12e",(*func)(p));        q=(x-v)*(fx-fw); 
       fprintf(ficlog,"Max: %.12e",(*func)(p));        p=(x-v)*q-(x-w)*r; 
       for (j=1;j<=n;j++) {        q=2.0*(q-r); 
         printf(" %.12e",p[j]);        if (q > 0.0) p = -p; 
         fprintf(ficlog," %.12e",p[j]);        q=fabs(q); 
       }        etemp=e; 
       printf("\n");        e=d; 
       fprintf(ficlog,"\n");        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for(l=0;l<=1;l++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for (j=1;j<=n;j++) {        else { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];          d=p/q; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          u=x+d; 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          if (u-a < tol2 || b-u < tol2) 
         }            d=SIGN(tol1,xm-x); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        } 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
       free_vector(xit,1,n);      if (fu <= fx) { 
       free_vector(xits,1,n);        if (u >= x) a=x; else b=x; 
       free_vector(ptt,1,n);        SHFT(v,w,x,u) 
       free_vector(pt,1,n);          SHFT(fv,fw,fx,fu) 
       return;          } else { 
     }            if (u < x) a=u; else b=u; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");            if (fu <= fw || w == x) { 
     for (j=1;j<=n;j++) {              v=w; 
       ptt[j]=2.0*p[j]-pt[j];              w=u; 
       xit[j]=p[j]-pt[j];              fv=fw; 
       pt[j]=p[j];              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
     fptt=(*func)(ptt);              v=u; 
     if (fptt < fp) {              fv=fu; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);            } 
       if (t < 0.0) {          } 
         linmin(p,xit,n,fret,func);    } 
         for (j=1;j<=n;j++) {    nrerror("Too many iterations in brent"); 
           xi[j][ibig]=xi[j][n];    *xmin=x; 
           xi[j][n]=xit[j];    return fx; 
         }  } 
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /****************** mnbrak ***********************/
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
           printf(" %.12e",xit[j]);              double (*func)(double)) 
           fprintf(ficlog," %.12e",xit[j]);  { 
         }    double ulim,u,r,q, dum;
         printf("\n");    double fu; 
         fprintf(ficlog,"\n");   
 #endif    *fa=(*func)(*ax); 
       }    *fb=(*func)(*bx); 
     }    if (*fb > *fa) { 
   }      SHFT(dum,*ax,*bx,dum) 
 }        SHFT(dum,*fb,*fa,dum) 
         } 
 /**** Prevalence limit ****************/    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    while (*fb > *fc) { 
 {      r=(*bx-*ax)*(*fb-*fc); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      q=(*bx-*cx)*(*fb-*fa); 
      matrix by transitions matrix until convergence is reached */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   int i, ii,j,k;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double min, max, maxmin, maxmax,sumnew=0.;      if ((*bx-u)*(u-*cx) > 0.0) { 
   double **matprod2();        fu=(*func)(u); 
   double **out, cov[NCOVMAX], **pmij();      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double **newm;        fu=(*func)(u); 
   double agefin, delaymax=50 ; /* Max number of years to converge */        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   for (ii=1;ii<=nlstate+ndeath;ii++)            SHFT(*fb,*fc,fu,(*func)(u)) 
     for (j=1;j<=nlstate+ndeath;j++){            } 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
         fu=(*func)(u); 
    cov[1]=1.;      } else { 
          u=(*cx)+GOLD*(*cx-*bx); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fu=(*func)(u); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      } 
     newm=savm;      SHFT(*ax,*bx,*cx,u) 
     /* Covariates have to be included here again */        SHFT(*fa,*fb,*fc,fu) 
      cov[2]=agefin;        } 
    } 
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*************** linmin ************************/
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  int ncom; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  double *pcom,*xicom;
       for (k=1; k<=cptcovprod;k++)  double (*nrfunc)(double []); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  { 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double brent(double ax, double bx, double cx, 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/                 double (*f)(double), double tol, double *xmin); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     savm=oldm;                double *fc, double (*func)(double)); 
     oldm=newm;    int j; 
     maxmax=0.;    double xx,xmin,bx,ax; 
     for(j=1;j<=nlstate;j++){    double fx,fb,fa;
       min=1.;   
       max=0.;    ncom=n; 
       for(i=1; i<=nlstate; i++) {    pcom=vector(1,n); 
         sumnew=0;    xicom=vector(1,n); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    nrfunc=func; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    for (j=1;j<=n;j++) { 
         max=FMAX(max,prlim[i][j]);      pcom[j]=p[j]; 
         min=FMIN(min,prlim[i][j]);      xicom[j]=xi[j]; 
       }    } 
       maxmin=max-min;    ax=0.0; 
       maxmax=FMAX(maxmax,maxmin);    xx=1.0; 
     }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     if(maxmax < ftolpl){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       return prlim;  #ifdef DEBUG
     }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }  #endif
     for (j=1;j<=n;j++) { 
 /*************** transition probabilities ***************/      xi[j] *= xmin; 
       p[j] += xi[j]; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    } 
 {    free_vector(xicom,1,n); 
   double s1, s2;    free_vector(pcom,1,n); 
   /*double t34;*/  } 
   int i,j,j1, nc, ii, jj;  
   char *asc_diff_time(long time_sec, char ascdiff[])
     for(i=1; i<= nlstate; i++){  {
     for(j=1; j<i;j++){    long sec_left, days, hours, minutes;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    days = (time_sec) / (60*60*24);
         /*s2 += param[i][j][nc]*cov[nc];*/    sec_left = (time_sec) % (60*60*24);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    hours = (sec_left) / (60*60) ;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    sec_left = (sec_left) %(60*60);
       }    minutes = (sec_left) /60;
       ps[i][j]=s2;    sec_left = (sec_left) % (60);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     }    return ascdiff;
     for(j=i+1; j<=nlstate+ndeath;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*************** powell ************************/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       }              double (*func)(double [])) 
       ps[i][j]=s2;  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
   }                double (*func)(double [])); 
     /*ps[3][2]=1;*/    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   for(i=1; i<= nlstate; i++){    double fp,fptt;
      s1=0;    double *xits;
     for(j=1; j<i; j++)    int niterf, itmp;
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)    pt=vector(1,n); 
       s1+=exp(ps[i][j]);    ptt=vector(1,n); 
     ps[i][i]=1./(s1+1.);    xit=vector(1,n); 
     for(j=1; j<i; j++)    xits=vector(1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fret=(*func)(p); 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (*iter=1;;++(*iter)) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      fp=(*fret); 
   } /* end i */      ibig=0; 
       del=0.0; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      last_time=curr_time;
     for(jj=1; jj<= nlstate+ndeath; jj++){      (void) gettimeofday(&curr_time,&tzp);
       ps[ii][jj]=0;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       ps[ii][ii]=1;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   }      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        fprintf(ficrespow," %.12lf", p[i]);
     for(jj=1; jj<= nlstate+ndeath; jj++){      }
      printf("%lf ",ps[ii][jj]);      printf("\n");
    }      fprintf(ficlog,"\n");
     printf("\n ");      fprintf(ficrespow,"\n");fflush(ficrespow);
     }      if(*iter <=3){
     printf("\n ");printf("%lf ",cov[2]);*/        tm = *localtime(&curr_time.tv_sec);
 /*        strcpy(strcurr,asctime(&tmf));
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /*       asctime_r(&tm,strcurr); */
   goto end;*/        forecast_time=curr_time;
     return ps;        itmp = strlen(strcurr);
 }        if(strcurr[itmp-1]=='\n')
           strcurr[itmp-1]='\0';
 /**************** Product of 2 matrices ******************/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        for(niterf=10;niterf<=30;niterf+=10){
 {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          tmf = *localtime(&forecast_time.tv_sec);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /*      asctime_r(&tmf,strfor); */
   /* in, b, out are matrice of pointers which should have been initialized          strcpy(strfor,asctime(&tmf));
      before: only the contents of out is modified. The function returns          itmp = strlen(strfor);
      a pointer to pointers identical to out */          if(strfor[itmp-1]=='\n')
   long i, j, k;          strfor[itmp-1]='\0';
   for(i=nrl; i<= nrh; i++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for(k=ncolol; k<=ncoloh; k++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        }
         out[i][k] +=in[i][j]*b[j][k];      }
       for (i=1;i<=n;i++) { 
   return out;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 }        fptt=(*fret); 
   #ifdef DEBUG
         printf("fret=%lf \n",*fret);
 /************* Higher Matrix Product ***************/        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        printf("%d",i);fflush(stdout);
 {        fprintf(ficlog,"%d",i);fflush(ficlog);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        linmin(p,xit,n,fret,func); 
      duration (i.e. until        if (fabs(fptt-(*fret)) > del) { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          del=fabs(fptt-(*fret)); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          ibig=i; 
      (typically every 2 years instead of every month which is too big).        } 
      Model is determined by parameters x and covariates have to be  #ifdef DEBUG
      included manually here.        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
      */        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   int i, j, d, h, k;          printf(" x(%d)=%.12e",j,xit[j]);
   double **out, cov[NCOVMAX];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double **newm;        }
         for(j=1;j<=n;j++) {
   /* Hstepm could be zero and should return the unit matrix */          printf(" p=%.12e",p[j]);
   for (i=1;i<=nlstate+ndeath;i++)          fprintf(ficlog," p=%.12e",p[j]);
     for (j=1;j<=nlstate+ndeath;j++){        }
       oldm[i][j]=(i==j ? 1.0 : 0.0);        printf("\n");
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fprintf(ficlog,"\n");
     }  #endif
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } 
   for(h=1; h <=nhstepm; h++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for(d=1; d <=hstepm; d++){  #ifdef DEBUG
       newm=savm;        int k[2],l;
       /* Covariates have to be included here again */        k[0]=1;
       cov[1]=1.;        k[1]=-1;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        printf("Max: %.12e",(*func)(p));
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (k=1; k<=cptcovage;k++)        for (j=1;j<=n;j++) {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          printf(" %.12e",p[j]);
       for (k=1; k<=cptcovprod;k++)          fprintf(ficlog," %.12e",p[j]);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        }
         printf("\n");
         fprintf(ficlog,"\n");
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for(l=0;l<=1;l++) {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          for (j=1;j<=n;j++) {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                    pmij(pmmij,cov,ncovmodel,x,nlstate));            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       savm=oldm;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       oldm=newm;          }
     }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(i=1; i<=nlstate+ndeath; i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for(j=1;j<=nlstate+ndeath;j++) {        }
         po[i][j][h]=newm[i][j];  #endif
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  
       }        free_vector(xit,1,n); 
   } /* end h */        free_vector(xits,1,n); 
   return po;        free_vector(ptt,1,n); 
 }        free_vector(pt,1,n); 
         return; 
       } 
 /*************** log-likelihood *************/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 double func( double *x)      for (j=1;j<=n;j++) { 
 {        ptt[j]=2.0*p[j]-pt[j]; 
   int i, ii, j, k, mi, d, kk;        xit[j]=p[j]-pt[j]; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        pt[j]=p[j]; 
   double **out;      } 
   double sw; /* Sum of weights */      fptt=(*func)(ptt); 
   double lli; /* Individual log likelihood */      if (fptt < fp) { 
   long ipmx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   /*extern weight */        if (t < 0.0) { 
   /* We are differentiating ll according to initial status */          linmin(p,xit,n,fret,func); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          for (j=1;j<=n;j++) { 
   /*for(i=1;i<imx;i++)            xi[j][ibig]=xi[j][n]; 
     printf(" %d\n",s[4][i]);            xi[j][n]=xit[j]; 
   */          }
   cov[1]=1.;  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(k=1; k<=nlstate; k++) ll[k]=0.;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          for(j=1;j<=n;j++){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            printf(" %.12e",xit[j]);
     for(mi=1; mi<= wav[i]-1; mi++){            fprintf(ficlog," %.12e",xit[j]);
       for (ii=1;ii<=nlstate+ndeath;ii++)          }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf("\n");
       for(d=0; d<dh[mi][i]; d++){          fprintf(ficlog,"\n");
         newm=savm;  #endif
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        }
         for (kk=1; kk<=cptcovage;kk++) {      } 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    } 
         }  } 
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /**** Prevalence limit (stable prevalence)  ****************/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         oldm=newm;  {
            /* Computes the prevalence limit in each live state at age x by left multiplying the unit
               matrix by transitions matrix until convergence is reached */
       } /* end mult */  
          int i, ii,j,k;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double min, max, maxmin, maxmax,sumnew=0.;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    double **matprod2();
       ipmx +=1;    double **out, cov[NCOVMAX], **pmij();
       sw += weight[i];    double **newm;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double agefin, delaymax=50 ; /* Max number of years to converge */
     } /* end of wave */  
   } /* end of individual */    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;     cov[1]=1.;
 }   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 /*********** Maximum Likelihood Estimation ***************/      newm=savm;
       /* Covariates have to be included here again */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       cov[2]=agefin;
 {    
   int i,j, iter;        for (k=1; k<=cptcovn;k++) {
   double **xi,*delti;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double fret;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   xi=matrix(1,npar,1,npar);        }
   for (i=1;i<=npar;i++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (j=1;j<=npar;j++)        for (k=1; k<=cptcovprod;k++)
       xi[i][j]=(i==j ? 1.0 : 0.0);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
       savm=oldm;
 }      oldm=newm;
       maxmax=0.;
 /**** Computes Hessian and covariance matrix ***/      for(j=1;j<=nlstate;j++){
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        min=1.;
 {        max=0.;
   double  **a,**y,*x,pd;        for(i=1; i<=nlstate; i++) {
   double **hess;          sumnew=0;
   int i, j,jk;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   int *indx;          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   double hessii(double p[], double delta, int theta, double delti[]);          min=FMIN(min,prlim[i][j]);
   double hessij(double p[], double delti[], int i, int j);        }
   void lubksb(double **a, int npar, int *indx, double b[]) ;        maxmin=max-min;
   void ludcmp(double **a, int npar, int *indx, double *d) ;        maxmax=FMAX(maxmax,maxmin);
       }
   hess=matrix(1,npar,1,npar);      if(maxmax < ftolpl){
         return prlim;
   printf("\nCalculation of the hessian matrix. Wait...\n");      }
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    }
   for (i=1;i<=npar;i++){  }
     printf("%d",i);fflush(stdout);  
     fprintf(ficlog,"%d",i);fflush(ficlog);  /*************** transition probabilities ***************/ 
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     /*printf(" %lf ",hess[i][i]);*/  {
   }    double s1, s2;
      /*double t34;*/
   for (i=1;i<=npar;i++) {    int i,j,j1, nc, ii, jj;
     for (j=1;j<=npar;j++)  {  
       if (j>i) {      for(i=1; i<= nlstate; i++){
         printf(".%d%d",i,j);fflush(stdout);      for(j=1; j<i;j++){
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         hess[i][j]=hessij(p,delti,i,j);          /*s2 += param[i][j][nc]*cov[nc];*/
         hess[j][i]=hess[i][j];              s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         /*printf(" %lf ",hess[i][j]);*/          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       }        }
     }        ps[i][j]=s2;
   }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   printf("\n");      }
   fprintf(ficlog,"\n");      for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
          }
   a=matrix(1,npar,1,npar);        ps[i][j]=s2;
   y=matrix(1,npar,1,npar);      }
   x=vector(1,npar);    }
   indx=ivector(1,npar);      /*ps[3][2]=1;*/
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    for(i=1; i<= nlstate; i++){
   ludcmp(a,npar,indx,&pd);       s1=0;
       for(j=1; j<i; j++)
   for (j=1;j<=npar;j++) {        s1+=exp(ps[i][j]);
     for (i=1;i<=npar;i++) x[i]=0;      for(j=i+1; j<=nlstate+ndeath; j++)
     x[j]=1;        s1+=exp(ps[i][j]);
     lubksb(a,npar,indx,x);      ps[i][i]=1./(s1+1.);
     for (i=1;i<=npar;i++){      for(j=1; j<i; j++)
       matcov[i][j]=x[i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
     }      for(j=i+1; j<=nlstate+ndeath; j++)
   }        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   printf("\n#Hessian matrix#\n");    } /* end i */
   fprintf(ficlog,"\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (j=1;j<=npar;j++) {      for(jj=1; jj<= nlstate+ndeath; jj++){
       printf("%.3e ",hess[i][j]);        ps[ii][jj]=0;
       fprintf(ficlog,"%.3e ",hess[i][j]);        ps[ii][ii]=1;
     }      }
     printf("\n");    }
     fprintf(ficlog,"\n");  
   }  
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   /* Recompute Inverse */      for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1;i<=npar;i++)       printf("%lf ",ps[ii][jj]);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];     }
   ludcmp(a,npar,indx,&pd);      printf("\n ");
       }
   /*  printf("\n#Hessian matrix recomputed#\n");      printf("\n ");printf("%lf ",cov[2]);*/
   /*
   for (j=1;j<=npar;j++) {    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for (i=1;i<=npar;i++) x[i]=0;    goto end;*/
     x[j]=1;      return ps;
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  /**************** Product of 2 matrices ******************/
       printf("%.3e ",y[i][j]);  
       fprintf(ficlog,"%.3e ",y[i][j]);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     }  {
     printf("\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     fprintf(ficlog,"\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
   */       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   free_matrix(a,1,npar,1,npar);    long i, j, k;
   free_matrix(y,1,npar,1,npar);    for(i=nrl; i<= nrh; i++)
   free_vector(x,1,npar);      for(k=ncolol; k<=ncoloh; k++)
   free_ivector(indx,1,npar);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   free_matrix(hess,1,npar,1,npar);          out[i][k] +=in[i][j]*b[j][k];
   
