Diff for /imach/src/imach.c between versions 1.35 and 1.80

version 1.35, 2002/03/26 17:08:39 version 1.80, 2003/06/05 15:34:14
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probabibility to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month or quarter trimester,    states. This elementary transition (by month, quarter,
   semester or year) is model as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the prevalence limits.    of the life expectancies. It also computes the stable prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   **********************************************************************/  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include <math.h>    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #include <stdio.h>    
 #include <stdlib.h>    **********************************************************************/
 #include <unistd.h>  /*
     main
 #define MAXLINE 256    read parameterfile
 #define GNUPLOTPROGRAM "wgnuplot"    read datafile
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    concatwav
 #define FILENAMELENGTH 80    if (mle >= 1)
 /*#define DEBUG*/      mlikeli
 #define windows    print results files
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    if mle==1 
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */        begin-prev-date,...
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    open gnuplot file
     open html file
 #define NINTERVMAX 8    stable prevalence
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */     for age prevalim()
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    h Pij x
 #define NCOVMAX 8 /* Maximum number of covariates */    variance of p varprob
 #define MAXN 20000    forecasting if prevfcast==1 prevforecast call prevalence()
 #define YEARM 12. /* Number of months per year */    health expectancies
 #define AGESUP 130    Variance-covariance of DFLE
 #define AGEBASE 40    prevalence()
      movingaverage()
     varevsij() 
 int erreur; /* Error number */    if popbased==1 varevsij(,popbased)
 int nvar;    total life expectancies
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Variance of stable prevalence
 int npar=NPARMAX;   end
 int nlstate=2; /* Number of live states */  */
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;  
    
 int *wav; /* Number of waves for this individuual 0 is possible */  #include <math.h>
 int maxwav; /* Maxim number of waves */  #include <stdio.h>
 int jmin, jmax; /* min, max spacing between 2 waves */  #include <stdlib.h>
 int mle, weightopt;  #include <unistd.h>
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define MAXLINE 256
 double jmean; /* Mean space between 2 waves */  #define GNUPLOTPROGRAM "gnuplot"
 double **oldm, **newm, **savm; /* Working pointers to matrices */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define FILENAMELENGTH 80
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  /*#define DEBUG*/
 FILE *ficgp,*ficresprob,*ficpop;  #define windows
 FILE *ficreseij;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   char filerese[FILENAMELENGTH];  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
  FILE  *ficresvpl;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   char fileresvpl[FILENAMELENGTH];  
   #define NINTERVMAX 8
 #define NR_END 1  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define FREE_ARG char*  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define FTOL 1.0e-10  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 #define NRANSI  #define YEARM 12. /* Number of months per year */
 #define ITMAX 200  #define AGESUP 130
   #define AGEBASE 40
 #define TOL 2.0e-4  #ifdef windows
   #define DIRSEPARATOR '\\'
 #define CGOLD 0.3819660  #define ODIRSEPARATOR '/'
 #define ZEPS 1.0e-10  #else
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
 #define GOLD 1.618034  #endif
 #define GLIMIT 100.0  
 #define TINY 1.0e-20  /* $Id$ */
   /* $Log$
 static double maxarg1,maxarg2;   * Revision 1.80  2003/06/05 15:34:14  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))   * Trying to add the true revision is the program and log
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))   *
    /* Revision 1.79  2003/06/05 15:17:23  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  /* *** empty log message ***
 #define rint(a) floor(a+0.5)  /* */
   /* $Revision$ */
 static double sqrarg;  /* $Date$ */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /* $State$ */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
   char version[80]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
 int imx;  int erreur; /* Error number */
 int stepm;  int nvar;
 /* Stepm, step in month: minimum step interpolation*/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 int m,nb;  int nlstate=2; /* Number of live states */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int ndeath=1; /* Number of dead states */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double **pmmij, ***probs, ***mobaverage;  int popbased=0;
 double dateintmean=0;  
   int *wav; /* Number of waves for this individuual 0 is possible */
 double *weight;  int maxwav; /* Maxim number of waves */
 int **s; /* Status */  int jmin, jmax; /* min, max spacing between 2 waves */
 double *agedc, **covar, idx;  int mle, weightopt;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double ftolhess; /* Tolerance for computing hessian */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /**************** split *************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    char *s;                             /* pointer */  FILE *ficlog, *ficrespow;
    int  l1, l2;                         /* length counters */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
    l1 = strlen( path );                 /* length of path */  FILE *fichtm; /* Html File */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE *ficreseij;
 #ifdef windows  char filerese[FILENAMELENGTH];
    s = strrchr( path, '\\' );           /* find last / */  FILE  *ficresvij;
 #else  char fileresv[FILENAMELENGTH];
    s = strrchr( path, '/' );            /* find last / */  FILE  *ficresvpl;
 #endif  char fileresvpl[FILENAMELENGTH];
    if ( s == NULL ) {                   /* no directory, so use current */  char title[MAXLINE];
 #if     defined(__bsd__)                /* get current working directory */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       extern char       *getwd( );  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   
       if ( getwd( dirc ) == NULL ) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #else  char filelog[FILENAMELENGTH]; /* Log file */
       extern char       *getcwd( );  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char popfile[FILENAMELENGTH];
 #endif  
          return( GLOCK_ERROR_GETCWD );  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
       }  
       strcpy( name, path );             /* we've got it */  #define NR_END 1
    } else {                             /* strip direcotry from path */  #define FREE_ARG char*
       s++;                              /* after this, the filename */  #define FTOL 1.0e-10
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NRANSI 
       strcpy( name, s );                /* save file name */  #define ITMAX 200 
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  #define TOL 2.0e-4 
    }  
    l1 = strlen( dirc );                 /* length of directory */  #define CGOLD 0.3819660 
 #ifdef windows  #define ZEPS 1.0e-10 
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define GOLD 1.618034 
 #endif  #define GLIMIT 100.0 
    s = strrchr( name, '.' );            /* find last / */  #define TINY 1.0e-20 
    s++;  
    strcpy(ext,s);                       /* save extension */  static double maxarg1,maxarg2;
    l1= strlen( name);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    l2= strlen( s)+1;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
    strncpy( finame, name, l1-l2);    
    finame[l1-l2]= 0;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    return( 0 );                         /* we're done */  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /******************************************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   
 void replace(char *s, char*t)  int imx; 
 {  int stepm;
   int i;  /* Stepm, step in month: minimum step interpolation*/
   int lg=20;  
   i=0;  int estepm;
   lg=strlen(t);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  int m,nb;
     if (t[i]== '\\') s[i]='/';  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double dateintmean=0;
 int nbocc(char *s, char occ)  
 {  double *weight;
   int i,j=0;  int **s; /* Status */
   int lg=20;  double *agedc, **covar, idx;
   i=0;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if  (s[i] == occ ) j++;  double ftolhess; /* Tolerance for computing hessian */
   }  
   return j;  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 void cutv(char *u,char *v, char*t, char occ)    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   int i,lg,j,p=0;  
   i=0;    l1 = strlen(path );                   /* length of path */
   for(j=0; j<=strlen(t)-1; j++) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   }    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   lg=strlen(t);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for(j=0; j<p; j++) {      /* get current working directory */
     (u[j] = t[j]);      /*    extern  char* getcwd ( char *buf , int len);*/
   }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
      u[p]='\0';        return( GLOCK_ERROR_GETCWD );
       }
    for(j=0; j<= lg; j++) {      strcpy( name, path );               /* we've got it */
     if (j>=(p+1))(v[j-p-1] = t[j]);    } else {                              /* strip direcotry from path */
   }      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /********************** nrerror ********************/      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 void nrerror(char error_text[])      dirc[l1-l2] = 0;                    /* add zero */
 {    }
   fprintf(stderr,"ERREUR ...\n");    l1 = strlen( dirc );                  /* length of directory */
   fprintf(stderr,"%s\n",error_text);  #ifdef windows
   exit(1);    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 }  #else
 /*********************** vector *******************/    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 double *vector(int nl, int nh)  #endif
 {    ss = strrchr( name, '.' );            /* find last / */
   double *v;    ss++;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    strcpy(ext,ss);                       /* save extension */
   if (!v) nrerror("allocation failure in vector");    l1= strlen( name);
   return v-nl+NR_END;    l2= strlen(ss)+1;
 }    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
 /************************ free vector ******************/    return( 0 );                          /* we're done */
 void free_vector(double*v, int nl, int nh)  }
 {  
   free((FREE_ARG)(v+nl-NR_END));  
 }  /******************************************/
   
 /************************ivector *******************************/  void replace(char *s, char*t)
 int *ivector(long nl,long nh)  {
 {    int i;
   int *v;    int lg=20;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    i=0;
   if (!v) nrerror("allocation failure in ivector");    lg=strlen(t);
   return v-nl+NR_END;    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /******************free ivector **************************/    }
 void free_ivector(int *v, long nl, long nh)  }
 {  
   free((FREE_ARG)(v+nl-NR_END));  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /******************* imatrix *******************************/    int lg=20;
 int **imatrix(long nrl, long nrh, long ncl, long nch)    i=0;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    if  (s[i] == occ ) j++;
   int **m;    }
      return j;
   /* allocate pointers to rows */  }
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  void cutv(char *u,char *v, char*t, char occ)
   m += NR_END;  {
   m -= nrl;    /* cuts string t into u and v where u is ended by char occ excluding it
         and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
         gives u="abcedf" and v="ghi2j" */
   /* allocate rows and set pointers to them */    int i,lg,j,p=0;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    i=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    for(j=0; j<=strlen(t)-1; j++) {
   m[nrl] += NR_END;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m[nrl] -= ncl;    }
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    lg=strlen(t);
      for(j=0; j<p; j++) {
   /* return pointer to array of pointers to rows */      (u[j] = t[j]);
   return m;    }
 }       u[p]='\0';
   
 /****************** free_imatrix *************************/     for(j=0; j<= lg; j++) {
 void free_imatrix(m,nrl,nrh,ncl,nch)      if (j>=(p+1))(v[j-p-1] = t[j]);
       int **m;    }
       long nch,ncl,nrh,nrl;  }
      /* free an int matrix allocated by imatrix() */  
 {  /********************** nrerror ********************/
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  void nrerror(char error_text[])
 }  {
     fprintf(stderr,"ERREUR ...\n");
 /******************* matrix *******************************/    fprintf(stderr,"%s\n",error_text);
 double **matrix(long nrl, long nrh, long ncl, long nch)    exit(EXIT_FAILURE);
 {  }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /*********************** vector *******************/
   double **m;  double *vector(int nl, int nh)
   {
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    double *v;
   if (!m) nrerror("allocation failure 1 in matrix()");    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m += NR_END;    if (!v) nrerror("allocation failure in vector");
   m -= nrl;    return v-nl+NR_END;
   }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /************************ free vector ******************/
   m[nrl] += NR_END;  void free_vector(double*v, int nl, int nh)
   m[nrl] -= ncl;  {
     free((FREE_ARG)(v+nl-NR_END));
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   return m;  
 }  /************************ivector *******************************/
   char *cvector(long nl,long nh)
 /*************************free matrix ************************/  {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    char *v;
 {    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (!v) nrerror("allocation failure in cvector");
   free((FREE_ARG)(m+nrl-NR_END));    return v-nl+NR_END;
 }  }
   
 /******************* ma3x *******************************/  /******************free ivector **************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  void free_cvector(char *v, long nl, long nh)
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    free((FREE_ARG)(v+nl-NR_END));
   double ***m;  }
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /************************ivector *******************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  int *ivector(long nl,long nh)
   m += NR_END;  {
   m -= nrl;    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if (!v) nrerror("allocation failure in ivector");
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    return v-nl+NR_END;
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   /******************free ivector **************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  void free_ivector(int *v, long nl, long nh)
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    free((FREE_ARG)(v+nl-NR_END));
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  /******************* imatrix *******************************/
   for (j=ncl+1; j<=nch; j++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     m[nrl][j]=m[nrl][j-1]+nlay;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
    { 
   for (i=nrl+1; i<=nrh; i++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    int **m; 
     for (j=ncl+1; j<=nch; j++)    
       m[i][j]=m[i][j-1]+nlay;    /* allocate pointers to rows */ 
   }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   return m;    if (!m) nrerror("allocation failure 1 in matrix()"); 
 }    m += NR_END; 
     m -= nrl; 
 /*************************free ma3x ************************/    
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    
 {    /* allocate rows and set pointers to them */ 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   free((FREE_ARG)(m+nrl-NR_END));    m[nrl] += NR_END; 
 }    m[nrl] -= ncl; 
     
