Diff for /imach/src/imach.c between versions 1.88 and 1.125

version 1.88, 2003/06/23 17:54:56 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.87  2003/06/18 12:26:01  brouard  
   Version 0.96    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
   Revision 1.86  2003/06/17 20:04:08  brouard    The log-likelihood is printed in the log file
   (Module): Change position of html and gnuplot routines and added  
   routine fileappend.    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
   Revision 1.85  2003/06/17 13:12:43  brouard    name. <head> headers where missing.
   * imach.c (Repository): Check when date of death was earlier that  
   current date of interview. It may happen when the death was just    * imach.c (Module): Weights can have a decimal point as for
   prior to the death. In this case, dh was negative and likelihood    English (a comma might work with a correct LC_NUMERIC environment,
   was wrong (infinity). We still send an "Error" but patch by    otherwise the weight is truncated).
   assuming that the date of death was just one stepm after the    Modification of warning when the covariates values are not 0 or
   interview.    1.
   (Repository): Because some people have very long ID (first column)    Version 0.98g
   we changed int to long in num[] and we added a new lvector for  
   memory allocation. But we also truncated to 8 characters (left    Revision 1.122  2006/03/20 09:45:41  brouard
   truncation)    (Module): Weights can have a decimal point as for
   (Repository): No more line truncation errors.    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.84  2003/06/13 21:44:43  brouard    Modification of warning when the covariates values are not 0 or
   * imach.c (Repository): Replace "freqsummary" at a correct    1.
   place. It differs from routine "prevalence" which may be called    Version 0.98g
   many times. Probs is memory consuming and must be used with  
   parcimony.    Revision 1.121  2006/03/16 17:45:01  lievre
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    * imach.c (Module): Comments concerning covariates added
   
   Revision 1.83  2003/06/10 13:39:11  lievre    * imach.c (Module): refinements in the computation of lli if
   *** empty log message ***    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.82  2003/06/05 15:57:20  brouard  
   Add log in  imach.c and  fullversion number is now printed.    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 */    status=-2 in order to have more reliable computation if stepm is
 /*    not 1 month. Version 0.98f
    Interpolated Markov Chain  
     Revision 1.119  2006/03/15 17:42:26  brouard
   Short summary of the programme:    (Module): Bug if status = -2, the loglikelihood was
       computed as likelihood omitting the logarithm. Version O.98e
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.118  2006/03/14 18:20:07  brouard
   first survey ("cross") where individuals from different ages are    (Module): varevsij Comments added explaining the second
   interviewed on their health status or degree of disability (in the    table of variances if popbased=1 .
   case of a health survey which is our main interest) -2- at least a    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   second wave of interviews ("longitudinal") which measure each change    (Module): Function pstamp added
   (if any) in individual health status.  Health expectancies are    (Module): Version 0.98d
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.117  2006/03/14 17:16:22  brouard
   Maximum Likelihood of the parameters involved in the model.  The    (Module): varevsij Comments added explaining the second
   simplest model is the multinomial logistic model where pij is the    table of variances if popbased=1 .
   probability to be observed in state j at the second wave    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   conditional to be observed in state i at the first wave. Therefore    (Module): Function pstamp added
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Version 0.98d
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.116  2006/03/06 10:29:27  brouard
   where the markup *Covariates have to be included here again* invites    (Module): Variance-covariance wrong links and
   you to do it.  More covariates you add, slower the    varian-covariance of ej. is needed (Saito).
   convergence.  
     Revision 1.115  2006/02/27 12:17:45  brouard
   The advantage of this computer programme, compared to a simple    (Module): One freematrix added in mlikeli! 0.98c
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.114  2006/02/26 12:57:58  brouard
   intermediate interview, the information is lost, but taken into    (Module): Some improvements in processing parameter
   account using an interpolation or extrapolation.      filename with strsep.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.113  2006/02/24 14:20:24  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Memory leaks checks with valgrind and:
   split into an exact number (nh*stepm) of unobserved intermediate    datafile was not closed, some imatrix were not freed and on matrix
   states. This elementary transition (by month, quarter,    allocation too.
   semester or year) is modelled as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.112  2006/01/30 09:55:26  brouard
   and the contribution of each individual to the likelihood is simply    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   hPijx.  
     Revision 1.111  2006/01/25 20:38:18  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Lots of cleaning and bugs added (Gompertz)
   of the life expectancies. It also computes the stable prevalence.     (Module): Comments can be added in data file. Missing date values
       can be a simple dot '.'.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.110  2006/01/25 00:51:50  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Lots of cleaning and bugs added (Gompertz)
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.109  2006/01/24 19:37:15  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): Comments (lines starting with a #) are allowed in data.
   can be accessed at http://euroreves.ined.fr/imach .  
     Revision 1.108  2006/01/19 18:05:42  lievre
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Gnuplot problem appeared...
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    To be fixed
     
   **********************************************************************/    Revision 1.107  2006/01/19 16:20:37  brouard
 /*    Test existence of gnuplot in imach path
   main  
   read parameterfile    Revision 1.106  2006/01/19 13:24:36  brouard
   read datafile    Some cleaning and links added in html output
   concatwav  
   freqsummary    Revision 1.105  2006/01/05 20:23:19  lievre
   if (mle >= 1)    *** empty log message ***
     mlikeli  
   print results files    Revision 1.104  2005/09/30 16:11:43  lievre
   if mle==1     (Module): sump fixed, loop imx fixed, and simplifications.
      computes hessian    (Module): If the status is missing at the last wave but we know
   read end of parameter file: agemin, agemax, bage, fage, estepm    that the person is alive, then we can code his/her status as -2
       begin-prev-date,...    (instead of missing=-1 in earlier versions) and his/her
   open gnuplot file    contributions to the likelihood is 1 - Prob of dying from last
   open html file    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   stable prevalence    the healthy state at last known wave). Version is 0.98
    for age prevalim()  
   h Pij x    Revision 1.103  2005/09/30 15:54:49  lievre
   variance of p varprob    (Module): sump fixed, loop imx fixed, and simplifications.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    Revision 1.102  2004/09/15 17:31:30  brouard
   Variance-covariance of DFLE    Add the possibility to read data file including tab characters.
   prevalence()  
    movingaverage()    Revision 1.101  2004/09/15 10:38:38  brouard
   varevsij()     Fix on curr_time
   if popbased==1 varevsij(,popbased)  
   total life expectancies    Revision 1.100  2004/07/12 18:29:06  brouard
   Variance of stable prevalence    Add version for Mac OS X. Just define UNIX in Makefile
  end  
 */    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
   
     Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
 #include <math.h>    directly from the data i.e. without the need of knowing the health
 #include <stdio.h>    state at each age, but using a Gompertz model: log u =a + b*age .
 #include <stdlib.h>    This is the basic analysis of mortality and should be done before any
 #include <unistd.h>    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 #include <sys/time.h>    from other sources like vital statistic data.
 #include <time.h>  
 #include "timeval.h"    The same imach parameter file can be used but the option for mle should be -3.
   
 #define MAXLINE 256    Agnès, who wrote this part of the code, tried to keep most of the
 #define GNUPLOTPROGRAM "gnuplot"    former routines in order to include the new code within the former code.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 132    The output is very simple: only an estimate of the intercept and of
 /*#define DEBUG*/    the slope with 95% confident intervals.
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Current limitations:
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    B) There is no computation of Life Expectancy nor Life Table.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.97  2004/02/20 13:25:42  lievre
 #define NINTERVMAX 8    Version 0.96d. Population forecasting command line is (temporarily)
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    suppressed.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define MAXN 20000    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define YEARM 12. /* Number of months per year */    rewritten within the same printf. Workaround: many printfs.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.95  2003/07/08 07:54:34  brouard
 #ifdef unix    * imach.c (Repository):
 #define DIRSEPARATOR '/'    (Repository): Using imachwizard code to output a more meaningful covariance
 #define ODIRSEPARATOR '\\'    matrix (cov(a12,c31) instead of numbers.
 #else  
 #define DIRSEPARATOR '\\'    Revision 1.94  2003/06/27 13:00:02  brouard
 #define ODIRSEPARATOR '/'    Just cleaning
 #endif  
     Revision 1.93  2003/06/25 16:33:55  brouard
 /* $Id$ */    (Module): On windows (cygwin) function asctime_r doesn't
 /* $State$ */    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";  
 char fullversion[]="$Revision$ $Date$";     Revision 1.92  2003/06/25 16:30:45  brouard
 int erreur; /* Error number */    (Module): On windows (cygwin) function asctime_r doesn't
 int nvar;    exist so I changed back to asctime which exists.
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.91  2003/06/25 15:30:29  brouard
 int nlstate=2; /* Number of live states */    * imach.c (Repository): Duplicated warning errors corrected.
 int ndeath=1; /* Number of dead states */    (Repository): Elapsed time after each iteration is now output. It
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    helps to forecast when convergence will be reached. Elapsed time
 int popbased=0;    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.90  2003/06/24 12:34:15  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Some bugs corrected for windows. Also, when
 int gipmx, gsw; /* Global variables on the number of contributions     mle=-1 a template is output in file "or"mypar.txt with the design
                    to the likelihood and the sum of weights (done by funcone)*/    of the covariance matrix to be input.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.89  2003/06/24 12:30:52  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Some bugs corrected for windows. Also, when
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    mle=-1 a template is output in file "or"mypar.txt with the design
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    of the covariance matrix to be input.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.88  2003/06/23 17:54:56  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog, *ficrespow;    Revision 1.87  2003/06/18 12:26:01  brouard
 int globpr; /* Global variable for printing or not */    Version 0.96
 double fretone; /* Only one call to likelihood */  
 long ipmx; /* Number of contributions */    Revision 1.86  2003/06/17 20:04:08  brouard
 double sw; /* Sum of weights */    (Module): Change position of html and gnuplot routines and added
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    routine fileappend.
 FILE *ficresilk;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.85  2003/06/17 13:12:43  brouard
 FILE *ficresprobmorprev;    * imach.c (Repository): Check when date of death was earlier that
 FILE *fichtm; /* Html File */    current date of interview. It may happen when the death was just
 FILE *ficreseij;    prior to the death. In this case, dh was negative and likelihood
 char filerese[FILENAMELENGTH];    was wrong (infinity). We still send an "Error" but patch by
 FILE  *ficresvij;    assuming that the date of death was just one stepm after the
 char fileresv[FILENAMELENGTH];    interview.
 FILE  *ficresvpl;    (Repository): Because some people have very long ID (first column)
 char fileresvpl[FILENAMELENGTH];    we changed int to long in num[] and we added a new lvector for
 char title[MAXLINE];    memory allocation. But we also truncated to 8 characters (left
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    truncation)
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    (Repository): No more line truncation errors.
 char tmpout[FILENAMELENGTH];   
 char command[FILENAMELENGTH];    Revision 1.84  2003/06/13 21:44:43  brouard
 int  outcmd=0;    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    many times. Probs is memory consuming and must be used with
 char lfileres[FILENAMELENGTH];    parcimony.
 char filelog[FILENAMELENGTH]; /* Log file */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.83  2003/06/10 13:39:11  lievre
 char popfile[FILENAMELENGTH];    *** empty log message ***
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 #define NR_END 1  
 #define FREE_ARG char*  */
 #define FTOL 1.0e-10  /*
      Interpolated Markov Chain
 #define NRANSI   
 #define ITMAX 200     Short summary of the programme:
    
 #define TOL 2.0e-4     This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define CGOLD 0.3819660     first survey ("cross") where individuals from different ages are
 #define ZEPS 1.0e-10     interviewed on their health status or degree of disability (in the
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 #define GOLD 1.618034     (if any) in individual health status.  Health expectancies are
 #define GLIMIT 100.0     computed from the time spent in each health state according to a
 #define TINY 1.0e-20     model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 static double maxarg1,maxarg2;    simplest model is the multinomial logistic model where pij is the
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    probability to be observed in state j at the second wave
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    conditional to be observed in state i at the first wave. Therefore
       the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    'age' is age and 'sex' is a covariate. If you want to have a more
 #define rint(a) floor(a+0.5)    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 static double sqrarg;    you to do it.  More covariates you add, slower the
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    convergence.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   
     The advantage of this computer programme, compared to a simple
 int imx;     multinomial logistic model, is clear when the delay between waves is not
 int stepm;    identical for each individual. Also, if a individual missed an
 /* Stepm, step in month: minimum step interpolation*/    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 int m,nb;    split into an exact number (nh*stepm) of unobserved intermediate
 long *num;    states. This elementary transition (by month, quarter,
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    semester or year) is modelled as a multinomial logistic.  The hPx
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    matrix is simply the matrix product of nh*stepm elementary matrices
 double **pmmij, ***probs;    and the contribution of each individual to the likelihood is simply
 double dateintmean=0;    hPijx.
   
 double *weight;    Also this programme outputs the covariance matrix of the parameters but also
 int **s; /* Status */    of the life expectancies. It also computes the period (stable) prevalence.
 double *agedc, **covar, idx;   
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    This software have been partly granted by Euro-REVES, a concerted action
 double ftolhess; /* Tolerance for computing hessian */    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 /**************** split *************************/    software can be distributed freely for non commercial use. Latest version
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    can be accessed at http://euroreves.ined.fr/imach .
 {  
   char  *ss;                            /* pointer */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   int   l1, l2;                         /* length counters */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    
   l1 = strlen(path );                   /* length of path */    **********************************************************************/
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  /*
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    main
   if ( ss == NULL ) {                   /* no directory, so use current */    read parameterfile
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    read datafile
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    concatwav
     /* get current working directory */    freqsummary
     /*    extern  char* getcwd ( char *buf , int len);*/    if (mle >= 1)
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {      mlikeli
       return( GLOCK_ERROR_GETCWD );    print results files
     }    if mle==1
     strcpy( name, path );               /* we've got it */       computes hessian
   } else {                              /* strip direcotry from path */    read end of parameter file: agemin, agemax, bage, fage, estepm
     ss++;                               /* after this, the filename */        begin-prev-date,...
     l2 = strlen( ss );                  /* length of filename */    open gnuplot file
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    open html file
     strcpy( name, ss );         /* save file name */    period (stable) prevalence
     strncpy( dirc, path, l1 - l2 );     /* now the directory */     for age prevalim()
     dirc[l1-l2] = 0;                    /* add zero */    h Pij x
   }    variance of p varprob
   l1 = strlen( dirc );                  /* length of directory */    forecasting if prevfcast==1 prevforecast call prevalence()
   /*#ifdef windows    health expectancies
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Variance-covariance of DFLE
 #else    prevalence()
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }     movingaverage()
 #endif    varevsij()
   */    if popbased==1 varevsij(,popbased)
   ss = strrchr( name, '.' );            /* find last / */    total life expectancies
   ss++;    Variance of period (stable) prevalence
   strcpy(ext,ss);                       /* save extension */   end
   l1= strlen( name);  */
   l2= strlen(ss)+1;  
   strncpy( finame, name, l1-l2);  
   finame[l1-l2]= 0;  
   return( 0 );                          /* we're done */   
 }  #include <math.h>
   #include <stdio.h>
   #include <stdlib.h>
 /******************************************/  #include <string.h>
   #include <unistd.h>
 void replace(char *s, char*t)  
 {  #include <limits.h>
   int i;  #include <sys/types.h>
   int lg=20;  #include <sys/stat.h>
   i=0;  #include <errno.h>
   lg=strlen(t);  extern int errno;
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  /* #include <sys/time.h> */
     if (t[i]== '\\') s[i]='/';  #include <time.h>
   }  #include "timeval.h"
 }  
   /* #include <libintl.h> */
 int nbocc(char *s, char occ)  /* #define _(String) gettext (String) */
 {  
   int i,j=0;  #define MAXLINE 256
   int lg=20;  
   i=0;  #define GNUPLOTPROGRAM "gnuplot"
   lg=strlen(s);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   for(i=0; i<= lg; i++) {  #define FILENAMELENGTH 132
   if  (s[i] == occ ) j++;  
   }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   return j;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 void cutv(char *u,char *v, char*t, char occ)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it  #define NINTERVMAX 8
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
      gives u="abcedf" and v="ghi2j" */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int i,lg,j,p=0;  #define NCOVMAX 8 /* Maximum number of covariates */
   i=0;  #define MAXN 20000
   for(j=0; j<=strlen(t)-1; j++) {  #define YEARM 12. /* Number of months per year */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define AGESUP 130
   }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   lg=strlen(t);  #ifdef UNIX
   for(j=0; j<p; j++) {  #define DIRSEPARATOR '/'
     (u[j] = t[j]);  #define CHARSEPARATOR "/"
   }  #define ODIRSEPARATOR '\\'
      u[p]='\0';  #else
   #define DIRSEPARATOR '\\'
    for(j=0; j<= lg; j++) {  #define CHARSEPARATOR "\\"
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define ODIRSEPARATOR '/'
   }  #endif
 }  
   /* $Id$ */
 /********************** nrerror ********************/  /* $State$ */
   