     return out;
 }  }
   
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  /************* Higher Matrix Product ***************/
 {  
   int i;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   int l=1, lmax=20;  {
   double k1,k2;    /* Computes the transition matrix starting at age 'age' over 
   double p2[NPARMAX+1];       'nhstepm*hstepm*stepm' months (i.e. until
   double res;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;       nhstepm*hstepm matrices. 
   double fx;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   int k=0,kmax=10;       (typically every 2 years instead of every month which is too big 
   double l1;       for the memory).
        Model is determined by parameters x and covariates have to be 
   fx=func(x);       included manually here. 
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){       */
     l1=pow(10,l);  
     delts=delt;    int i, j, d, h, k;
     for(k=1 ; k <kmax; k=k+1){    double **out, cov[NCOVMAX];
       delt = delta*(l1*k);    double **newm;
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;    /* Hstepm could be zero and should return the unit matrix */
       p2[theta]=x[theta]-delt;    for (i=1;i<=nlstate+ndeath;i++)
       k2=func(p2)-fx;      for (j=1;j<=nlstate+ndeath;j++){
       /*res= (k1-2.0*fx+k2)/delt/delt; */        oldm[i][j]=(i==j ? 1.0 : 0.0);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        po[i][j][0]=(i==j ? 1.0 : 0.0);
            }
 #ifdef DEBUG    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for(h=1; h <=nhstepm; h++){
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for(d=1; d <=hstepm; d++){
 #endif        newm=savm;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        /* Covariates have to be included here again */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        cov[1]=1.;
         k=kmax;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for (k=1; k<=cptcovage;k++)
         k=kmax; l=lmax*10.;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         delts=delt;  
       }  
     }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   delti[theta]=delts;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   return res;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
          savm=oldm;
 }        oldm=newm;
       }
 double hessij( double x[], double delti[], int thetai,int thetaj)      for(i=1; i<=nlstate+ndeath; i++)
 {        for(j=1;j<=nlstate+ndeath;j++) {
   int i;          po[i][j][h]=newm[i][j];
   int l=1, l1, lmax=20;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   double k1,k2,k3,k4,res,fx;           */
   double p2[NPARMAX+1];        }
   int k;    } /* end h */
     return po;
   fx=func(x);  }
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*************** log-likelihood *************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double func( double *x)
     k1=func(p2)-fx;  {
      int i, ii, j, k, mi, d, kk;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **out;
     k2=func(p2)-fx;    double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
     p2[thetai]=x[thetai]-delti[thetai]/k;    int s1, s2;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double bbh, survp;
     k3=func(p2)-fx;    long ipmx;
      /*extern weight */
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* We are differentiating ll according to initial status */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     k4=func(p2)-fx;    /*for(i=1;i<imx;i++) 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      printf(" %d\n",s[4][i]);
 #ifdef DEBUG    */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    cov[1]=1.;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
   return res;    if(mle==1){
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************** Inverse of matrix **************/        for(mi=1; mi<= wav[i]-1; mi++){
 void ludcmp(double **a, int n, int *indx, double *d)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int i,imax,j,k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double big,dum,sum,temp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *vv;            }
            for(d=0; d<dh[mi][i]; d++){
   vv=vector(1,n);            newm=savm;
   *d=1.0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=1;i<=n;i++) {            for (kk=1; kk<=cptcovage;kk++) {
     big=0.0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (j=1;j<=n;j++)            }
       if ((temp=fabs(a[i][j])) > big) big=temp;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     vv[i]=1.0/big;            savm=oldm;
   }            oldm=newm;
   for (j=1;j<=n;j++) {          } /* end mult */
     for (i=1;i<j;i++) {        
       sum=a[i][j];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          /* But now since version 0.9 we anticipate for bias and large stepm.
       a[i][j]=sum;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }           * (in months) between two waves is not a multiple of stepm, we rounded to 
     big=0.0;           * the nearest (and in case of equal distance, to the lowest) interval but now
     for (i=j;i<=n;i++) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       sum=a[i][j];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       for (k=1;k<j;k++)           * probability in order to take into account the bias as a fraction of the way
         sum -= a[i][k]*a[k][j];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       a[i][j]=sum;           * -stepm/2 to stepm/2 .
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * For stepm=1 the results are the same as for previous versions of Imach.
         big=dum;           * For stepm > 1 the results are less biased than in previous versions. 
         imax=i;           */
       }          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
     if (j != imax) {          bbh=(double)bh[mi][i]/(double)stepm; 
       for (k=1;k<=n;k++) {          /* bias is positive if real duration
         dum=a[imax][k];           * is higher than the multiple of stepm and negative otherwise.
         a[imax][k]=a[j][k];           */
         a[j][k]=dum;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       }          if( s2 > nlstate){ 
       *d = -(*d);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       vv[imax]=vv[j];               to the likelihood is the probability to die between last step unit time and current 
     }               step unit time, which is also the differences between probability to die before dh 
     indx[j]=imax;               and probability to die before dh-stepm . 
     if (a[j][j] == 0.0) a[j][j]=TINY;               In version up to 0.92 likelihood was computed
     if (j != n) {          as if date of death was unknown. Death was treated as any other
       dum=1.0/(a[j][j]);          health state: the date of the interview describes the actual state
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          and not the date of a change in health state. The former idea was
     }          to consider that at each interview the state was recorded
   }          (healthy, disable or death) and IMaCh was corrected; but when we
   free_vector(vv,1,n);  /* Doesn't work */          introduced the exact date of death then we should have modified
 ;          the contribution of an exact death to the likelihood. This new
 }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
 void lubksb(double **a, int n, int *indx, double b[])          and month of death but the probability to survive from last
 {          interview up to one month before death multiplied by the
   int i,ii=0,ip,j;          probability to die within a month. Thanks to Chris
   double sum;          Jackson for correcting this bug.  Former versions increased
            mortality artificially. The bad side is that we add another loop
   for (i=1;i<=n;i++) {          which slows down the processing. The difference can be up to 10%
     ip=indx[i];          lower mortality.
     sum=b[ip];            */
     b[ip]=b[i];            lli=log(out[s1][s2] - savm[s1][s2]);
     if (ii)          }else{
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     else if (sum) ii=i;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     b[i]=sum;          } 
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   for (i=n;i>=1;i--) {          /*if(lli ==000.0)*/
     sum=b[i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          ipmx +=1;
     b[i]=sum/a[i][i];          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 /************ Frequencies ********************/    }  else if(mle==2){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {  /* Some frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int first;            for (j=1;j<=nlstate+ndeath;j++){
   double ***freq; /* Frequencies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *pp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos, k2, dateintsum=0,k2cpt=0;            }
   FILE *ficresp;          for(d=0; d<=dh[mi][i]; d++){
   char fileresp[FILENAMELENGTH];            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   pp=vector(1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   strcpy(fileresp,"p");            }
   strcat(fileresp,fileres);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if((ficresp=fopen(fileresp,"w"))==NULL) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("Problem with prevalence resultfile: %s\n", fileresp);            savm=oldm;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            oldm=newm;
     exit(0);          } /* end mult */
   }        
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          s1=s[mw[mi][i]][i];
   j1=0;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   j=cptcoveff;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ipmx +=1;
           sw += weight[i];
   first=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   for(k1=1; k1<=j;k1++){      } /* end of individual */
     for(i1=1; i1<=ncodemax[k1];i1++){    }  else if(mle==3){  /* exponential inter-extrapolation */
       j1++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         scanf("%d", i);*/        for(mi=1; mi<= wav[i]-1; mi++){
       for (i=-1; i<=nlstate+ndeath; i++)            for (ii=1;ii<=nlstate+ndeath;ii++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)              for (j=1;j<=nlstate+ndeath;j++){
           for(m=agemin; m <= agemax+3; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             freq[i][jk][m]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
       dateintsum=0;          for(d=0; d<dh[mi][i]; d++){
       k2cpt=0;            newm=savm;
       for (i=1; i<=imx; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         bool=1;            for (kk=1; kk<=cptcovage;kk++) {
         if  (cptcovn>0) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for (z1=1; z1<=cptcoveff; z1++)            }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               bool=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         if (bool==1) {            oldm=newm;
           for(m=firstpass; m<=lastpass; m++){          } /* end mult */
             k2=anint[m][i]+(mint[m][i]/12.);        
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          s1=s[mw[mi][i]][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          s2=s[mw[mi+1][i]][i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;          bbh=(double)bh[mi][i]/(double)stepm; 
               if (m<lastpass) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ipmx +=1;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          sw += weight[i];
               }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                      } /* end of wave */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      } /* end of individual */
                 dateintsum=dateintsum+k2;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
                 k2cpt++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            }
           for(d=0; d<dh[mi][i]; d++){
       if  (cptcovn>0) {            newm=savm;
         fprintf(ficresp, "\n#********** Variable ");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficresp, "**********\n#");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       for(i=1; i<=nlstate;i++)          
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresp, "\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){            oldm=newm;
         if(i==(int)agemax+3){          } /* end mult */
           fprintf(ficlog,"Total");        
         }else{          s1=s[mw[mi][i]][i];
           if(first==1){          s2=s[mw[mi+1][i]][i];
             first=0;          if( s2 > nlstate){ 
             printf("See log file for details...\n");            lli=log(out[s1][s2] - savm[s1][s2]);
           }          }else{
           fprintf(ficlog,"Age %d", i);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          sw += weight[i];
             pp[jk] += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for(jk=1; jk <=nlstate ; jk++){        } /* end of wave */
           for(m=-1, pos=0; m <=0 ; m++)      } /* end of individual */
             pos += freq[jk][m][i];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           if(pp[jk]>=1.e-10){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(first==1){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for(mi=1; mi<= wav[i]-1; mi++){
             }          for (ii=1;ii<=nlstate+ndeath;ii++)
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            for (j=1;j<=nlstate+ndeath;j++){
           }else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(first==1)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            }
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            }
             pp[jk] += freq[jk][m][i];          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1,pos=0; jk <=nlstate ; jk++)            savm=oldm;
           pos += pp[jk];            oldm=newm;
         for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
           if(pos>=1.e-5){        
             if(first==1)          s1=s[mw[mi][i]][i];
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          s2=s[mw[mi+1][i]][i];
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }else{          ipmx +=1;
             if(first==1)          sw += weight[i];
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           }        } /* end of wave */
           if( i <= (int) agemax){      } /* end of individual */
             if(pos>=1.e-5){    } /* End of if */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               probs[i][jk][j1]= pp[jk]/pos;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             }    return -l;
             else  }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }  /*************** log-likelihood *************/
         }  double funcone( double *x)
          {
         for(jk=-1; jk <=nlstate+ndeath; jk++)    /* Same as likeli but slower because of a lot of printf and if */
           for(m=-1; m <=nlstate+ndeath; m++)    int i, ii, j, k, mi, d, kk;
             if(freq[jk][m][i] !=0 ) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             if(first==1)    double **out;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double lli; /* Individual log likelihood */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    double llt;
             }    int s1, s2;
         if(i <= (int) agemax)    double bbh, survp;
           fprintf(ficresp,"\n");    /*extern weight */
         if(first==1)    /* We are differentiating ll according to initial status */
           printf("Others in log...\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         fprintf(ficlog,"\n");    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
     }    */
   }    cov[1]=1.;
   dateintmean=dateintsum/k2cpt;  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_vector(pp,1,nlstate);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
   /* End of Freq */        for (ii=1;ii<=nlstate+ndeath;ii++)
 }          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Prevalence ********************/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          }
 {  /* Some frequencies */        for(d=0; d<dh[mi][i]; d++){
            newm=savm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double ***freq; /* Frequencies */          for (kk=1; kk<=cptcovage;kk++) {
   double *pp;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double pos, k2;          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   pp=vector(1,nlstate);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          savm=oldm;
            oldm=newm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        } /* end mult */
   j1=0;        
          s1=s[mw[mi][i]][i];
   j=cptcoveff;        s2=s[mw[mi+1][i]][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        bbh=(double)bh[mi][i]/(double)stepm; 
          /* bias is positive if real duration
   for(k1=1; k1<=j;k1++){         * is higher than the multiple of stepm and negative otherwise.
     for(i1=1; i1<=ncodemax[k1];i1++){         */
       j1++;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
                lli=log(out[s1][s2] - savm[s1][s2]);
       for (i=-1; i<=nlstate+ndeath; i++)          } else if (mle==1){
         for (jk=-1; jk<=nlstate+ndeath; jk++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for(m=agemin; m <= agemax+3; m++)        } else if(mle==2){
             freq[i][jk][m]=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
              } else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1; i<=imx; i++) {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         bool=1;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         if  (cptcovn>0) {          lli=log(out[s1][s2]); /* Original formula */
           for (z1=1; z1<=cptcoveff; z1++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          lli=log(out[s1][s2]); /* Original formula */
               bool=0;        } /* End of if */
         }        ipmx +=1;
         if (bool==1) {        sw += weight[i];
           for(m=firstpass; m<=lastpass; m++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             k2=anint[m][i]+(mint[m][i]/12.);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        if(globpr){
               if(agev[m][i]==0) agev[m][i]=agemax+1;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
               if(agev[m][i]==1) agev[m][i]=agemax+2;   %10.6f %10.6f %10.6f ", \
               if (m<lastpass) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                 if (calagedate>0)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                 else            llt +=ll[k]*gipmx/gsw;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          }
               }          fprintf(ficresilk," %10.6f\n", -llt);
             }        }
           }      } /* end of wave */
         }    } /* end of individual */
       }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(jk=1; jk <=nlstate ; jk++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    if(globpr==0){ /* First time we count the contributions and weights */
             pp[jk] += freq[jk][m][i];      gipmx=ipmx;
         }      gsw=sw;
         for(jk=1; jk <=nlstate ; jk++){    }
           for(m=-1, pos=0; m <=0 ; m++)    return -l;
             pos += freq[jk][m][i];  }
         }  
          
         for(jk=1; jk <=nlstate ; jk++){  /*************** function likelione ***********/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
             pp[jk] += freq[jk][m][i];  {
         }    /* This routine should help understanding what is done with 
               the selection of individuals/waves and
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];       to check the exact contribution to the likelihood.
               Plotting could be done.
         for(jk=1; jk <=nlstate ; jk++){         */
           if( i <= (int) agemax){    int k;
             if(pos>=1.e-5){  
               probs[i][jk][j1]= pp[jk]/pos;    if(*globpri !=0){ /* Just counts and sums, no printings */
             }      strcpy(fileresilk,"ilk"); 
           }      strcat(fileresilk,fileres);
         }/* end jk */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       }/* end i */        printf("Problem with resultfile: %s\n", fileresilk);
     } /* end i1 */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   } /* end k1 */      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
        fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   free_vector(pp,1,nlstate);      for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 }  /* End of Freq */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
 /************* Waves Concatenation ***************/  
     *fretone=(*funcone)(p);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    if(*globpri !=0){
 {      fclose(ficresilk);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      Death is a valid wave (if date is known).      fflush(fichtm); 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    } 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    return;
      and mw[mi+1][i]. dh depends on stepm.  }
      */  
   