 /***************** f1dim *************************/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 extern int ncom;    
 extern double *pcom,*xicom;    /* return pointer to array of pointers to rows */ 
 extern double (*nrfunc)(double []);    return m; 
    } 
 double f1dim(double x)  
 {  /****************** free_imatrix *************************/
   int j;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double f;        int **m;
   double *xt;        long nch,ncl,nrh,nrl; 
         /* free an int matrix allocated by imatrix() */ 
   xt=vector(1,ncom);  { 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   f=(*nrfunc)(xt);    free((FREE_ARG) (m+nrl-NR_END)); 
   free_vector(xt,1,ncom);  } 
   return f;  
 }  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 {    double **m;
   int iter;  
   double a,b,d,etemp;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double fu,fv,fw,fx;    if (!m) nrerror("allocation failure 1 in matrix()");
   double ftemp;    m += NR_END;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    m -= nrl;
   double e=0.0;  
      m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   a=(ax < cx ? ax : cx);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   b=(ax > cx ? ax : cx);    m[nrl] += NR_END;
   x=w=v=bx;    m[nrl] -= ncl;
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     xm=0.5*(a+b);    return m;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/     */
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /*************************free matrix ************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       *xmin=x;    free((FREE_ARG)(m+nrl-NR_END));
       return fx;  }
     }  
     ftemp=fu;  /******************* ma3x *******************************/
     if (fabs(e) > tol1) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       r=(x-w)*(fx-fv);  {
       q=(x-v)*(fx-fw);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       p=(x-v)*q-(x-w)*r;    double ***m;
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       q=fabs(q);    if (!m) nrerror("allocation failure 1 in matrix()");
       etemp=e;    m += NR_END;
       e=d;    m -= nrl;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       else {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         d=p/q;    m[nrl] += NR_END;
         u=x+d;    m[nrl] -= ncl;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }  
     } else {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m[nrl][ncl] -= nll;
     fu=(*f)(u);    for (j=ncl+1; j<=nch; j++) 
     if (fu <= fx) {      m[nrl][j]=m[nrl][j-1]+nlay;
       if (u >= x) a=x; else b=x;    
       SHFT(v,w,x,u)    for (i=nrl+1; i<=nrh; i++) {
         SHFT(fv,fw,fx,fu)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         } else {      for (j=ncl+1; j<=nch; j++) 
           if (u < x) a=u; else b=u;        m[i][j]=m[i][j-1]+nlay;
           if (fu <= fw || w == x) {    }
             v=w;    return m; 
             w=u;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             fv=fw;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
             fw=fu;    */
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  /*************************free ma3x ************************/
           }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         }  {
   }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   nrerror("Too many iterations in brent");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   *xmin=x;    free((FREE_ARG)(m+nrl-NR_END));
   return fx;  }
 }  
   /***************** f1dim *************************/
 /****************** mnbrak ***********************/  extern int ncom; 
   extern double *pcom,*xicom;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  extern double (*nrfunc)(double []); 
             double (*func)(double))   
 {  double f1dim(double x) 
   double ulim,u,r,q, dum;  { 
   double fu;    int j; 
      double f;
   *fa=(*func)(*ax);    double *xt; 
   *fb=(*func)(*bx);   
   if (*fb > *fa) {    xt=vector(1,ncom); 
     SHFT(dum,*ax,*bx,dum)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       SHFT(dum,*fb,*fa,dum)    f=(*nrfunc)(xt); 
       }    free_vector(xt,1,ncom); 
   *cx=(*bx)+GOLD*(*bx-*ax);    return f; 
   *fc=(*func)(*cx);  } 
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /*****************brent *************************/
     q=(*bx-*cx)*(*fb-*fa);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  { 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    int iter; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    double a,b,d,etemp;
     if ((*bx-u)*(u-*cx) > 0.0) {    double fu,fv,fw,fx;
       fu=(*func)(u);    double ftemp;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       fu=(*func)(u);    double e=0.0; 
       if (fu < *fc) {   
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    a=(ax < cx ? ax : cx); 
           SHFT(*fb,*fc,fu,(*func)(u))    b=(ax > cx ? ax : cx); 
           }    x=w=v=bx; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    fw=fv=fx=(*f)(x); 
       u=ulim;    for (iter=1;iter<=ITMAX;iter++) { 
       fu=(*func)(u);      xm=0.5*(a+b); 
     } else {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       u=(*cx)+GOLD*(*cx-*bx);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       fu=(*func)(u);      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
     SHFT(*ax,*bx,*cx,u)  #ifdef DEBUG
       SHFT(*fa,*fb,*fc,fu)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
 /*************** linmin ************************/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 int ncom;        return fx; 
 double *pcom,*xicom;      } 
 double (*nrfunc)(double []);      ftemp=fu;
        if (fabs(e) > tol1) { 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        r=(x-w)*(fx-fv); 
 {        q=(x-v)*(fx-fw); 
   double brent(double ax, double bx, double cx,        p=(x-v)*q-(x-w)*r; 
                double (*f)(double), double tol, double *xmin);        q=2.0*(q-r); 
   double f1dim(double x);        if (q > 0.0) p = -p; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        q=fabs(q); 
               double *fc, double (*func)(double));        etemp=e; 
   int j;        e=d; 
   double xx,xmin,bx,ax;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double fx,fb,fa;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          else { 
   ncom=n;          d=p/q; 
   pcom=vector(1,n);          u=x+d; 
   xicom=vector(1,n);          if (u-a < tol2 || b-u < tol2) 
   nrfunc=func;            d=SIGN(tol1,xm-x); 
   for (j=1;j<=n;j++) {        } 
     pcom[j]=p[j];      } else { 
     xicom[j]=xi[j];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   }      } 
   ax=0.0;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   xx=1.0;      fu=(*f)(u); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      if (fu <= fx) { 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        if (u >= x) a=x; else b=x; 
 #ifdef DEBUG        SHFT(v,w,x,u) 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);          SHFT(fv,fw,fx,fu) 
 #endif          } else { 
   for (j=1;j<=n;j++) {            if (u < x) a=u; else b=u; 
     xi[j] *= xmin;            if (fu <= fw || w == x) { 
     p[j] += xi[j];              v=w; 
   }              w=u; 
   free_vector(xicom,1,n);              fv=fw; 
   free_vector(pcom,1,n);              fw=fu; 
 }            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
 /*************** powell ************************/              fv=fu; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,            } 
             double (*func)(double []))          } 
 {    } 
   void linmin(double p[], double xi[], int n, double *fret,    nrerror("Too many iterations in brent"); 
               double (*func)(double []));    *xmin=x; 
   int i,ibig,j;    return fx; 
   double del,t,*pt,*ptt,*xit;  } 
   double fp,fptt;  
   double *xits;  /****************** mnbrak ***********************/
   pt=vector(1,n);  
   ptt=vector(1,n);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   xit=vector(1,n);              double (*func)(double)) 
   xits=vector(1,n);  { 
   *fret=(*func)(p);    double ulim,u,r,q, dum;
   for (j=1;j<=n;j++) pt[j]=p[j];    double fu; 
   for (*iter=1;;++(*iter)) {   
     fp=(*fret);    *fa=(*func)(*ax); 
     ibig=0;    *fb=(*func)(*bx); 
     del=0.0;    if (*fb > *fa) { 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      SHFT(dum,*ax,*bx,dum) 
     for (i=1;i<=n;i++)        SHFT(dum,*fb,*fa,dum) 
       printf(" %d %.12f",i, p[i]);        } 
     printf("\n");    *cx=(*bx)+GOLD*(*bx-*ax); 
     for (i=1;i<=n;i++) {    *fc=(*func)(*cx); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    while (*fb > *fc) { 
       fptt=(*fret);      r=(*bx-*ax)*(*fb-*fc); 
 #ifdef DEBUG      q=(*bx-*cx)*(*fb-*fa); 
       printf("fret=%lf \n",*fret);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 #endif        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       printf("%d",i);fflush(stdout);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       linmin(p,xit,n,fret,func);      if ((*bx-u)*(u-*cx) > 0.0) { 
       if (fabs(fptt-(*fret)) > del) {        fu=(*func)(u); 
         del=fabs(fptt-(*fret));      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         ibig=i;        fu=(*func)(u); 
       }        if (fu < *fc) { 
 #ifdef DEBUG          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       printf("%d %.12e",i,(*fret));            SHFT(*fb,*fc,fu,(*func)(u)) 
       for (j=1;j<=n;j++) {            } 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         printf(" x(%d)=%.12e",j,xit[j]);        u=ulim; 
       }        fu=(*func)(u); 
       for(j=1;j<=n;j++)      } else { 
         printf(" p=%.12e",p[j]);        u=(*cx)+GOLD*(*cx-*bx); 
       printf("\n");        fu=(*func)(u); 
 #endif      } 
     }      SHFT(*ax,*bx,*cx,u) 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        SHFT(*fa,*fb,*fc,fu) 
 #ifdef DEBUG        } 
       int k[2],l;  } 
       k[0]=1;  
       k[1]=-1;  /*************** linmin ************************/
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  int ncom; 
         printf(" %.12e",p[j]);  double *pcom,*xicom;
       printf("\n");  double (*nrfunc)(double []); 
       for(l=0;l<=1;l++) {   
         for (j=1;j<=n;j++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double brent(double ax, double bx, double cx, 
         }                 double (*f)(double), double tol, double *xmin); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double f1dim(double x); 
       }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 #endif                double *fc, double (*func)(double)); 
     int j; 
     double xx,xmin,bx,ax; 
       free_vector(xit,1,n);    double fx,fb,fa;
       free_vector(xits,1,n);   
       free_vector(ptt,1,n);    ncom=n; 
       free_vector(pt,1,n);    pcom=vector(1,n); 
       return;    xicom=vector(1,n); 
     }    nrfunc=func; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    for (j=1;j<=n;j++) { 
     for (j=1;j<=n;j++) {      pcom[j]=p[j]; 
       ptt[j]=2.0*p[j]-pt[j];      xicom[j]=xi[j]; 
       xit[j]=p[j]-pt[j];    } 
       pt[j]=p[j];    ax=0.0; 
     }    xx=1.0; 
     fptt=(*func)(ptt);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     if (fptt < fp) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #ifdef DEBUG
       if (t < 0.0) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         linmin(p,xit,n,fret,func);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for (j=1;j<=n;j++) {  #endif
           xi[j][ibig]=xi[j][n];    for (j=1;j<=n;j++) { 
           xi[j][n]=xit[j];      xi[j] *= xmin; 
         }      p[j] += xi[j]; 
 #ifdef DEBUG    } 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    free_vector(xicom,1,n); 
         for(j=1;j<=n;j++)    free_vector(pcom,1,n); 
           printf(" %.12e",xit[j]);  } 
         printf("\n");  
 #endif  /*************** powell ************************/
       }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
   }  { 
 }    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
 /**** Prevalence limit ****************/    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double fp,fptt;
 {    double *xits;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    pt=vector(1,n); 
      matrix by transitions matrix until convergence is reached */    ptt=vector(1,n); 
     xit=vector(1,n); 
   int i, ii,j,k;    xits=vector(1,n); 
   double min, max, maxmin, maxmax,sumnew=0.;    *fret=(*func)(p); 
   double **matprod2();    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double **out, cov[NCOVMAX], **pmij();    for (*iter=1;;++(*iter)) { 
   double **newm;      fp=(*fret); 
   double agefin, delaymax=50 ; /* Max number of years to converge */      ibig=0; 
       del=0.0; 
   for (ii=1;ii<=nlstate+ndeath;ii++)      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     for (j=1;j<=nlstate+ndeath;j++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     }      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
    cov[1]=1.;        fprintf(ficlog," %d %.12lf",i, p[i]);
          fprintf(ficrespow," %.12lf", p[i]);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      printf("\n");
     newm=savm;      fprintf(ficlog,"\n");
     /* Covariates have to be included here again */      fprintf(ficrespow,"\n");
      cov[2]=agefin;      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       for (k=1; k<=cptcovn;k++) {        fptt=(*fret); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #ifdef DEBUG
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        printf("fret=%lf \n",*fret);
       }        fprintf(ficlog,"fret=%lf \n",*fret);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #endif
       for (k=1; k<=cptcovprod;k++)        printf("%d",i);fflush(stdout);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        if (fabs(fptt-(*fret)) > del) { 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          del=fabs(fptt-(*fret)); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          ibig=i; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        } 
   #ifdef DEBUG
     savm=oldm;        printf("%d %.12e",i,(*fret));
     oldm=newm;        fprintf(ficlog,"%d %.12e",i,(*fret));
     maxmax=0.;        for (j=1;j<=n;j++) {
     for(j=1;j<=nlstate;j++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       min=1.;          printf(" x(%d)=%.12e",j,xit[j]);
       max=0.;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for(i=1; i<=nlstate; i++) {        }
         sumnew=0;        for(j=1;j<=n;j++) {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          printf(" p=%.12e",p[j]);
         prlim[i][j]= newm[i][j]/(1-sumnew);          fprintf(ficlog," p=%.12e",p[j]);
         max=FMAX(max,prlim[i][j]);        }
         min=FMIN(min,prlim[i][j]);        printf("\n");
       }        fprintf(ficlog,"\n");
       maxmin=max-min;  #endif
       maxmax=FMAX(maxmax,maxmin);      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     if(maxmax < ftolpl){  #ifdef DEBUG
       return prlim;        int k[2],l;
     }        k[0]=1;
   }        k[1]=-1;
 }        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
 /*************** transition probabilities ***************/        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          fprintf(ficlog," %.12e",p[j]);
 {        }
   double s1, s2;        printf("\n");
   /*double t34;*/        fprintf(ficlog,"\n");
   int i,j,j1, nc, ii, jj;        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
     for(i=1; i<= nlstate; i++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for(j=1; j<i;j++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         /*s2 += param[i][j][nc]*cov[nc];*/          }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
       ps[i][j]=s2;  #endif
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){        free_vector(xit,1,n); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        free_vector(xits,1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        free_vector(ptt,1,n); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        free_vector(pt,1,n); 
       }        return; 
       ps[i][j]=s2;      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   }      for (j=1;j<=n;j++) { 
     /*ps[3][2]=1;*/        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   for(i=1; i<= nlstate; i++){        pt[j]=p[j]; 
      s1=0;      } 
     for(j=1; j<i; j++)      fptt=(*func)(ptt); 
       s1+=exp(ps[i][j]);      if (fptt < fp) { 
     for(j=i+1; j<=nlstate+ndeath; j++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       s1+=exp(ps[i][j]);        if (t < 0.0) { 
     ps[i][i]=1./(s1+1.);          linmin(p,xit,n,fret,func); 
     for(j=1; j<i; j++)          for (j=1;j<=n;j++) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            xi[j][ibig]=xi[j][n]; 
     for(j=i+1; j<=nlstate+ndeath; j++)            xi[j][n]=xit[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #ifdef DEBUG
   } /* end i */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          for(j=1;j<=n;j++){
     for(jj=1; jj<= nlstate+ndeath; jj++){            printf(" %.12e",xit[j]);
       ps[ii][jj]=0;            fprintf(ficlog," %.12e",xit[j]);
       ps[ii][ii]=1;          }
     }          printf("\n");
   }          fprintf(ficlog,"\n");
   #endif
         }
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      } 
     for(jj=1; jj<= nlstate+ndeath; jj++){    } 
      printf("%lf ",ps[ii][jj]);  } 
    }  
     printf("\n ");  /**** Prevalence limit (stable prevalence)  ****************/
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 /*  {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   goto end;*/       matrix by transitions matrix until convergence is reached */
     return ps;  
 }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
 /**************** Product of 2 matrices ******************/    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double **newm;
 {    double agefin, delaymax=50 ; /* Max number of years to converge */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    for (ii=1;ii<=nlstate+ndeath;ii++)
   /* in, b, out are matrice of pointers which should have been initialized      for (j=1;j<=nlstate+ndeath;j++){
      before: only the contents of out is modified. The function returns        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      a pointer to pointers identical to out */      }
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)     cov[1]=1.;
     for(k=ncolol; k<=ncoloh; k++)   
       for(j=ncl,out[i][k]=0.; j<=nch; j++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         out[i][k] +=in[i][j]*b[j][k];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   return out;      /* Covariates have to be included here again */
 }       cov[2]=agefin;
     
         for (k=1; k<=cptcovn;k++) {
 /************* Higher Matrix Product ***************/          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        }
 {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        for (k=1; k<=cptcovprod;k++)
      duration (i.e. until          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      (typically every 2 years instead of every month which is too big).        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      Model is determined by parameters x and covariates have to be        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
      included manually here.      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
      */      savm=oldm;
       oldm=newm;
   int i, j, d, h, k;      maxmax=0.;
   double **out, cov[NCOVMAX];      for(j=1;j<=nlstate;j++){
   double **newm;        min=1.;
         max=0.;
   /* Hstepm could be zero and should return the unit matrix */        for(i=1; i<=nlstate; i++) {
   for (i=1;i<=nlstate+ndeath;i++)          sumnew=0;
     for (j=1;j<=nlstate+ndeath;j++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       oldm[i][j]=(i==j ? 1.0 : 0.0);          prlim[i][j]= newm[i][j]/(1-sumnew);
       po[i][j][0]=(i==j ? 1.0 : 0.0);          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        }
   for(h=1; h <=nhstepm; h++){        maxmin=max-min;
     for(d=1; d <=hstepm; d++){        maxmax=FMAX(maxmax,maxmin);
       newm=savm;      }
       /* Covariates have to be included here again */      if(maxmax < ftolpl){
       cov[1]=1.;        return prlim;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
       for (k=1; k<=cptcovage;k++)  }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /*************** transition probabilities ***************/ 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double s1, s2;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    /*double t34;*/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    int i,j,j1, nc, ii, jj;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;      for(i=1; i<= nlstate; i++){
       oldm=newm;      for(j=1; j<i;j++){
     }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for(i=1; i<=nlstate+ndeath; i++)          /*s2 += param[i][j][nc]*cov[nc];*/
       for(j=1;j<=nlstate+ndeath;j++) {          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         po[i][j][h]=newm[i][j];          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        }
          */        ps[i][j]=s2;
       }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   } /* end h */      }
   return po;      for(j=i+1; j<=nlstate+ndeath;j++){
 }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
 /*************** log-likelihood *************/        }
 double func( double *x)        ps[i][j]=s2;
 {      }
   int i, ii, j, k, mi, d, kk;    }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      /*ps[3][2]=1;*/
   double **out;  
   double sw; /* Sum of weights */    for(i=1; i<= nlstate; i++){
   double lli; /* Individual log likelihood */       s1=0;
   long ipmx;      for(j=1; j<i; j++)
   /*extern weight */        s1+=exp(ps[i][j]);
   /* We are differentiating ll according to initial status */      for(j=i+1; j<=nlstate+ndeath; j++)
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        s1+=exp(ps[i][j]);
   /*for(i=1;i<imx;i++)      ps[i][i]=1./(s1+1.);
     printf(" %d\n",s[4][i]);      for(j=1; j<i; j++)
   */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   cov[1]=1.;      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   for(k=1; k<=nlstate; k++) ll[k]=0.;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    } /* end i */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for (ii=1;ii<=nlstate+ndeath;ii++)      for(jj=1; jj<= nlstate+ndeath; jj++){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        ps[ii][jj]=0;
       for(d=0; d<dh[mi][i]; d++){        ps[ii][ii]=1;
         newm=savm;      }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
              for(jj=1; jj<= nlstate+ndeath; jj++){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       printf("%lf ",ps[ii][jj]);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));     }
         savm=oldm;      printf("\n ");
         oldm=newm;      }
              printf("\n ");printf("%lf ",cov[2]);*/
          /*
       } /* end mult */    for(i=1; i<= npar; i++) printf("%f ",x[i]);
          goto end;*/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      return ps;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  }
       ipmx +=1;  
       sw += weight[i];  /**************** Product of 2 matrices ******************/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   } /* end of individual */  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /* in, b, out are matrice of pointers which should have been initialized 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */       before: only the contents of out is modified. The function returns
   return -l;       a pointer to pointers identical to out */
 }    long i, j, k;
     for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
 /*********** Maximum Likelihood Estimation ***************/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {    return out;
   int i,j, iter;  }
   double **xi,*delti;  
   double fret;  
   xi=matrix(1,npar,1,npar);  /************* Higher Matrix Product ***************/
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       xi[i][j]=(i==j ? 1.0 : 0.0);  {
   printf("Powell\n");    /* Computes the transition matrix starting at age 'age' over 
   powell(p,xi,npar,ftol,&iter,&fret,func);       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       nhstepm*hstepm matrices. 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
 }       for the memory).
        Model is determined by parameters x and covariates have to be 
 /**** Computes Hessian and covariance matrix ***/       included manually here. 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {       */
   double  **a,**y,*x,pd;  
   double **hess;    int i, j, d, h, k;
   int i, j,jk;    double **out, cov[NCOVMAX];
   int *indx;    double **newm;
   