 void nrerror(char error_text[])  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 {  char fullversion[]="$Revision$ $Date$";
   fprintf(stderr,"ERREUR ...\n");  char strstart[80];
   fprintf(stderr,"%s\n",error_text);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   exit(EXIT_FAILURE);  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
 /*********************** vector *******************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double *vector(int nl, int nh)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   double *v;  int ndeath=1; /* Number of dead states */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   if (!v) nrerror("allocation failure in vector");  int popbased=0;
   return v-nl+NR_END;  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /************************ free vector ******************/  int jmin, jmax; /* min, max spacing between 2 waves */
 void free_vector(double*v, int nl, int nh)  int ijmin, ijmax; /* Individuals having jmin and jmax */
 {  int gipmx, gsw; /* Global variables on the number of contributions
   free((FREE_ARG)(v+nl-NR_END));                     to the likelihood and the sum of weights (done by funcone)*/
 }  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 /************************ivector *******************************/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int *ivector(long nl,long nh)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int *v;  double jmean; /* Mean space between 2 waves */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   if (!v) nrerror("allocation failure in ivector");  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   return v-nl+NR_END;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /******************free ivector **************************/  double fretone; /* Only one call to likelihood */
 void free_ivector(int *v, long nl, long nh)  long ipmx; /* Number of contributions */
 {  double sw; /* Sum of weights */
   free((FREE_ARG)(v+nl-NR_END));  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /************************lvector *******************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 long *lvector(long nl,long nh)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   long *v;  FILE *ficreseij;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  char filerese[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  FILE *ficresstdeij;
   return v-nl+NR_END;  char fileresstde[FILENAMELENGTH];
 }  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 /******************free lvector **************************/  FILE  *ficresvij;
 void free_lvector(long *v, long nl, long nh)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   free((FREE_ARG)(v+nl-NR_END));  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /******************* imatrix *******************************/  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   char command[FILENAMELENGTH];
 {   int  outcmd=0;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   
   int **m;   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     
   /* allocate pointers to rows */   char filelog[FILENAMELENGTH]; /* Log file */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   char filerest[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");   char fileregp[FILENAMELENGTH];
   m += NR_END;   char popfile[FILENAMELENGTH];
   m -= nrl;   
     char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     
   /* allocate rows and set pointers to them */   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   struct timezone tzp;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   extern int gettimeofday();
   m[nrl] += NR_END;   struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m[nrl] -= ncl;   long time_value;
     extern long time();
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   char strcurr[80], strfor[80];
     
   /* return pointer to array of pointers to rows */   char *endptr;
   return m;   long lval;
 }   double dval;
   
 /****************** free_imatrix *************************/  #define NR_END 1
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define FREE_ARG char*
       int **m;  #define FTOL 1.0e-10
       long nch,ncl,nrh,nrl;   
      /* free an int matrix allocated by imatrix() */   #define NRANSI
 {   #define ITMAX 200
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   
   free((FREE_ARG) (m+nrl-NR_END));   #define TOL 2.0e-4
 }   
   #define CGOLD 0.3819660
 /******************* matrix *******************************/  #define ZEPS 1.0e-10
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define GOLD 1.618034
   double **m;  #define GLIMIT 100.0
   #define TINY 1.0e-20
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  static double maxarg1,maxarg2;
   m += NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m -= nrl;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
    
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define rint(a) floor(a+0.5)
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   return m;  int agegomp= AGEGOMP;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   
    */  int imx;
 }  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 /******************* ma3x *******************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double dateintmean=0;
   double ***m;  
   double *weight;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int **s; /* Status */
   if (!m) nrerror("allocation failure 1 in matrix()");  double *agedc, **covar, idx;
   m += NR_END;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m -= nrl;  double *lsurv, *lpop, *tpop;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double ftolhess; /* Tolerance for computing hessian */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    */
   m[nrl][ncl] += NR_END;    char  *ss;                            /* pointer */
   m[nrl][ncl] -= nll;    int   l1, l2;                         /* length counters */
   for (j=ncl+1; j<=nch; j++)   
     m[nrl][j]=m[nrl][j-1]+nlay;    l1 = strlen(path );                   /* length of path */
       if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=nrl+1; i<=nrh; i++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     for (j=ncl+1; j<=nch; j++)       strcpy( name, path );               /* we got the fullname name because no directory */
       m[i][j]=m[i][j-1]+nlay;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return m;       /* get current working directory */
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])      /*    extern  char* getcwd ( char *buf , int len);*/
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   */        return( GLOCK_ERROR_GETCWD );
 }      }
       /* got dirc from getcwd*/
 /*************************free ma3x ************************/      printf(" DIRC = %s \n",dirc);
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      l2 = strlen( ss );                  /* length of filename */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG)(m+nrl-NR_END));      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /***************** f1dim *************************/      printf(" DIRC2 = %s \n",dirc);
 extern int ncom;     }
 extern double *pcom,*xicom;    /* We add a separator at the end of dirc if not exists */
 extern double (*nrfunc)(double []);     l1 = strlen( dirc );                  /* length of directory */
      if( dirc[l1-1] != DIRSEPARATOR ){
 double f1dim(double x)       dirc[l1] =  DIRSEPARATOR;
 {       dirc[l1+1] = 0;
   int j;       printf(" DIRC3 = %s \n",dirc);
   double f;    }
   double *xt;     ss = strrchr( name, '.' );            /* find last / */
      if (ss >0){
   xt=vector(1,ncom);       ss++;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];       strcpy(ext,ss);                     /* save extension */
   f=(*nrfunc)(xt);       l1= strlen( name);
   free_vector(xt,1,ncom);       l2= strlen(ss)+1;
   return f;       strncpy( finame, name, l1-l2);
 }       finame[l1-l2]= 0;
     }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     return( 0 );                          /* we're done */
 {   }
   int iter;   
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /******************************************/
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;   void replace_back_to_slash(char *s, char*t)
   double e=0.0;   {
      int i;
   a=(ax < cx ? ax : cx);     int lg=0;
   b=(ax > cx ? ax : cx);     i=0;
   x=w=v=bx;     lg=strlen(t);
   fw=fv=fx=(*f)(x);     for(i=0; i<= lg; i++) {
   for (iter=1;iter<=ITMAX;iter++) {       (s[i] = t[i]);
     xm=0.5*(a+b);       if (t[i]== '\\') s[i]='/';
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  int nbocc(char *s, char occ)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int i,j=0;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int lg=20;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    i=0;
 #endif    lg=strlen(s);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     for(i=0; i<= lg; i++) {
       *xmin=x;     if  (s[i] == occ ) j++;
       return fx;     }
     }     return j;
     ftemp=fu;  }
     if (fabs(e) > tol1) {   
       r=(x-w)*(fx-fv);   void cutv(char *u,char *v, char*t, char occ)
       q=(x-v)*(fx-fw);   {
       p=(x-v)*q-(x-w)*r;     /* cuts string t into u and v where u ends before first occurence of char 'occ'
       q=2.0*(q-r);        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       if (q > 0.0) p = -p;        gives u="abcedf" and v="ghi2j" */
       q=fabs(q);     int i,lg,j,p=0;
       etemp=e;     i=0;
       e=d;     for(j=0; j<=strlen(t)-1; j++) {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     }
       else {   
         d=p/q;     lg=strlen(t);
         u=x+d;     for(j=0; j<p; j++) {
         if (u-a < tol2 || b-u < tol2)       (u[j] = t[j]);
           d=SIGN(tol1,xm-x);     }
       }        u[p]='\0';
     } else {   
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      for(j=0; j<= lg; j++) {
     }       if (j>=(p+1))(v[j-p-1] = t[j]);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     }
     fu=(*f)(u);   }
     if (fu <= fx) {   
       if (u >= x) a=x; else b=x;   /********************** nrerror ********************/
       SHFT(v,w,x,u)   
         SHFT(fv,fw,fx,fu)   void nrerror(char error_text[])
         } else {   {
           if (u < x) a=u; else b=u;     fprintf(stderr,"ERREUR ...\n");
           if (fu <= fw || w == x) {     fprintf(stderr,"%s\n",error_text);
             v=w;     exit(EXIT_FAILURE);
             w=u;   }
             fv=fw;   /*********************** vector *******************/
             fw=fu;   double *vector(int nl, int nh)
           } else if (fu <= fv || v == x || v == w) {   {
             v=u;     double *v;
             fv=fu;     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
           }     if (!v) nrerror("allocation failure in vector");
         }     return v-nl+NR_END;
   }   }
   nrerror("Too many iterations in brent");   
   *xmin=x;   /************************ free vector ******************/
   return fx;   void free_vector(double*v, int nl, int nh)
 }   {
     free((FREE_ARG)(v+nl-NR_END));
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   /************************ivector *******************************/
             double (*func)(double))   int *ivector(long nl,long nh)
 {   {
   double ulim,u,r,q, dum;    int *v;
   double fu;     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
   *fa=(*func)(*ax);     return v-nl+NR_END;
   *fb=(*func)(*bx);   }
   if (*fb > *fa) {   
     SHFT(dum,*ax,*bx,dum)   /******************free ivector **************************/
       SHFT(dum,*fb,*fa,dum)   void free_ivector(int *v, long nl, long nh)
       }   {
   *cx=(*bx)+GOLD*(*bx-*ax);     free((FREE_ARG)(v+nl-NR_END));
   *fc=(*func)(*cx);   }
   while (*fb > *fc) {   
     r=(*bx-*ax)*(*fb-*fc);   /************************lvector *******************************/
     q=(*bx-*cx)*(*fb-*fa);   long *lvector(long nl,long nh)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     long *v;
     ulim=(*bx)+GLIMIT*(*cx-*bx);     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if ((*bx-u)*(u-*cx) > 0.0) {     if (!v) nrerror("allocation failure in ivector");
       fu=(*func)(u);     return v-nl+NR_END;
     } else if ((*cx-u)*(u-ulim) > 0.0) {   }
       fu=(*func)(u);   
       if (fu < *fc) {   /******************free lvector **************************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   void free_lvector(long *v, long nl, long nh)
           SHFT(*fb,*fc,fu,(*func)(u))   {
           }     free((FREE_ARG)(v+nl-NR_END));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   }
       u=ulim;   
       fu=(*func)(u);   /******************* imatrix *******************************/
     } else {   int **imatrix(long nrl, long nrh, long ncl, long nch)
       u=(*cx)+GOLD*(*cx-*bx);        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
       fu=(*func)(u);   {
     }     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
     SHFT(*ax,*bx,*cx,u)     int **m;
       SHFT(*fa,*fb,*fc,fu)    
       }     /* allocate pointers to rows */
 }     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** linmin ************************/    m += NR_END;
     m -= nrl;
 int ncom;    
 double *pcom,*xicom;   
 double (*nrfunc)(double []);     /* allocate rows and set pointers to them */
      m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {     m[nrl] += NR_END;
   double brent(double ax, double bx, double cx,     m[nrl] -= ncl;
                double (*f)(double), double tol, double *xmin);    
   double f1dim(double x);     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    
               double *fc, double (*func)(double));     /* return pointer to array of pointers to rows */
   int j;     return m;
   double xx,xmin,bx,ax;   }
   double fx,fb,fa;  
    /****************** free_imatrix *************************/
   ncom=n;   void free_imatrix(m,nrl,nrh,ncl,nch)
   pcom=vector(1,n);         int **m;
   xicom=vector(1,n);         long nch,ncl,nrh,nrl;
   nrfunc=func;        /* free an int matrix allocated by imatrix() */
   for (j=1;j<=n;j++) {   {
     pcom[j]=p[j];     free((FREE_ARG) (m[nrl]+ncl-NR_END));
     xicom[j]=xi[j];     free((FREE_ARG) (m+nrl-NR_END));
   }   }
   ax=0.0;   
   xx=1.0;   /******************* matrix *******************************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);   double **matrix(long nrl, long nrh, long ncl, long nch)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   {
 #ifdef DEBUG    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double **m;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (j=1;j<=n;j++) {     if (!m) nrerror("allocation failure 1 in matrix()");
     xi[j] *= xmin;     m += NR_END;
     p[j] += xi[j];     m -= nrl;
   }   
   free_vector(xicom,1,n);     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   free_vector(pcom,1,n);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }     m[nrl] += NR_END;
     m[nrl] -= ncl;
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             double (*func)(double []))     return m;
 {     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   void linmin(double p[], double xi[], int n, double *fret,      */
               double (*func)(double []));   }
   int i,ibig,j;   
   double del,t,*pt,*ptt,*xit;  /*************************free matrix ************************/
   double fp,fptt;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double *xits;  {
   pt=vector(1,n);     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   ptt=vector(1,n);     free((FREE_ARG)(m+nrl-NR_END));
   xit=vector(1,n);   }
   xits=vector(1,n);   
   *fret=(*func)(p);   /******************* ma3x *******************************/
   for (j=1;j<=n;j++) pt[j]=p[j];   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   for (*iter=1;;++(*iter)) {   {
     fp=(*fret);     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     ibig=0;     double ***m;
     del=0.0;   
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!m) nrerror("allocation failure 1 in matrix()");
     fprintf(ficrespow,"%d %.12f",*iter,*fret);    m += NR_END;
     for (i=1;i<=n;i++) {    m -= nrl;
       printf(" %d %.12f",i, p[i]);  
       fprintf(ficlog," %d %.12lf",i, p[i]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       fprintf(ficrespow," %.12lf", p[i]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     printf("\n");    m[nrl] -= ncl;
     fprintf(ficlog,"\n");  
     fprintf(ficrespow,"\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for (i=1;i<=n;i++) {   
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       fptt=(*fret);     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #ifdef DEBUG    m[nrl][ncl] += NR_END;
       printf("fret=%lf \n",*fret);    m[nrl][ncl] -= nll;
       fprintf(ficlog,"fret=%lf \n",*fret);    for (j=ncl+1; j<=nch; j++)
 #endif      m[nrl][j]=m[nrl][j-1]+nlay;
       printf("%d",i);fflush(stdout);   
       fprintf(ficlog,"%d",i);fflush(ficlog);    for (i=nrl+1; i<=nrh; i++) {
       linmin(p,xit,n,fret,func);       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       if (fabs(fptt-(*fret)) > del) {       for (j=ncl+1; j<=nch; j++)
         del=fabs(fptt-(*fret));         m[i][j]=m[i][j-1]+nlay;
         ibig=i;     }
       }     return m;
 #ifdef DEBUG    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       printf("%d %.12e",i,(*fret));             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       fprintf(ficlog,"%d %.12e",i,(*fret));    */
       for (j=1;j<=n;j++) {  }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /*************************free ma3x ************************/
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       }  {
       for(j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         printf(" p=%.12e",p[j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         fprintf(ficlog," p=%.12e",p[j]);    free((FREE_ARG)(m+nrl-NR_END));
       }  }
       printf("\n");  
       fprintf(ficlog,"\n");  /*************** function subdirf ***********/
 #endif  char *subdirf(char fileres[])
     }   {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    /* Caution optionfilefiname is hidden */
 #ifdef DEBUG    strcpy(tmpout,optionfilefiname);
       int k[2],l;    strcat(tmpout,"/"); /* Add to the right */
       k[0]=1;    strcat(tmpout,fileres);
       k[1]=-1;    return tmpout;
       printf("Max: %.12e",(*func)(p));  }
       fprintf(ficlog,"Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++) {  /*************** function subdirf2 ***********/
         printf(" %.12e",p[j]);  char *subdirf2(char fileres[], char *preop)
         fprintf(ficlog," %.12e",p[j]);  {
       }   
       printf("\n");    /* Caution optionfilefiname is hidden */
       fprintf(ficlog,"\n");    strcpy(tmpout,optionfilefiname);
       for(l=0;l<=1;l++) {    strcat(tmpout,"/");
         for (j=1;j<=n;j++) {    strcat(tmpout,preop);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcat(tmpout,fileres);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return tmpout;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /*************** function subdirf3 ***********/
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char *subdirf3(char fileres[], char *preop, char *preop2)
       }  {
 #endif   
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
       free_vector(xit,1,n);     strcat(tmpout,"/");
       free_vector(xits,1,n);     strcat(tmpout,preop);
       free_vector(ptt,1,n);     strcat(tmpout,preop2);
       free_vector(pt,1,n);     strcat(tmpout,fileres);
       return;     return tmpout;
     }   }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");   
     for (j=1;j<=n;j++) {   /***************** f1dim *************************/
       ptt[j]=2.0*p[j]-pt[j];   extern int ncom;
       xit[j]=p[j]-pt[j];   extern double *pcom,*xicom;
       pt[j]=p[j];   extern double (*nrfunc)(double []);
     }    
     fptt=(*func)(ptt);   double f1dim(double x)
     if (fptt < fp) {   {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);     int j;
       if (t < 0.0) {     double f;
         linmin(p,xit,n,fret,func);     double *xt;
         for (j=1;j<=n;j++) {    
           xi[j][ibig]=xi[j][n];     xt=vector(1,ncom);
           xi[j][n]=xit[j];     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
         }    f=(*nrfunc)(xt);
 #ifdef DEBUG    free_vector(xt,1,ncom);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return f;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++){  
           printf(" %.12e",xit[j]);  /*****************brent *************************/
           fprintf(ficlog," %.12e",xit[j]);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
         }  {
         printf("\n");    int iter;
         fprintf(ficlog,"\n");    double a,b,d,etemp;
 #endif    double fu,fv,fw,fx;
       }    double ftemp;
     }     double p,q,r,tol1,tol2,u,v,w,x,xm;
   }     double e=0.0;
 }    
     a=(ax < cx ? ax : cx);
 /**** Prevalence limit (stable prevalence)  ****************/    b=(ax > cx ? ax : cx);
     x=w=v=bx;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    fw=fv=fx=(*f)(x);
 {    for (iter=1;iter<=ITMAX;iter++) {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      xm=0.5*(a+b);
      matrix by transitions matrix until convergence is reached */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   int i, ii,j,k;      printf(".");fflush(stdout);
   double min, max, maxmin, maxmax,sumnew=0.;      fprintf(ficlog,".");fflush(ficlog);
   double **matprod2();  #ifdef DEBUG
   double **out, cov[NCOVMAX], **pmij();      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double **newm;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double agefin, delaymax=50 ; /* Max number of years to converge */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   for (ii=1;ii<=nlstate+ndeath;ii++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
     for (j=1;j<=nlstate+ndeath;j++){        *xmin=x;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        return fx;
     }      }
       ftemp=fu;
    cov[1]=1.;      if (fabs(e) > tol1) {
          r=(x-w)*(fx-fv);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        q=(x-v)*(fx-fw);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        p=(x-v)*q-(x-w)*r;
     newm=savm;        q=2.0*(q-r);
     /* Covariates have to be included here again */        if (q > 0.0) p = -p;
      cov[2]=agefin;        q=fabs(q);
           etemp=e;
       for (k=1; k<=cptcovn;k++) {        e=d;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          d=CGOLD*(e=(x >= xm ? a-x : b-x));
       }        else {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          d=p/q;
       for (k=1; k<=cptcovprod;k++)          u=x+d;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          if (u-a < tol2 || b-u < tol2)
             d=SIGN(tol1,xm-x);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      } else {
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        d=CGOLD*(e=(x >= xm ? a-x : b-x));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      }
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
     savm=oldm;      fu=(*f)(u);
     oldm=newm;      if (fu <= fx) {
     maxmax=0.;        if (u >= x) a=x; else b=x;
     for(j=1;j<=nlstate;j++){        SHFT(v,w,x,u)
       min=1.;          SHFT(fv,fw,fx,fu)
       max=0.;          } else {
       for(i=1; i<=nlstate; i++) {            if (u < x) a=u; else b=u;
         sumnew=0;            if (fu <= fw || w == x) {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];              v=w;
         prlim[i][j]= newm[i][j]/(1-sumnew);              w=u;
         max=FMAX(max,prlim[i][j]);              fv=fw;
         min=FMIN(min,prlim[i][j]);              fw=fu;
       }            } else if (fu <= fv || v == x || v == w) {
       maxmin=max-min;              v=u;
       maxmax=FMAX(maxmax,maxmin);              fv=fu;
     }            }
     if(maxmax < ftolpl){          }
       return prlim;    }
     }    nrerror("Too many iterations in brent");
   }    *xmin=x;
 }    return fx;
   }
 /*************** transition probabilities ***************/   
   /****************** mnbrak ***********************/
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
   double s1, s2;              double (*func)(double))
   /*double t34;*/  {
   int i,j,j1, nc, ii, jj;    double ulim,u,r,q, dum;
     double fu;
     for(i=1; i<= nlstate; i++){   
     for(j=1; j<i;j++){    *fa=(*func)(*ax);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    *fb=(*func)(*bx);
         /*s2 += param[i][j][nc]*cov[nc];*/    if (*fb > *fa) {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      SHFT(dum,*ax,*bx,dum)
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        SHFT(dum,*fb,*fa,dum)
       }        }
       ps[i][j]=s2;    *cx=(*bx)+GOLD*(*bx-*ax);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    *fc=(*func)(*cx);
     }    while (*fb > *fc) {
     for(j=i+1; j<=nlstate+ndeath;j++){      r=(*bx-*ax)*(*fb-*fc);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      q=(*bx-*cx)*(*fb-*fa);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
       }      ulim=(*bx)+GLIMIT*(*cx-*bx);
       ps[i][j]=s2;      if ((*bx-u)*(u-*cx) > 0.0) {
     }        fu=(*func)(u);
   }      } else if ((*cx-u)*(u-ulim) > 0.0) {
     /*ps[3][2]=1;*/        fu=(*func)(u);
         if (fu < *fc) {
   for(i=1; i<= nlstate; i++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
      s1=0;            SHFT(*fb,*fc,fu,(*func)(u))
     for(j=1; j<i; j++)            }
       s1+=exp(ps[i][j]);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
     for(j=i+1; j<=nlstate+ndeath; j++)        u=ulim;
       s1+=exp(ps[i][j]);        fu=(*func)(u);
     ps[i][i]=1./(s1+1.);      } else {
     for(j=1; j<i; j++)        u=(*cx)+GOLD*(*cx-*bx);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fu=(*func)(u);
     for(j=i+1; j<=nlstate+ndeath; j++)      }
       ps[i][j]= exp(ps[i][j])*ps[i][i];      SHFT(*ax,*bx,*cx,u)
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        SHFT(*fa,*fb,*fc,fu)
   } /* end i */        }
   }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*************** linmin ************************/
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  int ncom;
     }  double *pcom,*xicom;
   }  double (*nrfunc)(double []);
    