   int i, mi, m;  /*********** Maximum Likelihood Estimation ***************/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   int first;  {
   int j, k=0,jk, ju, jl;    int i,j, iter;
   double sum=0.;    double **xi;
   first=0;    double fret;
   jmin=1e+5;    double fretone; /* Only one call to likelihood */
   jmax=-1;    char filerespow[FILENAMELENGTH];
   jmean=0.;    xi=matrix(1,npar,1,npar);
   for(i=1; i<=imx; i++){    for (i=1;i<=npar;i++)
     mi=0;      for (j=1;j<=npar;j++)
     m=firstpass;        xi[i][j]=(i==j ? 1.0 : 0.0);
     while(s[m][i] <= nlstate){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       if(s[m][i]>=1)    strcpy(filerespow,"pow"); 
         mw[++mi][i]=m;    strcat(filerespow,fileres);
       if(m >=lastpass)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         break;      printf("Problem with resultfile: %s\n", filerespow);
       else      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         m++;    }
     }/* end while */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     if (s[m][i] > nlstate){    for (i=1;i<=nlstate;i++)
       mi++;     /* Death is another wave */      for(j=1;j<=nlstate+ndeath;j++)
       /* if(mi==0)  never been interviewed correctly before death */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
          /* Only death is a correct wave */    fprintf(ficrespow,"\n");
       mw[mi][i]=m;  
     }    powell(p,xi,npar,ftol,&iter,&fret,func);
   
     wav[i]=mi;    fclose(ficrespow);
     if(mi==0){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       if(first==0){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         first=1;  
       }  }
       if(first==1){  
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);  /**** Computes Hessian and covariance matrix ***/
       }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     } /* end mi==0 */  {
   }    double  **a,**y,*x,pd;
     double **hess;
   for(i=1; i<=imx; i++){    int i, j,jk;
     for(mi=1; mi<wav[i];mi++){    int *indx;
       if (stepm <=0)  
         dh[mi][i]=1;    double hessii(double p[], double delta, int theta, double delti[]);
       else{    double hessij(double p[], double delti[], int i, int j);
         if (s[mw[mi+1][i]][i] > nlstate) {    void lubksb(double **a, int npar, int *indx, double b[]) ;
           if (agedc[i] < 2*AGESUP) {    void ludcmp(double **a, int npar, int *indx, double *d) ;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */    hess=matrix(1,npar,1,npar);
           k=k+1;  
           if (j >= jmax) jmax=j;    printf("\nCalculation of the hessian matrix. Wait...\n");
           if (j <= jmin) jmin=j;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           sum=sum+j;    for (i=1;i<=npar;i++){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      printf("%d",i);fflush(stdout);
           }      fprintf(ficlog,"%d",i);fflush(ficlog);
         }      hess[i][i]=hessii(p,ftolhess,i,delti);
         else{      /*printf(" %f ",p[i]);*/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      /*printf(" %lf ",hess[i][i]);*/
           k=k+1;    }
           if (j >= jmax) jmax=j;    
           else if (j <= jmin)jmin=j;    for (i=1;i<=npar;i++) {
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      for (j=1;j<=npar;j++)  {
           sum=sum+j;        if (j>i) { 
         }          printf(".%d%d",i,j);fflush(stdout);
         jk= j/stepm;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         jl= j -jk*stepm;          hess[i][j]=hessij(p,delti,i,j);
         ju= j -(jk+1)*stepm;          hess[j][i]=hess[i][j];    
         if(jl <= -ju)          /*printf(" %lf ",hess[i][j]);*/
           dh[mi][i]=jk;        }
         else      }
           dh[mi][i]=jk+1;    }
         if(dh[mi][i]==0)    printf("\n");
           dh[mi][i]=1; /* At least one step */    fprintf(ficlog,"\n");
       }  
     }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   jmean=sum/k;    
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    a=matrix(1,npar,1,npar);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    y=matrix(1,npar,1,npar);
  }    x=vector(1,npar);
     indx=ivector(1,npar);
 /*********** Tricode ****************************/    for (i=1;i<=npar;i++)
 void tricode(int *Tvar, int **nbcode, int imx)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 {    ludcmp(a,npar,indx,&pd);
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;    for (j=1;j<=npar;j++) {
   cptcoveff=0;      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   for (k=0; k<19; k++) Ndum[k]=0;      lubksb(a,npar,indx,x);
   for (k=1; k<=7; k++) ncodemax[k]=0;      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      }
     for (i=1; i<=imx; i++) {    }
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;    printf("\n#Hessian matrix#\n");
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    fprintf(ficlog,"\n#Hessian matrix#\n");
       if (ij > cptcode) cptcode=ij;    for (i=1;i<=npar;i++) { 
     }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
     for (i=0; i<=cptcode; i++) {        fprintf(ficlog,"%.3e ",hess[i][j]);
       if(Ndum[i]!=0) ncodemax[j]++;      }
     }      printf("\n");
     ij=1;      fprintf(ficlog,"\n");
     }
   
     for (i=1; i<=ncodemax[j]; i++) {    /* Recompute Inverse */
       for (k=0; k<=19; k++) {    for (i=1;i<=npar;i++)
         if (Ndum[k] != 0) {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           nbcode[Tvar[j]][ij]=k;    ludcmp(a,npar,indx,&pd);
            
           ij++;    /*  printf("\n#Hessian matrix recomputed#\n");
         }  
         if (ij > ncodemax[j]) break;    for (j=1;j<=npar;j++) {
       }        for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
   }        lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
  for (k=0; k<19; k++) Ndum[k]=0;        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
  for (i=1; i<=ncovmodel-2; i++) {        fprintf(ficlog,"%.3e ",y[i][j]);
    ij=Tvar[i];      }
    Ndum[ij]++;      printf("\n");
  }      fprintf(ficlog,"\n");
     }
  ij=1;    */
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){    free_matrix(a,1,npar,1,npar);
      Tvaraff[ij]=i;    free_matrix(y,1,npar,1,npar);
      ij++;    free_vector(x,1,npar);
    }    free_ivector(indx,1,npar);
  }    free_matrix(hess,1,npar,1,npar);
    
  cptcoveff=ij-1;  
 }  }
   
 /*********** Health Expectancies ****************/  /*************** hessian matrix ****************/
   double hessii( double x[], double delta, int theta, double delti[])
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  {
     int i;
 {    int l=1, lmax=20;
   /* Health expectancies */    double k1,k2;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double p2[NPARMAX+1];
   double age, agelim, hf;    double res;
   double ***p3mat,***varhe;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double **dnewm,**doldm;    double fx;
   double *xp;    int k=0,kmax=10;
   double **gp, **gm;    double l1;
   double ***gradg, ***trgradg;  
   int theta;    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    for(l=0 ; l <=lmax; l++){
   xp=vector(1,npar);      l1=pow(10,l);
   dnewm=matrix(1,nlstate*2,1,npar);      delts=delt;
   doldm=matrix(1,nlstate*2,1,nlstate*2);      for(k=1 ; k <kmax; k=k+1){
          delt = delta*(l1*k);
   fprintf(ficreseij,"# Health expectancies\n");        p2[theta]=x[theta] +delt;
   fprintf(ficreseij,"# Age");        k1=func(p2)-fx;
   for(i=1; i<=nlstate;i++)        p2[theta]=x[theta]-delt;
     for(j=1; j<=nlstate;j++)        k2=func(p2)-fx;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   fprintf(ficreseij,"\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
   if(estepm < stepm){  #ifdef DEBUG
     printf ("Problem %d lower than %d\n",estepm, stepm);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   else  hstepm=estepm;    #endif
   /* We compute the life expectancy from trapezoids spaced every estepm months        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
    * This is mainly to measure the difference between two models: for example        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
    * if stepm=24 months pijx are given only every 2 years and by summing them          k=kmax;
    * we are calculating an estimate of the Life Expectancy assuming a linear        }
    * progression inbetween and thus overestimating or underestimating according        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
    * to the curvature of the survival function. If, for the same date, we          k=kmax; l=lmax*10.;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        }
    * to compare the new estimate of Life expectancy with the same linear        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
    * hypothesis. A more precise result, taking into account a more precise          delts=delt;
    * curvature will be obtained if estepm is as small as stepm. */        }
       }
   /* For example we decided to compute the life expectancy with the smallest unit */    }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    delti[theta]=delts;
      nhstepm is the number of hstepm from age to agelim    return res; 
      nstepm is the number of stepm from age to agelin.    
      Look at hpijx to understand the reason of that which relies in memory size  }
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  double hessij( double x[], double delti[], int thetai,int thetaj)
      survival function given by stepm (the optimization length). Unfortunately it  {
      means that if the survival funtion is printed only each two years of age and if    int i;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    int l=1, l1, lmax=20;
      results. So we changed our mind and took the option of the best precision.    double k1,k2,k3,k4,res,fx;
   */    double p2[NPARMAX+1];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int k;
   
   agelim=AGESUP;    fx=func(x);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (k=1; k<=2; k++) {
     /* nhstepm age range expressed in number of stepm */      for (i=1;i<=npar;i++) p2[i]=x[i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      p2[thetai]=x[thetai]+delti[thetai]/k;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     /* if (stepm >= YEARM) hstepm=1;*/      k1=func(p2)-fx;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetai]=x[thetai]+delti[thetai]/k;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     gp=matrix(0,nhstepm,1,nlstate*2);      k2=func(p2)-fx;
     gm=matrix(0,nhstepm,1,nlstate*2);    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      k3=func(p2)-fx;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      
        p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     /* Computing Variances of health expectancies */  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      for(theta=1; theta <=npar; theta++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=1; i<=npar; i++){  #endif
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
       }    return res;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }
    
       cptj=0;  /************** Inverse of matrix **************/
       for(j=1; j<= nlstate; j++){  void ludcmp(double **a, int n, int *indx, double *d) 
         for(i=1; i<=nlstate; i++){  { 
           cptj=cptj+1;    int i,imax,j,k; 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    double big,dum,sum,temp; 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double *vv; 
           }   
         }    vv=vector(1,n); 
       }    *d=1.0; 
          for (i=1;i<=n;i++) { 
            big=0.0; 
       for(i=1; i<=npar; i++)      for (j=1;j<=n;j++) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
            vv[i]=1.0/big; 
       cptj=0;    } 
       for(j=1; j<= nlstate; j++){    for (j=1;j<=n;j++) { 
         for(i=1;i<=nlstate;i++){      for (i=1;i<j;i++) { 
           cptj=cptj+1;        sum=a[i][j]; 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        a[i][j]=sum; 
           }      } 
         }      big=0.0; 
       }      for (i=j;i<=n;i++) { 
       for(j=1; j<= nlstate*2; j++)        sum=a[i][j]; 
         for(h=0; h<=nhstepm-1; h++){        for (k=1;k<j;k++) 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          sum -= a[i][k]*a[k][j]; 
         }        a[i][j]=sum; 
      }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
              big=dum; 
 /* End theta */          imax=i; 
         } 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      } 
       if (j != imax) { 
      for(h=0; h<=nhstepm-1; h++)        for (k=1;k<=n;k++) { 
       for(j=1; j<=nlstate*2;j++)          dum=a[imax][k]; 
         for(theta=1; theta <=npar; theta++)          a[imax][k]=a[j][k]; 
           trgradg[h][j][theta]=gradg[h][theta][j];          a[j][k]=dum; 
              } 
         *d = -(*d); 
      for(i=1;i<=nlstate*2;i++)        vv[imax]=vv[j]; 
       for(j=1;j<=nlstate*2;j++)      } 
         varhe[i][j][(int)age] =0.;      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
      printf("%d|",(int)age);fflush(stdout);      if (j != n) { 
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        dum=1.0/(a[j][j]); 
      for(h=0;h<=nhstepm-1;h++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       for(k=0;k<=nhstepm-1;k++){      } 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    } 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    free_vector(vv,1,n);  /* Doesn't work */
         for(i=1;i<=nlstate*2;i++)  ;
           for(j=1;j<=nlstate*2;j++)  } 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }  void lubksb(double **a, int n, int *indx, double b[]) 
     }  { 
     /* Computing expectancies */    int i,ii=0,ip,j; 
     for(i=1; i<=nlstate;i++)    double sum; 
       for(j=1; j<=nlstate;j++)   
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    for (i=1;i<=n;i++) { 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      ip=indx[i]; 
                sum=b[ip]; 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      b[ip]=b[i]; 
       if (ii) 
         }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
     fprintf(ficreseij,"%3.0f",age );      b[i]=sum; 
     cptj=0;    } 
     for(i=1; i<=nlstate;i++)    for (i=n;i>=1;i--) { 
       for(j=1; j<=nlstate;j++){      sum=b[i]; 
         cptj++;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      b[i]=sum/a[i][i]; 
       }    } 
     fprintf(ficreseij,"\n");  } 
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);  /************ Frequencies ********************/
     free_matrix(gp,0,nhstepm,1,nlstate*2);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  {  /* Some frequencies */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   }    int first;
   printf("\n");    double ***freq; /* Frequencies */
   fprintf(ficlog,"\n");    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
   free_vector(xp,1,npar);    FILE *ficresp;
   free_matrix(dnewm,1,nlstate*2,1,npar);    char fileresp[FILENAMELENGTH];
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    pp=vector(1,nlstate);
 }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
 /************ Variance ******************/    strcat(fileresp,fileres);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    if((ficresp=fopen(fileresp,"w"))==NULL) {
 {      printf("Problem with prevalence resultfile: %s\n", fileresp);
   /* Variance of health expectancies */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      exit(0);
   /* double **newm;*/    }
   double **dnewm,**doldm;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   double **dnewmp,**doldmp;    j1=0;
   int i, j, nhstepm, hstepm, h, nstepm ;    
   int k, cptcode;    j=cptcoveff;
   double *xp;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double **gp, **gm;  /* for var eij */  
   double ***gradg, ***trgradg; /*for var eij */    first=1;
   double **gradgp, **trgradgp; /* for var p point j */  
   double *gpp, *gmp; /* for var p point j */    for(k1=1; k1<=j;k1++){
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      for(i1=1; i1<=ncodemax[k1];i1++){
   double ***p3mat;        j1++;
   double age,agelim, hf;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   int theta;          scanf("%d", i);*/
   char digit[4];        for (i=-1; i<=nlstate+ndeath; i++)  
   char digitp[16];          for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
   char fileresprobmorprev[FILENAMELENGTH];              freq[i][jk][m]=0;
   