   double hessii(double p[], double delta, int theta, double delti[]);    /* Hstepm could be zero and should return the unit matrix */
   double hessij(double p[], double delti[], int i, int j);    for (i=1;i<=nlstate+ndeath;i++)
   void lubksb(double **a, int npar, int *indx, double b[]) ;      for (j=1;j<=nlstate+ndeath;j++){
   void ludcmp(double **a, int npar, int *indx, double *d) ;        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
   hess=matrix(1,npar,1,npar);      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   printf("\nCalculation of the hessian matrix. Wait...\n");    for(h=1; h <=nhstepm; h++){
   for (i=1;i<=npar;i++){      for(d=1; d <=hstepm; d++){
     printf("%d",i);fflush(stdout);        newm=savm;
     hess[i][i]=hessii(p,ftolhess,i,delti);        /* Covariates have to be included here again */
     /*printf(" %f ",p[i]);*/        cov[1]=1.;
     /*printf(" %lf ",hess[i][i]);*/        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
   for (i=1;i<=npar;i++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (j=1;j<=npar;j++)  {        for (k=1; k<=cptcovprod;k++)
       if (j>i) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];            /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf(" %lf ",hess[i][j]);*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   }        savm=oldm;
   printf("\n");        oldm=newm;
       }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   a=matrix(1,npar,1,npar);          po[i][j][h]=newm[i][j];
   y=matrix(1,npar,1,npar);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   x=vector(1,npar);           */
   indx=ivector(1,npar);        }
   for (i=1;i<=npar;i++)    } /* end h */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    return po;
   ludcmp(a,npar,indx,&pd);  }
   
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /*************** log-likelihood *************/
     x[j]=1;  double func( double *x)
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    int i, ii, j, k, mi, d, kk;
       matcov[i][j]=x[i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
   }    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
   printf("\n#Hessian matrix#\n");    int s1, s2;
   for (i=1;i<=npar;i++) {    double bbh, survp;
     for (j=1;j<=npar;j++) {    long ipmx;
       printf("%.3e ",hess[i][j]);    /*extern weight */
     }    /* We are differentiating ll according to initial status */
     printf("\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   /* Recompute Inverse */    */
   for (i=1;i<=npar;i++)    cov[1]=1.;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   /*  printf("\n#Hessian matrix recomputed#\n");    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (j=1;j<=npar;j++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1;i<=npar;i++) x[i]=0;        for(mi=1; mi<= wav[i]-1; mi++){
     x[j]=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
     lubksb(a,npar,indx,x);            for (j=1;j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       y[i][j]=x[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("%.3e ",y[i][j]);            }
     }          for(d=0; d<dh[mi][i]; d++){
     printf("\n");            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_matrix(a,1,npar,1,npar);            }
   free_matrix(y,1,npar,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(x,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_ivector(indx,1,npar);            savm=oldm;
   free_matrix(hess,1,npar,1,npar);            oldm=newm;
           } /* end mult */
         
 }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
 /*************** hessian matrix ****************/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 double hessii( double x[], double delta, int theta, double delti[])           * (in months) between two waves is not a multiple of stepm, we rounded to 
 {           * the nearest (and in case of equal distance, to the lowest) interval but now
   int i;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   int l=1, lmax=20;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   double k1,k2;           * probability in order to take into account the bias as a fraction of the way
   double p2[NPARMAX+1];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double res;           * -stepm/2 to stepm/2 .
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           * For stepm=1 the results are the same as for previous versions of Imach.
   double fx;           * For stepm > 1 the results are less biased than in previous versions. 
   int k=0,kmax=10;           */
   double l1;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   fx=func(x);          bbh=(double)bh[mi][i]/(double)stepm; 
   for (i=1;i<=npar;i++) p2[i]=x[i];          /* bias is positive if real duration
   for(l=0 ; l <=lmax; l++){           * is higher than the multiple of stepm and negative otherwise.
     l1=pow(10,l);           */
     delts=delt;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     for(k=1 ; k <kmax; k=k+1){          if( s2 > nlstate){ 
       delt = delta*(l1*k);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       p2[theta]=x[theta] +delt;               to the likelihood is the probability to die between last step unit time and current 
       k1=func(p2)-fx;               step unit time, which is also the differences between probability to die before dh 
       p2[theta]=x[theta]-delt;               and probability to die before dh-stepm . 
       k2=func(p2)-fx;               In version up to 0.92 likelihood was computed
       /*res= (k1-2.0*fx+k2)/delt/delt; */          as if date of death was unknown. Death was treated as any other
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          health state: the date of the interview describes the actual state
                and not the date of a change in health state. The former idea was
 #ifdef DEBUG          to consider that at each interview the state was recorded
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          (healthy, disable or death) and IMaCh was corrected; but when we
 #endif          introduced the exact date of death then we should have modified
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          the contribution of an exact death to the likelihood. This new
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          contribution is smaller and very dependent of the step unit
         k=kmax;          stepm. It is no more the probability to die between last interview
       }          and month of death but the probability to survive from last
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          interview up to one month before death multiplied by the
         k=kmax; l=lmax*10.;          probability to die within a month. Thanks to Chris
       }          Jackson for correcting this bug.  Former versions increased
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          mortality artificially. The bad side is that we add another loop
         delts=delt;          which slows down the processing. The difference can be up to 10%
       }          lower mortality.
     }            */
   }            lli=log(out[s1][s2] - savm[s1][s2]);
   delti[theta]=delts;          }else{
   return res;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 }          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 double hessij( double x[], double delti[], int thetai,int thetaj)          /*if(lli ==000.0)*/
 {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int i;          ipmx +=1;
   int l=1, l1, lmax=20;          sw += weight[i];
   double k1,k2,k3,k4,res,fx;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double p2[NPARMAX+1];        } /* end of wave */
   int k;      } /* end of individual */
     }  else if(mle==2){
   fx=func(x);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (k=1; k<=2; k++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1;i<=npar;i++) p2[i]=x[i];        for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetai]=x[thetai]+delti[thetai]/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            for (j=1;j<=nlstate+ndeath;j++){
     k1=func(p2)-fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]+delti[thetai]/k;            }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          for(d=0; d<=dh[mi][i]; d++){
     k2=func(p2)-fx;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetai]=x[thetai]-delti[thetai]/k;            for (kk=1; kk<=cptcovage;kk++) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     k3=func(p2)-fx;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p2[thetai]=x[thetai]-delti[thetai]/k;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            savm=oldm;
     k4=func(p2)-fx;            oldm=newm;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          } /* end mult */
 #ifdef DEBUG        
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 #endif          /* But now since version 0.9 we anticipate for bias and large stepm.
   }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   return res;           * (in months) between two waves is not a multiple of stepm, we rounded to 
 }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
 /************** Inverse of matrix **************/           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 void ludcmp(double **a, int n, int *indx, double *d)           * probability in order to take into account the bias as a fraction of the way
 {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   int i,imax,j,k;           * -stepm/2 to stepm/2 .
   double big,dum,sum,temp;           * For stepm=1 the results are the same as for previous versions of Imach.
   double *vv;           * For stepm > 1 the results are less biased than in previous versions. 
             */
   vv=vector(1,n);          s1=s[mw[mi][i]][i];
   *d=1.0;          s2=s[mw[mi+1][i]][i];
   for (i=1;i<=n;i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
     big=0.0;          /* bias is positive if real duration
     for (j=1;j<=n;j++)           * is higher than the multiple of stepm and negative otherwise.
       if ((temp=fabs(a[i][j])) > big) big=temp;           */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     vv[i]=1.0/big;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   for (j=1;j<=n;j++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for (i=1;i<j;i++) {          /*if(lli ==000.0)*/
       sum=a[i][j];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          ipmx +=1;
       a[i][j]=sum;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     big=0.0;        } /* end of wave */
     for (i=j;i<=n;i++) {      } /* end of individual */
       sum=a[i][j];    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (k=1;k<j;k++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         sum -= a[i][k]*a[k][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       a[i][j]=sum;        for(mi=1; mi<= wav[i]-1; mi++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         big=dum;            for (j=1;j<=nlstate+ndeath;j++){
         imax=i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     if (j != imax) {          for(d=0; d<dh[mi][i]; d++){
       for (k=1;k<=n;k++) {            newm=savm;
         dum=a[imax][k];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         a[imax][k]=a[j][k];            for (kk=1; kk<=cptcovage;kk++) {
         a[j][k]=dum;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       *d = -(*d);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       vv[imax]=vv[j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     indx[j]=imax;            oldm=newm;
     if (a[j][j] == 0.0) a[j][j]=TINY;          } /* end mult */
     if (j != n) {        
       dum=1.0/(a[j][j]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          /* But now since version 0.9 we anticipate for bias and large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   free_vector(vv,1,n);  /* Doesn't work */           * the nearest (and in case of equal distance, to the lowest) interval but now
 ;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
 void lubksb(double **a, int n, int *indx, double b[])           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 {           * -stepm/2 to stepm/2 .
   int i,ii=0,ip,j;           * For stepm=1 the results are the same as for previous versions of Imach.
   double sum;           * For stepm > 1 the results are less biased than in previous versions. 
             */
   for (i=1;i<=n;i++) {          s1=s[mw[mi][i]][i];
     ip=indx[i];          s2=s[mw[mi+1][i]][i];
     sum=b[ip];          bbh=(double)bh[mi][i]/(double)stepm; 
     b[ip]=b[i];          /* bias is positive if real duration
     if (ii)           * is higher than the multiple of stepm and negative otherwise.
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           */
     else if (sum) ii=i;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
     b[i]=sum;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   for (i=n;i>=1;i--) {          /*if(lli ==000.0)*/
     sum=b[i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          ipmx +=1;
     b[i]=sum/a[i][i];          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 /************ Frequencies ********************/    }else{  /* ml=4 no inter-extrapolation */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {  /* Some frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***freq; /* Frequencies */            for (j=1;j<=nlstate+ndeath;j++){
   double *pp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos, k2, dateintsum=0,k2cpt=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   FILE *ficresp;            }
   char fileresp[FILENAMELENGTH];          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   pp=vector(1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (kk=1; kk<=cptcovage;kk++) {
   strcpy(fileresp,"p");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   strcat(fileresp,fileres);            }
   if((ficresp=fopen(fileresp,"w"))==NULL) {          
     printf("Problem with prevalence resultfile: %s\n", fileresp);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     exit(0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            oldm=newm;
   j1=0;          } /* end mult */
          
   j=cptcoveff;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ipmx +=1;
            sw += weight[i];
   for(k1=1; k1<=j;k1++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i1=1; i1<=ncodemax[k1];i1++){        } /* end of wave */
       j1++;      } /* end of individual */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    } /* End of if */
         scanf("%d", i);*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for (i=-1; i<=nlstate+ndeath; i++)      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(m=agemin; m <= agemax+3; m++)    return -l;
             freq[i][jk][m]=0;  }
        