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    double brent(double ax, double bx, double cx,
      printf("%lf ",ps[ii][jj]);                 double (*f)(double), double tol, double *xmin);
    }    double f1dim(double x);
     printf("\n ");    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
     }                double *fc, double (*func)(double));
     printf("\n ");printf("%lf ",cov[2]);*/    int j;
 /*    double xx,xmin,bx,ax;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double fx,fb,fa;
   goto end;*/   
     return ps;    ncom=n;
 }    pcom=vector(1,n);
     xicom=vector(1,n);
 /**************** Product of 2 matrices ******************/    nrfunc=func;
     for (j=1;j<=n;j++) {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      pcom[j]=p[j];
 {      xicom[j]=xi[j];
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    ax=0.0;
   /* in, b, out are matrice of pointers which should have been initialized     xx=1.0;
      before: only the contents of out is modified. The function returns    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
      a pointer to pointers identical to out */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   long i, j, k;  #ifdef DEBUG
   for(i=nrl; i<= nrh; i++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(k=ncolol; k<=ncoloh; k++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #endif
         out[i][k] +=in[i][j]*b[j][k];    for (j=1;j<=n;j++) {
       xi[j] *= xmin;
   return out;      p[j] += xi[j];
 }    }
     free_vector(xicom,1,n);
     free_vector(pcom,1,n);
 /************* Higher Matrix Product ***************/  }
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  char *asc_diff_time(long time_sec, char ascdiff[])
 {  {
   /* Computes the transition matrix starting at age 'age' over     long sec_left, days, hours, minutes;
      'nhstepm*hstepm*stepm' months (i.e. until    days = (time_sec) / (60*60*24);
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying     sec_left = (time_sec) % (60*60*24);
      nhstepm*hstepm matrices.     hours = (sec_left) / (60*60) ;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step     sec_left = (sec_left) %(60*60);
      (typically every 2 years instead of every month which is too big     minutes = (sec_left) /60;
      for the memory).    sec_left = (sec_left) % (60);
      Model is determined by parameters x and covariates have to be     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
      included manually here.     return ascdiff;
   }
      */  
   /*************** powell ************************/
   int i, j, d, h, k;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
   double **out, cov[NCOVMAX];              double (*func)(double []))
   double **newm;  {
     void linmin(double p[], double xi[], int n, double *fret,
   /* Hstepm could be zero and should return the unit matrix */                double (*func)(double []));
   for (i=1;i<=nlstate+ndeath;i++)    int i,ibig,j;
     for (j=1;j<=nlstate+ndeath;j++){    double del,t,*pt,*ptt,*xit;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double fp,fptt;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double *xits;
     }    int niterf, itmp;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){    pt=vector(1,n);
     for(d=1; d <=hstepm; d++){    ptt=vector(1,n);
       newm=savm;    xit=vector(1,n);
       /* Covariates have to be included here again */    xits=vector(1,n);
       cov[1]=1.;    *fret=(*func)(p);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for (j=1;j<=n;j++) pt[j]=p[j];
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for (*iter=1;;++(*iter)) {
       for (k=1; k<=cptcovage;k++)      fp=(*fret);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      ibig=0;
       for (k=1; k<=cptcovprod;k++)      del=0.0;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      for (i=1;i<=n;i++) {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        printf(" %d %.12f",i, p[i]);
       savm=oldm;        fprintf(ficlog," %d %.12lf",i, p[i]);
       oldm=newm;        fprintf(ficrespow," %.12lf", p[i]);
     }      }
     for(i=1; i<=nlstate+ndeath; i++)      printf("\n");
       for(j=1;j<=nlstate+ndeath;j++) {      fprintf(ficlog,"\n");
         po[i][j][h]=newm[i][j];      fprintf(ficrespow,"\n");fflush(ficrespow);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      if(*iter <=3){
          */        tm = *localtime(&curr_time.tv_sec);
       }        strcpy(strcurr,asctime(&tm));
   } /* end h */  /*       asctime_r(&tm,strcurr); */
   return po;        forecast_time=curr_time;
 }        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
 /*************** log-likelihood *************/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 double func( double *x)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        for(niterf=10;niterf<=30;niterf+=10){
   int i, ii, j, k, mi, d, kk;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          tmf = *localtime(&forecast_time.tv_sec);
   double **out;  /*      asctime_r(&tmf,strfor); */
   double sw; /* Sum of weights */          strcpy(strfor,asctime(&tmf));
   double lli; /* Individual log likelihood */          itmp = strlen(strfor);
   int s1, s2;          if(strfor[itmp-1]=='\n')
   double bbh, survp;          strfor[itmp-1]='\0';
   long ipmx;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /*extern weight */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /* We are differentiating ll according to initial status */        }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      }
   /*for(i=1;i<imx;i++)       for (i=1;i<=n;i++) {
     printf(" %d\n",s[4][i]);        for (j=1;j<=n;j++) xit[j]=xi[j][i];
   */        fptt=(*fret);
   cov[1]=1.;  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   if(mle==1){        printf("%d",i);fflush(stdout);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fprintf(ficlog,"%d",i);fflush(ficlog);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        linmin(p,xit,n,fret,func);
       for(mi=1; mi<= wav[i]-1; mi++){        if (fabs(fptt-(*fret)) > del) {
         for (ii=1;ii<=nlstate+ndeath;ii++)          del=fabs(fptt-(*fret));
           for (j=1;j<=nlstate+ndeath;j++){          ibig=i;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef DEBUG
           }        printf("%d %.12e",i,(*fret));
         for(d=0; d<dh[mi][i]; d++){        fprintf(ficlog,"%d %.12e",i,(*fret));
           newm=savm;        for (j=1;j<=n;j++) {
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           for (kk=1; kk<=cptcovage;kk++) {          printf(" x(%d)=%.12e",j,xit[j]);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           }        }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(j=1;j<=n;j++) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          printf(" p=%.12e",p[j]);
           savm=oldm;          fprintf(ficlog," p=%.12e",p[j]);
           oldm=newm;        }
         } /* end mult */        printf("\n");
               fprintf(ficlog,"\n");
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  #endif
         /* But now since version 0.9 we anticipate for bias and large stepm.      }
          * If stepm is larger than one month (smallest stepm) and if the exact delay       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
          * (in months) between two waves is not a multiple of stepm, we rounded to   #ifdef DEBUG
          * the nearest (and in case of equal distance, to the lowest) interval but now        int k[2],l;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        k[0]=1;
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        k[1]=-1;
          * probability in order to take into account the bias as a fraction of the way        printf("Max: %.12e",(*func)(p));
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies        fprintf(ficlog,"Max: %.12e",(*func)(p));
          * -stepm/2 to stepm/2 .        for (j=1;j<=n;j++) {
          * For stepm=1 the results are the same as for previous versions of Imach.          printf(" %.12e",p[j]);
          * For stepm > 1 the results are less biased than in previous versions.           fprintf(ficlog," %.12e",p[j]);
          */        }
         s1=s[mw[mi][i]][i];        printf("\n");
         s2=s[mw[mi+1][i]][i];        fprintf(ficlog,"\n");
         bbh=(double)bh[mi][i]/(double)stepm;         for(l=0;l<=1;l++) {
         /* bias is positive if real duration          for (j=1;j<=n;j++) {
          * is higher than the multiple of stepm and negative otherwise.            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
          */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         if( s2 > nlstate){           }
           /* i.e. if s2 is a death state and if the date of death is known then the contribution          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
              to the likelihood is the probability to die between last step unit time and current           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
              step unit time, which is also the differences between probability to die before dh         }
              and probability to die before dh-stepm .   #endif
              In version up to 0.92 likelihood was computed  
         as if date of death was unknown. Death was treated as any other  
         health state: the date of the interview describes the actual state        free_vector(xit,1,n);
         and not the date of a change in health state. The former idea was        free_vector(xits,1,n);
         to consider that at each interview the state was recorded        free_vector(ptt,1,n);
         (healthy, disable or death) and IMaCh was corrected; but when we        free_vector(pt,1,n);
         introduced the exact date of death then we should have modified        return;
         the contribution of an exact death to the likelihood. This new      }
         contribution is smaller and very dependent of the step unit      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
         stepm. It is no more the probability to die between last interview      for (j=1;j<=n;j++) {
         and month of death but the probability to survive from last        ptt[j]=2.0*p[j]-pt[j];
         interview up to one month before death multiplied by the        xit[j]=p[j]-pt[j];
         probability to die within a month. Thanks to Chris        pt[j]=p[j];
         Jackson for correcting this bug.  Former versions increased      }
         mortality artificially. The bad side is that we add another loop      fptt=(*func)(ptt);
         which slows down the processing. The difference can be up to 10%      if (fptt < fp) {
         lower mortality.        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
           */        if (t < 0.0) {
           lli=log(out[s1][s2] - savm[s1][s2]);          linmin(p,xit,n,fret,func);
         }else{          for (j=1;j<=n;j++) {
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            xi[j][ibig]=xi[j][n];
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */            xi[j][n]=xit[j];
         }           }
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/  #ifdef DEBUG
         /*if(lli ==000.0)*/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         ipmx +=1;          for(j=1;j<=n;j++){
         sw += weight[i];            printf(" %.12e",xit[j]);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            fprintf(ficlog," %.12e",xit[j]);
       } /* end of wave */          }
     } /* end of individual */          printf("\n");
   }  else if(mle==2){          fprintf(ficlog,"\n");
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #endif
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        }
       for(mi=1; mi<= wav[i]-1; mi++){      }
         for (ii=1;ii<=nlstate+ndeath;ii++)    }
           for (j=1;j<=nlstate+ndeath;j++){  }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  /**** Prevalence limit (stable or period prevalence)  ****************/
           }  
         for(d=0; d<=dh[mi][i]; d++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           newm=savm;  {
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           for (kk=1; kk<=cptcovage;kk++) {       matrix by transitions matrix until convergence is reached */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }    int i, ii,j,k;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double min, max, maxmin, maxmax,sumnew=0.;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double **matprod2();
           savm=oldm;    double **out, cov[NCOVMAX], **pmij();
           oldm=newm;    double **newm;
         } /* end mult */    double agefin, delaymax=50 ; /* Max number of years to converge */
         