   if(popbased==1)      for (i=1; i<=nlstate; i++)  
     strcpy(digitp,"-populbased-");        for(m=iagemin; m <= iagemax+3; m++)
   else          prop[i][m]=0;
     strcpy(digitp,"-stablbased-");        
         dateintsum=0;
   strcpy(fileresprobmorprev,"prmorprev");        k2cpt=0;
   sprintf(digit,"%-d",ij);        for (i=1; i<=imx; i++) {
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/          bool=1;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          if  (cptcovn>0) {
   strcat(fileresprobmorprev,digitp); /* Popbased or not */            for (z1=1; z1<=cptcoveff; z1++) 
   strcat(fileresprobmorprev,fileres);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {                bool=0;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);          if (bool==1){
   }            for(m=firstpass; m<=lastpass; m++){
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);              k2=anint[m][i]+(mint[m][i]/12.);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficresprobmorprev," p.%-d SE",j);                if (m<lastpass) {
     for(i=1; i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   }                  }
   fprintf(ficresprobmorprev,"\n");                
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);                  dateintsum=dateintsum+k2;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);                  k2cpt++;
     exit(0);                }
   }                /*}*/
   else{            }
     fprintf(ficgp,"\n# Routine varevsij");          }
   }        }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {         
     printf("Problem with html file: %s\n", optionfilehtm);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);        if  (cptcovn>0) {
   }          fprintf(ficresp, "\n#********** Variable "); 
   else{          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          fprintf(ficresp, "**********\n#");
   }        }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        fprintf(ficresp, "\n");
   fprintf(ficresvij,"# Age");        
   for(i=1; i<=nlstate;i++)        for(i=iagemin; i <= iagemax+3; i++){
     for(j=1; j<=nlstate;j++)          if(i==iagemax+3){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            fprintf(ficlog,"Total");
   fprintf(ficresvij,"\n");          }else{
             if(first==1){
   xp=vector(1,npar);              first=0;
   dnewm=matrix(1,nlstate,1,npar);              printf("See log file for details...\n");
   doldm=matrix(1,nlstate,1,nlstate);            }
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);            fprintf(ficlog,"Age %d", i);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          }
           for(jk=1; jk <=nlstate ; jk++){
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   gpp=vector(nlstate+1,nlstate+ndeath);              pp[jk] += freq[jk][m][i]; 
   gmp=vector(nlstate+1,nlstate+ndeath);          }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          for(jk=1; jk <=nlstate ; jk++){
              for(m=-1, pos=0; m <=0 ; m++)
   if(estepm < stepm){              pos += freq[jk][m][i];
     printf ("Problem %d lower than %d\n",estepm, stepm);            if(pp[jk]>=1.e-10){
   }              if(first==1){
   else  hstepm=estepm;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /* For example we decided to compute the life expectancy with the smallest unit */              }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      nhstepm is the number of hstepm from age to agelim            }else{
      nstepm is the number of stepm from age to agelin.              if(first==1)
      Look at hpijx to understand the reason of that which relies in memory size                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      and note for a fixed period like k years */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            }
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          for(jk=1; jk <=nlstate ; jk++){
      results. So we changed our mind and took the option of the best precision.            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   */              pp[jk] += freq[jk][m][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          }       
   agelim = AGESUP;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            pos += pp[jk];
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            posprop += prop[jk][i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            if(pos>=1.e-5){
     gp=matrix(0,nhstepm,1,nlstate);              if(first==1)
     gm=matrix(0,nhstepm,1,nlstate);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
     for(theta=1; theta <=npar; theta++){              if(first==1)
       for(i=1; i<=npar; i++){ /* Computes gradient */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              if( i <= iagemax){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       if (popbased==1) {                /*probs[i][jk][j1]= pp[jk]/pos;*/
         for(i=1; i<=nlstate;i++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           prlim[i][i]=probs[(int)age][i][ij];              }
       }              else
                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for(j=1; j<= nlstate; j++){            }
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for(jk=-1; jk <=nlstate+ndeath; jk++)
         }            for(m=-1; m <=nlstate+ndeath; m++)
       }              if(freq[jk][m][i] !=0 ) {
       /* This for computing forces of mortality (h=1)as a weighted average */              if(first==1)
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         for(i=1; i<= nlstate; i++)                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];              }
       }              if(i <= iagemax)
       /* end force of mortality */            fprintf(ficresp,"\n");
           if(first==1)
       for(i=1; i<=npar; i++) /* Computes gradient */            printf("Others in log...\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficlog,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
      }
       if (popbased==1) {    dateintmean=dateintsum/k2cpt; 
         for(i=1; i<=nlstate;i++)   
           prlim[i][i]=probs[(int)age][i][ij];    fclose(ficresp);
       }    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
       for(j=1; j<= nlstate; j++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         for(h=0; h<=nhstepm; h++){    /* End of Freq */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  /************ Prevalence ********************/
       }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       /* This for computing force of mortality (h=1)as a weighted average */  {  
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         for(i=1; i<= nlstate; i++)       in each health status at the date of interview (if between dateprev1 and dateprev2).
           gmp[j] += prlim[i][i]*p3mat[i][j][1];       We still use firstpass and lastpass as another selection.
       }        */
       /* end force of mortality */   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       for(j=1; j<= nlstate; j++) /* vareij */    double ***freq; /* Frequencies */
         for(h=0; h<=nhstepm; h++){    double *pp, **prop;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double pos,posprop; 
         }    double  y2; /* in fractional years */
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    int iagemin, iagemax;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  
       }    iagemin= (int) agemin;
     iagemax= (int) agemax;
     } /* End theta */    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
     for(h=0; h<=nhstepm; h++) /* veij */    
       for(j=1; j<=nlstate;j++)    j=cptcoveff;
         for(theta=1; theta <=npar; theta++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           trgradg[h][j][theta]=gradg[h][theta][j];    
     for(k1=1; k1<=j;k1++){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      for(i1=1; i1<=ncodemax[k1];i1++){
       for(theta=1; theta <=npar; theta++)        j1++;
         trgradgp[j][theta]=gradgp[theta][j];        
         for (i=1; i<=nlstate; i++)  
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for(m=iagemin; m <= iagemax+3; m++)
     for(i=1;i<=nlstate;i++)            prop[i][m]=0.0;
       for(j=1;j<=nlstate;j++)       
         vareij[i][j][(int)age] =0.;        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
     for(h=0;h<=nhstepm;h++){          if  (cptcovn>0) {
       for(k=0;k<=nhstepm;k++){            for (z1=1; z1<=cptcoveff; z1++) 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);                bool=0;
         for(i=1;i<=nlstate;i++)          } 
           for(j=1;j<=nlstate;j++)          if (bool==1) { 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     /* pptj */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     for(j=nlstate+1;j<=nlstate+ndeath;j++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       for(i=nlstate+1;i<=nlstate+ndeath;i++)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         varppt[j][i]=doldmp[j][i];                  prop[s[m][i]][iagemax+3] += weight[i]; 
     /* end ppptj */                } 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);                }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);            } /* end selection of waves */
            }
     if (popbased==1) {        }
       for(i=1; i<=nlstate;i++)        for(i=iagemin; i <= iagemax+3; i++){  
         prlim[i][i]=probs[(int)age][i][ij];          
     }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                posprop += prop[jk][i]; 
     /* This for computing force of mortality (h=1)as a weighted average */          } 
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  
       for(i=1; i<= nlstate; i++)          for(jk=1; jk <=nlstate ; jk++){     
         gmp[j] += prlim[i][i]*p3mat[i][j][1];            if( i <=  iagemax){ 
     }                  if(posprop>=1.e-5){ 
     /* end force of mortality */                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);            } 
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){          }/* end jk */ 
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        }/* end i */ 
       for(i=1; i<=nlstate;i++){      } /* end i1 */
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    } /* end k1 */
       }    
     }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     fprintf(ficresprobmorprev,"\n");    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     fprintf(ficresvij,"%.0f ",age );  }  /* End of prevalence */
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  /************* Waves Concatenation ***************/
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     fprintf(ficresvij,"\n");  {
     free_matrix(gp,0,nhstepm,1,nlstate);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_matrix(gm,0,nhstepm,1,nlstate);       Death is a valid wave (if date is known).
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and mw[mi+1][i]. dh depends on stepm.
   } /* End age */       */
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);    int i, mi, m;
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/       double sum=0., jmean=0.;*/
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    int first;
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    int j, k=0,jk, ju, jl;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    double sum=0.;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    first=0;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    jmin=1e+5;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    jmax=-1;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    jmean=0.;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    for(i=1; i<=imx; i++){
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);      mi=0;
       m=firstpass;
   free_vector(xp,1,npar);      while(s[m][i] <= nlstate){
   free_matrix(doldm,1,nlstate,1,nlstate);        if(s[m][i]>=1)
   free_matrix(dnewm,1,nlstate,1,npar);          mw[++mi][i]=m;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        if(m >=lastpass)
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);          break;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        else
   fclose(ficresprobmorprev);          m++;
   fclose(ficgp);      }/* end while */
   fclose(fichtm);      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
 }        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
 /************ Variance of prevlim ******************/        mw[mi][i]=m;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      }
 {  
   /* Variance of prevalence limit */      wav[i]=mi;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      if(mi==0){
   double **newm;        nbwarn++;
   double **dnewm,**doldm;        if(first==0){
   int i, j, nhstepm, hstepm;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   int k, cptcode;          first=1;
   double *xp;        }
   double *gp, *gm;        if(first==1){
   double **gradg, **trgradg;          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   double age,agelim;        }
   int theta;      } /* end mi==0 */
        } /* End individuals */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");  
   fprintf(ficresvpl,"# Age");    for(i=1; i<=imx; i++){
   for(i=1; i<=nlstate;i++)      for(mi=1; mi<wav[i];mi++){
       fprintf(ficresvpl," %1d-%1d",i,i);        if (stepm <=0)
   fprintf(ficresvpl,"\n");          dh[mi][i]=1;
         else{
   xp=vector(1,npar);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   dnewm=matrix(1,nlstate,1,npar);            if (agedc[i] < 2*AGESUP) {
   doldm=matrix(1,nlstate,1,nlstate);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
   hstepm=1*YEARM; /* Every year of age */              else if(j<0){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                nberr++;
   agelim = AGESUP;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                j=1; /* Temporary Dangerous patch */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     if (stepm >= YEARM) hstepm=1;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     gradg=matrix(1,npar,1,nlstate);              }
     gp=vector(1,nlstate);              k=k+1;
     gm=vector(1,nlstate);              if (j >= jmax) jmax=j;
               if (j <= jmin) jmin=j;
     for(theta=1; theta <=npar; theta++){              sum=sum+j;
       for(i=1; i<=npar; i++){ /* Computes gradient */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       }            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(i=1;i<=nlstate;i++)          else{
         gp[i] = prlim[i][i];            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       for(i=1; i<=npar; i++) /* Computes gradient */            k=k+1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            if (j >= jmax) jmax=j;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            else if (j <= jmin)jmin=j;
       for(i=1;i<=nlstate;i++)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         gm[i] = prlim[i][i];            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
       for(i=1;i<=nlstate;i++)              nberr++;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     } /* End theta */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
     trgradg =matrix(1,nlstate,1,npar);            sum=sum+j;
           }
     for(j=1; j<=nlstate;j++)          jk= j/stepm;
       for(theta=1; theta <=npar; theta++)          jl= j -jk*stepm;
         trgradg[j][theta]=gradg[theta][j];          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     for(i=1;i<=nlstate;i++)            if(jl==0){
       varpl[i][(int)age] =0.;              dh[mi][i]=jk;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              bh[mi][i]=0;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            }else{ /* We want a negative bias in order to only have interpolation ie
     for(i=1;i<=nlstate;i++)                    * at the price of an extra matrix product in likelihood */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
     fprintf(ficresvpl,"%.0f ",age );            }
     for(i=1; i<=nlstate;i++)          }else{
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            if(jl <= -ju){
     fprintf(ficresvpl,"\n");              dh[mi][i]=jk;
     free_vector(gp,1,nlstate);              bh[mi][i]=jl;       /* bias is positive if real duration
     free_vector(gm,1,nlstate);                                   * is higher than the multiple of stepm and negative otherwise.
     free_matrix(gradg,1,npar,1,nlstate);                                   */
     free_matrix(trgradg,1,nlstate,1,npar);            }
   } /* End age */            else{
               dh[mi][i]=jk+1;
   free_vector(xp,1,npar);              bh[mi][i]=ju;
   free_matrix(doldm,1,nlstate,1,npar);            }
   free_matrix(dnewm,1,nlstate,1,nlstate);            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
 }              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 /************ Variance of one-step probabilities  ******************/            }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          } /* end if mle */
 {        }
   int i, j=0,  i1, k1, l1, t, tj;      } /* end wave */
   int k2, l2, j1,  z1;    }
   int k=0,l, cptcode;    jmean=sum/k;
   int first=1, first1;    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   double **dnewm,**doldm;   }
   double *xp;  
   double *gp, *gm;  /*********** Tricode ****************************/
   double **gradg, **trgradg;  void tricode(int *Tvar, int **nbcode, int imx)
   double **mu;  {
   double age,agelim, cov[NCOVMAX];    
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    int Ndum[20],ij=1, k, j, i, maxncov=19;
   int theta;    int cptcode=0;
   char fileresprob[FILENAMELENGTH];    cptcoveff=0; 
   char fileresprobcov[FILENAMELENGTH];   
   char fileresprobcor[FILENAMELENGTH];    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   double ***varpij;  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   strcpy(fileresprob,"prob");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   strcat(fileresprob,fileres);                                 modality*/ 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     printf("Problem with resultfile: %s\n", fileresprob);        Ndum[ij]++; /*store the modality */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   strcpy(fileresprobcov,"probcov");                                         Tvar[j]. If V=sex and male is 0 and 
   strcat(fileresprobcov,fileres);                                         female is 1, then  cptcode=1.*/
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      }
     printf("Problem with resultfile: %s\n", fileresprobcov);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      for (i=0; i<=cptcode; i++) {
   }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   strcpy(fileresprobcor,"probcor");      }
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      ij=1; 
     printf("Problem with resultfile: %s\n", fileresprobcor);      for (i=1; i<=ncodemax[j]; i++) {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        for (k=0; k<= maxncov; k++) {
   }          if (Ndum[k] != 0) {
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            nbcode[Tvar[j]][ij]=k; 
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            ij++;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          }
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          if (ij > ncodemax[j]) break; 
          }  
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      } 
   fprintf(ficresprob,"# Age");    }  
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");   for (k=0; k< maxncov; k++) Ndum[k]=0;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
   for(i=1; i<=nlstate;i++)     Ndum[ij]++;
     for(j=1; j<=(nlstate+ndeath);j++){   }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);   ij=1;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);   for (i=1; i<= maxncov; i++) {
     }       if((Ndum[i]!=0) && (i<=ncovcol)){
   fprintf(ficresprob,"\n");       Tvaraff[ij]=i; /*For printing */
   fprintf(ficresprobcov,"\n");       ij++;
   fprintf(ficresprobcor,"\n");     }
   xp=vector(1,npar);   }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);   
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));   cptcoveff=ij-1; /*Number of simple covariates*/
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  
   first=1;  /*********** Health Expectancies ****************/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  
     exit(0);  {
   }    /* Health expectancies */
   else{    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     fprintf(ficgp,"\n# Routine varprob");    double age, agelim, hf;
   }    double ***p3mat,***varhe;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    double **dnewm,**doldm;
     printf("Problem with html file: %s\n", optionfilehtm);    double *xp;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    double **gp, **gm;
     exit(0);    double ***gradg, ***trgradg;
   }    int theta;
   else{  
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     fprintf(fichtm,"\n");    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
   }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
          fprintf(ficreseij," %1d-%1d (SE)",i,j);
   cov[1]=1;    fprintf(ficreseij,"\n");
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    if(estepm < stepm){
   j1=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
   for(t=1; t<=tj;t++){    }
     for(i1=1; i1<=ncodemax[t];i1++){    else  hstepm=estepm;   
       j1++;    /* We compute the life expectancy from trapezoids spaced every estepm months
           * This is mainly to measure the difference between two models: for example
       if  (cptcovn>0) {     * if stepm=24 months pijx are given only every 2 years and by summing them
         fprintf(ficresprob, "\n#********** Variable ");     * we are calculating an estimate of the Life Expectancy assuming a linear 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);     * progression in between and thus overestimating or underestimating according
         fprintf(ficresprob, "**********\n#");     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficresprobcov, "\n#********** Variable ");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);     * to compare the new estimate of Life expectancy with the same linear 
         fprintf(ficresprobcov, "**********\n#");     * hypothesis. A more precise result, taking into account a more precise
             * curvature will be obtained if estepm is as small as stepm. */
         fprintf(ficgp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficgp, "**********\n#");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               nhstepm is the number of hstepm from age to agelim 
               nstepm is the number of stepm from age to agelin. 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");       Look at hpijx to understand the reason of that which relies in memory size
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       and note for a fixed period like estepm months */
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficresprobcor, "\n#********** Variable ");           means that if the survival funtion is printed only each two years of age and if
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         fprintf(ficgp, "**********\n#");           results. So we changed our mind and took the option of the best precision.
       }    */
          hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for (age=bage; age<=fage; age ++){  
         cov[2]=age;    agelim=AGESUP;
         for (k=1; k<=cptcovn;k++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      /* nhstepm age range expressed in number of stepm */
         }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         for (k=1; k<=cptcovprod;k++)      /* if (stepm >= YEARM) hstepm=1;*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
         gp=vector(1,(nlstate)*(nlstate+ndeath));      gm=matrix(0,nhstepm,1,nlstate*nlstate);
         gm=vector(1,(nlstate)*(nlstate+ndeath));  
          /* Computed by stepm unit matrices, product of hstepm matrices, stored
         for(theta=1; theta <=npar; theta++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           for(i=1; i<=npar; i++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);   
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
            
           k=0;      /* Computing Variances of health expectancies */
           for(i=1; i<= (nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){       for(theta=1; theta <=npar; theta++){
               k=k+1;        for(i=1; i<=npar; i++){ 
               gp[k]=pmmij[i][j];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             }        }
           }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
              
           for(i=1; i<=npar; i++)        cptj=0;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(j=1; j<= nlstate; j++){
              for(i=1; i<=nlstate; i++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            cptj=cptj+1;
           k=0;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
           for(i=1; i<=(nlstate); i++){              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             for(j=1; j<=(nlstate+ndeath);j++){            }
               k=k+1;          }
               gm[k]=pmmij[i][j];        }
             }       
           }       
              for(i=1; i<=npar; i++) 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }        
         cptj=0;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        for(j=1; j<= nlstate; j++){
           for(theta=1; theta <=npar; theta++)          for(i=1;i<=nlstate;i++){
             trgradg[j][theta]=gradg[theta][j];            cptj=cptj+1;
                    for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                    }
         pmij(pmmij,cov,ncovmodel,x,nlstate);          }
                }
         k=0;        for(j=1; j<= nlstate*nlstate; j++)
         for(i=1; i<=(nlstate); i++){          for(h=0; h<=nhstepm-1; h++){
           for(j=1; j<=(nlstate+ndeath);j++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             k=k+1;          }
             mu[k][(int) age]=pmmij[i][j];       } 
           }     
         }  /* End theta */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
             varpij[i][j][(int)age] = doldm[i][j];  
        for(h=0; h<=nhstepm-1; h++)
         /*printf("\n%d ",(int)age);        for(j=1; j<=nlstate*nlstate;j++)
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          for(theta=1; theta <=npar; theta++)
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            trgradg[h][j][theta]=gradg[h][theta][j];
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       
      }*/  
        for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficresprob,"\n%d ",(int)age);        for(j=1;j<=nlstate*nlstate;j++)
         fprintf(ficresprobcov,"\n%d ",(int)age);          varhe[i][j][(int)age] =0.;
         fprintf(ficresprobcor,"\n%d ",(int)age);  
        printf("%d|",(int)age);fflush(stdout);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));       for(h=0;h<=nhstepm-1;h++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(k=0;k<=nhstepm-1;k++){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         }          for(i=1;i<=nlstate*nlstate;i++)
         i=0;            for(j=1;j<=nlstate*nlstate;j++)
         for (k=1; k<=(nlstate);k++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
           for (l=1; l<=(nlstate+ndeath);l++){        }
             i=i++;      }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      /* Computing expectancies */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      for(i=1; i<=nlstate;i++)
             for (j=1; j<=i;j++){        for(j=1; j<=nlstate;j++)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             }            
           }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         }/* end of loop for state */  
       } /* end of loop for age */          }
   