       dateintsum=0;  
       k2cpt=0;  /*********** Maximum Likelihood Estimation ***************/
       for (i=1; i<=imx; i++) {  
         bool=1;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)    int i,j, iter;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double **xi;
               bool=0;    double fret;
         }    char filerespow[FILENAMELENGTH];
         if (bool==1) {    xi=matrix(1,npar,1,npar);
           for(m=firstpass; m<=lastpass; m++){    for (i=1;i<=npar;i++)
             k2=anint[m][i]+(mint[m][i]/12.);      for (j=1;j<=npar;j++)
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        xi[i][j]=(i==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
               if(agev[m][i]==1) agev[m][i]=agemax+2;    strcpy(filerespow,"pow"); 
               if (m<lastpass) {    strcat(filerespow,fileres);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      printf("Problem with resultfile: %s\n", filerespow);
               }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                  }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
                 dateintsum=dateintsum+k2;    for (i=1;i<=nlstate;i++)
                 k2cpt++;      for(j=1;j<=nlstate+ndeath;j++)
               }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
             }    fprintf(ficrespow,"\n");
           }    powell(p,xi,npar,ftol,&iter,&fret,func);
         }  
       }    fclose(ficrespow);
            printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");  }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");  /**** Computes Hessian and covariance matrix ***/
       }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(i=1; i<=nlstate;i++)  {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double  **a,**y,*x,pd;
       fprintf(ficresp, "\n");    double **hess;
          int i, j,jk;
       for(i=(int)agemin; i <= (int)agemax+3; i++){    int *indx;
         if(i==(int)agemax+3)  
           printf("Total");    double hessii(double p[], double delta, int theta, double delti[]);
         else    double hessij(double p[], double delti[], int i, int j);
           printf("Age %d", i);    void lubksb(double **a, int npar, int *indx, double b[]) ;
         for(jk=1; jk <=nlstate ; jk++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];    hess=matrix(1,npar,1,npar);
         }  
         for(jk=1; jk <=nlstate ; jk++){    printf("\nCalculation of the hessian matrix. Wait...\n");
           for(m=-1, pos=0; m <=0 ; m++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
             pos += freq[jk][m][i];    for (i=1;i<=npar;i++){
           if(pp[jk]>=1.e-10)      printf("%d",i);fflush(stdout);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      fprintf(ficlog,"%d",i);fflush(ficlog);
           else      hess[i][i]=hessii(p,ftolhess,i,delti);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      /*printf(" %f ",p[i]);*/
         }      /*printf(" %lf ",hess[i][i]);*/
     }
         for(jk=1; jk <=nlstate ; jk++){    
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    for (i=1;i<=npar;i++) {
             pp[jk] += freq[jk][m][i];      for (j=1;j<=npar;j++)  {
         }        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
         for(jk=1,pos=0; jk <=nlstate ; jk++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           pos += pp[jk];          hess[i][j]=hessij(p,delti,i,j);
         for(jk=1; jk <=nlstate ; jk++){          hess[j][i]=hess[i][j];    
           if(pos>=1.e-5)          /*printf(" %lf ",hess[i][j]);*/
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
           else      }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    }
           if( i <= (int) agemax){    printf("\n");
             if(pos>=1.e-5){    fprintf(ficlog,"\n");
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
             }    
             else    a=matrix(1,npar,1,npar);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    y=matrix(1,npar,1,npar);
           }    x=vector(1,npar);
         }    indx=ivector(1,npar);
            for (i=1;i<=npar;i++)
         for(jk=-1; jk <=nlstate+ndeath; jk++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           for(m=-1; m <=nlstate+ndeath; m++)    ludcmp(a,npar,indx,&pd);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)    for (j=1;j<=npar;j++) {
           fprintf(ficresp,"\n");      for (i=1;i<=npar;i++) x[i]=0;
         printf("\n");      x[j]=1;
       }      lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
   }        matcov[i][j]=x[i];
   dateintmean=dateintsum/k2cpt;      }
      }
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    printf("\n#Hessian matrix#\n");
   free_vector(pp,1,nlstate);    fprintf(ficlog,"\n#Hessian matrix#\n");
      for (i=1;i<=npar;i++) { 
   /* End of Freq */      for (j=1;j<=npar;j++) { 
 }        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
 /************ Prevalence ********************/      }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      printf("\n");
 {  /* Some frequencies */      fprintf(ficlog,"\n");
      }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */    /* Recompute Inverse */
   double *pp;    for (i=1;i<=npar;i++)
   double pos, k2;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  printf("\n#Hessian matrix recomputed#\n");
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    for (j=1;j<=npar;j++) {
   j1=0;      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   j=cptcoveff;      lubksb(a,npar,indx,x);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
  for(k1=1; k1<=j;k1++){        printf("%.3e ",y[i][j]);
     for(i1=1; i1<=ncodemax[k1];i1++){        fprintf(ficlog,"%.3e ",y[i][j]);
       j1++;      }
        printf("\n");
       for (i=-1; i<=nlstate+ndeath; i++)        fprintf(ficlog,"\n");
         for (jk=-1; jk<=nlstate+ndeath; jk++)      }
           for(m=agemin; m <= agemax+3; m++)    */
             freq[i][jk][m]=0;  
          free_matrix(a,1,npar,1,npar);
       for (i=1; i<=imx; i++) {    free_matrix(y,1,npar,1,npar);
         bool=1;    free_vector(x,1,npar);
         if  (cptcovn>0) {    free_ivector(indx,1,npar);
           for (z1=1; z1<=cptcoveff; z1++)    free_matrix(hess,1,npar,1,npar);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;  
         }  }
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){  /*************** hessian matrix ****************/
             k2=anint[m][i]+(mint[m][i]/12.);  double hessii( double x[], double delta, int theta, double delti[])
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  {
               if(agev[m][i]==0) agev[m][i]=agemax+1;    int i;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    int l=1, lmax=20;
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    double k1,k2;
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */    double p2[NPARMAX+1];
             }    double res;
           }    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         }    double fx;
       }    int k=0,kmax=10;
         for(i=(int)agemin; i <= (int)agemax+3; i++){    double l1;
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    fx=func(x);
               pp[jk] += freq[jk][m][i];    for (i=1;i<=npar;i++) p2[i]=x[i];
           }    for(l=0 ; l <=lmax; l++){
           for(jk=1; jk <=nlstate ; jk++){      l1=pow(10,l);
             for(m=-1, pos=0; m <=0 ; m++)      delts=delt;
             pos += freq[jk][m][i];      for(k=1 ; k <kmax; k=k+1){
         }        delt = delta*(l1*k);
                p2[theta]=x[theta] +delt;
          for(jk=1; jk <=nlstate ; jk++){        k1=func(p2)-fx;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        p2[theta]=x[theta]-delt;
              pp[jk] += freq[jk][m][i];        k2=func(p2)-fx;
          }        /*res= (k1-2.0*fx+k2)/delt/delt; */
                  res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        
   #ifdef DEBUG
          for(jk=1; jk <=nlstate ; jk++){                  printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
            if( i <= (int) agemax){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
              if(pos>=1.e-5){  #endif
                probs[i][jk][j1]= pp[jk]/pos;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
              }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            }          k=kmax;
          }        }
                  else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         }          k=kmax; l=lmax*10.;
     }        }
   }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
          }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      }
   free_vector(pp,1,nlstate);    }
      delti[theta]=delts;
 }  /* End of Freq */    return res; 
     
 /************* Waves Concatenation ***************/  }
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  double hessij( double x[], double delti[], int thetai,int thetaj)
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    int i;
      Death is a valid wave (if date is known).    int l=1, l1, lmax=20;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double k1,k2,k3,k4,res,fx;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double p2[NPARMAX+1];
      and mw[mi+1][i]. dh depends on stepm.    int k;
      */  
     fx=func(x);
   int i, mi, m;    for (k=1; k<=2; k++) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      for (i=1;i<=npar;i++) p2[i]=x[i];
      double sum=0., jmean=0.;*/      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int j, k=0,jk, ju, jl;      k1=func(p2)-fx;
   double sum=0.;    
   jmin=1e+5;      p2[thetai]=x[thetai]+delti[thetai]/k;
   jmax=-1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   jmean=0.;      k2=func(p2)-fx;
   for(i=1; i<=imx; i++){    
     mi=0;      p2[thetai]=x[thetai]-delti[thetai]/k;
     m=firstpass;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     while(s[m][i] <= nlstate){      k3=func(p2)-fx;
       if(s[m][i]>=1)    
         mw[++mi][i]=m;      p2[thetai]=x[thetai]-delti[thetai]/k;
       if(m >=lastpass)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         break;      k4=func(p2)-fx;
       else      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         m++;  #ifdef DEBUG
     }/* end while */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     if (s[m][i] > nlstate){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       mi++;     /* Death is another wave */  #endif
       /* if(mi==0)  never been interviewed correctly before death */    }
          /* Only death is a correct wave */    return res;
       mw[mi][i]=m;  }
     }  
   /************** Inverse of matrix **************/
     wav[i]=mi;  void ludcmp(double **a, int n, int *indx, double *d) 
     if(mi==0)  { 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    int i,imax,j,k; 
   }    double big,dum,sum,temp; 
     double *vv; 
   for(i=1; i<=imx; i++){   
     for(mi=1; mi<wav[i];mi++){    vv=vector(1,n); 
       if (stepm <=0)    *d=1.0; 
         dh[mi][i]=1;    for (i=1;i<=n;i++) { 
       else{      big=0.0; 
         if (s[mw[mi+1][i]][i] > nlstate) {      for (j=1;j<=n;j++) 
           if (agedc[i] < 2*AGESUP) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           if(j==0) j=1;  /* Survives at least one month after exam */      vv[i]=1.0/big; 
           k=k+1;    } 
           if (j >= jmax) jmax=j;    for (j=1;j<=n;j++) { 
           if (j <= jmin) jmin=j;      for (i=1;i<j;i++) { 
           sum=sum+j;        sum=a[i][j]; 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           }        a[i][j]=sum; 
         }      } 
         else{      big=0.0; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      for (i=j;i<=n;i++) { 
           k=k+1;        sum=a[i][j]; 
           if (j >= jmax) jmax=j;        for (k=1;k<j;k++) 
           else if (j <= jmin)jmin=j;          sum -= a[i][k]*a[k][j]; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        a[i][j]=sum; 
           sum=sum+j;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         }          big=dum; 
         jk= j/stepm;          imax=i; 
         jl= j -jk*stepm;        } 
         ju= j -(jk+1)*stepm;      } 
         if(jl <= -ju)      if (j != imax) { 
           dh[mi][i]=jk;        for (k=1;k<=n;k++) { 
         else          dum=a[imax][k]; 
           dh[mi][i]=jk+1;          a[imax][k]=a[j][k]; 
         if(dh[mi][i]==0)          a[j][k]=dum; 
           dh[mi][i]=1; /* At least one step */        } 
       }        *d = -(*d); 
     }        vv[imax]=vv[j]; 
   }      } 
   jmean=sum/k;      indx[j]=imax; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      if (a[j][j] == 0.0) a[j][j]=TINY; 
  }      if (j != n) { 
 /*********** Tricode ****************************/        dum=1.0/(a[j][j]); 
 void tricode(int *Tvar, int **nbcode, int imx)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 {      } 
   int Ndum[20],ij=1, k, j, i;    } 
   int cptcode=0;    free_vector(vv,1,n);  /* Doesn't work */
   cptcoveff=0;  ;
    } 
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    int i,ii=0,ip,j; 
     for (i=1; i<=imx; i++) {    double sum; 
       ij=(int)(covar[Tvar[j]][i]);   
       Ndum[ij]++;    for (i=1;i<=n;i++) { 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      ip=indx[i]; 
       if (ij > cptcode) cptcode=ij;      sum=b[ip]; 
     }      b[ip]=b[i]; 
       if (ii) 
     for (i=0; i<=cptcode; i++) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       if(Ndum[i]!=0) ncodemax[j]++;      else if (sum) ii=i; 
     }      b[i]=sum; 
     ij=1;    } 
     for (i=n;i>=1;i--) { 
       sum=b[i]; 
     for (i=1; i<=ncodemax[j]; i++) {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for (k=0; k<=19; k++) {      b[i]=sum/a[i][i]; 
         if (Ndum[k] != 0) {    } 
           nbcode[Tvar[j]][ij]=k;  } 
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/  
           ij++;  /************ Frequencies ********************/
         }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
         if (ij > ncodemax[j]) break;  {  /* Some frequencies */
       }      
     }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   }      int first;
     double ***freq; /* Frequencies */
  for (k=0; k<19; k++) Ndum[k]=0;    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
  for (i=1; i<=ncovmodel-2; i++) {    FILE *ficresp;
       ij=Tvar[i];    char fileresp[FILENAMELENGTH];
       Ndum[ij]++;    
     }    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
  ij=1;    strcpy(fileresp,"p");
  for (i=1; i<=10; i++) {    strcat(fileresp,fileres);
    if((Ndum[i]!=0) && (i<=ncovcol)){    if((ficresp=fopen(fileresp,"w"))==NULL) {
      Tvaraff[ij]=i;      printf("Problem with prevalence resultfile: %s\n", fileresp);
      ij++;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
    }      exit(0);
  }    }
      freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     cptcoveff=ij-1;    j1=0;
 }    
     j=cptcoveff;
 /*********** Health Expectancies ****************/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    first=1;
 {  
   /* Health expectancies */    for(k1=1; k1<=j;k1++){
   int i, j, nhstepm, hstepm, h, nstepm, k;      for(i1=1; i1<=ncodemax[k1];i1++){
   double age, agelim, hf;        j1++;
   double ***p3mat;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            scanf("%d", i);*/
   fprintf(ficreseij,"# Health expectancies\n");        for (i=-1; i<=nlstate+ndeath; i++)  
   fprintf(ficreseij,"# Age");          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   for(i=1; i<=nlstate;i++)            for(m=iagemin; m <= iagemax+3; m++)
     for(j=1; j<=nlstate;j++)              freq[i][jk][m]=0;
       fprintf(ficreseij," %1d-%1d",i,j);  
   fprintf(ficreseij,"\n");      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
   k=1;             /* For example stepm=6 months */          prop[i][m]=0;
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */        
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */        dateintsum=0;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        k2cpt=0;
      nhstepm is the number of hstepm from age to agelim        for (i=1; i<=imx; i++) {
      nstepm is the number of stepm from age to agelin.          bool=1;
      Look at hpijx to understand the reason of that which relies in memory size          if  (cptcovn>0) {
      and note for a fixed period like k years */            for (z1=1; z1<=cptcoveff; z1++) 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      survival function given by stepm (the optimization length). Unfortunately it                bool=0;
      means that if the survival funtion is printed only each two years of age and if          }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          if (bool==1){
      results. So we changed our mind and took the option of the best precision.            for(m=firstpass; m<=lastpass; m++){
   */              k2=anint[m][i]+(mint[m][i]/12.);
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */              if ((k2>=dateprev1) && (k2<=dateprev2)) {
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   agelim=AGESUP;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     /* nhstepm age range expressed in number of stepm */                if (m<lastpass) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     /* if (stepm >= YEARM) hstepm=1;*/                }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored                  dateintsum=dateintsum+k2;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */                  k2cpt++;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                  }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              }
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++)          }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;         
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
         }  
     fprintf(ficreseij,"%3.0f",age );        if  (cptcovn>0) {
     for(i=1; i<=nlstate;i++)          fprintf(ficresp, "\n#********** Variable "); 
       for(j=1; j<=nlstate;j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);          fprintf(ficresp, "**********\n#");
       }        }
     fprintf(ficreseij,"\n");        for(i=1; i<=nlstate;i++) 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   }        fprintf(ficresp, "\n");
 }        
         for(i=iagemin; i <= iagemax+3; i++){
 /************ Variance ******************/          if(i==iagemax+3){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            fprintf(ficlog,"Total");
 {          }else{
   /* Variance of health expectancies */            if(first==1){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              first=0;
   double **newm;              printf("See log file for details...\n");
   double **dnewm,**doldm;            }
   int i, j, nhstepm, hstepm, h, nstepm, kk;            fprintf(ficlog,"Age %d", i);
   int k, cptcode;          }
   double *xp;          for(jk=1; jk <=nlstate ; jk++){
   double **gp, **gm;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double ***gradg, ***trgradg;              pp[jk] += freq[jk][m][i]; 
   double ***p3mat;          }
   double age,agelim, hf;          for(jk=1; jk <=nlstate ; jk++){
   int theta;            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
    fprintf(ficresvij,"# Covariances of life expectancies\n");            if(pp[jk]>=1.e-10){
   fprintf(ficresvij,"# Age");              if(first==1){
   for(i=1; i<=nlstate;i++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(j=1; j<=nlstate;j++)              }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   fprintf(ficresvij,"\n");            }else{
               if(first==1)
   xp=vector(1,npar);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   dnewm=matrix(1,nlstate,1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   doldm=matrix(1,nlstate,1,nlstate);            }
            }
   kk=1;             /* For example stepm=6 months */  
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */          for(jk=1; jk <=nlstate ; jk++){
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              pp[jk] += freq[jk][m][i];
      nhstepm is the number of hstepm from age to agelim          }       
      nstepm is the number of stepm from age to agelin.          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      Look at hpijx to understand the reason of that which relies in memory size            pos += pp[jk];
      and note for a fixed period like k years */            posprop += prop[jk][i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          }
      survival function given by stepm (the optimization length). Unfortunately it          for(jk=1; jk <=nlstate ; jk++){
      means that if the survival funtion is printed only each two years of age and if            if(pos>=1.e-5){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              if(first==1)
      results. So we changed our mind and took the option of the best precision.                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */            }else{
   agelim = AGESUP;              if(first==1)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if( i <= iagemax){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              if(pos>=1.e-5){
     gp=matrix(0,nhstepm,1,nlstate);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     gm=matrix(0,nhstepm,1,nlstate);                probs[i][jk][j1]= pp[jk]/pos;
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     for(theta=1; theta <=npar; theta++){              }
       for(i=1; i<=npar; i++){ /* Computes gradient */              else
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
       if (popbased==1) {            for(m=-1; m <=nlstate+ndeath; m++)
         for(i=1; i<=nlstate;i++)              if(freq[jk][m][i] !=0 ) {
           prlim[i][i]=probs[(int)age][i][ij];              if(first==1)
       }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(j=1; j<= nlstate; j++){              }
         for(h=0; h<=nhstepm; h++){          if(i <= iagemax)
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            fprintf(ficresp,"\n");
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          if(first==1)
         }            printf("Others in log...\n");
       }          fprintf(ficlog,"\n");
            }
       for(i=1; i<=npar; i++) /* Computes gradient */      }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      dateintmean=dateintsum/k2cpt; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   
      fclose(ficresp);
       if (popbased==1) {    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
         for(i=1; i<=nlstate;i++)    free_vector(pp,1,nlstate);
           prlim[i][i]=probs[(int)age][i][ij];    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       }    /* End of Freq */
   }
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  /************ Prevalence ********************/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  {  
         }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       }       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
       for(j=1; j<= nlstate; j++)    */
         for(h=0; h<=nhstepm; h++){   
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         }    double ***freq; /* Frequencies */
     } /* End theta */    double *pp, **prop;
     double pos,posprop; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double  y2; /* in fractional years */
     int iagemin, iagemax;
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)    iagemin= (int) agemin;
         for(theta=1; theta <=npar; theta++)    iagemax= (int) agemax;
           trgradg[h][j][theta]=gradg[h][theta][j];    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     for(i=1;i<=nlstate;i++)    j1=0;
       for(j=1;j<=nlstate;j++)    
         vareij[i][j][(int)age] =0.;    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(h=0;h<=nhstepm;h++){    
       for(k=0;k<=nhstepm;k++){    for(k1=1; k1<=j;k1++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      for(i1=1; i1<=ncodemax[k1];i1++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        j1++;
         for(i=1;i<=nlstate;i++)        
           for(j=1;j<=nlstate;j++)        for (i=1; i<=nlstate; i++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          for(m=iagemin; m <= iagemax+3; m++)
       }            prop[i][m]=0.0;
     }       
         for (i=1; i<=imx; i++) { /* Each individual */
     fprintf(ficresvij,"%.0f ",age );          bool=1;
     for(i=1; i<=nlstate;i++)          if  (cptcovn>0) {
       for(j=1; j<=nlstate;j++){            for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
     fprintf(ficresvij,"\n");          } 
     free_matrix(gp,0,nhstepm,1,nlstate);          if (bool==1) { 
     free_matrix(gm,0,nhstepm,1,nlstate);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   } /* End age */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   free_vector(xp,1,npar);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   free_matrix(doldm,1,nlstate,1,npar);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   free_matrix(dnewm,1,nlstate,1,nlstate);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
 }                } 
               }
 /************ Variance of prevlim ******************/            } /* end selection of waves */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          }
 {        }
   /* Variance of prevalence limit */        for(i=iagemin; i <= iagemax+3; i++){  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          
   double **newm;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   double **dnewm,**doldm;            posprop += prop[jk][i]; 
   int i, j, nhstepm, hstepm;          } 
   int k, cptcode;  
   double *xp;          for(jk=1; jk <=nlstate ; jk++){     
   double *gp, *gm;            if( i <=  iagemax){ 
   double **gradg, **trgradg;              if(posprop>=1.e-5){ 
   double age,agelim;                probs[i][jk][j1]= prop[jk][i]/posprop;
   int theta;              } 
                } 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          }/* end jk */ 
   fprintf(ficresvpl,"# Age");        }/* end i */ 
   for(i=1; i<=nlstate;i++)      } /* end i1 */
       fprintf(ficresvpl," %1d-%1d",i,i);    } /* end k1 */
   fprintf(ficresvpl,"\n");    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   xp=vector(1,npar);    /*free_vector(pp,1,nlstate);*/
   dnewm=matrix(1,nlstate,1,npar);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   doldm=matrix(1,nlstate,1,nlstate);  }  /* End of prevalence */
    