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */    for (ii=1;ii<=nlstate+ndeath;ii++)
         /* But now since version 0.9 we anticipate for bias and large stepm.      for (j=1;j<=nlstate+ndeath;j++){
          * If stepm is larger than one month (smallest stepm) and if the exact delay         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          * (in months) between two waves is not a multiple of stepm, we rounded to       }
          * the nearest (and in case of equal distance, to the lowest) interval but now  
          * we keep into memory the bias bh[mi][i] and also the previous matrix product     cov[1]=1.;
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the   
          * probability in order to take into account the bias as a fraction of the way   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
          * -stepm/2 to stepm/2 .      newm=savm;
          * For stepm=1 the results are the same as for previous versions of Imach.      /* Covariates have to be included here again */
          * For stepm > 1 the results are less biased than in previous versions.        cov[2]=agefin;
          */   
         s1=s[mw[mi][i]][i];        for (k=1; k<=cptcovn;k++) {
         s2=s[mw[mi+1][i]][i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         bbh=(double)bh[mi][i]/(double)stepm;           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         /* bias is positive if real duration        }
          * is higher than the multiple of stepm and negative otherwise.        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          */        for (k=1; k<=cptcovprod;k++)
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*if(lli ==000.0)*/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         ipmx +=1;  
         sw += weight[i];      savm=oldm;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      oldm=newm;
       } /* end of wave */      maxmax=0.;
     } /* end of individual */      for(j=1;j<=nlstate;j++){
   }  else if(mle==3){  /* exponential inter-extrapolation */        min=1.;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        max=0.;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for(i=1; i<=nlstate; i++) {
       for(mi=1; mi<= wav[i]-1; mi++){          sumnew=0;
         for (ii=1;ii<=nlstate+ndeath;ii++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           for (j=1;j<=nlstate+ndeath;j++){          prlim[i][j]= newm[i][j]/(1-sumnew);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          max=FMAX(max,prlim[i][j]);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          min=FMIN(min,prlim[i][j]);
           }        }
         for(d=0; d<dh[mi][i]; d++){        maxmin=max-min;
           newm=savm;        maxmax=FMAX(maxmax,maxmin);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      }
           for (kk=1; kk<=cptcovage;kk++) {      if(maxmax < ftolpl){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        return prlim;
           }      }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  }
           savm=oldm;  
           oldm=newm;  /*************** transition probabilities ***************/
         } /* end mult */  
         double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  {
         /* But now since version 0.9 we anticipate for bias and large stepm.    double s1, s2;
          * If stepm is larger than one month (smallest stepm) and if the exact delay     /*double t34;*/
          * (in months) between two waves is not a multiple of stepm, we rounded to     int i,j,j1, nc, ii, jj;
          * the nearest (and in case of equal distance, to the lowest) interval but now  
          * we keep into memory the bias bh[mi][i] and also the previous matrix product      for(i=1; i<= nlstate; i++){
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        for(j=1; j<i;j++){
          * probability in order to take into account the bias as a fraction of the way          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies            /*s2 += param[i][j][nc]*cov[nc];*/
          * -stepm/2 to stepm/2 .            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          * For stepm=1 the results are the same as for previous versions of Imach.  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
          * For stepm > 1 the results are less biased than in previous versions.           }
          */          ps[i][j]=s2;
         s1=s[mw[mi][i]][i];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         s2=s[mw[mi+1][i]][i];        }
         bbh=(double)bh[mi][i]/(double)stepm;         for(j=i+1; j<=nlstate+ndeath;j++){
         /* bias is positive if real duration          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          * is higher than the multiple of stepm and negative otherwise.            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */          }
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          ps[i][j]=s2;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        }
         /*if(lli ==000.0)*/      }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */      /*ps[3][2]=1;*/
         ipmx +=1;     
         sw += weight[i];      for(i=1; i<= nlstate; i++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        s1=0;
       } /* end of wave */        for(j=1; j<i; j++)
     } /* end of individual */          s1+=exp(ps[i][j]);
   }else if (mle==4){  /* ml=4 no inter-extrapolation */        for(j=i+1; j<=nlstate+ndeath; j++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          s1+=exp(ps[i][j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        ps[i][i]=1./(s1+1.);
       for(mi=1; mi<= wav[i]-1; mi++){        for(j=1; j<i; j++)
         for (ii=1;ii<=nlstate+ndeath;ii++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
           for (j=1;j<=nlstate+ndeath;j++){        for(j=i+1; j<=nlstate+ndeath; j++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          ps[i][j]= exp(ps[i][j])*ps[i][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           }      } /* end i */
         for(d=0; d<dh[mi][i]; d++){     
           newm=savm;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(jj=1; jj<= nlstate+ndeath; jj++){
           for (kk=1; kk<=cptcovage;kk++) {          ps[ii][jj]=0;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          ps[ii][ii]=1;
           }        }
               }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,     
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           oldm=newm;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         } /* end mult */  /*         printf("ddd %lf ",ps[ii][jj]); */
         /*       } */
         s1=s[mw[mi][i]][i];  /*       printf("\n "); */
         s2=s[mw[mi+1][i]][i];  /*        } */
         if( s2 > nlstate){   /*        printf("\n ");printf("%lf ",cov[2]); */
           lli=log(out[s1][s2] - savm[s1][s2]);         /*
         }else{        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        goto end;*/
         }      return ps;
         ipmx +=1;  }
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /**************** Product of 2 matrices ******************/
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  
       } /* end of wave */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     } /* end of individual */  {
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /* in, b, out are matrice of pointers which should have been initialized
       for(mi=1; mi<= wav[i]-1; mi++){       before: only the contents of out is modified. The function returns
         for (ii=1;ii<=nlstate+ndeath;ii++)       a pointer to pointers identical to out */
           for (j=1;j<=nlstate+ndeath;j++){    long i, j, k;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for(i=nrl; i<= nrh; i++)
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      for(k=ncolol; k<=ncoloh; k++)
           }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         for(d=0; d<dh[mi][i]; d++){          out[i][k] +=in[i][j]*b[j][k];
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    return out;
           for (kk=1; kk<=cptcovage;kk++) {  }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }  
           /************* Higher Matrix Product ***************/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           savm=oldm;  {
           oldm=newm;    /* Computes the transition matrix starting at age 'age' over
         } /* end mult */       'nhstepm*hstepm*stepm' months (i.e. until
              age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
         s1=s[mw[mi][i]][i];       nhstepm*hstepm matrices.
         s2=s[mw[mi+1][i]][i];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */       (typically every 2 years instead of every month which is too big
         ipmx +=1;       for the memory).
         sw += weight[i];       Model is determined by parameters x and covariates have to be
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       included manually here.
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/  
       } /* end of wave */       */
     } /* end of individual */  
   } /* End of if */    int i, j, d, h, k;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double **out, cov[NCOVMAX];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double **newm;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;    /* Hstepm could be zero and should return the unit matrix */
 }    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
 /*************** log-likelihood *************/        oldm[i][j]=(i==j ? 1.0 : 0.0);
 double funcone( double *x)        po[i][j][0]=(i==j ? 1.0 : 0.0);
 {      }
   /* Same as likeli but slower because of a lot of printf and if */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i, ii, j, k, mi, d, kk;    for(h=1; h <=nhstepm; h++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for(d=1; d <=hstepm; d++){
   double **out;        newm=savm;
   double lli; /* Individual log likelihood */        /* Covariates have to be included here again */
   double llt;        cov[1]=1.;
   int s1, s2;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double bbh, survp;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /*extern weight */        for (k=1; k<=cptcovage;k++)
   /* We are differentiating ll according to initial status */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        for (k=1; k<=cptcovprod;k++)
   /*for(i=1;i<imx;i++)           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     printf(" %d\n",s[4][i]);  
   */  
   cov[1]=1.;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for(k=1; k<=nlstate; k++) ll[k]=0.;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        savm=oldm;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        oldm=newm;
     for(mi=1; mi<= wav[i]-1; mi++){      }
       for (ii=1;ii<=nlstate+ndeath;ii++)      for(i=1; i<=nlstate+ndeath; i++)
         for (j=1;j<=nlstate+ndeath;j++){        for(j=1;j<=nlstate+ndeath;j++) {
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          po[i][j][h]=newm[i][j];
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         }           */
       for(d=0; d<dh[mi][i]; d++){        }
         newm=savm;    } /* end h */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    return po;
         for (kk=1; kk<=cptcovage;kk++) {  }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** log-likelihood *************/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  double func( double *x)
         savm=oldm;  {
         oldm=newm;    int i, ii, j, k, mi, d, kk;
       } /* end mult */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           double **out;
       s1=s[mw[mi][i]][i];    double sw; /* Sum of weights */
       s2=s[mw[mi+1][i]][i];    double lli; /* Individual log likelihood */
       bbh=(double)bh[mi][i]/(double)stepm;     int s1, s2;
       /* bias is positive if real duration    double bbh, survp;
        * is higher than the multiple of stepm and negative otherwise.    long ipmx;
        */    /*extern weight */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */    /* We are differentiating ll according to initial status */
         lli=log(out[s1][s2] - savm[s1][s2]);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       } else if (mle==1){    /*for(i=1;i<imx;i++)
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      printf(" %d\n",s[4][i]);
       } else if(mle==2){    */
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */    cov[1]=1.;
       } else if(mle==3){  /* exponential inter-extrapolation */  
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    for(k=1; k<=nlstate; k++) ll[k]=0.;
       } else if (mle==4){  /* mle=4 no inter-extrapolation */  
         lli=log(out[s1][s2]); /* Original formula */    if(mle==1){
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         lli=log(out[s1][s2]); /* Original formula */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       } /* End of if */        for(mi=1; mi<= wav[i]-1; mi++){
       ipmx +=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
       sw += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(globpr){            }
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\          for(d=0; d<dh[mi][i]; d++){
  %10.6f %10.6f %10.6f ", \            newm=savm;
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);            for (kk=1; kk<=cptcovage;kk++) {
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           llt +=ll[k]*gipmx/gsw;            }
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficresilk," %10.6f\n", -llt);            savm=oldm;
       }            oldm=newm;
     } /* end of wave */          } /* end mult */
   } /* end of individual */       
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          /* But now since version 0.9 we anticipate for bias at large stepm.
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */           * If stepm is larger than one month (smallest stepm) and if the exact delay
   if(globpr==0){ /* First time we count the contributions and weights */           * (in months) between two waves is not a multiple of stepm, we rounded to
     gipmx=ipmx;           * the nearest (and in case of equal distance, to the lowest) interval but now
     gsw=sw;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   return -l;           * probability in order to take into account the bias as a fraction of the way
 }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 char *subdirf(char fileres[])           * For stepm=1 the results are the same as for previous versions of Imach.
 {           * For stepm > 1 the results are less biased than in previous versions.
              */
   strcpy(tmpout,optionfilefiname);          s1=s[mw[mi][i]][i];
   strcat(tmpout,"/"); /* Add to the right */          s2=s[mw[mi+1][i]][i];
   strcat(tmpout,fileres);          bbh=(double)bh[mi][i]/(double)stepm;
   return tmpout;          /* bias bh is positive if real duration
 }           * is higher than the multiple of stepm and negative otherwise.
            */
 char *subdirf2(char fileres[], char *preop)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 {          if( s2 > nlstate){
               /* i.e. if s2 is a death state and if the date of death is known
   strcpy(tmpout,optionfilefiname);               then the contribution to the likelihood is the probability to
   strcat(tmpout,"/");               die between last step unit time and current  step unit time,
   strcat(tmpout,preop);               which is also equal to probability to die before dh
   strcat(tmpout,fileres);               minus probability to die before dh-stepm .
   return tmpout;               In version up to 0.92 likelihood was computed
 }          as if date of death was unknown. Death was treated as any other
 char *subdirf3(char fileres[], char *preop, char *preop2)          health state: the date of the interview describes the actual state
 {          and not the date of a change in health state. The former idea was
             to consider that at each interview the state was recorded
   strcpy(tmpout,optionfilefiname);          (healthy, disable or death) and IMaCh was corrected; but when we
   strcat(tmpout,"/");          introduced the exact date of death then we should have modified
   strcat(tmpout,preop);          the contribution of an exact death to the likelihood. This new
   strcat(tmpout,preop2);          contribution is smaller and very dependent of the step unit
   strcat(tmpout,fileres);          stepm. It is no more the probability to die between last interview
   return tmpout;          and month of death but the probability to survive from last
 }          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))          Jackson for correcting this bug.  Former versions increased
 {          mortality artificially. The bad side is that we add another loop
   /* This routine should help understanding what is done with           which slows down the processing. The difference can be up to 10%
      the selection of individuals/waves and          lower mortality.
      to check the exact contribution to the likelihood.            */
      Plotting could be done.            lli=log(out[s1][s2] - savm[s1][s2]);
    */  
   int k;  
           } else if  (s2==-2) {
   if(*globpri !=0){ /* Just counts and sums, no printings */            for (j=1,survp=0. ; j<=nlstate; j++)
     strcpy(fileresilk,"ilk");               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     strcat(fileresilk,fileres);            /*survp += out[s1][j]; */
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {            lli= log(survp);
       printf("Problem with resultfile: %s\n", fileresilk);          }
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);         
     }          else if  (s2==-4) {
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");            for (j=3,survp=0. ; j<=nlstate; j++)  
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */            lli= log(survp);
     for(k=1; k<=nlstate; k++)           }
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);  
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          else if  (s2==-5) {
   }            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   *fretone=(*funcone)(p);            lli= log(survp);
   if(*globpri !=0){          }
     fclose(ficresilk);         
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          else{
     fflush(fichtm);             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   return;          }
 }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 /*********** Maximum Likelihood Estimation ***************/          ipmx +=1;
           sw += weight[i];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {        } /* end of wave */
   int i,j, iter;      } /* end of individual */
   double **xi;    }  else if(mle==2){
   double fret;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double fretone; /* Only one call to likelihood */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   char filerespow[FILENAMELENGTH];        for(mi=1; mi<= wav[i]-1; mi++){
   xi=matrix(1,npar,1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=npar;i++)            for (j=1;j<=nlstate+ndeath;j++){
     for (j=1;j<=npar;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       xi[i][j]=(i==j ? 1.0 : 0.0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");            }
   strcpy(filerespow,"pow");           for(d=0; d<=dh[mi][i]; d++){
   strcat(filerespow,fileres);            newm=savm;
   if((ficrespow=fopen(filerespow,"w"))==NULL) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("Problem with resultfile: %s\n", filerespow);            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   fprintf(ficrespow,"# Powell\n# iter -2*LL");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (i=1;i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(j=1;j<=nlstate+ndeath;j++)            savm=oldm;
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);            oldm=newm;
   fprintf(ficrespow,"\n");          } /* end mult */
        