       /* Confidence intervalle of pij  */      fprintf(ficreseij,"%3.0f",age );
       /*      cptj=0;
       fprintf(ficgp,"\nset noparametric;unset label");      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        for(j=1; j<=nlstate;j++){
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          cptj++;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        }
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);      fprintf(ficreseij,"\n");
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);     
       */      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       first1=1;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       for (k1=1; k1<=(nlstate);k1++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (l1=1; l1<=(nlstate+ndeath);l1++){    }
           if(l1==k1) continue;    printf("\n");
           i=(k1-1)*(nlstate+ndeath)+l1;    fprintf(ficlog,"\n");
           for (k2=1; k2<=(nlstate);k2++){  
             for (l2=1; l2<=(nlstate+ndeath);l2++){    free_vector(xp,1,npar);
               if(l2==k2) continue;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
               j=(k2-1)*(nlstate+ndeath)+l2;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
               if(j<=i) continue;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
               for (age=bage; age<=fage; age ++){  }
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  /************ Variance ******************/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  {
                   mu1=mu[i][(int) age]/stepm*YEARM ;    /* Variance of health expectancies */
                   mu2=mu[j][(int) age]/stepm*YEARM;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                   /* Computing eigen value of matrix of covariance */    /* double **newm;*/
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    double **dnewm,**doldm;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    double **dnewmp,**doldmp;
                   if(first1==1){    int i, j, nhstepm, hstepm, h, nstepm ;
                     first1=0;    int k, cptcode;
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);    double *xp;
                   }    double **gp, **gm;  /* for var eij */
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    double ***gradg, ***trgradg; /*for var eij */
                   /* Eigen vectors */    double **gradgp, **trgradgp; /* for var p point j */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    double *gpp, *gmp; /* for var p point j */
                   v21=sqrt(1.-v11*v11);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                   v12=-v21;    double ***p3mat;
                   v22=v11;    double age,agelim, hf;
                   /*printf(fignu*/    double ***mobaverage;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    int theta;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    char digit[4];
                   if(first==1){    char digitp[25];
                     first=0;  
                     fprintf(ficgp,"\nset parametric;set nolabel");    char fileresprobmorprev[FILENAMELENGTH];
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    if(popbased==1){
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);      if(mobilav!=0)
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);        strcpy(digitp,"-populbased-mobilav-");
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);      else strcpy(digitp,"-populbased-nomobil-");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    else 
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      strcpy(digitp,"-stablbased-");
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    if (mobilav!=0) {
                     */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   }else{      }
                     first=0;    }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    strcpy(fileresprobmorprev,"prmorprev"); 
                     /*    sprintf(digit,"%-d",ij);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                     */    strcat(fileresprobmorprev,fileres);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   }/* if first */    }
                 } /* age mod 5 */    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               } /* end loop age */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
               first=1;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             } /*l12 */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           } /* k12 */      fprintf(ficresprobmorprev," p.%-d SE",j);
         } /*l1 */      for(i=1; i<=nlstate;i++)
       }/* k1 */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     } /* loop covariates */    }  
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    fprintf(ficresprobmorprev,"\n");
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficgp,"\n# Routine varevsij");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /*   } */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
   free_vector(xp,1,npar);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   fclose(ficresprob);    fprintf(ficresvij,"# Age");
   fclose(ficresprobcov);    for(i=1; i<=nlstate;i++)
   fclose(ficresprobcor);      for(j=1; j<=nlstate;j++)
   fclose(ficgp);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   fclose(fichtm);    fprintf(ficresvij,"\n");
 }  
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
 /******************* Printing html file ***********/    doldm=matrix(1,nlstate,1,nlstate);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   int lastpass, int stepm, int weightopt, char model[],\    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   double jprev1, double mprev1,double anprev1, \    gpp=vector(nlstate+1,nlstate+ndeath);
                   double jprev2, double mprev2,double anprev2){    gmp=vector(nlstate+1,nlstate+ndeath);
   int jj1, k1, i1, cpt;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /*char optionfilehtm[FILENAMELENGTH];*/    
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    if(estepm < stepm){
     printf("Problem with %s \n",optionfilehtm), exit(0);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    }
   }    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       nhstepm is the number of hstepm from age to agelim 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n       nstepm is the number of stepm from age to agelin. 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n       Look at hpijx to understand the reason of that which relies in memory size
  - Life expectancies by age and initial health status (estepm=%2d months):       and note for a fixed period like k years */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
  m=cptcoveff;    */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
  jj1=0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  for(k1=1; k1<=m;k1++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    for(i1=1; i1<=ncodemax[k1];i1++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      jj1++;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      if (cptcovn > 0) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      gp=matrix(0,nhstepm,1,nlstate);
        for (cpt=1; cpt<=cptcoveff;cpt++)      gm=matrix(0,nhstepm,1,nlstate);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }      for(theta=1; theta <=npar; theta++){
      /* Pij */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }
      /* Quasi-incidences */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
        /* Stable prevalence in each health state */        if (popbased==1) {
        for(cpt=1; cpt<nlstate;cpt++){          if(mobilav ==0){
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>            for(i=1; i<=nlstate;i++)
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              prlim[i][i]=probs[(int)age][i][ij];
        }          }else{ /* mobilav */ 
      for(cpt=1; cpt<=nlstate;cpt++) {            for(i=1; i<=nlstate;i++)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              prlim[i][i]=mobaverage[(int)age][i][ij];
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }
      }        }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    
 health expectancies in states (1) and (2): e%s%d.png<br>        for(j=1; j<= nlstate; j++){
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for(h=0; h<=nhstepm; h++){
    } /* end i1 */            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
  }/* End k1 */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  fprintf(fichtm,"</ul>");          }
         }
         /* This for computing probability of death (h=1 means
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n           computed over hstepm matrices product = hstepm*stepm months) 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n           as a weighted average of prlim.
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          for(i=1,gpp[j]=0.; i<= nlstate; i++)
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            gpp[j] += prlim[i][i]*p3mat[i][j][1];
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        }    
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        /* end probability of death */
   
  if(popforecast==1) fprintf(fichtm,"\n        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         <br>",fileres,fileres,fileres,fileres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  else   
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        if (popbased==1) {
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
  m=cptcoveff;              prlim[i][i]=probs[(int)age][i][ij];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
  jj1=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
  for(k1=1; k1<=m;k1++){          }
    for(i1=1; i1<=ncodemax[k1];i1++){        }
      jj1++;  
      if (cptcovn > 0) {        for(j=1; j<= nlstate; j++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for(h=0; h<=nhstepm; h++){
        for (cpt=1; cpt<=cptcoveff;cpt++)            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          }
      }        }
      for(cpt=1; cpt<=nlstate;cpt++) {        /* This for computing probability of death (h=1 means
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident           computed over hstepm matrices product = hstepm*stepm months) 
 interval) in state (%d): v%s%d%d.png <br>           as a weighted average of prlim.
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          */
      }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    } /* end i1 */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
  }/* End k1 */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
  fprintf(fichtm,"</ul>");        }    
 fclose(fichtm);        /* end probability of death */
 }  
         for(j=1; j<= nlstate; j++) /* vareij */
 /******************* Gnuplot file **************/          for(h=0; h<=nhstepm; h++){
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     printf("Problem with file %s",optionfilegnuplot);        }
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);  
   }      } /* End theta */
   
 #ifdef windows      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif      for(h=0; h<=nhstepm; h++) /* veij */
 m=pow(2,cptcoveff);        for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
  /* 1eme*/            trgradg[h][j][theta]=gradg[h][theta][j];
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
 #ifdef windows          trgradgp[j][theta]=gradgp[theta][j];
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 #ifdef unix      for(i=1;i<=nlstate;i++)
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(j=1;j<=nlstate;j++)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          vareij[i][j][(int)age] =0.;
 #endif  
       for(h=0;h<=nhstepm;h++){
 for (i=1; i<= nlstate ; i ++) {        for(k=0;k<=nhstepm;k++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 }          for(i=1;i<=nlstate;i++)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            for(j=1;j<=nlstate;j++)
     for (i=1; i<= nlstate ; i ++) {              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      /* pptj */
      for (i=1; i<= nlstate ; i ++) {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 }          for(i=nlstate+1;i<=nlstate+ndeath;i++)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          varppt[j][i]=doldmp[j][i];
 #ifdef unix      /* end ppptj */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");      /*  x centered again */
 #endif      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
    }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   }   
   /*2 eme*/      if (popbased==1) {
         if(mobilav ==0){
   for (k1=1; k1<= m ; k1 ++) {          for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
     for (i=1; i<= nlstate+1 ; i ++) {            prlim[i][i]=mobaverage[(int)age][i][ij];
       k=2*i;        }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      }
       for (j=1; j<= nlstate+1 ; j ++) {               
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /* This for computing probability of death (h=1 means
   else fprintf(ficgp," \%%*lf (\%%*lf)");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 }           as a weighted average of prlim.
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       for (j=1; j<= nlstate+1 ; j ++) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      }    
         else fprintf(ficgp," \%%*lf (\%%*lf)");      /* end probability of death */
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for (j=1; j<= nlstate+1 ; j ++) {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(i=1; i<=nlstate;i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 }          }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      } 
       else fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficresprobmorprev,"\n");
     }  
   }      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   /*3eme*/        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   for (k1=1; k1<= m ; k1 ++) {        }
     for (cpt=1; cpt<= nlstate ; cpt ++) {      fprintf(ficresvij,"\n");
       k=2+nlstate*(2*cpt-2);      free_matrix(gp,0,nhstepm,1,nlstate);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      free_matrix(gm,0,nhstepm,1,nlstate);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    } /* End age */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    free_vector(gpp,nlstate+1,nlstate+ndeath);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    free_vector(gmp,nlstate+1,nlstate+ndeath);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       for (i=1; i< nlstate ; i ++) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   /* CV preval stat */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     for (k1=1; k1<= m ; k1 ++) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     for (cpt=1; cpt<nlstate ; cpt ++) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       k=3;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);    free_vector(xp,1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    free_matrix(doldm,1,nlstate,1,nlstate);
          free_matrix(dnewm,1,nlstate,1,npar);
       l=3+(nlstate+ndeath)*cpt;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       for (i=1; i< nlstate ; i ++) {    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         l=3+(nlstate+ndeath)*cpt;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficgp,"+$%d",l+i+1);    fclose(ficresprobmorprev);
       }    fflush(ficgp);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fflush(fichtm); 
     }  }  /* end varevsij */
   }    
    /************ Variance of prevlim ******************/
   /* proba elementaires */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
    for(i=1,jk=1; i <=nlstate; i++){  {
     for(k=1; k <=(nlstate+ndeath); k++){    /* Variance of prevalence limit */
       if (k != i) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         for(j=1; j <=ncovmodel; j++){    double **newm;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    double **dnewm,**doldm;
           jk++;    int i, j, nhstepm, hstepm;
           fprintf(ficgp,"\n");    int k, cptcode;
         }    double *xp;
       }    double *gp, *gm;
     }    double **gradg, **trgradg;
    }    double age,agelim;
     int theta;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/     
      for(jk=1; jk <=m; jk++) {    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    fprintf(ficresvpl,"# Age");
        if (ng==2)    for(i=1; i<=nlstate;i++)
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        fprintf(ficresvpl," %1d-%1d",i,i);
        else    fprintf(ficresvpl,"\n");
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    xp=vector(1,npar);
        i=1;    dnewm=matrix(1,nlstate,1,npar);
        for(k2=1; k2<=nlstate; k2++) {    doldm=matrix(1,nlstate,1,nlstate);
          k3=i;    
          for(k=1; k<=(nlstate+ndeath); k++) {    hstepm=1*YEARM; /* Every year of age */
            if (k != k2){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
              if(ng==2)    agelim = AGESUP;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              else      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      if (stepm >= YEARM) hstepm=1;
              ij=1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
              for(j=3; j <=ncovmodel; j++) {      gradg=matrix(1,npar,1,nlstate);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      gp=vector(1,nlstate);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      gm=vector(1,nlstate);
                  ij++;  
                }      for(theta=1; theta <=npar; theta++){
                else        for(i=1; i<=npar; i++){ /* Computes gradient */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
              }        }
              fprintf(ficgp,")/(1");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                      for(i=1;i<=nlstate;i++)
              for(k1=1; k1 <=nlstate; k1++){            gp[i] = prlim[i][i];
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      
                ij=1;        for(i=1; i<=npar; i++) /* Computes gradient */
                for(j=3; j <=ncovmodel; j++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(i=1;i<=nlstate;i++)
                    ij++;          gm[i] = prlim[i][i];
                  }  
                  else        for(i=1;i<=nlstate;i++)
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                }      } /* End theta */
                fprintf(ficgp,")");  
              }      trgradg =matrix(1,nlstate,1,npar);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      for(j=1; j<=nlstate;j++)
              i=i+ncovmodel;        for(theta=1; theta <=npar; theta++)
            }          trgradg[j][theta]=gradg[theta][j];
          } /* end k */  
        } /* end k2 */      for(i=1;i<=nlstate;i++)
      } /* end jk */        varpl[i][(int)age] =0.;
    } /* end ng */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
    fclose(ficgp);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 }  /* end gnuplot */      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
 /*************** Moving average **************/      fprintf(ficresvpl,"%.0f ",age );
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   int i, cpt, cptcod;      fprintf(ficresvpl,"\n");
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      free_vector(gp,1,nlstate);
       for (i=1; i<=nlstate;i++)      free_vector(gm,1,nlstate);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      free_matrix(gradg,1,npar,1,nlstate);
           mobaverage[(int)agedeb][i][cptcod]=0.;      free_matrix(trgradg,1,nlstate,1,npar);
        } /* End age */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){    free_vector(xp,1,npar);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_matrix(doldm,1,nlstate,1,npar);
           for (cpt=0;cpt<=4;cpt++){    free_matrix(dnewm,1,nlstate,1,nlstate);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }  }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }  /************ Variance of one-step probabilities  ******************/
       }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     }  {
        int i, j=0,  i1, k1, l1, t, tj;
 }    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
 /************** Forecasting ******************/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    double **dnewm,**doldm;
      double *xp;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double *gp, *gm;
   int *popage;    double **gradg, **trgradg;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double **mu;
   double *popeffectif,*popcount;    double age,agelim, cov[NCOVMAX];
   double ***p3mat;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   char fileresf[FILENAMELENGTH];    int theta;
     char fileresprob[FILENAMELENGTH];
  agelim=AGESUP;    char fileresprobcov[FILENAMELENGTH];
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    char fileresprobcor[FILENAMELENGTH];
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double ***varpij;
    