   hstepm=1*YEARM; /* Every year of age */  /************* Waves Concatenation ***************/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     if (stepm >= YEARM) hstepm=1;       Death is a valid wave (if date is known).
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     gradg=matrix(1,npar,1,nlstate);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     gp=vector(1,nlstate);       and mw[mi+1][i]. dh depends on stepm.
     gm=vector(1,nlstate);       */
   
     for(theta=1; theta <=npar; theta++){    int i, mi, m;
       for(i=1; i<=npar; i++){ /* Computes gradient */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       double sum=0., jmean=0.;*/
       }    int first;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int j, k=0,jk, ju, jl;
       for(i=1;i<=nlstate;i++)    double sum=0.;
         gp[i] = prlim[i][i];    first=0;
        jmin=1e+5;
       for(i=1; i<=npar; i++) /* Computes gradient */    jmax=-1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    jmean=0.;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(i=1; i<=imx; i++){
       for(i=1;i<=nlstate;i++)      mi=0;
         gm[i] = prlim[i][i];      m=firstpass;
       while(s[m][i] <= nlstate){
       for(i=1;i<=nlstate;i++)        if(s[m][i]>=1)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          mw[++mi][i]=m;
     } /* End theta */        if(m >=lastpass)
           break;
     trgradg =matrix(1,nlstate,1,npar);        else
           m++;
     for(j=1; j<=nlstate;j++)      }/* end while */
       for(theta=1; theta <=npar; theta++)      if (s[m][i] > nlstate){
         trgradg[j][theta]=gradg[theta][j];        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
     for(i=1;i<=nlstate;i++)           /* Only death is a correct wave */
       varpl[i][(int)age] =0.;        mw[mi][i]=m;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)      wav[i]=mi;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      if(mi==0){
         if(first==0){
     fprintf(ficresvpl,"%.0f ",age );          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
     for(i=1; i<=nlstate;i++)          first=1;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        }
     fprintf(ficresvpl,"\n");        if(first==1){
     free_vector(gp,1,nlstate);          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
     free_vector(gm,1,nlstate);        }
     free_matrix(gradg,1,npar,1,nlstate);      } /* end mi==0 */
     free_matrix(trgradg,1,nlstate,1,npar);    } /* End individuals */
   } /* End age */  
     for(i=1; i<=imx; i++){
   free_vector(xp,1,npar);      for(mi=1; mi<wav[i];mi++){
   free_matrix(doldm,1,nlstate,1,npar);        if (stepm <=0)
   free_matrix(dnewm,1,nlstate,1,nlstate);          dh[mi][i]=1;
         else{
 }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
 /************ Variance of one-step probabilities  ******************/            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)            if(j==0) j=1;  /* Survives at least one month after exam */
 {            k=k+1;
   int i, j;            if (j >= jmax) jmax=j;
   int k=0, cptcode;            if (j <= jmin) jmin=j;
   double **dnewm,**doldm;            sum=sum+j;
   double *xp;            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   double *gp, *gm;            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   double **gradg, **trgradg;            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double age,agelim, cov[NCOVMAX];            }
   int theta;          }
   char fileresprob[FILENAMELENGTH];          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   strcpy(fileresprob,"prob");            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   strcat(fileresprob,fileres);            k=k+1;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            if (j >= jmax) jmax=j;
     printf("Problem with resultfile: %s\n", fileresprob);            else if (j <= jmin)jmin=j;
   }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             sum=sum+j;
   xp=vector(1,npar);          }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          jk= j/stepm;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
   cov[1]=1;          if(mle <=1){ 
   for (age=bage; age<=fage; age ++){            if(jl==0){
     cov[2]=age;              dh[mi][i]=jk;
     gradg=matrix(1,npar,1,9);              bh[mi][i]=0;
     trgradg=matrix(1,9,1,npar);            }else{ /* We want a negative bias in order to only have interpolation ie
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                    * at the price of an extra matrix product in likelihood */
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++)          }else{
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            if(jl <= -ju){
                    dh[mi][i]=jk;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);              bh[mi][i]=jl;       /* bias is positive if real duration
                                       * is higher than the multiple of stepm and negative otherwise.
       k=0;                                   */
       for(i=1; i<= (nlstate+ndeath); i++){            }
         for(j=1; j<=(nlstate+ndeath);j++){            else{
            k=k+1;              dh[mi][i]=jk+1;
           gp[k]=pmmij[i][j];              bh[mi][i]=ju;
         }            }
       }            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
       for(i=1; i<=npar; i++)              bh[mi][i]=ju; /* At least one step */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                }
           }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        } /* end if mle */
       k=0;      } /* end wave */
       for(i=1; i<=(nlstate+ndeath); i++){    }
         for(j=1; j<=(nlstate+ndeath);j++){    jmean=sum/k;
           k=k+1;    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           gm[k]=pmmij[i][j];    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         }   }
       }  
        /*********** Tricode ****************************/
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  void tricode(int *Tvar, int **nbcode, int imx)
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    {
     }    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    int cptcode=0;
       for(theta=1; theta <=npar; theta++)    cptcoveff=0; 
       trgradg[j][theta]=gradg[theta][j];   
      for (k=0; k<maxncov; k++) Ndum[k]=0;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    for (k=1; k<=7; k++) ncodemax[k]=0;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
      pmij(pmmij,cov,ncovmodel,x,nlstate);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
      k=0;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
      for(i=1; i<=(nlstate+ndeath); i++){        Ndum[ij]++; /*store the modality */
        for(j=1; j<=(nlstate+ndeath);j++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
          k=k+1;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
          gm[k]=pmmij[i][j];                                         Tvar[j]. If V=sex and male is 0 and 
         }                                         female is 1, then  cptcode=1.*/
      }      }
        
      /*printf("\n%d ",(int)age);      for (i=0; i<=cptcode; i++) {
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
              }
   
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      ij=1; 
      }*/      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
   fprintf(ficresprob,"\n%d ",(int)age);          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            ij++;
   }          }
           if (ij > ncodemax[j]) break; 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        }  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      } 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    }  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
 }   for (k=0; k< maxncov; k++) Ndum[k]=0;
  free_vector(xp,1,npar);  
 fclose(ficresprob);   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 }     ij=Tvar[i];
      Ndum[ij]++;
 /******************* Printing html file ***********/   }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
  int lastpass, int stepm, int weightopt, char model[],\   ij=1;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \   for (i=1; i<= maxncov; i++) {
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\     if((Ndum[i]!=0) && (i<=ncovcol)){
  char version[], int popforecast ){       Tvaraff[ij]=i; /*For printing */
   int jj1, k1, i1, cpt;       ij++;
   FILE *fichtm;     }
   /*char optionfilehtm[FILENAMELENGTH];*/   }
    
   strcpy(optionfilehtm,optionfile);   cptcoveff=ij-1; /*Number of simple covariates*/
   strcat(optionfilehtm,".htm");  }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);  /*********** Health Expectancies ****************/
   }  
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  {
 \n    /* Health expectancies */
 Total number of observations=%d <br>\n    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    double age, agelim, hf;
 <hr  size=\"2\" color=\"#EC5E5E\">    double ***p3mat,***varhe;
  <ul><li>Outputs files<br>\n    double **dnewm,**doldm;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double *xp;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    double **gp, **gm;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    double ***gradg, ***trgradg;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    int theta;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
  fprintf(fichtm,"\n    dnewm=matrix(1,nlstate*nlstate,1,npar);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n    
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    fprintf(ficreseij,"# Health expectancies\n");
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
  if(popforecast==1) fprintf(fichtm,"\n      for(j=1; j<=nlstate;j++)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        fprintf(ficreseij," %1d-%1d (SE)",i,j);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    fprintf(ficreseij,"\n");
         <br>",fileres,fileres,fileres,fileres);  
  else    if(estepm < stepm){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      printf ("Problem %d lower than %d\n",estepm, stepm);
 fprintf(fichtm," <li>Graphs</li><p>");    }
     else  hstepm=estepm;   
  m=cptcoveff;    /* We compute the life expectancy from trapezoids spaced every estepm months
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
  jj1=0;     * we are calculating an estimate of the Life Expectancy assuming a linear 
  for(k1=1; k1<=m;k1++){     * progression in between and thus overestimating or underestimating according
    for(i1=1; i1<=ncodemax[k1];i1++){     * to the curvature of the survival function. If, for the same date, we 
        jj1++;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
        if (cptcovn > 0) {     * to compare the new estimate of Life expectancy with the same linear 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");     * hypothesis. A more precise result, taking into account a more precise
          for (cpt=1; cpt<=cptcoveff;cpt++)     * curvature will be obtained if estepm is as small as stepm. */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    /* For example we decided to compute the life expectancy with the smallest unit */
        }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>       nhstepm is the number of hstepm from age to agelim 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           nstepm is the number of stepm from age to agelin. 
        for(cpt=1; cpt<nlstate;cpt++){       Look at hpijx to understand the reason of that which relies in memory size
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>       and note for a fixed period like estepm months */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        }       survival function given by stepm (the optimization length). Unfortunately it
     for(cpt=1; cpt<=nlstate;cpt++) {       means that if the survival funtion is printed only each two years of age and if
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 interval) in state (%d): v%s%d%d.gif <br>       results. So we changed our mind and took the option of the best precision.
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      */
      }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    agelim=AGESUP;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      }      /* nhstepm age range expressed in number of stepm */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 health expectancies in states (1) and (2): e%s%d.gif<br>      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      /* if (stepm >= YEARM) hstepm=1;*/
 fprintf(fichtm,"\n</body>");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 fclose(fichtm);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
 }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
 /******************* Gnuplot file **************/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   
   
   strcpy(optionfilegnuplot,optionfilefiname);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   strcat(optionfilegnuplot,".gp.txt");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      /* Computing Variances of health expectancies */
     printf("Problem with file %s",optionfilegnuplot);  
   }       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
 #ifdef windows          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fprintf(ficgp,"cd \"%s\" \n",pathc);        }
 #endif        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 m=pow(2,cptcoveff);    
          cptj=0;
  /* 1eme*/        for(j=1; j<= nlstate; j++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {          for(i=1; i<=nlstate; i++){
    for (k1=1; k1<= m ; k1 ++) {            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 #ifdef windows              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            }
 #endif          }
 #ifdef unix        }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       
 #endif       
         for(i=1; i<=npar; i++) 
 for (i=1; i<= nlstate ; i ++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        
 }        cptj=0;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<= nlstate; j++){
     for (i=1; i<= nlstate ; i ++) {          for(i=1;i<=nlstate;i++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            cptj=cptj+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
      for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }          for(j=1; j<= nlstate*nlstate; j++)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          for(h=0; h<=nhstepm-1; h++){
 #ifdef unix            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 fprintf(ficgp,"\nset ter gif small size 400,300");          }
 #endif       } 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     
    }  /* End theta */
   }  
   /*2 eme*/       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
   for (k1=1; k1<= m ; k1 ++) {       for(h=0; h<=nhstepm-1; h++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        for(j=1; j<=nlstate*nlstate;j++)
              for(theta=1; theta <=npar; theta++)
     for (i=1; i<= nlstate+1 ; i ++) {            trgradg[h][j][theta]=gradg[h][theta][j];
       k=2*i;       
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {       for(i=1;i<=nlstate*nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1;j<=nlstate*nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          varhe[i][j][(int)age] =0.;
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       printf("%d|",(int)age);fflush(stdout);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       for(h=0;h<=nhstepm-1;h++){
       for (j=1; j<= nlstate+1 ; j ++) {        for(k=0;k<=nhstepm-1;k++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         else fprintf(ficgp," \%%*lf (\%%*lf)");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 }            for(i=1;i<=nlstate*nlstate;i++)
       fprintf(ficgp,"\" t\"\" w l 0,");            for(j=1;j<=nlstate*nlstate;j++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* Computing expectancies */
 }        for(i=1; i<=nlstate;i++)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for(j=1; j<=nlstate;j++)
       else fprintf(ficgp,"\" t\"\" w l 0,");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            
   }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   /*3eme*/          }
   