   powell(p,xi,npar,ftol,&iter,&fret,func);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   fclose(ficrespow);          bbh=(double)bh[mi][i]/(double)stepm;
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          ipmx +=1;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 /**** Computes Hessian and covariance matrix ***/    }  else if(mle==3){  /* exponential inter-extrapolation */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double  **a,**y,*x,pd;        for(mi=1; mi<= wav[i]-1; mi++){
   double **hess;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, j,jk;            for (j=1;j<=nlstate+ndeath;j++){
   int *indx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double hessii(double p[], double delta, int theta, double delti[]);            }
   double hessij(double p[], double delti[], int i, int j);          for(d=0; d<dh[mi][i]; d++){
   void lubksb(double **a, int npar, int *indx, double b[]) ;            newm=savm;
   void ludcmp(double **a, int npar, int *indx, double *d) ;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   hess=matrix(1,npar,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   printf("\nCalculation of the hessian matrix. Wait...\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=npar;i++){            savm=oldm;
     printf("%d",i);fflush(stdout);            oldm=newm;
     fprintf(ficlog,"%d",i);fflush(ficlog);          } /* end mult */
     hess[i][i]=hessii(p,ftolhess,i,delti);       
     /*printf(" %f ",p[i]);*/          s1=s[mw[mi][i]][i];
     /*printf(" %lf ",hess[i][i]);*/          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm;
             lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for (i=1;i<=npar;i++) {          ipmx +=1;
     for (j=1;j<=npar;j++)  {          sw += weight[i];
       if (j>i) {           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         printf(".%d%d",i,j);fflush(stdout);        } /* end of wave */
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      } /* end of individual */
         hess[i][j]=hessij(p,delti,i,j);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         hess[j][i]=hess[i][j];          for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /*printf(" %lf ",hess[i][j]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   printf("\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficlog,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          for(d=0; d<dh[mi][i]; d++){
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");            newm=savm;
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   a=matrix(1,npar,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   y=matrix(1,npar,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   x=vector(1,npar);            }
   indx=ivector(1,npar);         
   for (i=1;i<=npar;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   ludcmp(a,npar,indx,&pd);            savm=oldm;
             oldm=newm;
   for (j=1;j<=npar;j++) {          } /* end mult */
     for (i=1;i<=npar;i++) x[i]=0;       
     x[j]=1;          s1=s[mw[mi][i]][i];
     lubksb(a,npar,indx,x);          s2=s[mw[mi+1][i]][i];
     for (i=1;i<=npar;i++){           if( s2 > nlstate){
       matcov[i][j]=x[i];            lli=log(out[s1][s2] - savm[s1][s2]);
     }          }else{
   }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
   printf("\n#Hessian matrix#\n");          ipmx +=1;
   fprintf(ficlog,"\n#Hessian matrix#\n");          sw += weight[i];
   for (i=1;i<=npar;i++) {           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (j=1;j<=npar;j++) {   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       printf("%.3e ",hess[i][j]);        } /* end of wave */
       fprintf(ficlog,"%.3e ",hess[i][j]);      } /* end of individual */
     }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     printf("\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficlog,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Recompute Inverse */            for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=npar;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   ludcmp(a,npar,indx,&pd);            }
           for(d=0; d<dh[mi][i]; d++){
   /*  printf("\n#Hessian matrix recomputed#\n");            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (j=1;j<=npar;j++) {            for (kk=1; kk<=cptcovage;kk++) {
     for (i=1;i<=npar;i++) x[i]=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     x[j]=1;            }
     lubksb(a,npar,indx,x);         
     for (i=1;i<=npar;i++){             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       y[i][j]=x[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("%.3e ",y[i][j]);            savm=oldm;
       fprintf(ficlog,"%.3e ",y[i][j]);            oldm=newm;
     }          } /* end mult */
     printf("\n");       
     fprintf(ficlog,"\n");          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
   free_matrix(a,1,npar,1,npar);          sw += weight[i];
   free_matrix(y,1,npar,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_vector(x,1,npar);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   free_ivector(indx,1,npar);        } /* end of wave */
   free_matrix(hess,1,npar,1,npar);      } /* end of individual */
     } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /*************** hessian matrix ****************/    return -l;
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  
   int i;  /*************** log-likelihood *************/
   int l=1, lmax=20;  double funcone( double *x)
   double k1,k2;  {
   double p2[NPARMAX+1];    /* Same as likeli but slower because of a lot of printf and if */
   double res;    int i, ii, j, k, mi, d, kk;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double fx;    double **out;
   int k=0,kmax=10;    double lli; /* Individual log likelihood */
   double l1;    double llt;
     int s1, s2;
   fx=func(x);    double bbh, survp;
   for (i=1;i<=npar;i++) p2[i]=x[i];    /*extern weight */
   for(l=0 ; l <=lmax; l++){    /* We are differentiating ll according to initial status */
     l1=pow(10,l);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     delts=delt;    /*for(i=1;i<imx;i++)
     for(k=1 ; k <kmax; k=k+1){      printf(" %d\n",s[4][i]);
       delt = delta*(l1*k);    */
       p2[theta]=x[theta] +delt;    cov[1]=1.;
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             for(mi=1; mi<= wav[i]-1; mi++){
 #ifdef DEBUG        for (ii=1;ii<=nlstate+ndeath;ii++)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #endif            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for(d=0; d<dh[mi][i]; d++){
         k=kmax;          newm=savm;
       }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          for (kk=1; kk<=cptcovage;kk++) {
         k=kmax; l=lmax*10.;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }          }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         delts=delt;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }          savm=oldm;
     }          oldm=newm;
   }        } /* end mult */
   delti[theta]=delts;       
   return res;         s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 }        bbh=(double)bh[mi][i]/(double)stepm;
         /* bias is positive if real duration
 double hessij( double x[], double delti[], int thetai,int thetaj)         * is higher than the multiple of stepm and negative otherwise.
 {         */
   int i;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   int l=1, l1, lmax=20;          lli=log(out[s1][s2] - savm[s1][s2]);
   double k1,k2,k3,k4,res,fx;        } else if  (s2==-2) {
   double p2[NPARMAX+1];          for (j=1,survp=0. ; j<=nlstate; j++)
   int k;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
   fx=func(x);        }else if (mle==1){
   for (k=1; k<=2; k++) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (i=1;i<=npar;i++) p2[i]=x[i];        } else if(mle==2){
     p2[thetai]=x[thetai]+delti[thetai]/k;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        } else if(mle==3){  /* exponential inter-extrapolation */
     k1=func(p2)-fx;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           } else if (mle==4){  /* mle=4 no inter-extrapolation */
     p2[thetai]=x[thetai]+delti[thetai]/k;          lli=log(out[s1][s2]); /* Original formula */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     k2=func(p2)-fx;          lli=log(out[s1][s2]); /* Original formula */
           } /* End of if */
     p2[thetai]=x[thetai]-delti[thetai]/k;        ipmx +=1;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        sw += weight[i];
     k3=func(p2)-fx;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     p2[thetai]=x[thetai]-delti[thetai]/k;        if(globpr){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     k4=func(p2)-fx;   %11.6f %11.6f %11.6f ", \
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 #ifdef DEBUG                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            llt +=ll[k]*gipmx/gsw;
 #endif            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   }          }
   return res;          fprintf(ficresilk," %10.6f\n", -llt);
 }        }
       } /* end of wave */
 /************** Inverse of matrix **************/    } /* end of individual */
 void ludcmp(double **a, int n, int *indx, double *d)     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 {     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int i,imax,j,k;     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double big,dum,sum,temp;     if(globpr==0){ /* First time we count the contributions and weights */
   double *vv;       gipmx=ipmx;
        gsw=sw;
   vv=vector(1,n);     }
   *d=1.0;     return -l;
   for (i=1;i<=n;i++) {   }
     big=0.0;   
     for (j=1;j<=n;j++)   
       if ((temp=fabs(a[i][j])) > big) big=temp;   /*************** function likelione ***********/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     vv[i]=1.0/big;   {
   }     /* This routine should help understanding what is done with
   for (j=1;j<=n;j++) {        the selection of individuals/waves and
     for (i=1;i<j;i++) {        to check the exact contribution to the likelihood.
       sum=a[i][j];        Plotting could be done.
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      */
       a[i][j]=sum;     int k;
     }   
     big=0.0;     if(*globpri !=0){ /* Just counts and sums, no printings */
     for (i=j;i<=n;i++) {       strcpy(fileresilk,"ilk");
       sum=a[i][j];       strcat(fileresilk,fileres);
       for (k=1;k<j;k++)       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         sum -= a[i][k]*a[k][j];         printf("Problem with resultfile: %s\n", fileresilk);
       a[i][j]=sum;         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       if ( (dum=vv[i]*fabs(sum)) >= big) {       }
         big=dum;       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         imax=i;       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       }       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     }       for(k=1; k<=nlstate; k++)
     if (j != imax) {         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       for (k=1;k<=n;k++) {       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         dum=a[imax][k];     }
         a[imax][k]=a[j][k];   
         a[j][k]=dum;     *fretone=(*funcone)(p);
       }     if(*globpri !=0){
       *d = -(*d);       fclose(ficresilk);
       vv[imax]=vv[j];       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     }       fflush(fichtm);
     indx[j]=imax;     }
     if (a[j][j] == 0.0) a[j][j]=TINY;     return;
     if (j != n) {   }
       dum=1.0/(a[j][j]);   
       for (i=j+1;i<=n;i++) a[i][j] *= dum;   
     }   /*********** Maximum Likelihood Estimation ***************/
   }   
   free_vector(vv,1,n);  /* Doesn't work */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 ;  {
 }     int i,j, iter;
     double **xi;
 void lubksb(double **a, int n, int *indx, double b[])     double fret;
 {     double fretone; /* Only one call to likelihood */
   int i,ii=0,ip,j;     /*  char filerespow[FILENAMELENGTH];*/
   double sum;     xi=matrix(1,npar,1,npar);
      for (i=1;i<=npar;i++)
   for (i=1;i<=n;i++) {       for (j=1;j<=npar;j++)
     ip=indx[i];         xi[i][j]=(i==j ? 1.0 : 0.0);
     sum=b[ip];     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     b[ip]=b[i];     strcpy(filerespow,"pow");
     if (ii)     strcat(filerespow,fileres);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     else if (sum) ii=i;       printf("Problem with resultfile: %s\n", filerespow);
     b[i]=sum;       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   }     }
   for (i=n;i>=1;i--) {     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     sum=b[i];     for (i=1;i<=nlstate;i++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       for(j=1;j<=nlstate+ndeath;j++)
     b[i]=sum/a[i][i];         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   }     fprintf(ficrespow,"\n");
 }   
     powell(p,xi,npar,ftol,&iter,&fret,func);
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)    free_matrix(xi,1,npar,1,npar);
 {  /* Some frequencies */    fclose(ficrespow);
       printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int first;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double ***freq; /* Frequencies */  
   double *pp, **prop;  }
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  /**** Computes Hessian and covariance matrix ***/
   char fileresp[FILENAMELENGTH];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     {
   pp=vector(1,nlstate);    double  **a,**y,*x,pd;
   prop=matrix(1,nlstate,iagemin,iagemax+3);    double **hess;
   strcpy(fileresp,"p");    int i, j,jk;
   strcat(fileresp,fileres);    int *indx;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     exit(0);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   }    void ludcmp(double **a, int npar, int *indx, double *d) ;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);    double gompertz(double p[]);
   j1=0;    hess=matrix(1,npar,1,npar);
     
   j=cptcoveff;    printf("\nCalculation of the hessian matrix. Wait...\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   first=1;      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
   for(k1=1; k1<=j;k1++){     
     for(i1=1; i1<=ncodemax[k1];i1++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       j1++;     
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      /*  printf(" %f ",p[i]);
         scanf("%d", i);*/          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for (i=-1; i<=nlstate+ndeath; i++)      }
         for (jk=-1; jk<=nlstate+ndeath; jk++)     
           for(m=iagemin; m <= iagemax+3; m++)    for (i=1;i<=npar;i++) {
             freq[i][jk][m]=0;      for (j=1;j<=npar;j++)  {
         if (j>i) {
     for (i=1; i<=nlstate; i++)            printf(".%d%d",i,j);fflush(stdout);
       for(m=iagemin; m <= iagemax+3; m++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         prop[i][m]=0;          hess[i][j]=hessij(p,delti,i,j,func,npar);
                
       dateintsum=0;          hess[j][i]=hess[i][j];    
       k2cpt=0;          /*printf(" %lf ",hess[i][j]);*/
       for (i=1; i<=imx; i++) {        }
         bool=1;      }
         if  (cptcovn>0) {    }
           for (z1=1; z1<=cptcoveff; z1++)     printf("\n");
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     fprintf(ficlog,"\n");
               bool=0;  
         }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         if (bool==1){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           for(m=firstpass; m<=lastpass; m++){   
             k2=anint[m][i]+(mint[m][i]/12.);    a=matrix(1,npar,1,npar);
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/    y=matrix(1,npar,1,npar);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    x=vector(1,npar);
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    indx=ivector(1,npar);
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    for (i=1;i<=npar;i++)
               if (m<lastpass) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    ludcmp(a,npar,indx,&pd);
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];  
               }    for (j=1;j<=npar;j++) {
                     for (i=1;i<=npar;i++) x[i]=0;
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {      x[j]=1;
                 dateintsum=dateintsum+k2;      lubksb(a,npar,indx,x);
                 k2cpt++;      for (i=1;i<=npar;i++){
               }        matcov[i][j]=x[i];
               /*}*/      }
           }    }
         }  
       }    printf("\n#Hessian matrix#\n");
            fprintf(ficlog,"\n#Hessian matrix#\n");
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++) {
       if  (cptcovn>0) {        printf("%.3e ",hess[i][j]);
         fprintf(ficresp, "\n#********** Variable ");         fprintf(ficlog,"%.3e ",hess[i][j]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
         fprintf(ficresp, "**********\n#");      printf("\n");
       }      fprintf(ficlog,"\n");
       for(i=1; i<=nlstate;i++)     }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");    /* Recompute Inverse */
           for (i=1;i<=npar;i++)
       for(i=iagemin; i <= iagemax+3; i++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         if(i==iagemax+3){    ludcmp(a,npar,indx,&pd);
           fprintf(ficlog,"Total");  
         }else{    /*  printf("\n#Hessian matrix recomputed#\n");
           if(first==1){  
             first=0;    for (j=1;j<=npar;j++) {
             printf("See log file for details...\n");      for (i=1;i<=npar;i++) x[i]=0;
           }      x[j]=1;
           fprintf(ficlog,"Age %d", i);      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){
         for(jk=1; jk <=nlstate ; jk++){        y[i][j]=x[i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        printf("%.3e ",y[i][j]);
             pp[jk] += freq[jk][m][i];         fprintf(ficlog,"%.3e ",y[i][j]);
         }      }
         for(jk=1; jk <=nlstate ; jk++){      printf("\n");
           for(m=-1, pos=0; m <=0 ; m++)      fprintf(ficlog,"\n");
             pos += freq[jk][m][i];    }
           if(pp[jk]>=1.e-10){    */
             if(first==1){  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    free_matrix(a,1,npar,1,npar);
             }    free_matrix(y,1,npar,1,npar);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    free_vector(x,1,npar);
           }else{    free_ivector(indx,1,npar);
             if(first==1)    free_matrix(hess,1,npar,1,npar);
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
           }  }
         }  
   /*************** hessian matrix ****************/
         for(jk=1; jk <=nlstate ; jk++){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  {
             pp[jk] += freq[jk][m][i];    int i;
         }           int l=1, lmax=20;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    double k1,k2;
           pos += pp[jk];    double p2[NPARMAX+1];
           posprop += prop[jk][i];    double res;
         }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         for(jk=1; jk <=nlstate ; jk++){    double fx;
           if(pos>=1.e-5){    int k=0,kmax=10;
             if(first==1)    double l1;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    fx=func(x);
           }else{    for (i=1;i<=npar;i++) p2[i]=x[i];
             if(first==1)    for(l=0 ; l <=lmax; l++){
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      l1=pow(10,l);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      delts=delt;
           }      for(k=1 ; k <kmax; k=k+1){
           if( i <= iagemax){        delt = delta*(l1*k);
             if(pos>=1.e-5){        p2[theta]=x[theta] +delt;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);        k1=func(p2)-fx;
               /*probs[i][jk][j1]= pp[jk]/pos;*/        p2[theta]=x[theta]-delt;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        k2=func(p2)-fx;
             }        /*res= (k1-2.0*fx+k2)/delt/delt; */
             else        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);       
           }  #ifdef DEBUG
         }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                 fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(jk=-1; jk <=nlstate+ndeath; jk++)  #endif
           for(m=-1; m <=nlstate+ndeath; m++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
             if(freq[jk][m][i] !=0 ) {        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             if(first==1)          k=kmax;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        }
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             }          k=kmax; l=lmax*10.;
         if(i <= iagemax)        }
           fprintf(ficresp,"\n");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
         if(first==1)          delts=delt;
           printf("Others in log...\n");        }
         fprintf(ficlog,"\n");      }
       }    }
     }    delti[theta]=delts;
   }    return res;
   dateintmean=dateintsum/k2cpt;    
    }
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   free_vector(pp,1,nlstate);  {
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    int i;
   /* End of Freq */    int l=1, l1, lmax=20;
 }    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
 /************ Prevalence ********************/    int k;
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)  
 {      fx=func(x);
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    for (k=1; k<=2; k++) {
      in each health status at the date of interview (if between dateprev1 and dateprev2).      for (i=1;i<=npar;i++) p2[i]=x[i];
      We still use firstpass and lastpass as another selection.      p2[thetai]=x[thetai]+delti[thetai]/k;
   */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k1=func(p2)-fx;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;   
   double ***freq; /* Frequencies */      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *pp, **prop;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double pos,posprop;       k2=func(p2)-fx;
   double  y2; /* in fractional years */   
   int iagemin, iagemax;      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   iagemin= (int) agemin;      k3=func(p2)-fx;
   iagemax= (int) agemax;   
   /*pp=vector(1,nlstate);*/      p2[thetai]=x[thetai]-delti[thetai]/k;
   prop=matrix(1,nlstate,iagemin,iagemax+3);       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/      k4=func(p2)-fx;
   j1=0;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     #ifdef DEBUG
   j=cptcoveff;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     #endif
   for(k1=1; k1<=j;k1++){    }
     for(i1=1; i1<=ncodemax[k1];i1++){    return res;
       j1++;  }
         