      strcpy(fileresprob,"prob"); 
   strcpy(fileresf,"f");    strcat(fileresprob,fileres);
   strcat(fileresf,fileres);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   if((ficresf=fopen(fileresf,"w"))==NULL) {      printf("Problem with resultfile: %s\n", fileresprob);
     printf("Problem with forecast resultfile: %s\n", fileresf);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    }
   }    strcpy(fileresprobcov,"probcov"); 
   printf("Computing forecasting: result on file '%s' \n", fileresf);    strcat(fileresprobcov,fileres);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
   if (mobilav==1) {    strcpy(fileresprobcor,"probcor"); 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobcor,fileres);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=12) stepsize=1;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   agelim=AGESUP;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   hstepm=1;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   hstepm=hstepm/stepm;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   yp1=modf(dateintmean,&yp);    
   anprojmean=yp;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   yp2=modf((yp1*12),&yp);    fprintf(ficresprob,"# Age");
   mprojmean=yp;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   yp1=modf((yp2*30.5),&yp);    fprintf(ficresprobcov,"# Age");
   jprojmean=yp;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   if(jprojmean==0) jprojmean=1;    fprintf(ficresprobcov,"# Age");
   if(mprojmean==0) jprojmean=1;  
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
   for(cptcov=1;cptcov<=i2;cptcov++){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       k=k+1;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       fprintf(ficresf,"\n#******");      }  
       for(j=1;j<=cptcoveff;j++) {   /* fprintf(ficresprob,"\n");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobcov,"\n");
       }    fprintf(ficresprobcor,"\n");
       fprintf(ficresf,"******\n");   */
       fprintf(ficresf,"# StartingAge FinalAge");   xp=vector(1,npar);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
          doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
          mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         fprintf(ficresf,"\n");    first=1;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(fichtm,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
              fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    file %s<br>\n",optionfilehtmcov);
           oldm=oldms;savm=savms;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    and drawn. It helps understanding how is the covariance between two incidences.\
           They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           for (h=0; h<=nhstepm; h++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
             if (h==(int) (calagedate+YEARM*cpt)) {  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
             }  standard deviations wide on each axis. <br>\
             for(j=1; j<=nlstate+ndeath;j++) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
               kk1=0.;kk2=0;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
               for(i=1; i<=nlstate;i++) {                To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    cov[1]=1;
                 else {    tj=cptcoveff;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                 }    j1=0;
                    for(t=1; t<=tj;t++){
               }      for(i1=1; i1<=ncodemax[t];i1++){ 
               if (h==(int)(calagedate+12*cpt)){        j1++;
                 fprintf(ficresf," %.3f", kk1);        if  (cptcovn>0) {
                                  fprintf(ficresprob, "\n#********** Variable "); 
               }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             }          fprintf(ficresprob, "**********\n#\n");
           }          fprintf(ficresprobcov, "\n#********** Variable "); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresprobcov, "**********\n#\n");
       }          
     }          fprintf(ficgp, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  fprintf(ficgp, "**********\n#\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
           
   fclose(ficresf);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /************** Forecasting ******************/          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          
            fprintf(ficresprobcor, "\n#********** Variable ");    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int *popage;          fprintf(ficresprobcor, "**********\n#");    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }
   double *popeffectif,*popcount;        
   double ***p3mat,***tabpop,***tabpopprev;        for (age=bage; age<=fage; age ++){ 
   char filerespop[FILENAMELENGTH];          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   agelim=AGESUP;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          for (k=1; k<=cptcovprod;k++)
              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          
            gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   strcpy(filerespop,"pop");          gp=vector(1,(nlstate)*(nlstate+ndeath));
   strcat(filerespop,fileres);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      
     printf("Problem with forecast resultfile: %s\n", filerespop);          for(theta=1; theta <=npar; theta++){
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   printf("Computing forecasting: result on file '%s' \n", filerespop);            
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            k=0;
             for(i=1; i<= (nlstate); i++){
   if (mobilav==1) {              for(j=1; j<=(nlstate+ndeath);j++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                k=k+1;
     movingaverage(agedeb, fage, ageminpar, mobaverage);                gp[k]=pmmij[i][j];
   }              }
             }
   stepsize=(int) (stepm+YEARM-1)/YEARM;            
   if (stepm<=12) stepsize=1;            for(i=1; i<=npar; i++)
                xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   agelim=AGESUP;      
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
   hstepm=1;            k=0;
   hstepm=hstepm/stepm;            for(i=1; i<=(nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
   if (popforecast==1) {                k=k+1;
     if((ficpop=fopen(popfile,"r"))==NULL) {                gm[k]=pmmij[i][j];
       printf("Problem with population file : %s\n",popfile);exit(0);              }
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);            }
     }       
     popage=ivector(0,AGESUP);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     popeffectif=vector(0,AGESUP);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     popcount=vector(0,AGESUP);          }
      
     i=1;            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            for(theta=1; theta <=npar; theta++)
                  trgradg[j][theta]=gradg[theta][j];
     imx=i;          
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   for(cptcov=1;cptcov<=i2;cptcov++){          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       k=k+1;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       }          k=0;
       fprintf(ficrespop,"******\n");          for(i=1; i<=(nlstate); i++){
       fprintf(ficrespop,"# Age");            for(j=1; j<=(nlstate+ndeath);j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              k=k+1;
       if (popforecast==1)  fprintf(ficrespop," [Population]");              mu[k][(int) age]=pmmij[i][j];
                  }
       for (cpt=0; cpt<=0;cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                    for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              varpij[i][j][(int)age] = doldm[i][j];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;          /*printf("\n%d ",(int)age);
                      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           oldm=oldms;savm=savms;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              }*/
          
           for (h=0; h<=nhstepm; h++){          fprintf(ficresprob,"\n%d ",(int)age);
             if (h==(int) (calagedate+YEARM*cpt)) {          fprintf(ficresprobcov,"\n%d ",(int)age);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficresprobcor,"\n%d ",(int)age);
             }  
             for(j=1; j<=nlstate+ndeath;j++) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
               kk1=0.;kk2=0;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
               for(i=1; i<=nlstate;i++) {                        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                 if (mobilav==1)            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                 else {          }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          i=0;
                 }          for (k=1; k<=(nlstate);k++){
               }            for (l=1; l<=(nlstate+ndeath);l++){ 
               if (h==(int)(calagedate+12*cpt)){              i=i++;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   /*fprintf(ficrespop," %.3f", kk1);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              for (j=1; j<=i;j++){
               }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
             }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
             for(i=1; i<=nlstate;i++){              }
               kk1=0.;            }
                 for(j=1; j<=nlstate;j++){          }/* end of loop for state */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        } /* end of loop for age */
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        /* Confidence intervalle of pij  */
             }        /*
           fprintf(ficgp,"\nset noparametric;unset label");
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       }          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
          */
   /******/  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        first1=1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for (k2=1; k2<=(nlstate);k2++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            if(l2==k2) continue;
           nhstepm = nhstepm/hstepm;            j=(k2-1)*(nlstate+ndeath)+l2;
                      for (k1=1; k1<=(nlstate);k1++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           oldm=oldms;savm=savms;                if(l1==k1) continue;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  i=(k1-1)*(nlstate+ndeath)+l1;
           for (h=0; h<=nhstepm; h++){                if(i<=j) continue;
             if (h==(int) (calagedate+YEARM*cpt)) {                for (age=bage; age<=fage; age ++){ 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                  if ((int)age %5==0){
             }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
             for(j=1; j<=nlstate+ndeath;j++) {                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
               kk1=0.;kk2=0;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
               for(i=1; i<=nlstate;i++) {                                  mu1=mu[i][(int) age]/stepm*YEARM ;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                        mu2=mu[j][(int) age]/stepm*YEARM;
               }                    c12=cv12/sqrt(v1*v2);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                    /* Computing eigen value of matrix of covariance */
             }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    /* Eigen vectors */
         }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       }                    /*v21=sqrt(1.-v11*v11); *//* error */
    }                    v21=(lc1-v1)/cv12*v11;
   }                    v12=-v21;
                      v22=v11;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    tnalp=v21/v11;
                     if(first1==1){
   if (popforecast==1) {                      first1=0;
     free_ivector(popage,0,AGESUP);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     free_vector(popeffectif,0,AGESUP);                    }
     free_vector(popcount,0,AGESUP);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   }                    /*printf(fignu*/
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   fclose(ficrespop);                    if(first==1){
 }                      first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
 /***********************************************/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 /**************** Main Program *****************/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 /***********************************************/                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 int main(int argc, char *argv[])  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double agedeb, agefin,hf;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   double fret;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   double **xi,tmp,delta;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double dum; /* Dummy variable */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double ***p3mat;                    }else{
   int *indx;                      first=0;
   char line[MAXLINE], linepar[MAXLINE];                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   int firstobs=1, lastobs=10;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   int sdeb, sfin; /* Status at beginning and end */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   int c,  h , cpt,l;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   int ju,jl, mi;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                    }/* if first */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                  } /* age mod 5 */
   int mobilav=0,popforecast=0;                } /* end loop age */
   int hstepm, nhstepm;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                first=1;
               } /*l12 */
   double bage, fage, age, agelim, agebase;            } /* k12 */
   double ftolpl=FTOL;          } /*l1 */
   double **prlim;        }/* k1 */
   double *severity;      } /* loop covariates */
   double ***param; /* Matrix of parameters */    }
   double  *p;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   double **matcov; /* Matrix of covariance */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   double ***delti3; /* Scale */    free_vector(xp,1,npar);
   double *delti; /* Scale */    fclose(ficresprob);
   double ***eij, ***vareij;    fclose(ficresprobcov);
   double **varpl; /* Variances of prevalence limits by age */    fclose(ficresprobcor);
   double *epj, vepp;    fflush(ficgp);
   double kk1, kk2;    fflush(fichtmcov);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  }
    
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   char z[1]="c", occ;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 #include <sys/time.h>                    int popforecast, int estepm ,\
 #include <time.h>                    double jprev1, double mprev1,double anprev1, \
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                    double jprev2, double mprev2,double anprev2){
      int jj1, k1, i1, cpt;
   /* long total_usecs;    /*char optionfilehtm[FILENAMELENGTH];*/
   struct timeval start_time, end_time;  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
    /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   getcwd(pathcd, size);  /*   } */
   