   for (k1=1; k1<= m ; k1 ++) {      fprintf(ficreseij,"%3.0f",age );
     for (cpt=1; cpt<= nlstate ; cpt ++) {      cptj=0;
       k=2+nlstate*(cpt-1);      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        for(j=1; j<=nlstate;j++){
       for (i=1; i< nlstate ; i ++) {          cptj++;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       }        }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      fprintf(ficreseij,"\n");
     }     
     }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   /* CV preval stat */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     for (k1=1; k1<= m ; k1 ++) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     for (cpt=1; cpt<nlstate ; cpt ++) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=3;    }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    printf("\n");
     fprintf(ficlog,"\n");
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);    free_vector(xp,1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
          free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       l=3+(nlstate+ndeath)*cpt;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  }
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;  /************ Variance ******************/
         fprintf(ficgp,"+$%d",l+i+1);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
       }  {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      /* Variance of health expectancies */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     }    /* double **newm;*/
   }      double **dnewm,**doldm;
      double **dnewmp,**doldmp;
   /* proba elementaires */    int i, j, nhstepm, hstepm, h, nstepm ;
    for(i=1,jk=1; i <=nlstate; i++){    int k, cptcode;
     for(k=1; k <=(nlstate+ndeath); k++){    double *xp;
       if (k != i) {    double **gp, **gm;  /* for var eij */
         for(j=1; j <=ncovmodel; j++){    double ***gradg, ***trgradg; /*for var eij */
            double **gradgp, **trgradgp; /* for var p point j */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    double *gpp, *gmp; /* for var p point j */
           jk++;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           fprintf(ficgp,"\n");    double ***p3mat;
         }    double age,agelim, hf;
       }    double ***mobaverage;
     }    int theta;
     }    char digit[4];
     char digitp[25];
     for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    char fileresprobmorprev[FILENAMELENGTH];
    i=1;  
    for(k2=1; k2<=nlstate; k2++) {    if(popbased==1){
      k3=i;      if(mobilav!=0)
      for(k=1; k<=(nlstate+ndeath); k++) {        strcpy(digitp,"-populbased-mobilav-");
        if (k != k2){      else strcpy(digitp,"-populbased-nomobil-");
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    }
 ij=1;    else 
         for(j=3; j <=ncovmodel; j++) {      strcpy(digitp,"-stablbased-");
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    if (mobilav!=0) {
             ij++;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           else        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }      }
           fprintf(ficgp,")/(1");    }
          
         for(k1=1; k1 <=nlstate; k1++){      strcpy(fileresprobmorprev,"prmorprev"); 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    sprintf(digit,"%-d",ij);
 ij=1;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           for(j=3; j <=ncovmodel; j++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    strcat(fileresprobmorprev,fileres);
             ij++;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           else      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    }
           }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           fprintf(ficgp,")");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         i=i+ncovmodel;      fprintf(ficresprobmorprev," p.%-d SE",j);
        }      for(i=1; i<=nlstate;i++)
      }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    }    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    fprintf(ficresprobmorprev,"\n");
    }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
          printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   fclose(ficgp);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
 }  /* end gnuplot */      exit(0);
     }
     else{
 /*************** Moving average **************/      fprintf(ficgp,"\n# Routine varevsij");
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   int i, cpt, cptcod;      printf("Problem with html file: %s\n", optionfilehtm);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       for (i=1; i<=nlstate;i++)      exit(0);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    }
           mobaverage[(int)agedeb][i][cptcod]=0.;    else{
          fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       for (i=1; i<=nlstate;i++){    }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           }    fprintf(ficresvij,"# Age");
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=nlstate;j++)
       }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     }    fprintf(ficresvij,"\n");
      
 }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
 /************** Forecasting ******************/    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   int *popage;    gpp=vector(nlstate+1,nlstate+ndeath);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    gmp=vector(nlstate+1,nlstate+ndeath);
   double *popeffectif,*popcount;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double ***p3mat;    
   char fileresf[FILENAMELENGTH];    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
  agelim=AGESUP;    }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   strcpy(fileresf,"f");       Look at hpijx to understand the reason of that which relies in memory size
   strcat(fileresf,fileres);       and note for a fixed period like k years */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     printf("Problem with forecast resultfile: %s\n", fileresf);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed every two years of age and if
   printf("Computing forecasting: result on file '%s' \n", fileresf);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if (mobilav==1) {    agelim = AGESUP;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     movingaverage(agedeb, fage, ageminpar, mobaverage);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   if (stepm<=12) stepsize=1;      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   agelim=AGESUP;  
    
   hstepm=1;      for(theta=1; theta <=npar; theta++){
   hstepm=hstepm/stepm;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   yp1=modf(dateintmean,&yp);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   anprojmean=yp;        }
   yp2=modf((yp1*12),&yp);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   mprojmean=yp;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;        if (popbased==1) {
   if(jprojmean==0) jprojmean=1;          if(mobilav ==0){
   if(mprojmean==0) jprojmean=1;            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i2;cptcov++){              prlim[i][i]=mobaverage[(int)age][i][ij];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }
       k=k+1;        }
       fprintf(ficresf,"\n#******");    
       for(j=1;j<=cptcoveff;j++) {        for(j=1; j<= nlstate; j++){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(h=0; h<=nhstepm; h++){
       }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fprintf(ficresf,"******\n");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficresf,"# StartingAge FinalAge");          }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        }
              /* This for computing probability of death (h=1 means
                 computed over hstepm matrices product = hstepm*stepm months) 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {           as a weighted average of prlim.
         fprintf(ficresf,"\n");        */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }    
           nhstepm = nhstepm/hstepm;        /* end probability of death */
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           oldm=oldms;savm=savms;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for (h=0; h<=nhstepm; h++){   
             if (h==(int) (calagedate+YEARM*cpt)) {        if (popbased==1) {
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          if(mobilav ==0){
             }            for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {              prlim[i][i]=probs[(int)age][i][ij];
               kk1=0.;kk2=0;          }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++) {                          for(i=1; i<=nlstate;i++)
                 if (mobilav==1)              prlim[i][i]=mobaverage[(int)age][i][ij];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }        for(j=1; j<= nlstate; j++){
                          for(h=0; h<=nhstepm; h++){
               }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                 fprintf(ficresf," %.3f", kk1);          }
                                }
               }        /* This for computing probability of death (h=1 means
             }           computed over hstepm matrices product = hstepm*stepm months) 
           }           as a weighted average of prlim.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
                /* end probability of death */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
         for(j=1; j<= nlstate; j++) /* vareij */
   fclose(ficresf);          for(h=0; h<=nhstepm; h++){
 }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 /************** Forecasting ******************/          }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   int *popage;        }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;      } /* End theta */
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(h=0; h<=nhstepm; h++) /* veij */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate;j++)
   agelim=AGESUP;          for(theta=1; theta <=npar; theta++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            trgradg[h][j][theta]=gradg[h][theta][j];
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          for(theta=1; theta <=npar; theta++)
            trgradgp[j][theta]=gradgp[theta][j];
   strcpy(filerespop,"pop");    
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     printf("Problem with forecast resultfile: %s\n", filerespop);      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);          vareij[i][j][(int)age] =0.;
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
   if (mobilav==1) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     movingaverage(agedeb, fage, ageminpar, mobaverage);          for(i=1;i<=nlstate;i++)
   }            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }
   if (stepm<=12) stepsize=1;      }
      
   agelim=AGESUP;      /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   hstepm=1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   hstepm=hstepm/stepm;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
   if (popforecast==1) {          varppt[j][i]=doldmp[j][i];
     if((ficpop=fopen(popfile,"r"))==NULL) {      /* end ppptj */
       printf("Problem with population file : %s\n",popfile);exit(0);      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     popage=ivector(0,AGESUP);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     popeffectif=vector(0,AGESUP);   
     popcount=vector(0,AGESUP);      if (popbased==1) {
            if(mobilav ==0){
     i=1;            for(i=1; i<=nlstate;i++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
     imx=i;          for(i=1; i<=nlstate;i++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            prlim[i][i]=mobaverage[(int)age][i][ij];
   }        }
       }
   for(cptcov=1;cptcov<=i2;cptcov++){               
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      /* This for computing probability of death (h=1 means
       k=k+1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       fprintf(ficrespop,"\n#******");         as a weighted average of prlim.
       for(j=1;j<=cptcoveff;j++) {      */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       fprintf(ficrespop,"******\n");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       fprintf(ficrespop,"# Age");      }    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      /* end probability of death */
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
            fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for (cpt=0; cpt<=0;cpt++) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                for(i=1; i<=nlstate;i++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }
           nhstepm = nhstepm/hstepm;      } 
                fprintf(ficresprobmorprev,"\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      fprintf(ficresvij,"%.0f ",age );
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++){
           for (h=0; h<=nhstepm; h++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
             if (h==(int) (calagedate+YEARM*cpt)) {        }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      fprintf(ficresvij,"\n");
             }      free_matrix(gp,0,nhstepm,1,nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {      free_matrix(gm,0,nhstepm,1,nlstate);
               kk1=0.;kk2=0;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
               for(i=1; i<=nlstate;i++) {                    free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                 if (mobilav==1)      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    } /* End age */
                 else {    free_vector(gpp,nlstate+1,nlstate+ndeath);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    free_vector(gmp,nlstate+1,nlstate+ndeath);
                 }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
               }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                   /*fprintf(ficrespop," %.3f", kk1);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
               }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
             }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
             for(i=1; i<=nlstate;i++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
               kk1=0.;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
                 for(j=1; j<=nlstate;j++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
                 }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             }  */
     fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    free_vector(xp,1,npar);
           }    free_matrix(doldm,1,nlstate,1,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(dnewm,1,nlstate,1,npar);
         }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /******/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fclose(ficgp);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fclose(fichtm);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  }  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  /************ Variance of prevlim ******************/
            void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
           oldm=oldms;savm=savms;    /* Variance of prevalence limit */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           for (h=0; h<=nhstepm; h++){    double **newm;
             if (h==(int) (calagedate+YEARM*cpt)) {    double **dnewm,**doldm;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    int i, j, nhstepm, hstepm;
             }    int k, cptcode;
             for(j=1; j<=nlstate+ndeath;j++) {    double *xp;
               kk1=0.;kk2=0;    double *gp, *gm;
               for(i=1; i<=nlstate;i++) {                  double **gradg, **trgradg;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        double age,agelim;
               }    int theta;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);     
             }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           }    fprintf(ficresvpl,"# Age");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=nlstate;i++)
         }        fprintf(ficresvpl," %1d-%1d",i,i);
       }    fprintf(ficresvpl,"\n");
    }  
   }    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    doldm=matrix(1,nlstate,1,nlstate);
     
   if (popforecast==1) {    hstepm=1*YEARM; /* Every year of age */
     free_ivector(popage,0,AGESUP);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     free_vector(popeffectif,0,AGESUP);    agelim = AGESUP;
     free_vector(popcount,0,AGESUP);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (stepm >= YEARM) hstepm=1;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   fclose(ficrespop);      gradg=matrix(1,npar,1,nlstate);
 }      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
 /***********************************************/  
 /**************** Main Program *****************/      for(theta=1; theta <=npar; theta++){
 /***********************************************/        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
 int main(int argc, char *argv[])        }
 {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          gp[i] = prlim[i][i];
   double agedeb, agefin,hf;      
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double fret;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double **xi,tmp,delta;        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   double dum; /* Dummy variable */  
   double ***p3mat;        for(i=1;i<=nlstate;i++)
   int *indx;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   char line[MAXLINE], linepar[MAXLINE];      } /* End theta */
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      trgradg =matrix(1,nlstate,1,npar);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
        for(j=1; j<=nlstate;j++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];      for(i=1;i<=nlstate;i++)
   char popfile[FILENAMELENGTH];        varpl[i][(int)age] =0.;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   int firstobs=1, lastobs=10;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   int sdeb, sfin; /* Status at beginning and end */      for(i=1;i<=nlstate;i++)
   int c,  h , cpt,l;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      fprintf(ficresvpl,"%.0f ",age );
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for(i=1; i<=nlstate;i++)
   int mobilav=0,popforecast=0;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   int hstepm, nhstepm;      fprintf(ficresvpl,"\n");
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   double bage, fage, age, agelim, agebase;      free_matrix(gradg,1,npar,1,nlstate);
   double ftolpl=FTOL;      free_matrix(trgradg,1,nlstate,1,npar);
   double **prlim;    } /* End age */
   double *severity;  
   double ***param; /* Matrix of parameters */    free_vector(xp,1,npar);
   double  *p;    free_matrix(doldm,1,nlstate,1,npar);
   double **matcov; /* Matrix of covariance */    free_matrix(dnewm,1,nlstate,1,nlstate);
   double ***delti3; /* Scale */  
   double *delti; /* Scale */  }
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */  /************ Variance of one-step probabilities  ******************/
   double *epj, vepp;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   double kk1, kk2;  {
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    int i, j=0,  i1, k1, l1, t, tj;
      int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";    int first=1, first1;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
   char z[1]="c", occ;    double *gp, *gm;
 #include <sys/time.h>    double **gradg, **trgradg;
 #include <time.h>    double **mu;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double age,agelim, cov[NCOVMAX];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   /* long total_usecs;    int theta;
   struct timeval start_time, end_time;    char fileresprob[FILENAMELENGTH];
      char fileresprobcov[FILENAMELENGTH];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    char fileresprobcor[FILENAMELENGTH];
   getcwd(pathcd, size);  
     double ***varpij;
   printf("\n%s",version);  
   if(argc <=1){    strcpy(fileresprob,"prob"); 
     printf("\nEnter the parameter file name: ");    strcat(fileresprob,fileres);
     scanf("%s",pathtot);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprob);
   else{      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     strcpy(pathtot,argv[1]);    }
   }    strcpy(fileresprobcov,"probcov"); 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    strcat(fileresprobcov,fileres);
   /*cygwin_split_path(pathtot,path,optionfile);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      printf("Problem with resultfile: %s\n", fileresprobcov);
   /* cutv(path,optionfile,pathtot,'\\');*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    strcpy(fileresprobcor,"probcor"); 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    strcat(fileresprobcor,fileres);
   chdir(path);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   replace(pathc,path);      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 /*-------- arguments in the command line --------*/    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   strcpy(fileres,"r");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   strcat(fileres, optionfilefiname);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   strcat(fileres,".txt");    /* Other files have txt extension */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   /*---------arguments file --------*/    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficresprob,"# Age");
     goto end;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   }    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   strcpy(filereso,"o");    fprintf(ficresprobcov,"# Age");
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   /* Reads comments: lines beginning with '#' */        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     ungetc(c,ficpar);      }  
     fgets(line, MAXLINE, ficpar);   /* fprintf(ficresprob,"\n");
     puts(line);    fprintf(ficresprobcov,"\n");
     fputs(line,ficparo);    fprintf(ficresprobcor,"\n");
   }   */
   ungetc(c,ficpar);   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 while((c=getc(ficpar))=='#' && c!= EOF){    first=1;
     ungetc(c,ficpar);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
     puts(line);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     fputs(line,ficparo);      exit(0);
   }    }
   ungetc(c,ficpar);    else{
        fprintf(ficgp,"\n# Routine varprob");
        }
   covar=matrix(0,NCOVMAX,1,n);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   cptcovn=0;      printf("Problem with html file: %s\n", optionfilehtm);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
   ncovmodel=2+cptcovn;    }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    else{
        fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   /* Read guess parameters */      fprintf(fichtm,"\n");
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
     ungetc(c,ficpar);      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fgets(line, MAXLINE, ficpar);      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
     puts(line);  
     fputs(line,ficparo);    }
   }  
   ungetc(c,ficpar);    cov[1]=1;
      tj=cptcoveff;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     for(i=1; i <=nlstate; i++)    j1=0;
     for(j=1; j <=nlstate+ndeath-1; j++){    for(t=1; t<=tj;t++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(i1=1; i1<=ncodemax[t];i1++){ 
       fprintf(ficparo,"%1d%1d",i1,j1);        j1++;
       printf("%1d%1d",i,j);        if  (cptcovn>0) {
       for(k=1; k<=ncovmodel;k++){          fprintf(ficresprob, "\n#********** Variable "); 
         fscanf(ficpar," %lf",&param[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         printf(" %lf",param[i][j][k]);          fprintf(ficresprob, "**********\n#\n");
         fprintf(ficparo," %lf",param[i][j][k]);          fprintf(ficresprobcov, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fscanf(ficpar,"\n");          fprintf(ficresprobcov, "**********\n#\n");
       printf("\n");          
       fprintf(ficparo,"\n");          fprintf(ficgp, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficgp, "**********\n#\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          
           