       for (i=1; i<=nlstate; i++)    /************** Inverse of matrix **************/
         for(m=iagemin; m <= iagemax+3; m++)  void ludcmp(double **a, int n, int *indx, double *d)
           prop[i][m]=0.0;  {
          int i,imax,j,k;
       for (i=1; i<=imx; i++) { /* Each individual */    double big,dum,sum,temp;
         bool=1;    double *vv;
         if  (cptcovn>0) {   
           for (z1=1; z1<=cptcoveff; z1++)     vv=vector(1,n);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     *d=1.0;
               bool=0;    for (i=1;i<=n;i++) {
         }       big=0.0;
         if (bool==1) {       for (j=1;j<=n;j++)
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/        if ((temp=fabs(a[i][j])) > big) big=temp;
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */      vv[i]=1.0/big;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    }
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    for (j=1;j<=n;j++) {
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);       for (i=1;i<j;i++) {
               if (s[m][i]>0 && s[m][i]<=nlstate) {         sum=a[i][j];
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];        a[i][j]=sum;
                 prop[s[m][i]][iagemax+3] += weight[i];       }
               }       big=0.0;
             }      for (i=j;i<=n;i++) {
           } /* end selection of waves */        sum=a[i][j];
         }        for (k=1;k<j;k++)
       }          sum -= a[i][k]*a[k][j];
       for(i=iagemin; i <= iagemax+3; i++){          a[i][j]=sum;
                 if ( (dum=vv[i]*fabs(sum)) >= big) {
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {           big=dum;
           posprop += prop[jk][i];           imax=i;
         }         }
       }
         for(jk=1; jk <=nlstate ; jk++){           if (j != imax) {
           if( i <=  iagemax){         for (k=1;k<=n;k++) {
             if(posprop>=1.e-5){           dum=a[imax][k];
               probs[i][jk][j1]= prop[jk][i]/posprop;          a[imax][k]=a[j][k];
             }           a[j][k]=dum;
           }         }
         }/* end jk */         *d = -(*d);
       }/* end i */         vv[imax]=vv[j];
     } /* end i1 */      }
   } /* end k1 */      indx[j]=imax;
         if (a[j][j] == 0.0) a[j][j]=TINY;
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/      if (j != n) {
   /*free_vector(pp,1,nlstate);*/        dum=1.0/(a[j][j]);
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);        for (i=j+1;i<=n;i++) a[i][j] *= dum;
 }  /* End of prevalence */      }
     }
 /************* Waves Concatenation ***************/    free_vector(vv,1,n);  /* Doesn't work */
   ;
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  }
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  void lubksb(double **a, int n, int *indx, double b[])
      Death is a valid wave (if date is known).  {
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    int i,ii=0,ip,j;
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    double sum;
      and mw[mi+1][i]. dh depends on stepm.   
      */    for (i=1;i<=n;i++) {
       ip=indx[i];
   int i, mi, m;      sum=b[ip];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      b[ip]=b[i];
      double sum=0., jmean=0.;*/      if (ii)
   int first;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
   int j, k=0,jk, ju, jl;      else if (sum) ii=i;
   double sum=0.;      b[i]=sum;
   first=0;    }
   jmin=1e+5;    for (i=n;i>=1;i--) {
   jmax=-1;      sum=b[i];
   jmean=0.;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
   for(i=1; i<=imx; i++){      b[i]=sum/a[i][i];
     mi=0;    }
     m=firstpass;  }
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)  void pstamp(FILE *fichier)
         mw[++mi][i]=m;  {
       if(m >=lastpass)    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         break;  }
       else  
         m++;  /************ Frequencies ********************/
     }/* end while */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     if (s[m][i] > nlstate){  {  /* Some frequencies */
       mi++;     /* Death is another wave */   
       /* if(mi==0)  never been interviewed correctly before death */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
          /* Only death is a correct wave */    int first;
       mw[mi][i]=m;    double ***freq; /* Frequencies */
     }    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     wav[i]=mi;    char fileresp[FILENAMELENGTH];
     if(mi==0){   
       if(first==0){    pp=vector(1,nlstate);
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);    prop=matrix(1,nlstate,iagemin,iagemax+3);
         first=1;    strcpy(fileresp,"p");
       }    strcat(fileresp,fileres);
       if(first==1){    if((ficresp=fopen(fileresp,"w"))==NULL) {
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     } /* end mi==0 */      exit(0);
   } /* End individuals */    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   for(i=1; i<=imx; i++){    j1=0;
     for(mi=1; mi<wav[i];mi++){   
       if (stepm <=0)    j=cptcoveff;
         dh[mi][i]=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */    first=1;
           if (agedc[i] < 2*AGESUP) {  
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);     for(k1=1; k1<=j;k1++){
             if(j==0) j=1;  /* Survives at least one month after exam */      for(i1=1; i1<=ncodemax[k1];i1++){
             else if(j<0){        j1++;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
               j=1; /* Careful Patch */          scanf("%d", i);*/
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);        for (i=-5; i<=nlstate+ndeath; i++)  
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);            for(m=iagemin; m <= iagemax+3; m++)
             }              freq[i][jk][m]=0;
             k=k+1;  
             if (j >= jmax) jmax=j;      for (i=1; i<=nlstate; i++)  
             if (j <= jmin) jmin=j;        for(m=iagemin; m <= iagemax+3; m++)
             sum=sum+j;          prop[i][m]=0;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/       
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/        dateintsum=0;
           }        k2cpt=0;
         }        for (i=1; i<=imx; i++) {
         else{          bool=1;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          if  (cptcovn>0) {
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/            for (z1=1; z1<=cptcoveff; z1++)
           k=k+1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
           if (j >= jmax) jmax=j;                bool=0;
           else if (j <= jmin)jmin=j;          }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          if (bool==1){
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/            for(m=firstpass; m<=lastpass; m++){
           if(j<0){              k2=anint[m][i]+(mint[m][i]/12.);
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           sum=sum+j;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         }                if (m<lastpass) {
         jk= j/stepm;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         jl= j -jk*stepm;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         ju= j -(jk+1)*stepm;                }
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */               
           if(jl==0){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             dh[mi][i]=jk;                  dateintsum=dateintsum+k2;
             bh[mi][i]=0;                  k2cpt++;
           }else{ /* We want a negative bias in order to only have interpolation ie                }
                   * at the price of an extra matrix product in likelihood */                /*}*/
             dh[mi][i]=jk+1;            }
             bh[mi][i]=ju;          }
           }        }
         }else{         
           if(jl <= -ju){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             dh[mi][i]=jk;        pstamp(ficresp);
             bh[mi][i]=jl;       /* bias is positive if real duration        if  (cptcovn>0) {
                                  * is higher than the multiple of stepm and negative otherwise.          fprintf(ficresp, "\n#********** Variable ");
                                  */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(ficresp, "**********\n#");
           else{        }
             dh[mi][i]=jk+1;        for(i=1; i<=nlstate;i++)
             bh[mi][i]=ju;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           }        fprintf(ficresp, "\n");
           if(dh[mi][i]==0){       
             dh[mi][i]=1; /* At least one step */        for(i=iagemin; i <= iagemax+3; i++){
             bh[mi][i]=ju; /* At least one step */          if(i==iagemax+3){
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/            fprintf(ficlog,"Total");
           }          }else{
         } /* end if mle */            if(first==1){
       }              first=0;
     } /* end wave */              printf("See log file for details...\n");
   }            }
   jmean=sum/k;            fprintf(ficlog,"Age %d", i);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          }
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for(jk=1; jk <=nlstate ; jk++){
  }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i];
 /*********** Tricode ****************************/          }
 void tricode(int *Tvar, int **nbcode, int imx)          for(jk=1; jk <=nlstate ; jk++){
 {            for(m=-1, pos=0; m <=0 ; m++)
                 pos += freq[jk][m][i];
   int Ndum[20],ij=1, k, j, i, maxncov=19;            if(pp[jk]>=1.e-10){
   int cptcode=0;              if(first==1){
   cptcoveff=0;               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }
   for (k=0; k<maxncov; k++) Ndum[k]=0;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   for (k=1; k<=7; k++) ncodemax[k]=0;            }else{
               if(first==1)
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                                modality*/             }
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/          }
       Ndum[ij]++; /*store the modality */  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          for(jk=1; jk <=nlstate ; jk++){
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                                        Tvar[j]. If V=sex and male is 0 and               pp[jk] += freq[jk][m][i];
                                        female is 1, then  cptcode=1.*/          }      
     }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
     for (i=0; i<=cptcode; i++) {            posprop += prop[jk][i];
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */          }
     }          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
     ij=1;               if(first==1)
     for (i=1; i<=ncodemax[j]; i++) {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for (k=0; k<= maxncov; k++) {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         if (Ndum[k] != 0) {            }else{
           nbcode[Tvar[j]][ij]=k;               if(first==1)
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                         fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           ij++;            }
         }            if( i <= iagemax){
         if (ij > ncodemax[j]) break;               if(pos>=1.e-5){
       }                  fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     }                 /*probs[i][jk][j1]= pp[jk]/pos;*/
   }                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
  for (k=0; k< maxncov; k++) Ndum[k]=0;              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
  for (i=1; i<=ncovmodel-2; i++) {             }
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/          }
    ij=Tvar[i];         
    Ndum[ij]++;          for(jk=-1; jk <=nlstate+ndeath; jk++)
  }            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
  ij=1;              if(first==1)
  for (i=1; i<= maxncov; i++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
    if((Ndum[i]!=0) && (i<=ncovcol)){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
      Tvaraff[ij]=i; /*For printing */              }
      ij++;          if(i <= iagemax)
    }            fprintf(ficresp,"\n");
  }          if(first==1)
              printf("Others in log...\n");
  cptcoveff=ij-1; /*Number of simple covariates*/          fprintf(ficlog,"\n");
 }        }
       }
 /*********** Health Expectancies ****************/    }
     dateintmean=dateintsum/k2cpt;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )   
     fclose(ficresp);
 {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   /* Health expectancies */    free_vector(pp,1,nlstate);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   double age, agelim, hf;    /* End of Freq */
   double ***p3mat,***varhe;  }
   double **dnewm,**doldm;  
   double *xp;  /************ Prevalence ********************/
   double **gp, **gm;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   double ***gradg, ***trgradg;  {  
   int theta;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);       We still use firstpass and lastpass as another selection.
   xp=vector(1,npar);    */
   dnewm=matrix(1,nlstate*nlstate,1,npar);   
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       double ***freq; /* Frequencies */
   fprintf(ficreseij,"# Health expectancies\n");    double *pp, **prop;
   fprintf(ficreseij,"# Age");    double pos,posprop;
   for(i=1; i<=nlstate;i++)    double  y2; /* in fractional years */
     for(j=1; j<=nlstate;j++)    int iagemin, iagemax;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");    iagemin= (int) agemin;
     iagemax= (int) agemax;
   if(estepm < stepm){    /*pp=vector(1,nlstate);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   else  hstepm=estepm;       j1=0;
   /* We compute the life expectancy from trapezoids spaced every estepm months   
    * This is mainly to measure the difference between two models: for example    j=cptcoveff;
    * if stepm=24 months pijx are given only every 2 years and by summing them    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    * we are calculating an estimate of the Life Expectancy assuming a linear    
    * progression in between and thus overestimating or underestimating according    for(k1=1; k1<=j;k1++){
    * to the curvature of the survival function. If, for the same date, we       for(i1=1; i1<=ncodemax[k1];i1++){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        j1++;
    * to compare the new estimate of Life expectancy with the same linear        
    * hypothesis. A more precise result, taking into account a more precise        for (i=1; i<=nlstate; i++)  
    * curvature will be obtained if estepm is as small as stepm. */          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
   /* For example we decided to compute the life expectancy with the smallest unit */       
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.         for (i=1; i<=imx; i++) { /* Each individual */
      nhstepm is the number of hstepm from age to agelim           bool=1;
      nstepm is the number of stepm from age to agelin.           if  (cptcovn>0) {
      Look at hpijx to understand the reason of that which relies in memory size            for (z1=1; z1<=cptcoveff; z1++)
      and note for a fixed period like estepm months */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                bool=0;
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if          if (bool==1) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      results. So we changed our mind and took the option of the best precision.              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   agelim=AGESUP;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                if (s[m][i]>0 && s[m][i]<=nlstate) {
     /* nhstepm age range expressed in number of stepm */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */                   prop[s[m][i]][iagemax+3] += weight[i];
     /* if (stepm >= YEARM) hstepm=1;*/                }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            } /* end selection of waves */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);          }
     gp=matrix(0,nhstepm,1,nlstate*nlstate);        }
     gm=matrix(0,nhstepm,1,nlstate*nlstate);        for(i=iagemin; i <= iagemax+3; i++){  
          
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            posprop += prop[jk][i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            }
    
           for(jk=1; jk <=nlstate ; jk++){    
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            if( i <=  iagemax){
               if(posprop>=1.e-5){
     /* Computing Variances of health expectancies */                probs[i][jk][j1]= prop[jk][i]/posprop;
               }
      for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){           }/* end jk */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }/* end i */
       }      } /* end i1 */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      } /* end k1 */
      