   printf("\n%s",version);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
   if(argc <=1){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
     printf("\nEnter the parameter file name: ");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
     scanf("%s",pathtot);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
   }   - Life expectancies by age and initial health status (estepm=%2d months): \
   else{     <a href=\"%s\">%s</a> <br>\n</li>", \
     strcpy(pathtot,argv[1]);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
   }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
   /*cygwin_split_path(pathtot,path,optionfile);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);   m=cptcoveff;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   chdir(path);  
   replace(pathc,path);   jj1=0;
    for(k1=1; k1<=m;k1++){
 /*-------- arguments in the command line --------*/     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   /* Log file */       if (cptcovn > 0) {
   strcat(filelog, optionfilefiname);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcat(filelog,".log");    /* */         for (cpt=1; cpt<=cptcoveff;cpt++) 
   if((ficlog=fopen(filelog,"w"))==NULL)    {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     printf("Problem with logfile %s\n",filelog);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     goto end;       }
   }       /* Pij */
   fprintf(ficlog,"Log filename:%s\n",filelog);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   fprintf(ficlog,"\n%s",version);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   fprintf(ficlog,"\nEnter the parameter file name: ");       /* Quasi-incidences */
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   fflush(ficlog);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   /* */         /* Stable prevalence in each health state */
   strcpy(fileres,"r");         for(cpt=1; cpt<nlstate;cpt++){
   strcat(fileres, optionfilefiname);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   strcat(fileres,".txt");    /* Other files have txt extension */  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
   /*---------arguments file --------*/       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     printf("Problem with optionfile %s\n",optionfile);       }
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     goto end;  health expectancies in states (1) and (2): %s%d.png<br>\
   }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
   strcpy(filereso,"o");   }/* End k1 */
   strcat(filereso,fileres);   fprintf(fichtm,"</ul>");
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);  
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
     goto end;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
   }   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   /* Reads comments: lines beginning with '#' */   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   while((c=getc(ficpar))=='#' && c!= EOF){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
     ungetc(c,ficpar);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
     fgets(line, MAXLINE, ficpar);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     puts(line);           rfileres,rfileres,\
     fputs(line,ficparo);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
   }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
   ungetc(c,ficpar);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){  /*  if(popforecast==1) fprintf(fichtm,"\n */
     ungetc(c,ficpar);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     fgets(line, MAXLINE, ficpar);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     puts(line);  /*      <br>",fileres,fileres,fileres,fileres); */
     fputs(line,ficparo);  /*  else  */
   }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   ungetc(c,ficpar);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    
       m=cptcoveff;
   covar=matrix(0,NCOVMAX,1,n);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;   jj1=0;
    for(k1=1; k1<=m;k1++){
   ncovmodel=2+cptcovn;     for(i1=1; i1<=ncodemax[k1];i1++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       jj1++;
         if (cptcovn > 0) {
   /* Read guess parameters */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   /* Reads comments: lines beginning with '#' */         for (cpt=1; cpt<=cptcoveff;cpt++) 
   while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     ungetc(c,ficpar);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fgets(line, MAXLINE, ficpar);       }
     puts(line);       for(cpt=1; cpt<=nlstate;cpt++) {
     fputs(line,ficparo);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   }  interval) in state (%d): %s%d%d.png <br>\
   ungetc(c,ficpar);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);     } /* end i1 */
     for(i=1; i <=nlstate; i++)   }/* End k1 */
     for(j=1; j <=nlstate+ndeath-1; j++){   fprintf(fichtm,"</ul>");
       fscanf(ficpar,"%1d%1d",&i1,&j1);   fflush(fichtm);
       fprintf(ficparo,"%1d%1d",i1,j1);  }
       if(mle==1)  
         printf("%1d%1d",i,j);  /******************* Gnuplot file **************/
       fprintf(ficlog,"%1d%1d",i,j);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    char dirfileres[132],optfileres[132];
         if(mle==1){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
           printf(" %lf",param[i][j][k]);    int ng;
           fprintf(ficlog," %lf",param[i][j][k]);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         }  /*     printf("Problem with file %s",optionfilegnuplot); */
         else  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
           fprintf(ficlog," %lf",param[i][j][k]);  /*   } */
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    /*#ifdef windows */
       fscanf(ficpar,"\n");    fprintf(ficgp,"cd \"%s\" \n",pathc);
       if(mle==1)      /*#endif */
         printf("\n");    m=pow(2,cptcoveff);
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");    strcpy(dirfileres,optionfilefiname);
     }    strcpy(optfileres,"vpl");
     /* 1eme*/
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
   p=param[1][1];       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   /* Reads comments: lines beginning with '#' */       fprintf(ficgp,"set xlabel \"Age\" \n\
   while((c=getc(ficpar))=='#' && c!= EOF){  set ylabel \"Probability\" \n\
     ungetc(c,ficpar);  set ter png small\n\
     fgets(line, MAXLINE, ficpar);  set size 0.65,0.65\n\
     puts(line);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     fputs(line,ficparo);  
   }       for (i=1; i<= nlstate ; i ++) {
   ungetc(c,ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   for(i=1; i <=nlstate; i++){       for (i=1; i<= nlstate ; i ++) {
     for(j=1; j <=nlstate+ndeath-1; j++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fscanf(ficpar,"%1d%1d",&i1,&j1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       printf("%1d%1d",i,j);       } 
       fprintf(ficparo,"%1d%1d",i1,j1);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       for(k=1; k<=ncovmodel;k++){       for (i=1; i<= nlstate ; i ++) {
         fscanf(ficpar,"%le",&delti3[i][j][k]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         printf(" %le",delti3[i][j][k]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficparo," %le",delti3[i][j][k]);       }  
       }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       fscanf(ficpar,"\n");     }
       printf("\n");    }
       fprintf(ficparo,"\n");    /*2 eme*/
     }    
   }    for (k1=1; k1<= m ; k1 ++) { 
   delti=delti3[1][1];      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
        fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<= nlstate+1 ; i ++) {
     ungetc(c,ficpar);        k=2*i;
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     puts(line);        for (j=1; j<= nlstate+1 ; j ++) {
     fputs(line,ficparo);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   ungetc(c,ficpar);        }   
          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   matcov=matrix(1,npar,1,npar);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   for(i=1; i <=npar; i++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     fscanf(ficpar,"%s",&str);        for (j=1; j<= nlstate+1 ; j ++) {
     if(mle==1)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       printf("%s",str);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficlog,"%s",str);        }   
     fprintf(ficparo,"%s",str);        fprintf(ficgp,"\" t\"\" w l 0,");
     for(j=1; j <=i; j++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fscanf(ficpar," %le",&matcov[i][j]);        for (j=1; j<= nlstate+1 ; j ++) {
       if(mle==1){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         printf(" %.5le",matcov[i][j]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficlog," %.5le",matcov[i][j]);        }   
       }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       else        else fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficlog," %.5le",matcov[i][j]);      }
       fprintf(ficparo," %.5le",matcov[i][j]);    }
     }    
     fscanf(ficpar,"\n");    /*3eme*/
     if(mle==1)    
       printf("\n");    for (k1=1; k1<= m ; k1 ++) { 
     fprintf(ficlog,"\n");      for (cpt=1; cpt<= nlstate ; cpt ++) {
     fprintf(ficparo,"\n");        k=2+nlstate*(2*cpt-2);
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   for(i=1; i <=npar; i++)        fprintf(ficgp,"set ter png small\n\
     for(j=i+1;j<=npar;j++)  set size 0.65,0.65\n\
       matcov[i][j]=matcov[j][i];  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
            /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   if(mle==1)          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     printf("\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   fprintf(ficlog,"\n");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     /*-------- Rewriting paramater file ----------*/          
      strcpy(rfileres,"r");    /* "Rparameterfile */        */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        for (i=1; i< nlstate ; i ++) {
      strcat(rfileres,".");    /* */          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          
     if((ficres =fopen(rfileres,"w"))==NULL) {        } 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      }
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    }
     }    
     fprintf(ficres,"#%s\n",version);    /* CV preval stable (period) */
        for (k1=1; k1<= m ; k1 ++) { 
     /*-------- data file ----------*/      for (cpt=1; cpt<=nlstate ; cpt ++) {
     if((fic=fopen(datafile,"r"))==NULL)    {        k=3;
       printf("Problem with datafile: %s\n", datafile);goto end;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     }  set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
     n= lastobs;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     severity = vector(1,maxwav);        
     outcome=imatrix(1,maxwav+1,1,n);        for (i=1; i< nlstate ; i ++)
     num=ivector(1,n);          fprintf(ficgp,"+$%d",k+i+1);
     moisnais=vector(1,n);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     annais=vector(1,n);        
     moisdc=vector(1,n);        l=3+(nlstate+ndeath)*cpt;
     andc=vector(1,n);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     agedc=vector(1,n);        for (i=1; i< nlstate ; i ++) {
     cod=ivector(1,n);          l=3+(nlstate+ndeath)*cpt;
     weight=vector(1,n);          fprintf(ficgp,"+$%d",l+i+1);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        }
     mint=matrix(1,maxwav,1,n);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     anint=matrix(1,maxwav,1,n);      } 
     s=imatrix(1,maxwav+1,1,n);    }  
     adl=imatrix(1,maxwav+1,1,n);        
     tab=ivector(1,NCOVMAX);    /* proba elementaires */
     ncodemax=ivector(1,8);    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
     i=1;        if (k != i) {
     while (fgets(line, MAXLINE, fic) != NULL)    {          for(j=1; j <=ncovmodel; j++){
       if ((i >= firstobs) && (i <=lastobs)) {            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                    jk++; 
         for (j=maxwav;j>=1;j--){            fprintf(ficgp,"\n");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          }
           strcpy(line,stra);        }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);     }
         }  
             for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);       for(jk=1; jk <=m; jk++) {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         for (j=ncovcol;j>=1;j--){         i=1;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);         for(k2=1; k2<=nlstate; k2++) {
         }           k3=i;
         num[i]=atol(stra);           for(k=1; k<=(nlstate+ndeath); k++) {
                     if (k != k2){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){               if(ng==2)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
         i=i+1;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       }               ij=1;
     }               for(j=3; j <=ncovmodel; j++) {
     /* printf("ii=%d", ij);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
        scanf("%d",i);*/                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   imx=i-1; /* Number of individuals */                   ij++;
                  }
   /* for (i=1; i<=imx; i++){                 else
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;               }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;               fprintf(ficgp,")/(1");
     }*/               
    /*  for (i=1; i<=imx; i++){               for(k1=1; k1 <=nlstate; k1++){   
      if (s[4][i]==9)  s[4][i]=-1;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                 ij=1;
                   for(j=3; j <=ncovmodel; j++){
                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   /* Calculation of the number of parameter from char model*/                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                     ij++;
   Tprod=ivector(1,15);                   }
   Tvaraff=ivector(1,15);                   else
   Tvard=imatrix(1,15,1,2);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   Tage=ivector(1,15);                       }
                     fprintf(ficgp,")");
   if (strlen(model) >1){               }
     j=0, j1=0, k1=1, k2=1;               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     j=nbocc(model,'+');               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     j1=nbocc(model,'*');               i=i+ncovmodel;
     cptcovn=j+1;             }
     cptcovprod=j1;           } /* end k */
             } /* end k2 */
     strcpy(modelsav,model);       } /* end jk */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){     } /* end ng */
       printf("Error. Non available option model=%s ",model);     fflush(ficgp); 
       fprintf(ficlog,"Error. Non available option model=%s ",model);  }  /* end gnuplot */
       goto end;  
     }  
      /*************** Moving average **************/
     for(i=(j+1); i>=1;i--){  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    int i, cpt, cptcod;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    int modcovmax =1;
       /*scanf("%d",i);*/    int mobilavrange, mob;
       if (strchr(strb,'*')) {  /* Model includes a product */    double age;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  
         if (strcmp(strc,"age")==0) { /* Vn*age */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           cptcovprod--;                             a covariate has 2 modalities */
           cutv(strb,stre,strd,'V');    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  
           cptcovage++;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             Tage[cptcovage]=i;      if(mobilav==1) mobilavrange=5; /* default */
             /*printf("stre=%s ", stre);*/      else mobilavrange=mobilav;
         }      for (age=bage; age<=fage; age++)
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        for (i=1; i<=nlstate;i++)
           cptcovprod--;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           cutv(strb,stre,strc,'V');            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           Tvar[i]=atoi(stre);      /* We keep the original values on the extreme ages bage, fage and for 
           cptcovage++;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           Tage[cptcovage]=i;         we use a 5 terms etc. until the borders are no more concerned. 
         }      */ 
         else {  /* Age is not in the model */      for (mob=3;mob <=mobilavrange;mob=mob+2){
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           Tvar[i]=ncovcol+k1;          for (i=1; i<=nlstate;i++){
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           Tprod[k1]=i;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           Tvard[k1][1]=atoi(strc); /* m*/                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           Tvard[k1][2]=atoi(stre); /* n */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           Tvar[cptcovn+k2]=Tvard[k1][1];                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                }
           for (k=1; k<=lastobs;k++)              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            }
           k1++;          }
           k2=k2+2;        }/* end age */
         }      }/* end mob */
       }    }else return -1;
       else { /* no more sum */    return 0;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  }/* End movingaverage */
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);  /************** Forecasting ******************/
       }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       strcpy(modelsav,stra);      /* proj1, year, month, day of starting projection 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);       agemin, agemax range of age
         scanf("%d",i);*/       dateprev1 dateprev2 range of dates during which prevalence is computed
     } /* end of loop + */       anproj2 year of en of projection (same day and month as proj1).
   } /* end model */    */
      int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    int *popage;
   printf("cptcovprod=%d ", cptcovprod);    double agec; /* generic age */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   scanf("%d ",i);*/    double *popeffectif,*popcount;
     fclose(fic);    double ***p3mat;
     double ***mobaverage;
     /*  if(mle==1){*/    char fileresf[FILENAMELENGTH];
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;    agelim=AGESUP;
     }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*-calculation of age at interview from date of interview and age at death -*/   
     agev=matrix(1,maxwav,1,imx);    strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     for (i=1; i<=imx; i++) {    if((ficresf=fopen(fileresf,"w"))==NULL) {
       for(m=2; (m<= maxwav); m++) {      printf("Problem with forecast resultfile: %s\n", fileresf);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
          anint[m][i]=9999;    }
          s[m][i]=-1;    printf("Computing forecasting: result on file '%s' \n", fileresf);
        }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     }  
     if (mobilav!=0) {
     for (i=1; i<=imx; i++)  {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       for(m=1; (m<= maxwav); m++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         if(s[m][i] >0){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           if (s[m][i] >= nlstate+1) {      }
             if(agedc[i]>0)    }
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];    stepsize=(int) (stepm+YEARM-1)/YEARM;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    if (stepm<=12) stepsize=1;
            else {    if(estepm < stepm){
               if (andc[i]!=9999){      printf ("Problem %d lower than %d\n",estepm, stepm);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    }
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    else  hstepm=estepm;   
               agev[m][i]=-1;  
               }    hstepm=hstepm/stepm; 
             }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
           }                                 fractional in yp1 */
           else if(s[m][i] !=9){ /* Should no more exist */    anprojmean=yp;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    yp2=modf((yp1*12),&yp);
             if(mint[m][i]==99 || anint[m][i]==9999)    mprojmean=yp;
               agev[m][i]=1;    yp1=modf((yp2*30.5),&yp);
             else if(agev[m][i] <agemin){    jprojmean=yp;
               agemin=agev[m][i];    if(jprojmean==0) jprojmean=1;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    if(mprojmean==0) jprojmean=1;
             }  
             else if(agev[m][i] >agemax){    i1=cptcoveff;
               agemax=agev[m][i];    if (cptcovn < 1){i1=1;}
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    
             }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
             /*agev[m][i]=anint[m][i]-annais[i];*/    
             /*   agev[m][i] = age[i]+2*m;*/    fprintf(ficresf,"#****** Routine prevforecast **\n");
           }  
           else { /* =9 */  /*            if (h==(int)(YEARM*yearp)){ */
             agev[m][i]=1;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
             s[m][i]=-1;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           }        k=k+1;
         }        fprintf(ficresf,"\n#******");
         else /*= 0 Unknown */        for(j=1;j<=cptcoveff;j++) {
           agev[m][i]=1;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       }        }
            fprintf(ficresf,"******\n");
     }        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     for (i=1; i<=imx; i++)  {        for(j=1; j<=nlstate+ndeath;j++){ 
       for(m=1; (m<= maxwav); m++){          for(i=1; i<=nlstate;i++)              
         if (s[m][i] > (nlstate+ndeath)) {            fprintf(ficresf," p%d%d",i,j);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);            fprintf(ficresf," p.%d",j);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          }
           goto end;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
         }          fprintf(ficresf,"\n");
       }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     }  
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(severity,1,maxwav);            oldm=oldms;savm=savms;
     free_imatrix(outcome,1,maxwav+1,1,n);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     free_vector(moisnais,1,n);          
     free_vector(annais,1,n);            for (h=0; h<=nhstepm; h++){
     /* free_matrix(mint,1,maxwav,1,n);              if (h*hstepm/YEARM*stepm ==yearp) {
        free_matrix(anint,1,maxwav,1,n);*/                fprintf(ficresf,"\n");
     free_vector(moisdc,1,n);                for(j=1;j<=cptcoveff;j++) 
     free_vector(andc,1,n);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
                  } 
     wav=ivector(1,imx);              for(j=1; j<=nlstate+ndeath;j++) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                ppij=0.;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                for(i=1; i<=nlstate;i++) {
                      if (mobilav==1) 
     /* Concatenates waves */                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                  else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
       Tcode=ivector(1,100);                  if (h*hstepm/YEARM*stepm== yearp) {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       ncodemax[1]=1;                  }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                } /* end i */
                      if (h*hstepm/YEARM*stepm==yearp) {
    codtab=imatrix(1,100,1,10);                  fprintf(ficresf," %.3f", ppij);
    h=0;                }
    m=pow(2,cptcoveff);              }/* end j */
              } /* end h */
    for(k=1;k<=cptcoveff; k++){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for(i=1; i <=(m/pow(2,k));i++){          } /* end agec */
        for(j=1; j <= ncodemax[k]; j++){        } /* end yearp */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      } /* end cptcod */
            h++;    } /* end  cptcov */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;         
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          }  
        }    fclose(ficresf);
      }  }
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  /************** Forecasting *****not tested NB*************/
       codtab[1][2]=1;codtab[2][2]=2; */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
    /* for(i=1; i <=m ;i++){    
       for(k=1; k <=cptcovn; k++){    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    int *popage;
       }    double calagedatem, agelim, kk1, kk2;
       printf("\n");    double *popeffectif,*popcount;
       }    double ***p3mat,***tabpop,***tabpopprev;
       scanf("%d",i);*/    double ***mobaverage;
        char filerespop[FILENAMELENGTH];
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        agelim=AGESUP;
        calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    strcpy(filerespop,"pop"); 
          strcat(filerespop,fileres);
     /* For Powell, parameters are in a vector p[] starting at p[1]    if((ficrespop=fopen(filerespop,"w"))==NULL) {
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      printf("Problem with forecast resultfile: %s\n", filerespop);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     if(mle==1){    printf("Computing forecasting: result on file '%s' \n", filerespop);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     }  
        if (cptcoveff==0) ncodemax[cptcoveff]=1;
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
    jk=1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      }
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){    stepsize=(int) (stepm+YEARM-1)/YEARM;
        if (k != i)    if (stepm<=12) stepsize=1;
          {    
            printf("%d%d ",i,k);    agelim=AGESUP;
            fprintf(ficlog,"%d%d ",i,k);    
            fprintf(ficres,"%1d%1d ",i,k);    hstepm=1;
            for(j=1; j <=ncovmodel; j++){    hstepm=hstepm/stepm; 
              printf("%f ",p[jk]);    
              fprintf(ficlog,"%f ",p[jk]);    if (popforecast==1) {
              fprintf(ficres,"%f ",p[jk]);      if((ficpop=fopen(popfile,"r"))==NULL) {
              jk++;        printf("Problem with population file : %s\n",popfile);exit(0);
            }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
            printf("\n");      } 
            fprintf(ficlog,"\n");      popage=ivector(0,AGESUP);
            fprintf(ficres,"\n");      popeffectif=vector(0,AGESUP);
          }      popcount=vector(0,AGESUP);
      }      
    }      i=1;   
    if(mle==1){      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      /* Computing hessian and covariance matrix */     
      ftolhess=ftol; /* Usually correct */      imx=i;
      hesscov(matcov, p, npar, delti, ftolhess, func);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
    }    }
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
    printf("# Scales (for hessian or gradient estimation)\n");    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    for(i=1,jk=1; i <=nlstate; i++){        k=k+1;
      for(j=1; j <=nlstate+ndeath; j++){        fprintf(ficrespop,"\n#******");
        if (j!=i) {        for(j=1;j<=cptcoveff;j++) {
          fprintf(ficres,"%1d%1d",i,j);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
          printf("%1d%1d",i,j);        }
          fprintf(ficlog,"%1d%1d",i,j);        fprintf(ficrespop,"******\n");
          for(k=1; k<=ncovmodel;k++){        fprintf(ficrespop,"# Age");
            printf(" %.5e",delti[jk]);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
            fprintf(ficlog," %.5e",delti[jk]);        if (popforecast==1)  fprintf(ficrespop," [Population]");
            fprintf(ficres," %.5e",delti[jk]);        
            jk++;        for (cpt=0; cpt<=0;cpt++) { 
          }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
          printf("\n");          
          fprintf(ficlog,"\n");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
          fprintf(ficres,"\n");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
        }            nhstepm = nhstepm/hstepm; 
      }            
    }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                oldm=oldms;savm=savms;
    k=1;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          
    if(mle==1)            for (h=0; h<=nhstepm; h++){
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              if (h==(int) (calagedatem+YEARM*cpt)) {
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
    for(i=1;i<=npar;i++){              } 
      /*  if (k>nlstate) k=1;              for(j=1; j<=nlstate+ndeath;j++) {
          i1=(i-1)/(ncovmodel*nlstate)+1;                kk1=0.;kk2=0;
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                for(i=1; i<=nlstate;i++) {              
          printf("%s%d%d",alph[k],i1,tab[i]);*/                  if (mobilav==1) 
      fprintf(ficres,"%3d",i);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
      if(mle==1)                  else {
        printf("%3d",i);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
      fprintf(ficlog,"%3d",i);                  }
      for(j=1; j<=i;j++){                }
        fprintf(ficres," %.5e",matcov[i][j]);                if (h==(int)(calagedatem+12*cpt)){
        if(mle==1)                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
          printf(" %.5e",matcov[i][j]);                    /*fprintf(ficrespop," %.3f", kk1);
        fprintf(ficlog," %.5e",matcov[i][j]);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
      }                }
      fprintf(ficres,"\n");              }
      if(mle==1)              for(i=1; i<=nlstate;i++){
        printf("\n");                kk1=0.;
      fprintf(ficlog,"\n");                  for(j=1; j<=nlstate;j++){
      k++;                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
    }                  }
                        tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
    while((c=getc(ficpar))=='#' && c!= EOF){              }
      ungetc(c,ficpar);  
      fgets(line, MAXLINE, ficpar);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
      puts(line);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
      fputs(line,ficparo);            }
    }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    ungetc(c,ficpar);          }
    estepm=0;        }
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   
    if (estepm==0 || estepm < stepm) estepm=stepm;    /******/
    if (fage <= 2) {  
      bage = ageminpar;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
      fage = agemaxpar;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
    }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
                nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            nhstepm = nhstepm/hstepm; 
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                oldm=oldms;savm=savms;
    while((c=getc(ficpar))=='#' && c!= EOF){            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
      ungetc(c,ficpar);            for (h=0; h<=nhstepm; h++){
      fgets(line, MAXLINE, ficpar);              if (h==(int) (calagedatem+YEARM*cpt)) {
      puts(line);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
      fputs(line,ficparo);              } 
    }              for(j=1; j<=nlstate+ndeath;j++) {
    ungetc(c,ficpar);                kk1=0.;kk2=0;
                  for(i=1; i<=nlstate;i++) {              
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                }
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
                  }
    while((c=getc(ficpar))=='#' && c!= EOF){            }
      ungetc(c,ficpar);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fgets(line, MAXLINE, ficpar);          }
      puts(line);        }
      fputs(line,ficparo);     } 
    }    }
    ungetc(c,ficpar);   
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    if (popforecast==1) {
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
   fscanf(ficpar,"pop_based=%d\n",&popbased);      free_vector(popcount,0,AGESUP);
   fprintf(ficparo,"pop_based=%d\n",popbased);      }
   fprintf(ficres,"pop_based=%d\n",popbased);      free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while((c=getc(ficpar))=='#' && c!= EOF){    fclose(ficrespop);
     ungetc(c,ficpar);  } /* End of popforecast */
     fgets(line, MAXLINE, ficpar);  
     puts(line);  int fileappend(FILE *fichier, char *optionfich)
     fputs(line,ficparo);  {
   }    if((fichier=fopen(optionfich,"a"))==NULL) {
   ungetc(c,ficpar);      printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      return (0);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fflush(fichier);
     return (1);
   }
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /**************** function prwizard **********************/
     puts(line);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
     fputs(line,ficparo);  {
   }  
   ungetc(c,ficpar);    /* Wizard to print covariance matrix template */
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    char ca[32], cb[32], cc[32];
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    int numlinepar;
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 /*------------ gnuplot -------------*/    for(i=1; i <=nlstate; i++){
   strcpy(optionfilegnuplot,optionfilefiname);      jj=0;
   strcat(optionfilegnuplot,".gp");      for(j=1; j <=nlstate+ndeath; j++){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        if(j==i) continue;
     printf("Problem with file %s",optionfilegnuplot);        jj++;
   }        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   fclose(ficgp);        printf("%1d%1d",i,j);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        fprintf(ficparo,"%1d%1d",i,j);
 /*--------- index.htm --------*/        for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
   strcpy(optionfilehtm,optionfile);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   strcat(optionfilehtm,".htm");          printf(" 0.");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          fprintf(ficparo," 0.");
     printf("Problem with %s \n",optionfilehtm), exit(0);        }
   }        printf("\n");
         fprintf(ficparo,"\n");
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    }
 \n    printf("# Scales (for hessian or gradient estimation)\n");
 Total number of observations=%d <br>\n    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 <hr  size=\"2\" color=\"#EC5E5E\">    for(i=1; i <=nlstate; i++){
  <ul><li><h4>Parameter files</h4>\n      jj=0;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      for(j=1; j <=nlstate+ndeath; j++){
  - Log file of the run: <a href=\"%s\">%s</a><br>\n        if(j==i) continue;
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        jj++;
   fclose(fichtm);        fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        fflush(stdout);
          for(k=1; k<=ncovmodel;k++){
 /*------------ free_vector  -------------*/          /*      printf(" %le",delti3[i][j][k]); */
  chdir(path);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
            printf(" 0.");
  free_ivector(wav,1,imx);          fprintf(ficparo," 0.");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          numlinepar++;
  free_ivector(num,1,n);        printf("\n");
  free_vector(agedc,1,n);        fprintf(ficparo,"\n");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      }
  fclose(ficparo);    }
  fclose(ficres);    printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /*--------------- Prevalence limit --------------*/  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
    /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   strcpy(filerespl,"pl");  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   strcat(filerespl,fileres);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fflush(stdout);
   }    fprintf(ficparo,"# Covariance matrix\n");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    /* # 121 Var(a12)\n\ */
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   fprintf(ficrespl,"#Prevalence limit\n");    /* #   ...\n\ */
   fprintf(ficrespl,"#Age ");    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    
   fprintf(ficrespl,"\n");    for(itimes=1;itimes<=2;itimes++){
        jj=0;
   prlim=matrix(1,nlstate,1,nlstate);      for(i=1; i <=nlstate; i++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j <=nlstate+ndeath; j++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if(j==i) continue;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(k=1; k<=ncovmodel;k++){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            jj++;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            ca[0]= k+'a'-1;ca[1]='\0';
   k=0;            if(itimes==1){
   agebase=ageminpar;              printf("#%1d%1d%d",i,j,k);
   agelim=agemaxpar;              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   ftolpl=1.e-10;            }else{
   i1=cptcoveff;              printf("%1d%1d%d",i,j,k);
   if (cptcovn < 1){i1=1;}              fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            ll=0;
         k=k+1;            for(li=1;li <=nlstate; li++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              for(lj=1;lj <=nlstate+ndeath; lj++){
         fprintf(ficrespl,"\n#******");                if(lj==li) continue;
         printf("\n#******");                for(lk=1;lk<=ncovmodel;lk++){
         fprintf(ficlog,"\n#******");                  ll++;
         for(j=1;j<=cptcoveff;j++) {                  if(ll<=jj){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    cb[0]= lk +'a'-1;cb[1]='\0';
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    if(ll<jj){
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      if(itimes==1){
         }                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         fprintf(ficrespl,"******\n");                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         printf("******\n");                      }else{
         fprintf(ficlog,"******\n");                        printf(" 0.");
                                fprintf(ficparo," 0.");
         for (age=agebase; age<=agelim; age++){                      }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    }else{
           fprintf(ficrespl,"%.0f",age );                      if(itimes==1){
           for(i=1; i<=nlstate;i++)                        printf(" Var(%s%1d%1d)",ca,i,j);
           fprintf(ficrespl," %.5f", prlim[i][i]);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
           fprintf(ficrespl,"\n");                      }else{
         }                        printf(" 0.");
       }                        fprintf(ficparo," 0.");
     }                      }
   fclose(ficrespl);                    }
                   }
   /*------------- h Pij x at various ages ------------*/                } /* end lk */
                } /* end lj */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            } /* end li */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            printf("\n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            fprintf(ficparo,"\n");
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;            numlinepar++;
   }          } /* end k*/
   printf("Computing pij: result on file '%s' \n", filerespij);        } /*end j */
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      } /* end i */
      }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/  } /* end of prwizard */
   