   p=param[1][1];          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* Reads comments: lines beginning with '#' */          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);          fprintf(ficresprobcor, "\n#********** Variable ");    
     fgets(line, MAXLINE, ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     puts(line);          fprintf(ficresprobcor, "**********\n#");    
     fputs(line,ficparo);        }
   }        
   ungetc(c,ficpar);        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for (k=1; k<=cptcovn;k++) {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   for(i=1; i <=nlstate; i++){          }
     for(j=1; j <=nlstate+ndeath-1; j++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for (k=1; k<=cptcovprod;k++)
       printf("%1d%1d",i,j);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fprintf(ficparo,"%1d%1d",i1,j1);          
       for(k=1; k<=ncovmodel;k++){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         fscanf(ficpar,"%le",&delti3[i][j][k]);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         printf(" %le",delti3[i][j][k]);          gp=vector(1,(nlstate)*(nlstate+ndeath));
         fprintf(ficparo," %le",delti3[i][j][k]);          gm=vector(1,(nlstate)*(nlstate+ndeath));
       }      
       fscanf(ficpar,"\n");          for(theta=1; theta <=npar; theta++){
       printf("\n");            for(i=1; i<=npar; i++)
       fprintf(ficparo,"\n");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     }            
   }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   delti=delti3[1][1];            
              k=0;
   /* Reads comments: lines beginning with '#' */            for(i=1; i<= (nlstate); i++){
   while((c=getc(ficpar))=='#' && c!= EOF){              for(j=1; j<=(nlstate+ndeath);j++){
     ungetc(c,ficpar);                k=k+1;
     fgets(line, MAXLINE, ficpar);                gp[k]=pmmij[i][j];
     puts(line);              }
     fputs(line,ficparo);            }
   }            
   ungetc(c,ficpar);            for(i=1; i<=npar; i++)
                xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   matcov=matrix(1,npar,1,npar);      
   for(i=1; i <=npar; i++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fscanf(ficpar,"%s",&str);            k=0;
     printf("%s",str);            for(i=1; i<=(nlstate); i++){
     fprintf(ficparo,"%s",str);              for(j=1; j<=(nlstate+ndeath);j++){
     for(j=1; j <=i; j++){                k=k+1;
       fscanf(ficpar," %le",&matcov[i][j]);                gm[k]=pmmij[i][j];
       printf(" %.5le",matcov[i][j]);              }
       fprintf(ficparo," %.5le",matcov[i][j]);            }
     }       
     fscanf(ficpar,"\n");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     printf("\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     fprintf(ficparo,"\n");          }
   }  
   for(i=1; i <=npar; i++)          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     for(j=i+1;j<=npar;j++)            for(theta=1; theta <=npar; theta++)
       matcov[i][j]=matcov[j][i];              trgradg[j][theta]=gradg[theta][j];
              
   printf("\n");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     /*-------- Rewriting paramater file ----------*/          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
      strcpy(rfileres,"r");    /* "Rparameterfile */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          pmij(pmmij,cov,ncovmodel,x,nlstate);
     if((ficres =fopen(rfileres,"w"))==NULL) {          
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          k=0;
     }          for(i=1; i<=(nlstate); i++){
     fprintf(ficres,"#%s\n",version);            for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
     /*-------- data file ----------*/              mu[k][(int) age]=pmmij[i][j];
     if((fic=fopen(datafile,"r"))==NULL)    {            }
       printf("Problem with datafile: %s\n", datafile);goto end;          }
     }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     n= lastobs;              varpij[i][j][(int)age] = doldm[i][j];
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);          /*printf("\n%d ",(int)age);
     num=ivector(1,n);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     moisnais=vector(1,n);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     annais=vector(1,n);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     moisdc=vector(1,n);            }*/
     andc=vector(1,n);  
     agedc=vector(1,n);          fprintf(ficresprob,"\n%d ",(int)age);
     cod=ivector(1,n);          fprintf(ficresprobcov,"\n%d ",(int)age);
     weight=vector(1,n);          fprintf(ficresprobcor,"\n%d ",(int)age);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     anint=matrix(1,maxwav,1,n);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     s=imatrix(1,maxwav+1,1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     adl=imatrix(1,maxwav+1,1,n);                fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     tab=ivector(1,NCOVMAX);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     ncodemax=ivector(1,8);          }
           i=0;
     i=1;          for (k=1; k<=(nlstate);k++){
     while (fgets(line, MAXLINE, fic) != NULL)    {            for (l=1; l<=(nlstate+ndeath);l++){ 
       if ((i >= firstobs) && (i <=lastobs)) {              i=i++;
                      fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         for (j=maxwav;j>=1;j--){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              for (j=1; j<=i;j++){
           strcpy(line,stra);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              }
         }            }
                  }/* end of loop for state */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        } /* end of loop for age */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         /* Confidence intervalle of pij  */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        /*
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         for (j=ncovcol;j>=1;j--){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         num[i]=atol(stra);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         i=i+1;        for (k2=1; k2<=(nlstate);k2++){
       }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     }            if(l2==k2) continue;
     /* printf("ii=%d", ij);            j=(k2-1)*(nlstate+ndeath)+l2;
        scanf("%d",i);*/            for (k1=1; k1<=(nlstate);k1++){
   imx=i-1; /* Number of individuals */              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
   /* for (i=1; i<=imx; i++){                i=(k1-1)*(nlstate+ndeath)+l1;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                if(i<=j) continue;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                for (age=bage; age<=fage; age ++){ 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                  if ((int)age %5==0){
     }*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /* for (i=1; i<=imx; i++){                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
      if (s[4][i]==9)  s[4][i]=-1;                    mu1=mu[i][(int) age]/stepm*YEARM ;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}                    mu2=mu[j][(int) age]/stepm*YEARM;
   */                    c12=cv12/sqrt(v1*v2);
                      /* Computing eigen value of matrix of covariance */
   /* Calculation of the number of parameter from char model*/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   Tvar=ivector(1,15);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   Tprod=ivector(1,15);                    /* Eigen vectors */
   Tvaraff=ivector(1,15);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   Tvard=imatrix(1,15,1,2);                    /*v21=sqrt(1.-v11*v11); *//* error */
   Tage=ivector(1,15);                          v21=(lc1-v1)/cv12*v11;
                        v12=-v21;
   if (strlen(model) >1){                    v22=v11;
     j=0, j1=0, k1=1, k2=1;                    tnalp=v21/v11;
     j=nbocc(model,'+');                    if(first1==1){
     j1=nbocc(model,'*');                      first1=0;
     cptcovn=j+1;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     cptcovprod=j1;                    }
                        fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     strcpy(modelsav,model);                    /*printf(fignu*/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       printf("Error. Non available option model=%s ",model);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       goto end;                    if(first==1){
     }                      first=0;
                          fprintf(ficgp,"\nset parametric;unset label");
     for(i=(j+1); i>=1;i--){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       cutv(stra,strb,modelsav,'+');                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
       /*scanf("%d",i);*/                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       if (strchr(strb,'*')) {                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
         cutv(strd,strc,strb,'*');                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         if (strcmp(strc,"age")==0) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           cptcovprod--;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           cutv(strb,stre,strd,'V');                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           Tvar[i]=atoi(stre);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           cptcovage++;                    }else{
             Tage[cptcovage]=i;                      first=0;
             /*printf("stre=%s ", stre);*/                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
         }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         else if (strcmp(strd,"age")==0) {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           cptcovprod--;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           cutv(strb,stre,strc,'V');                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           Tvar[i]=atoi(stre);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           cptcovage++;                    }/* if first */
           Tage[cptcovage]=i;                  } /* age mod 5 */
         }                } /* end loop age */
         else {                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
           cutv(strb,stre,strc,'V');                first=1;
           Tvar[i]=ncovcol+k1;              } /*l12 */
           cutv(strb,strc,strd,'V');            } /* k12 */
           Tprod[k1]=i;          } /*l1 */
           Tvard[k1][1]=atoi(strc);        }/* k1 */
           Tvard[k1][2]=atoi(stre);      } /* loop covariates */
           Tvar[cptcovn+k2]=Tvard[k1][1];    }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           for (k=1; k<=lastobs;k++)    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    free_vector(xp,1,npar);
           k1++;    fclose(ficresprob);
           k2=k2+2;    fclose(ficresprobcov);
         }    fclose(ficresprobcor);
       }    fclose(ficgp);
       else {    fclose(fichtm);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  }
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);  /******************* Printing html file ***********/
       }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       strcpy(modelsav,stra);                      int lastpass, int stepm, int weightopt, char model[],\
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         scanf("%d",i);*/                    int popforecast, int estepm ,\
     }                    double jprev1, double mprev1,double anprev1, \
 }                    double jprev2, double mprev2,double anprev2){
      int jj1, k1, i1, cpt;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /*char optionfilehtm[FILENAMELENGTH];*/
   printf("cptcovprod=%d ", cptcovprod);    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
   scanf("%d ",i);*/      printf("Problem with %s \n",optionfilehtm), exit(0);
     fclose(fic);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     }
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
       for(i=1;i<=n;i++) weight[i]=1.0;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
     }   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
     /*-calculation of age at interview from date of interview and age at death -*/   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
     agev=matrix(1,maxwav,1,imx);   - Life expectancies by age and initial health status (estepm=%2d months): 
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
     for (i=1; i<=imx; i++) {    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
          anint[m][i]=9999;  
          s[m][i]=-1;   m=cptcoveff;
        }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }   jj1=0;
     }   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
     for (i=1; i<=imx; i++)  {       jj1++;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);       if (cptcovn > 0) {
       for(m=1; (m<= maxwav); m++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         if(s[m][i] >0){         for (cpt=1; cpt<=cptcoveff;cpt++) 
           if (s[m][i] >= nlstate+1) {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             if(agedc[i]>0)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
               if(moisdc[i]!=99 && andc[i]!=9999)       }
                 agev[m][i]=agedc[i];       /* Pij */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
            else {  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
               if (andc[i]!=9999){       /* Quasi-incidences */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
               agev[m][i]=-1;  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
               }         /* Stable prevalence in each health state */
             }         for(cpt=1; cpt<nlstate;cpt++){
           }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
           else if(s[m][i] !=9){ /* Should no more exist */  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);         }
             if(mint[m][i]==99 || anint[m][i]==9999)       for(cpt=1; cpt<=nlstate;cpt++) {
               agev[m][i]=1;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
             else if(agev[m][i] <agemin){  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
               agemin=agev[m][i];       }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/       fprintf(fichtm,"\n<br>- Total life expectancy by age and
             }  health expectancies in states (1) and (2): e%s%d.png<br>
             else if(agev[m][i] >agemax){  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
               agemax=agev[m][i];     } /* end i1 */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   }/* End k1 */
             }   fprintf(fichtm,"</ul>");
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/  
           }   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
           else { /* =9 */   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
             agev[m][i]=1;   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
             s[m][i]=-1;   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
           }   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
         }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
         else /*= 0 Unknown */   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
           agev[m][i]=1;   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
       }  
      /*  if(popforecast==1) fprintf(fichtm,"\n */
     }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     for (i=1; i<=imx; i++)  {  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       for(m=1; (m<= maxwav); m++){  /*      <br>",fileres,fileres,fileres,fileres); */
         if (s[m][i] > (nlstate+ndeath)) {  /*  else  */
           printf("Error: Wrong value in nlstate or ndeath\n");    /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           goto end;  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         }  
       }   m=cptcoveff;
     }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   jj1=0;
    for(k1=1; k1<=m;k1++){
     free_vector(severity,1,maxwav);     for(i1=1; i1<=ncodemax[k1];i1++){
     free_imatrix(outcome,1,maxwav+1,1,n);       jj1++;
     free_vector(moisnais,1,n);       if (cptcovn > 0) {
     free_vector(annais,1,n);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     /* free_matrix(mint,1,maxwav,1,n);         for (cpt=1; cpt<=cptcoveff;cpt++) 
        free_matrix(anint,1,maxwav,1,n);*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     free_vector(moisdc,1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_vector(andc,1,n);       }
        for(cpt=1; cpt<=nlstate;cpt++) {
             fprintf(fichtm,"<br>- Observed and period prevalence (with confident
     wav=ivector(1,imx);  interval) in state (%d): v%s%d%d.png <br>
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);       }
         } /* end i1 */
     /* Concatenates waves */   }/* End k1 */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   fprintf(fichtm,"</ul>");
   fclose(fichtm);
   }
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  /******************* Gnuplot file **************/
       ncodemax[1]=1;  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
          int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
    codtab=imatrix(1,100,1,10);    int ng;
    h=0;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
    m=pow(2,cptcoveff);      printf("Problem with file %s",optionfilegnuplot);
        fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
    for(k=1;k<=cptcoveff; k++){    }
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){    /*#ifdef windows */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      fprintf(ficgp,"cd \"%s\" \n",pathc);
            h++;      /*#endif */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  m=pow(2,cptcoveff);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    
          }   /* 1eme*/
        }    for (cpt=1; cpt<= nlstate ; cpt ++) {
      }     for (k1=1; k1<= m ; k1 ++) {
    }       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){       for (i=1; i<= nlstate ; i ++) {
       for(k=1; k <=cptcovn; k++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       }       }
       printf("\n");       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
       }       for (i=1; i<= nlstate ; i ++) {
       scanf("%d",i);*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
    /* Calculates basic frequencies. Computes observed prevalence at single age       } 
        and prints on file fileres'p'. */       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /*2 eme*/
          