       cptj=0;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       for(j=1; j<= nlstate; j++){    /*free_vector(pp,1,nlstate);*/
         for(i=1; i<=nlstate; i++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           cptj=cptj+1;  }  /* End of prevalence */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  /************* Waves Concatenation ***************/
           }  
         }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       }  {
          /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             Death is a valid wave (if date is known).
       for(i=1; i<=npar; i++)        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         and mw[mi+1][i]. dh depends on stepm.
              */
       cptj=0;  
       for(j=1; j<= nlstate; j++){    int i, mi, m;
         for(i=1;i<=nlstate;i++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           cptj=cptj+1;       double sum=0., jmean=0.;*/
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    int first;
     int j, k=0,jk, ju, jl;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double sum=0.;
           }    first=0;
         }    jmin=1e+5;
       }    jmax=-1;
       for(j=1; j<= nlstate*nlstate; j++)    jmean=0.;
         for(h=0; h<=nhstepm-1; h++){    for(i=1; i<=imx; i++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      mi=0;
         }      m=firstpass;
      }       while(s[m][i] <= nlstate){
            if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 /* End theta */          mw[++mi][i]=m;
         if(m >=lastpass)
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);          break;
         else
      for(h=0; h<=nhstepm-1; h++)          m++;
       for(j=1; j<=nlstate*nlstate;j++)      }/* end while */
         for(theta=1; theta <=npar; theta++)      if (s[m][i] > nlstate){
           trgradg[h][j][theta]=gradg[h][theta][j];        mi++;     /* Death is another wave */
              /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
      for(i=1;i<=nlstate*nlstate;i++)        mw[mi][i]=m;
       for(j=1;j<=nlstate*nlstate;j++)      }
         varhe[i][j][(int)age] =0.;  
       wav[i]=mi;
      printf("%d|",(int)age);fflush(stdout);      if(mi==0){
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        nbwarn++;
      for(h=0;h<=nhstepm-1;h++){        if(first==0){
       for(k=0;k<=nhstepm-1;k++){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);          first=1;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);        }
         for(i=1;i<=nlstate*nlstate;i++)        if(first==1){
           for(j=1;j<=nlstate*nlstate;j++)          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        }
       }      } /* end mi==0 */
     }    } /* End individuals */
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)    for(i=1; i<=imx; i++){
       for(j=1; j<=nlstate;j++)      for(mi=1; mi<wav[i];mi++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        if (stepm <=0)
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          dh[mi][i]=1;
                   else{
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
         }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
               if(j==0) j=1;  /* Survives at least one month after exam */
     fprintf(ficreseij,"%3.0f",age );              else if(j<0){
     cptj=0;                nberr++;
     for(i=1; i<=nlstate;i++)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(j=1; j<=nlstate;j++){                j=1; /* Temporary Dangerous patch */
         cptj++;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficreseij,"\n");              }
                  k=k+1;
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);              if (j >= jmax){
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);                jmax=j;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);                ijmax=i;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);              }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if (j <= jmin){
   }                jmin=j;
   printf("\n");                ijmin=i;
   fprintf(ficlog,"\n");              }
               sum=sum+j;
   free_vector(xp,1,npar);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);            }
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);          }
 }          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 /************ Variance ******************/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)  
 {            k=k+1;
   /* Variance of health expectancies */            if (j >= jmax) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              jmax=j;
   /* double **newm;*/              ijmax=i;
   double **dnewm,**doldm;            }
   double **dnewmp,**doldmp;            else if (j <= jmin){
   int i, j, nhstepm, hstepm, h, nstepm ;              jmin=j;
   int k, cptcode;              ijmin=i;
   double *xp;            }
   double **gp, **gm;  /* for var eij */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double ***gradg, ***trgradg; /*for var eij */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   double **gradgp, **trgradgp; /* for var p point j */            if(j<0){
   double *gpp, *gmp; /* for var p point j */              nberr++;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double ***p3mat;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double age,agelim, hf;            }
   double ***mobaverage;            sum=sum+j;
   int theta;          }
   char digit[4];          jk= j/stepm;
   char digitp[25];          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   char fileresprobmorprev[FILENAMELENGTH];          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
   if(popbased==1){              dh[mi][i]=jk;
     if(mobilav!=0)              bh[mi][i]=0;
       strcpy(digitp,"-populbased-mobilav-");            }else{ /* We want a negative bias in order to only have interpolation ie
     else strcpy(digitp,"-populbased-nomobil-");                    * at the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
   else               bh[mi][i]=ju;
     strcpy(digitp,"-stablbased-");            }
           }else{
   if (mobilav!=0) {            if(jl <= -ju){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              dh[mi][i]=jk;
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){              bh[mi][i]=jl;       /* bias is positive if real duration
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                                   * is higher than the multiple of stepm and negative otherwise.
       printf(" Error in movingaverage mobilav=%d\n",mobilav);                                   */
     }            }
   }            else{
               dh[mi][i]=jk+1;
   strcpy(fileresprobmorprev,"prmorprev");               bh[mi][i]=ju;
   sprintf(digit,"%-d",ij);            }
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/            if(dh[mi][i]==0){
   strcat(fileresprobmorprev,digit); /* Tvar to be done */              dh[mi][i]=1; /* At least one step */
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */              bh[mi][i]=ju; /* At least one step */
   strcat(fileresprobmorprev,fileres);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          } /* end if mle */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        }
   }      } /* end wave */
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    }
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    jmean=sum/k;
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){   }
     fprintf(ficresprobmorprev," p.%-d SE",j);  
     for(i=1; i<=nlstate;i++)  /*********** Tricode ****************************/
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  void tricode(int *Tvar, int **nbcode, int imx)
   }    {
   fprintf(ficresprobmorprev,"\n");   
   fprintf(ficgp,"\n# Routine varevsij");    int Ndum[20],ij=1, k, j, i, maxncov=19;
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    int cptcode=0;
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    cptcoveff=0;
 /*   } */   
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   for(i=1; i<=nlstate;i++)      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
     for(j=1; j<=nlstate;j++)                                 modality*/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   fprintf(ficresvij,"\n");        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   xp=vector(1,npar);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   dnewm=matrix(1,nlstate,1,npar);                                         Tvar[j]. If V=sex and male is 0 and
   doldm=matrix(1,nlstate,1,nlstate);                                         female is 1, then  cptcode=1.*/
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      }
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
       for (i=0; i<=cptcode; i++) {
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   gpp=vector(nlstate+1,nlstate+ndeath);      }
   gmp=vector(nlstate+1,nlstate+ndeath);  
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      ij=1;
         for (i=1; i<=ncodemax[j]; i++) {
   if(estepm < stepm){        for (k=0; k<= maxncov; k++) {
     printf ("Problem %d lower than %d\n",estepm, stepm);          if (Ndum[k] != 0) {
   }            nbcode[Tvar[j]][ij]=k;
   else  hstepm=estepm;               /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   /* For example we decided to compute the life expectancy with the smallest unit */           
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.             ij++;
      nhstepm is the number of hstepm from age to agelim           }
      nstepm is the number of stepm from age to agelin.           if (ij > ncodemax[j]) break;
      Look at hpijx to understand the reason of that which relies in memory size        }  
      and note for a fixed period like k years */      }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }  
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed every two years of age and if   for (k=0; k< maxncov; k++) Ndum[k]=0;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   
      results. So we changed our mind and took the option of the best precision.   for (i=1; i<=ncovmodel-2; i++) {
   */     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      ij=Tvar[i];
   agelim = AGESUP;     Ndum[ij]++;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */   }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */   ij=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   for (i=1; i<= maxncov; i++) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);     if((Ndum[i]!=0) && (i<=ncovcol)){
     gp=matrix(0,nhstepm,1,nlstate);       Tvaraff[ij]=i; /*For printing */
     gm=matrix(0,nhstepm,1,nlstate);       ij++;
      }
    }
     for(theta=1; theta <=npar; theta++){   
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/   cptcoveff=ij-1; /*Number of simple covariates*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*********** Health Expectancies ****************/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       if (popbased==1) {  
         if(mobilav ==0){  {
           for(i=1; i<=nlstate;i++)    /* Health expectancies, no variances */
             prlim[i][i]=probs[(int)age][i][ij];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
         }else{ /* mobilav */     double age, agelim, hf;
           for(i=1; i<=nlstate;i++)    double ***p3mat;
             prlim[i][i]=mobaverage[(int)age][i][ij];    double eip;
         }  
       }    pstamp(ficreseij);
       fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       for(j=1; j<= nlstate; j++){    fprintf(ficreseij,"# Age");
         for(h=0; h<=nhstepm; h++){    for(i=1; i<=nlstate;i++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for(j=1; j<=nlstate;j++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        fprintf(ficreseij," e%1d%1d ",i,j);
         }      }
       }      fprintf(ficreseij," e%1d. ",i);
       /* This for computing probability of death (h=1 means    }
          computed over hstepm matrices product = hstepm*stepm months)     fprintf(ficreseij,"\n");
          as a weighted average of prlim.  
       */   
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    if(estepm < stepm){
         for(i=1,gpp[j]=0.; i<= nlstate; i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    }
       }        else  hstepm=estepm;  
       /* end probability of death */    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */     * if stepm=24 months pijx are given only every 2 years and by summing them
         xp[i] = x[i] - (i==theta ?delti[theta]:0);     * we are calculating an estimate of the Life Expectancy assuming a linear
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       * progression in between and thus overestimating or underestimating according
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     * to the curvature of the survival function. If, for the same date, we
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
       if (popbased==1) {     * to compare the new estimate of Life expectancy with the same linear
         if(mobilav ==0){     * hypothesis. A more precise result, taking into account a more precise
           for(i=1; i<=nlstate;i++)     * curvature will be obtained if estepm is as small as stepm. */
             prlim[i][i]=probs[(int)age][i][ij];  
         }else{ /* mobilav */     /* For example we decided to compute the life expectancy with the smallest unit */
           for(i=1; i<=nlstate;i++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
             prlim[i][i]=mobaverage[(int)age][i][ij];       nhstepm is the number of hstepm from age to agelim
         }       nstepm is the number of stepm from age to agelin.
       }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
       for(j=1; j<= nlstate; j++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for(h=0; h<=nhstepm; h++){       survival function given by stepm (the optimization length). Unfortunately it
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)       means that if the survival funtion is printed only each two years of age and if
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];       you sum them up and add 1 year (area under the trapezoids) you won't get the same
         }       results. So we changed our mind and took the option of the best precision.
       }    */
       /* This for computing probability of death (h=1 means    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.    agelim=AGESUP;
       */    /* If stepm=6 months */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         for(i=1,gmp[j]=0.; i<= nlstate; i++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          gmp[j] += prlim[i][i]*p3mat[i][j][1];     
       }      /* nhstepm age range expressed in number of stepm */
       /* end probability of death */    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */
       for(j=1; j<= nlstate; j++) /* vareij */    /* if (stepm >= YEARM) hstepm=1;*/
         for(h=0; h<=nhstepm; h++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }  
     for (age=bage; age<=fage; age ++){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  
       }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      
     } /* End theta */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for(h=0; h<=nhstepm; h++) /* veij */     
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)      /* Computing expectancies */
           trgradg[h][j][theta]=gradg[h][theta][j];      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(theta=1; theta <=npar; theta++)            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         trgradgp[j][theta]=gradgp[theta][j];           
               /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          }
     for(i=1;i<=nlstate;i++)     
       for(j=1;j<=nlstate;j++)      fprintf(ficreseij,"%3.0f",age );
         vareij[i][j][(int)age] =0.;      for(i=1; i<=nlstate;i++){
         eip=0;
     for(h=0;h<=nhstepm;h++){        for(j=1; j<=nlstate;j++){
       for(k=0;k<=nhstepm;k++){          eip +=eij[i][j][(int)age];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        }
         for(i=1;i<=nlstate;i++)        fprintf(ficreseij,"%9.4f", eip );
           for(j=1;j<=nlstate;j++)      }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      fprintf(ficreseij,"\n");
       }     
     }    }
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* pptj */    printf("\n");
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    fprintf(ficlog,"\n");
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);   
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  }
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  
         varppt[j][i]=doldmp[j][i];  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     /* end ppptj */  
     /*  x centered again */  {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      /* Covariances of health expectancies eij and of total life expectancies according
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);     to initial status i, ei. .
      */
     if (popbased==1) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       if(mobilav ==0){    double age, agelim, hf;
         for(i=1; i<=nlstate;i++)    double ***p3matp, ***p3matm, ***varhe;
           prlim[i][i]=probs[(int)age][i][ij];    double **dnewm,**doldm;
       }else{ /* mobilav */     double *xp, *xm;
         for(i=1; i<=nlstate;i++)    double **gp, **gm;
           prlim[i][i]=mobaverage[(int)age][i][ij];    double ***gradg, ***trgradg;
       }    int theta;
     }  
                  double eip, vip;
     /* This for computing probability of death (h=1 means  
        computed over hstepm (estepm) matrices product = hstepm*stepm months)     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        as a weighted average of prlim.    xp=vector(1,npar);
     */    xm=vector(1,npar);
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
       for(i=1,gmp[j]=0.;i<= nlstate; i++)     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    
     }        pstamp(ficresstdeij);
     /* end probability of death */    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    for(i=1; i<=nlstate;i++){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      for(j=1; j<=nlstate;j++)
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       for(i=1; i<=nlstate;i++){      fprintf(ficresstdeij," e%1d. ",i);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    }
       }    fprintf(ficresstdeij,"\n");
     }   
     fprintf(ficresprobmorprev,"\n");    pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficresvij,"%.0f ",age );    fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){      for(j=1; j<=nlstate;j++){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        cptj= (j-1)*nlstate+i;
       }        for(i2=1; i2<=nlstate;i2++)
     fprintf(ficresvij,"\n");          for(j2=1; j2<=nlstate;j2++){
     free_matrix(gp,0,nhstepm,1,nlstate);            cptj2= (j2-1)*nlstate+i2;
     free_matrix(gm,0,nhstepm,1,nlstate);            if(cptj2 <= cptj)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   } /* End age */    fprintf(ficrescveij,"\n");
   free_vector(gpp,nlstate+1,nlstate+ndeath);   
   free_vector(gmp,nlstate+1,nlstate+ndeath);    if(estepm < stepm){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      printf ("Problem %d lower than %d\n",estepm, stepm);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    }
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    else  hstepm=estepm;  
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    /* We compute the life expectancy from trapezoids spaced every estepm months
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");     * This is mainly to measure the difference between two models: for example
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */     * if stepm=24 months pijx are given only every 2 years and by summing them
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */     * we are calculating an estimate of the Life Expectancy assuming a linear
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */     * progression in between and thus overestimating or underestimating according
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));     * to the curvature of the survival function. If, for the same date, we
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));     * to compare the new estimate of Life expectancy with the same linear
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));     * hypothesis. A more precise result, taking into account a more precise
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);     * curvature will be obtained if estepm is as small as stepm. */
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  
 */    /* For example we decided to compute the life expectancy with the smallest unit */
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;",digitp,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);       nhstepm is the number of hstepm from age to agelim
        nstepm is the number of stepm from age to agelin.
   free_vector(xp,1,npar);       Look at hpijx to understand the reason of that which relies in memory size
   free_matrix(doldm,1,nlstate,1,nlstate);       and note for a fixed period like estepm months */
   free_matrix(dnewm,1,nlstate,1,npar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       survival function given by stepm (the optimization length). Unfortunately it
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);       means that if the survival funtion is printed only each two years of age and if
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       results. So we changed our mind and took the option of the best precision.
   fclose(ficresprobmorprev);    */
   fflush(ficgp);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   fflush(fichtm);   
 }  /* end varevsij */    /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
 /************ Variance of prevlim ******************/    agelim=AGESUP;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
 {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   /* Variance of prevalence limit */    /* if (stepm >= YEARM) hstepm=1;*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double **newm;   
   double **dnewm,**doldm;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int i, j, nhstepm, hstepm;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int k, cptcode;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   double *xp;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   double *gp, *gm;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   double **gradg, **trgradg;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   double age,agelim;  
   int theta;    for (age=bage; age<=fage; age ++){
      
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   fprintf(ficresvpl,"# Age");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   for(i=1; i<=nlstate;i++)   
       fprintf(ficresvpl," %1d-%1d",i,i);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficresvpl,"\n");  
       /* Computing  Variances of health expectancies */
   xp=vector(1,npar);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   dnewm=matrix(1,nlstate,1,npar);         decrease memory allocation */
   doldm=matrix(1,nlstate,1,nlstate);      for(theta=1; theta <=npar; theta++){
           for(i=1; i<=npar; i++){
   hstepm=1*YEARM; /* Every year of age */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */           xm[i] = x[i] - (i==theta ?delti[theta]:0);
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     if (stepm >= YEARM) hstepm=1;   
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(j=1; j<= nlstate; j++){
     gradg=matrix(1,npar,1,nlstate);          for(i=1; i<=nlstate; i++){
     gp=vector(1,nlstate);            for(h=0; h<=nhstepm-1; h++){
     gm=vector(1,nlstate);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
       }       
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(ij=1; ij<= nlstate*nlstate; ij++)
       for(i=1;i<=nlstate;i++)          for(h=0; h<=nhstepm-1; h++){
         gp[i] = prlim[i][i];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
               }
       for(i=1; i<=npar; i++) /* Computes gradient */      }/* End theta */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);     
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     
       for(i=1;i<=nlstate;i++)      for(h=0; h<=nhstepm-1; h++)
         gm[i] = prlim[i][i];        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
       for(i=1;i<=nlstate;i++)            trgradg[h][j][theta]=gradg[h][theta][j];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];     
     } /* End theta */  
        for(ij=1;ij<=nlstate*nlstate;ij++)
     trgradg =matrix(1,nlstate,1,npar);        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)       printf("%d|",(int)age);fflush(stdout);
         trgradg[j][theta]=gradg[theta][j];       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
     for(i=1;i<=nlstate;i++)        for(k=0;k<=nhstepm-1;k++){
       varpl[i][(int)age] =0.;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          for(ij=1;ij<=nlstate*nlstate;ij++)
     for(i=1;i<=nlstate;i++)            for(ji=1;ji<=nlstate*nlstate;ji++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
     fprintf(ficresvpl,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      /* Computing expectancies */
     fprintf(ficresvpl,"\n");      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     free_vector(gp,1,nlstate);      for(i=1; i<=nlstate;i++)
     free_vector(gm,1,nlstate);        for(j=1; j<=nlstate;j++)
     free_matrix(gradg,1,npar,1,nlstate);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     free_matrix(trgradg,1,nlstate,1,npar);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   } /* End age */           
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);          }
   free_matrix(dnewm,1,nlstate,1,nlstate);  
       fprintf(ficresstdeij,"%3.0f",age );
 }      for(i=1; i<=nlstate;i++){
         eip=0.;
 /************ Variance of one-step probabilities  ******************/        vip=0.;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for(j=1; j<=nlstate;j++){
 {          eip += eij[i][j][(int)age];
   int i, j=0,  i1, k1, l1, t, tj;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   int k2, l2, j1,  z1;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   int k=0,l, cptcode;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   int first=1, first1;        }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   double **dnewm,**doldm;      }
   double *xp;      fprintf(ficresstdeij,"\n");
   double *gp, *gm;  
   double **gradg, **trgradg;      fprintf(ficrescveij,"%3.0f",age );
   double **mu;      for(i=1; i<=nlstate;i++)
   double age,agelim, cov[NCOVMAX];        for(j=1; j<=nlstate;j++){
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          cptj= (j-1)*nlstate+i;
   int theta;          for(i2=1; i2<=nlstate;i2++)
   char fileresprob[FILENAMELENGTH];            for(j2=1; j2<=nlstate;j2++){
   char fileresprobcov[FILENAMELENGTH];              cptj2= (j2-1)*nlstate+i2;
   char fileresprobcor[FILENAMELENGTH];              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   double ***varpij;            }
         }
   strcpy(fileresprob,"prob");       fprintf(ficrescveij,"\n");
   strcat(fileresprob,fileres);     
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprob);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   strcpy(fileresprobcov,"probcov");     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   strcat(fileresprobcov,fileres);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with resultfile: %s\n", fileresprobcov);    printf("\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    fprintf(ficlog,"\n");
   }  
   strcpy(fileresprobcor,"probcor");     free_vector(xm,1,npar);
   strcat(fileresprobcor,fileres);    free_vector(xp,1,npar);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     printf("Problem with resultfile: %s\n", fileresprobcor);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }  }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  /************ Variance ******************/
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  {
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    /* Variance of health expectancies */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       /* double **newm;*/
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    double **dnewm,**doldm;
   fprintf(ficresprob,"# Age");    double **dnewmp,**doldmp;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    int i, j, nhstepm, hstepm, h, nstepm ;
   fprintf(ficresprobcov,"# Age");    int k, cptcode;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    double *xp;
   fprintf(ficresprobcov,"# Age");    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   for(i=1; i<=nlstate;i++)    double *gpp, *gmp; /* for var p point j */
     for(j=1; j<=(nlstate+ndeath);j++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    double ***p3mat;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    double age,agelim, hf;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    double ***mobaverage;
     }      int theta;
  /* fprintf(ficresprob,"\n");    char digit[4];
   fprintf(ficresprobcov,"\n");    char digitp[25];
   fprintf(ficresprobcor,"\n");  
  */    char fileresprobmorprev[FILENAMELENGTH];
  xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    if(popbased==1){
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      if(mobilav!=0)
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        strcpy(digitp,"-populbased-mobilav-");
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      else strcpy(digitp,"-populbased-nomobil-");
   first=1;    }
   fprintf(ficgp,"\n# Routine varprob");    else
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      strcpy(digitp,"-stablbased-");
   fprintf(fichtm,"\n");  
     if (mobilav!=0) {
   fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   cov[1]=1;      }
   tj=cptcoveff;    }
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  
   j1=0;    strcpy(fileresprobmorprev,"prmorprev");
   for(t=1; t<=tj;t++){    sprintf(digit,"%-d",ij);
     for(i1=1; i1<=ncodemax[t];i1++){     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       j1++;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       if  (cptcovn>0) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         fprintf(ficresprob, "\n#********** Variable ");     strcat(fileresprobmorprev,fileres);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         fprintf(ficresprob, "**********\n#\n");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficresprobcov, "\n#********** Variable ");       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(ficresprobcov, "**********\n#\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
            