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */  /***********************************************/
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  /**************** Main Program *****************/
   /***********************************************/
   /* hstepm=1;   aff par mois*/  
   int main(int argc, char *argv[])
   k=0;  {
   for(cptcov=1;cptcov<=i1;cptcov++){    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
       k=k+1;    int jj, imk;
         fprintf(ficrespij,"\n#****** ");    int numlinepar=0; /* Current linenumber of parameter file */
         for(j=1;j<=cptcoveff;j++)    /*  FILE *fichtm; *//* Html File */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* FILE *ficgp;*/ /*Gnuplot File */
         fprintf(ficrespij,"******\n");    double agedeb, agefin,hf;
            double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double fret;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double **xi,tmp,delta;
   
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    double dum; /* Dummy variable */
     double ***p3mat;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***mobaverage;
           oldm=oldms;savm=savms;    int *indx;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      char line[MAXLINE], linepar[MAXLINE];
           fprintf(ficrespij,"# Age");    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
           for(i=1; i<=nlstate;i++)    char pathr[MAXLINE]; 
             for(j=1; j<=nlstate+ndeath;j++)    int firstobs=1, lastobs=10;
               fprintf(ficrespij," %1d-%1d",i,j);    int sdeb, sfin; /* Status at beginning and end */
           fprintf(ficrespij,"\n");    int c,  h , cpt,l;
            for (h=0; h<=nhstepm; h++){    int ju,jl, mi;
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
             for(i=1; i<=nlstate;i++)    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
               for(j=1; j<=nlstate+ndeath;j++)    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    int mobilav=0,popforecast=0;
             fprintf(ficrespij,"\n");    int hstepm, nhstepm;
              }    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
           fprintf(ficrespij,"\n");  
         }    double bage, fage, age, agelim, agebase;
     }    double ftolpl=FTOL;
   }    double **prlim;
     double *severity;
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    double ***param; /* Matrix of parameters */
     double  *p;
   fclose(ficrespij);    double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
   /*---------- Forecasting ------------------*/    double ***eij, ***vareij;
   if((stepm == 1) && (strcmp(model,".")==0)){    double **varpl; /* Variances of prevalence limits by age */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    double *epj, vepp;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    double kk1, kk2;
   }    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   else{  
     erreur=108;    char *alph[]={"a","a","b","c","d","e"}, str[4];
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }    char z[1]="c", occ;
    
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   /*---------- Health expectancies and variances ------------*/    char strstart[80], *strt, strtend[80];
     char *stratrunc;
   strcpy(filerest,"t");    int lstra;
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    long total_usecs;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   }    (void) gettimeofday(&start_time,&tzp);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    curr_time=start_time;
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   strcpy(filerese,"e");  
   strcat(filerese,fileres);  /*  printf("Localtime (at start)=%s",strstart); */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /*  tp.tv_sec = tp.tv_sec +86400; */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /*  tm = *localtime(&start_time.tv_sec); */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   }  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   strcpy(fileresv,"v");  /*   printf("Time(after) =%s",strstart);  */
   strcat(fileresv,fileres);  /*  (void) time (&time_value);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  *  tm = *localtime(&time_value);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  *  strstart=asctime(&tm);
   }  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  */
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;    nberr=0; /* Number of errors and warnings */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    nbwarn=0;
     getcwd(pathcd, size);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    printf("\n%s\n%s",version,fullversion);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if(argc <=1){
       k=k+1;      printf("\nEnter the parameter file name: ");
       fprintf(ficrest,"\n#****** ");      scanf("%s",pathtot);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    else{
       fprintf(ficrest,"******\n");      strcpy(pathtot,argv[1]);
     }
       fprintf(ficreseij,"\n#****** ");    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
       for(j=1;j<=cptcoveff;j++)    /*cygwin_split_path(pathtot,path,optionfile);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
       fprintf(ficreseij,"******\n");    /* cutv(path,optionfile,pathtot,'\\');*/
   
       fprintf(ficresvij,"\n#****** ");    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
       for(j=1;j<=cptcoveff;j++)    printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    chdir(path);
       fprintf(ficresvij,"******\n");    strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if((outcmd=system(command)) != 0){
       oldm=oldms;savm=savms;      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
        /* fclose(ficlog); */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /*     exit(1); */
       oldm=oldms;savm=savms;    }
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);  /*   if((imk=mkdir(optionfilefiname))<0){ */
       if(popbased==1){  /*     perror("mkdir"); */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  /*   } */
        }  
     /*-------- arguments in the command line --------*/
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    /* Log file */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    strcat(filelog, optionfilefiname);
       fprintf(ficrest,"\n");    strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       epj=vector(1,nlstate+1);      printf("Problem with logfile %s\n",filelog);
       for(age=bage; age <=fage ;age++){      goto end;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
         if (popbased==1) {    fprintf(ficlog,"Log filename:%s\n",filelog);
           for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n%s\n%s",version,fullversion);
             prlim[i][i]=probs[(int)age][i][k];    fprintf(ficlog,"\nEnter the parameter file name: ");
         }    fprintf(ficlog,"pathtot=%s\n\
           path=%s \n\
         fprintf(ficrest," %4.0f",age);   optionfile=%s\n\
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   optionfilext=%s\n\
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    printf("Local time (at start):%s",strstart);
           }    fprintf(ficlog,"Local time (at start): %s",strstart);
           epj[nlstate+1] +=epj[j];    fflush(ficlog);
         }  /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    /* */
             vepp += vareij[i][j][(int)age];    strcpy(fileres,"r");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    strcat(fileres, optionfilefiname);
         for(j=1;j <=nlstate;j++){    strcat(fileres,".txt");    /* Other files have txt extension */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }    /*---------arguments file --------*/
         fprintf(ficrest,"\n");  
       }    if((ficpar=fopen(optionfile,"r"))==NULL)    {
     }      printf("Problem with optionfile %s\n",optionfile);
   }      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
 free_matrix(mint,1,maxwav,1,n);      fflush(ficlog);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      goto end;
     free_vector(weight,1,n);    }
   fclose(ficreseij);  
   fclose(ficresvij);  
   fclose(ficrest);  
   fclose(ficpar);    strcpy(filereso,"o");
   free_vector(epj,1,nlstate+1);    strcat(filereso,fileres);
      if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   /*------- Variance limit prevalence------*/        printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   strcpy(fileresvpl,"vpl");      fflush(ficlog);
   strcat(fileresvpl,fileres);      goto end;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);    /* Reads comments: lines beginning with '#' */
   }    numlinepar=0;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
   k=0;      fgets(line, MAXLINE, ficpar);
   for(cptcov=1;cptcov<=i1;cptcov++){      numlinepar++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      puts(line);
       k=k+1;      fputs(line,ficparo);
       fprintf(ficresvpl,"\n#****** ");      fputs(line,ficlog);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    ungetc(c,ficpar);
       fprintf(ficresvpl,"******\n");  
          fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    numlinepar++;
       oldm=oldms;savm=savms;    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     }    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
  }    fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
   fclose(ficresvpl);      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
   /*---------- End : free ----------------*/      numlinepar++;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      puts(line);
        fputs(line,ficparo);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fputs(line,ficlog);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    }
      ungetc(c,ficpar);
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);     
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    covar=matrix(0,NCOVMAX,1,n); 
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
    
   free_matrix(matcov,1,npar,1,npar);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
   free_vector(delti,1,npar);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   free_matrix(agev,1,maxwav,1,imx);   
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   fprintf(fichtm,"\n</body>");      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   fclose(fichtm);      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   fclose(ficgp);      fclose (ficparo);
        fclose (ficlog);
       exit(0);
   if(erreur >0){    }
     printf("End of Imach with error or warning %d\n",erreur);    /* Read guess parameters */
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    /* Reads comments: lines beginning with '#' */
   }else{    while((c=getc(ficpar))=='#' && c!= EOF){
    printf("End of Imach\n");      ungetc(c,ficpar);
    fprintf(ficlog,"End of Imach\n");      fgets(line, MAXLINE, ficpar);
   }      numlinepar++;
   printf("See log file on %s\n",filelog);      puts(line);
   fclose(ficlog);      fputs(line,ficparo);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fputs(line,ficlog);
      }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    ungetc(c,ficpar);
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
  end:      for(jj=1; jj <=nlstate+ndeath; jj++){
 #ifdef windows        if(jj==i) continue;
   /* chdir(pathcd);*/        j++;
 #endif        fscanf(ficpar,"%1d%1d",&i1,&j1);
  /*system("wgnuplot graph.plt");*/        if ((i1 != i) && (j1 != j)){
  /*system("../gp37mgw/wgnuplot graph.plt");*/          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
  /*system("cd ../gp37mgw");*/          exit(1);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        }
  strcpy(plotcmd,GNUPLOTPROGRAM);        fprintf(ficparo,"%1d%1d",i1,j1);
  strcat(plotcmd," ");        if(mle==1)
  strcat(plotcmd,optionfilegnuplot);          printf("%1d%1d",i,j);
  system(plotcmd);        fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
 #ifdef windows          fscanf(ficpar," %lf",&param[i][j][k]);
   while (z[0] != 'q') {          if(mle==1){
     /* chdir(path); */            printf(" %lf",param[i][j][k]);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");            fprintf(ficlog," %lf",param[i][j][k]);
     scanf("%s",z);          }
     if (z[0] == 'c') system("./imach");          else
     else if (z[0] == 'e') system(optionfilehtm);            fprintf(ficlog," %lf",param[i][j][k]);
     else if (z[0] == 'g') system(plotcmd);          fprintf(ficparo," %lf",param[i][j][k]);
     else if (z[0] == 'q') exit(0);        }
   }        fscanf(ficpar,"\n");
 #endif        numlinepar++;
 }        if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.94


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>