     /* For Powell, parameters are in a vector p[] starting at p[1]    for (k1=1; k1<= m ; k1 ++) { 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
     if(mle==1){      for (i=1; i<= nlstate+1 ; i ++) {
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        k=2*i;
     }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
            for (j=1; j<= nlstate+1 ; j ++) {
     /*--------- results files --------------*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
    jk=1;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for (j=1; j<= nlstate+1 ; j ++) {
    for(i=1,jk=1; i <=nlstate; i++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      for(k=1; k <=(nlstate+ndeath); k++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
        if (k != i)        }   
          {        fprintf(ficgp,"\" t\"\" w l 0,");
            printf("%d%d ",i,k);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
            fprintf(ficres,"%1d%1d ",i,k);        for (j=1; j<= nlstate+1 ; j ++) {
            for(j=1; j <=ncovmodel; j++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
              printf("%f ",p[jk]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
              fprintf(ficres,"%f ",p[jk]);        }   
              jk++;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
            }        else fprintf(ficgp,"\" t\"\" w l 0,");
            printf("\n");      }
            fprintf(ficres,"\n");    }
          }    
      }    /*3eme*/
    }    
  if(mle==1){    for (k1=1; k1<= m ; k1 ++) { 
     /* Computing hessian and covariance matrix */      for (cpt=1; cpt<= nlstate ; cpt ++) {
     ftolhess=ftol; /* Usually correct */        k=2+nlstate*(2*cpt-2);
     hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
  }        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     printf("# Scales (for hessian or gradient estimation)\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
      for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       for(j=1; j <=nlstate+ndeath; j++){          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         if (j!=i) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficres,"%1d%1d",i,j);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           printf("%1d%1d",i,j);          
           for(k=1; k<=ncovmodel;k++){        */
             printf(" %.5e",delti[jk]);        for (i=1; i< nlstate ; i ++) {
             fprintf(ficres," %.5e",delti[jk]);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
             jk++;          
           }        } 
           printf("\n");      }
           fprintf(ficres,"\n");    }
         }    
       }    /* CV preval stable (period) */
      }    for (k1=1; k1<= m ; k1 ++) { 
          for (cpt=1; cpt<=nlstate ; cpt ++) {
     k=1;        k=3;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
     for(i=1;i<=npar;i++){        
       /*  if (k>nlstate) k=1;        for (i=1; i<= nlstate ; i ++)
       i1=(i-1)/(ncovmodel*nlstate)+1;          fprintf(ficgp,"+$%d",k+i+1);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       printf("%s%d%d",alph[k],i1,tab[i]);*/        
       fprintf(ficres,"%3d",i);        l=3+(nlstate+ndeath)*cpt;
       printf("%3d",i);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
       for(j=1; j<=i;j++){        for (i=1; i< nlstate ; i ++) {
         fprintf(ficres," %.5e",matcov[i][j]);          l=3+(nlstate+ndeath)*cpt;
         printf(" %.5e",matcov[i][j]);          fprintf(ficgp,"+$%d",l+i+1);
       }        }
       fprintf(ficres,"\n");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       printf("\n");      } 
       k++;    }  
     }    
        /* proba elementaires */
     while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1,jk=1; i <=nlstate; i++){
       ungetc(c,ficpar);      for(k=1; k <=(nlstate+ndeath); k++){
       fgets(line, MAXLINE, ficpar);        if (k != i) {
       puts(line);          for(j=1; j <=ncovmodel; j++){
       fputs(line,ficparo);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     }            jk++; 
     ungetc(c,ficpar);            fprintf(ficgp,"\n");
            }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);        }
          }
     if (fage <= 2) {     }
       bage = ageminpar;  
       fage = agemaxpar;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     }       for(jk=1; jk <=m; jk++) {
             fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");         if (ng==2)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);         else
             fprintf(ficgp,"\nset title \"Probability\"\n");
     while((c=getc(ficpar))=='#' && c!= EOF){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     ungetc(c,ficpar);         i=1;
     fgets(line, MAXLINE, ficpar);         for(k2=1; k2<=nlstate; k2++) {
     puts(line);           k3=i;
     fputs(line,ficparo);           for(k=1; k<=(nlstate+ndeath); k++) {
   }             if (k != k2){
   ungetc(c,ficpar);               if(ng==2)
                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);               else
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);               ij=1;
                     for(j=3; j <=ncovmodel; j++) {
   while((c=getc(ficpar))=='#' && c!= EOF){                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     ungetc(c,ficpar);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     fgets(line, MAXLINE, ficpar);                   ij++;
     puts(line);                 }
     fputs(line,ficparo);                 else
   }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   ungetc(c,ficpar);               }
                 fprintf(ficgp,")/(1");
                
    dateprev1=anprev1+mprev1/12.+jprev1/365.;               for(k1=1; k1 <=nlstate; k1++){   
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
   fscanf(ficpar,"pop_based=%d\n",&popbased);                 for(j=3; j <=ncovmodel; j++){
   fprintf(ficparo,"pop_based=%d\n",popbased);                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   fprintf(ficres,"pop_based=%d\n",popbased);                       fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                       ij++;
   while((c=getc(ficpar))=='#' && c!= EOF){                   }
     ungetc(c,ficpar);                   else
     fgets(line, MAXLINE, ficpar);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     puts(line);                 }
     fputs(line,ficparo);                 fprintf(ficgp,")");
   }               }
   ungetc(c,ficpar);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);               i=i+ncovmodel;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);             }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);           } /* end k */
          } /* end k2 */
        } /* end jk */
 while((c=getc(ficpar))=='#' && c!= EOF){     } /* end ng */
     ungetc(c,ficpar);     fclose(ficgp); 
     fgets(line, MAXLINE, ficpar);  }  /* end gnuplot */
     puts(line);  
     fputs(line,ficparo);  
   }  /*************** Moving average **************/
   ungetc(c,ficpar);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    int i, cpt, cptcod;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    int modcovmax =1;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    int mobilavrange, mob;
     double age;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 /*------------ gnuplot -------------*/                             a covariate has 2 modalities */
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
    
 /*------------ free_vector  -------------*/    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
  chdir(path);      if(mobilav==1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
  free_ivector(wav,1,imx);      for (age=bage; age<=fage; age++)
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        for (i=1; i<=nlstate;i++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            for (cptcod=1;cptcod<=modcovmax;cptcod++)
  free_ivector(num,1,n);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
  free_vector(agedc,1,n);      /* We keep the original values on the extreme ages bage, fage and for 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
  fclose(ficparo);         we use a 5 terms etc. until the borders are no more concerned. 
  fclose(ficres);      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
 /*--------- index.htm --------*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                  for (cpt=1;cpt<=(mob-1)/2;cpt++){
   /*--------------- Prevalence limit --------------*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                    mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   strcpy(filerespl,"pl");                }
   strcat(filerespl,fileres);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          }
   }        }/* end age */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      }/* end mob */
   fprintf(ficrespl,"#Prevalence limit\n");    }else return -1;
   fprintf(ficrespl,"#Age ");    return 0;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  }/* End movingaverage */
   fprintf(ficrespl,"\n");  
    
   prlim=matrix(1,nlstate,1,nlstate);  /************** Forecasting ******************/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* proj1, year, month, day of starting projection 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       agemin, agemax range of age
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       dateprev1 dateprev2 range of dates during which prevalence is computed
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       anproj2 year of en of projection (same day and month as proj1).
   k=0;    */
   agebase=ageminpar;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   agelim=agemaxpar;    int *popage;
   ftolpl=1.e-10;    double agec; /* generic age */
   i1=cptcoveff;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   if (cptcovn < 1){i1=1;}    double *popeffectif,*popcount;
     double ***p3mat;
   for(cptcov=1;cptcov<=i1;cptcov++){    double ***mobaverage;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    char fileresf[FILENAMELENGTH];
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    agelim=AGESUP;
         fprintf(ficrespl,"\n#******");    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(fileresf,"f"); 
         fprintf(ficrespl,"******\n");    strcat(fileresf,fileres);
            if((ficresf=fopen(fileresf,"w"))==NULL) {
         for (age=agebase; age<=agelim; age++){      printf("Problem with forecast resultfile: %s\n", fileresf);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficrespl,"%.0f",age );    }
           for(i=1; i<=nlstate;i++)    printf("Computing forecasting: result on file '%s' \n", fileresf);
           fprintf(ficrespl," %.5f", prlim[i][i]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           fprintf(ficrespl,"\n");  
         }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       }  
     }    if (mobilav!=0) {
   fclose(ficrespl);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   /*------------- h Pij x at various ages ------------*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }    stepsize=(int) (stepm+YEARM-1)/YEARM;
   printf("Computing pij: result on file '%s' \n", filerespij);    if (stepm<=12) stepsize=1;
      if(estepm < stepm){
   stepsize=(int) (stepm+YEARM-1)/YEARM;      printf ("Problem %d lower than %d\n",estepm, stepm);
   /*if (stepm<=24) stepsize=2;*/    }
     else  hstepm=estepm;   
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */    hstepm=hstepm/stepm; 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                   fractional in yp1 */
   k=0;    anprojmean=yp;
   for(cptcov=1;cptcov<=i1;cptcov++){    yp2=modf((yp1*12),&yp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    mprojmean=yp;
       k=k+1;    yp1=modf((yp2*30.5),&yp);
         fprintf(ficrespij,"\n#****** ");    jprojmean=yp;
         for(j=1;j<=cptcoveff;j++)    if(jprojmean==0) jprojmean=1;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(mprojmean==0) jprojmean=1;
         fprintf(ficrespij,"******\n");  
            i1=cptcoveff;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    if (cptcovn < 1){i1=1;}
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    fprintf(ficresf,"#****** Routine prevforecast **\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");  /*            if (h==(int)(YEARM*yearp)){ */
           for(i=1; i<=nlstate;i++)    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
             for(j=1; j<=nlstate+ndeath;j++)      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
               fprintf(ficrespij," %1d-%1d",i,j);        k=k+1;
           fprintf(ficrespij,"\n");        fprintf(ficresf,"\n#******");
           for (h=0; h<=nhstepm; h++){        for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)        }
               for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficresf,"******\n");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
             fprintf(ficrespij,"\n");        for(j=1; j<=nlstate+ndeath;j++){ 
           }          for(i=1; i<=nlstate;i++)              
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficresf," p%d%d",i,j);
           fprintf(ficrespij,"\n");          fprintf(ficresf," p.%d",j);
         }        }
     }        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   }          fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/  
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
   fclose(ficrespij);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*---------- Forecasting ------------------*/            oldm=oldms;savm=savms;
   if((stepm == 1) && (strcmp(model,".")==0)){            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            for (h=0; h<=nhstepm; h++){
     free_matrix(mint,1,maxwav,1,n);              if (h*hstepm/YEARM*stepm ==yearp) {
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                fprintf(ficresf,"\n");
     free_vector(weight,1,n);}                for(j=1;j<=cptcoveff;j++) 
   else{                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     erreur=108;                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);              } 
   }              for(j=1; j<=nlstate+ndeath;j++) {
                  ppij=0.;
                 for(i=1; i<=nlstate;i++) {
   /*---------- Health expectancies and variances ------------*/                  if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   strcpy(filerest,"t");                  else {
   strcat(filerest,fileres);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   if((ficrest=fopen(filerest,"w"))==NULL) {                  }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                  if (h*hstepm/YEARM*stepm== yearp) {
   }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                  }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
   strcpy(filerese,"e");                  fprintf(ficresf," %.3f", ppij);
   strcat(filerese,fileres);                }
   if((ficreseij=fopen(filerese,"w"))==NULL) {              }/* end j */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            } /* end h */
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          } /* end agec */
         } /* end yearp */
  strcpy(fileresv,"v");      } /* end cptcod */
   strcat(fileresv,fileres);    } /* end  cptcov */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {         
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fclose(ficresf);
   }
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  /************** Forecasting *****not tested NB*************/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       k=k+1;    
       fprintf(ficrest,"\n#****** ");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       for(j=1;j<=cptcoveff;j++)    int *popage;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double calagedatem, agelim, kk1, kk2;
       fprintf(ficrest,"******\n");    double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
       fprintf(ficreseij,"\n#****** ");    double ***mobaverage;
       for(j=1;j<=cptcoveff;j++)    char filerespop[FILENAMELENGTH];
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficresvij,"\n#****** ");    agelim=AGESUP;
       for(j=1;j<=cptcoveff;j++)    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficresvij,"******\n");    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    
       oldm=oldms;savm=savms;    strcpy(filerespop,"pop"); 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      strcat(filerespop,fileres);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       oldm=oldms;savm=savms;      printf("Problem with forecast resultfile: %s\n", filerespop);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
        }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       fprintf(ficrest,"\n");  
     if (mobilav!=0) {
       epj=vector(1,nlstate+1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(age=bage; age <=fage ;age++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         if (popbased==1) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           for(i=1; i<=nlstate;i++)      }
             prlim[i][i]=probs[(int)age][i][k];    }
         }  
            stepsize=(int) (stepm+YEARM-1)/YEARM;
         fprintf(ficrest," %4.0f",age);    if (stepm<=12) stepsize=1;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    agelim=AGESUP;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    
           }    hstepm=1;
           epj[nlstate+1] +=epj[j];    hstepm=hstepm/stepm; 
         }    
         for(i=1, vepp=0.;i <=nlstate;i++)    if (popforecast==1) {
           for(j=1;j <=nlstate;j++)      if((ficpop=fopen(popfile,"r"))==NULL) {
             vepp += vareij[i][j][(int)age];        printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
         for(j=1;j <=nlstate;j++){      } 
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));      popage=ivector(0,AGESUP);
         }      popeffectif=vector(0,AGESUP);
         fprintf(ficrest,"\n");      popcount=vector(0,AGESUP);
       }      
     }      i=1;   
   }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
   fclose(ficreseij);      imx=i;
   fclose(ficresvij);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   fclose(ficrest);    }
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   /*------- Variance limit prevalence------*/          k=k+1;
         fprintf(ficrespop,"\n#******");
   strcpy(fileresvpl,"vpl");        for(j=1;j<=cptcoveff;j++) {
   strcat(fileresvpl,fileres);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        fprintf(ficrespop,"******\n");
     exit(0);        fprintf(ficrespop,"# Age");
   }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        if (popforecast==1)  fprintf(ficrespop," [Population]");
         
   k=0;        for (cpt=0; cpt<=0;cpt++) { 
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          
       k=k+1;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
       fprintf(ficresvpl,"\n#****** ");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
       for(j=1;j<=cptcoveff;j++)            nhstepm = nhstepm/hstepm; 
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            
       fprintf(ficresvpl,"******\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  oldm=oldms;savm=savms;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       oldm=oldms;savm=savms;          
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            for (h=0; h<=nhstepm; h++){
     }              if (h==(int) (calagedatem+YEARM*cpt)) {
  }                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
   fclose(ficresvpl);              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
   /*---------- End : free ----------------*/                for(i=1; i<=nlstate;i++) {              
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                  if (mobilav==1) 
                      kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                  else {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                    }
                  }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                if (h==(int)(calagedatem+12*cpt)){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                    /*fprintf(ficrespop," %.3f", kk1);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                  }
   free_matrix(matcov,1,npar,1,npar);              }
   free_vector(delti,1,npar);              for(i=1; i<=nlstate;i++){
   free_matrix(agev,1,maxwav,1,imx);                kk1=0.;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   if(erreur >0)                  }
     printf("End of Imach with error or warning %d\n",erreur);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   else   printf("End of Imach\n");              }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
                if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   /*printf("Total time was %d uSec.\n", total_usecs);*/            }
   /*------ End -----------*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
  end:   
 #ifdef windows    /******/
   /* chdir(pathcd);*/  
 #endif        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
  /*system("wgnuplot graph.plt");*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
  /*system("../gp37mgw/wgnuplot graph.plt");*/          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  /*system("cd ../gp37mgw");*/            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            nhstepm = nhstepm/hstepm; 
  strcpy(plotcmd,GNUPLOTPROGRAM);            
  strcat(plotcmd," ");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  strcat(plotcmd,optionfilegnuplot);            oldm=oldms;savm=savms;
  system(plotcmd);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
 #ifdef windows              if (h==(int) (calagedatem+YEARM*cpt)) {
   while (z[0] != 'q') {                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     /* chdir(path); */              } 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");              for(j=1; j<=nlstate+ndeath;j++) {
     scanf("%s",z);                kk1=0.;kk2=0;
     if (z[0] == 'c') system("./imach");                for(i=1; i<=nlstate;i++) {              
     else if (z[0] == 'e') system(optionfilehtm);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     else if (z[0] == 'g') system(plotcmd);                }
     else if (z[0] == 'q') exit(0);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   }              }
 #endif            }
 }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s",version);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.35  
changed lines
  Added in v.1.80


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>