         fprintf(ficgp, "\n#********** Variable ");     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    pstamp(ficresprobmorprev);
         fprintf(ficgp, "**********\n#\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
             fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");       fprintf(ficresprobmorprev," p.%-d SE",j);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i=1; i<=nlstate;i++)
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             }  
         fprintf(ficresprobcor, "\n#********** Variable ");        fprintf(ficresprobmorprev,"\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficgp,"\n# Routine varevsij");
         fprintf(ficresprobcor, "**********\n#");        /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       for (age=bage; age<=fage; age ++){   /*   } */
         cov[2]=age;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (k=1; k<=cptcovn;k++) {    pstamp(ficresvij);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         }    if(popbased==1)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
         for (k=1; k<=cptcovprod;k++)    else
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficresvij,"# Age");
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    for(i=1; i<=nlstate;i++)
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      for(j=1; j<=nlstate;j++)
         gp=vector(1,(nlstate)*(nlstate+ndeath));        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    fprintf(ficresvij,"\n");
       
         for(theta=1; theta <=npar; theta++){    xp=vector(1,npar);
           for(i=1; i<=npar; i++)    dnewm=matrix(1,nlstate,1,npar);
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    doldm=matrix(1,nlstate,1,nlstate);
               dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             
           k=0;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           for(i=1; i<= (nlstate); i++){    gpp=vector(nlstate+1,nlstate+ndeath);
             for(j=1; j<=(nlstate+ndeath);j++){    gmp=vector(nlstate+1,nlstate+ndeath);
               k=k+1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
               gp[k]=pmmij[i][j];   
             }    if(estepm < stepm){
           }      printf ("Problem %d lower than %d\n",estepm, stepm);
               }
           for(i=1; i<=npar; i++)    else  hstepm=estepm;  
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    /* For example we decided to compute the life expectancy with the smallest unit */
         /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       nhstepm is the number of hstepm from age to agelim
           k=0;       nstepm is the number of stepm from age to agelin.
           for(i=1; i<=(nlstate); i++){       Look at hpijx to understand the reason of that which relies in memory size
             for(j=1; j<=(nlstate+ndeath);j++){       and note for a fixed period like k years */
               k=k+1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               gm[k]=pmmij[i][j];       survival function given by stepm (the optimization length). Unfortunately it
             }       means that if the survival funtion is printed every two years of age and if
           }       you sum them up and add 1 year (area under the trapezoids) you won't get the same
             results. So we changed our mind and took the option of the best precision.
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     */
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
         }    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
           for(theta=1; theta <=npar; theta++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             trgradg[j][theta]=gradg[theta][j];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);       gp=matrix(0,nhstepm,1,nlstate);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      gm=matrix(0,nhstepm,1,nlstate);
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for(theta=1; theta <=npar; theta++){
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         pmij(pmmij,cov,ncovmodel,x,nlstate);        }
                 hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         k=0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){        if (popbased==1) {
             k=k+1;          if(mobilav ==0){
             mu[k][(int) age]=pmmij[i][j];            for(i=1; i<=nlstate;i++)
           }              prlim[i][i]=probs[(int)age][i][ij];
         }          }else{ /* mobilav */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            for(i=1; i<=nlstate;i++)
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
             varpij[i][j][(int)age] = doldm[i][j];          }
         }
         /*printf("\n%d ",(int)age);   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(j=1; j<= nlstate; j++){
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(h=0; h<=nhstepm; h++){
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           }*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         fprintf(ficresprob,"\n%d ",(int)age);        }
         fprintf(ficresprobcov,"\n%d ",(int)age);        /* This for computing probability of death (h=1 means
         fprintf(ficresprobcor,"\n%d ",(int)age);           computed over hstepm matrices product = hstepm*stepm months)
            as a weighted average of prlim.
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        }    
         }        /* end probability of death */
         i=0;  
         for (k=1; k<=(nlstate);k++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           for (l=1; l<=(nlstate+ndeath);l++){           xp[i] = x[i] - (i==theta ?delti[theta]:0);
             i=i++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);   
             for (j=1; j<=i;j++){        if (popbased==1) {
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          if(mobilav ==0){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
           }          }else{ /* mobilav */
         }/* end of loop for state */            for(i=1; i<=nlstate;i++)
       } /* end of loop for age */              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
       /* Confidence intervalle of pij  */        }
       /*  
         fprintf(ficgp,"\nset noparametric;unset label");        for(j=1; j<= nlstate; j++){
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          for(h=0; h<=nhstepm; h++){
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);          }
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        }
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        /* This for computing probability of death (h=1 means
       */           computed over hstepm matrices product = hstepm*stepm months)
            as a weighted average of prlim.
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        */
       first1=1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for (k2=1; k2<=(nlstate);k2++){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         for (l2=1; l2<=(nlstate+ndeath);l2++){            gmp[j] += prlim[i][i]*p3mat[i][j][1];
           if(l2==k2) continue;        }    
           j=(k2-1)*(nlstate+ndeath)+l2;        /* end probability of death */
           for (k1=1; k1<=(nlstate);k1++){  
             for (l1=1; l1<=(nlstate+ndeath);l1++){         for(j=1; j<= nlstate; j++) /* vareij */
               if(l1==k1) continue;          for(h=0; h<=nhstepm; h++){
               i=(k1-1)*(nlstate+ndeath)+l1;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               if(i<=j) continue;          }
               for (age=bage; age<=fage; age ++){   
                 if ((int)age %5==0){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;      } /* End theta */
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   c12=cv12/sqrt(v1*v2);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      for(h=0; h<=nhstepm; h++) /* veij */
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        for(j=1; j<=nlstate;j++)
                   /* Eigen vectors */          for(theta=1; theta <=npar; theta++)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            trgradg[h][j][theta]=gradg[h][theta][j];
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   v12=-v21;        for(theta=1; theta <=npar; theta++)
                   v22=v11;          trgradgp[j][theta]=gradgp[theta][j];
                   tnalp=v21/v11;   
                   if(first1==1){  
                     first1=0;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      for(i=1;i<=nlstate;i++)
                   }        for(j=1;j<=nlstate;j++)
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          vareij[i][j][(int)age] =0.;
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      for(h=0;h<=nhstepm;h++){
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */        for(k=0;k<=nhstepm;k++){
                   if(first==1){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                     first=0;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                     fprintf(ficgp,"\nset parametric;unset label");          for(i=1;i<=nlstate;i++)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);            for(j=1;j<=nlstate;j++)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\        }
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\      }
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\   
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\      /* pptj */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                     fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          varppt[j][i]=doldmp[j][i];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      /* end ppptj */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      /*  x centered again */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                   }else{   
                     first=0;      if (popbased==1) {
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);        if(mobilav ==0){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);            prlim[i][i]=probs[(int)age][i][ij];
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        }else{ /* mobilav */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          for(i=1; i<=nlstate;i++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            prlim[i][i]=mobaverage[(int)age][i][ij];
                   }/* if first */        }
                 } /* age mod 5 */      }
               } /* end loop age */               
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      /* This for computing probability of death (h=1 means
               first=1;         computed over hstepm (estepm) matrices product = hstepm*stepm months)
             } /*l12 */         as a weighted average of prlim.
           } /* k12 */      */
         } /*l1 */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }/* k1 */        for(i=1,gmp[j]=0.;i<= nlstate; i++)
     } /* loop covariates */          gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }      }    
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      /* end probability of death */
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
   free_vector(xp,1,npar);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   fclose(ficresprob);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fclose(ficresprobcov);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   fclose(ficresprobcor);        for(i=1; i<=nlstate;i++){
   /*  fclose(ficgp);*/          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 }        }
       }
       fprintf(ficresprobmorprev,"\n");
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      fprintf(ficresvij,"%.0f ",age );
                   int lastpass, int stepm, int weightopt, char model[],\      for(i=1; i<=nlstate;i++)
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        for(j=1; j<=nlstate;j++){
                   int popforecast, int estepm ,\          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   double jprev1, double mprev1,double anprev1, \        }
                   double jprev2, double mprev2,double anprev2){      fprintf(ficresvij,"\n");
   int jj1, k1, i1, cpt;      free_matrix(gp,0,nhstepm,1,nlstate);
   /*char optionfilehtm[FILENAMELENGTH];*/      free_matrix(gm,0,nhstepm,1,nlstate);
 /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 /*     printf("Problem with %s \n",optionfilehtm), exit(0); */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*   } */    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \    free_vector(gmp,nlstate+1,nlstate+ndeath);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
  - Life expectancies by age and initial health status (estepm=%2d months): \    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
    <a href=\"%s\">%s</a> <br>\n</li>", \    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
  m=cptcoveff;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
  jj1=0;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
  for(k1=1; k1<=m;k1++){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;    free_vector(xp,1,npar);
      if (cptcovn > 0) {    free_matrix(doldm,1,nlstate,1,nlstate);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    free_matrix(dnewm,1,nlstate,1,npar);
        for (cpt=1; cpt<=cptcoveff;cpt++)     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      /* Pij */    fclose(ficresprobmorprev);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \    fflush(ficgp);
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);         fflush(fichtm);
      /* Quasi-incidences */  }  /* end varevsij */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\  
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \  /************ Variance of prevlim ******************/
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
        /* Stable prevalence in each health state */  {
        for(cpt=1; cpt<nlstate;cpt++){    /* Variance of prevalence limit */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    double **newm;
        }    double **dnewm,**doldm;
      for(cpt=1; cpt<=nlstate;cpt++) {    int i, j, nhstepm, hstepm;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \    int k, cptcode;
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exo"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);    double *xp;
      }    double *gp, *gm;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    double **gradg, **trgradg;
 health expectancies in states (1) and (2): %s%d.png<br>\    double age,agelim;
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);    int theta;
    } /* end i1 */   
  }/* End k1 */    pstamp(ficresvpl);
  fprintf(fichtm,"</ul>");    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\        fprintf(ficresvpl," %1d-%1d",i,i);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\    fprintf(ficresvpl,"\n");
  - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\  
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    xp=vector(1,npar);
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    dnewm=matrix(1,nlstate,1,npar);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\    doldm=matrix(1,nlstate,1,nlstate);
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\   
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\    hstepm=1*YEARM; /* Every year of age */
          rfileres,rfileres,\    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\    agelim = AGESUP;
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\      if (stepm >= YEARM) hstepm=1;
          subdirf2(fileres,"t"),subdirf2(fileres,"t"),\      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
 /*  if(popforecast==1) fprintf(fichtm,"\n */      gm=vector(1,nlstate);
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */  
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */      for(theta=1; theta <=npar; theta++){
 /*      <br>",fileres,fileres,fileres,fileres); */        for(i=1; i<=npar; i++){ /* Computes gradient */
 /*  else  */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */        }
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
  m=cptcoveff;          gp[i] = prlim[i][i];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}     
         for(i=1; i<=npar; i++) /* Computes gradient */
  jj1=0;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  for(k1=1; k1<=m;k1++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    for(i1=1; i1<=ncodemax[k1];i1++){        for(i=1;i<=nlstate;i++)
      jj1++;          gm[i] = prlim[i][i];
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for(i=1;i<=nlstate;i++)
        for (cpt=1; cpt<=cptcoveff;cpt++)           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      } /* End theta */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }      trgradg =matrix(1,nlstate,1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\      for(j=1; j<=nlstate;j++)
 interval) in state (%d): %s%d%d.png <br>\        for(theta=1; theta <=npar; theta++)
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"pe"),cpt,jj1,subdirf2(optionfilefiname,"pe"),cpt,jj1);            trgradg[j][theta]=gradg[theta][j];
      }  
    } /* end i1 */      for(i=1;i<=nlstate;i++)
  }/* End k1 */        varpl[i][(int)age] =0.;
  fprintf(fichtm,"</ul>");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
  fflush(fichtm);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 }      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char path[], double p[]){      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   char dirfileres[132],optfileres[132];        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      fprintf(ficresvpl,"\n");
   int ng;      free_vector(gp,1,nlstate);
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */      free_vector(gm,1,nlstate);
 /*     printf("Problem with file %s",optionfilegnuplot); */      free_matrix(gradg,1,npar,1,nlstate);
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */      free_matrix(trgradg,1,nlstate,1,npar);
 /*   } */    } /* End age */
   
   /*#ifdef windows */    free_vector(xp,1,npar);
   fprintf(ficgp,"cd \"%s\" \n",path);    free_matrix(doldm,1,nlstate,1,npar);
     /*#endif */    free_matrix(dnewm,1,nlstate,1,nlstate);
   m=pow(2,cptcoveff);  
   }
   strcpy(dirfileres,optionfilefiname);  
   strcpy(optfileres,"vpl");  /************ Variance of one-step probabilities  ******************/
  /* 1eme*/  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   for (cpt=1; cpt<= nlstate ; cpt ++) {  {
    for (k1=1; k1<= m ; k1 ++) {    int i, j=0,  i1, k1, l1, t, tj;
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);    int k2, l2, j1,  z1;
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);    int k=0,l, cptcode;
      fprintf(ficgp,"set xlabel \"Age\" \n\    int first=1, first1;
 set ylabel \"Probability\" \n\    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 set ter png small\n\    double **dnewm,**doldm;
 set size 0.65,0.65\n\    double *xp;
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);    double *gp, *gm;
     double **gradg, **trgradg;
      for (i=1; i<= nlstate ; i ++) {    double **mu;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double age,agelim, cov[NCOVMAX];
        else fprintf(ficgp," \%%*lf (\%%*lf)");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      }    int theta;
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    char fileresprob[FILENAMELENGTH];
      for (i=1; i<= nlstate ; i ++) {    char fileresprobcov[FILENAMELENGTH];
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    char fileresprobcor[FILENAMELENGTH];
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }     double ***varpij;
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);   
      for (i=1; i<= nlstate ; i ++) {    strcpy(fileresprob,"prob");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprob,fileres);
        else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
      }        printf("Problem with resultfile: %s\n", fileresprob);
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
    }    }
   }    strcpy(fileresprobcov,"probcov");
   /*2 eme*/    strcat(fileresprobcov,fileres);
       if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   for (k1=1; k1<= m ; k1 ++) {       printf("Problem with resultfile: %s\n", fileresprobcov);
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    }
         strcpy(fileresprobcor,"probcor");
     for (i=1; i<= nlstate+1 ; i ++) {    strcat(fileresprobcor,fileres);
       k=2*i;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);      printf("Problem with resultfile: %s\n", fileresprobcor);
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
         else fprintf(ficgp," \%%*lf (\%%*lf)");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       }       fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    pstamp(ficresprob);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       }       fprintf(ficresprob,"# Age");
       fprintf(ficgp,"\" t\"\" w l 0,");    pstamp(ficresprobcov);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresprobcov,"# Age");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    pstamp(ficresprobcor);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       }       fprintf(ficresprobcor,"# Age");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=(nlstate+ndeath);j++){
           fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   /*3eme*/        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           fprintf(ficresprobcor," p%1d-%1d ",i,j);
   for (k1=1; k1<= m ; k1 ++) {       }  
     for (cpt=1; cpt<= nlstate ; cpt ++) {   /* fprintf(ficresprob,"\n");
       k=2+nlstate*(2*cpt-2);    fprintf(ficresprobcov,"\n");
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);    fprintf(ficresprobcor,"\n");
       fprintf(ficgp,"set ter png small\n\   */
 set size 0.65,0.65\n\   xp=vector(1,npar);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    first=1;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fprintf(ficgp,"\n# Routine varprob");
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
             fprintf(fichtm,"\n");
       */  
       for (i=1; i< nlstate ; i ++) {    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
             file %s<br>\n",optionfilehtmcov);
       }     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     }  and drawn. It helps understanding how is the covariance between two incidences.\
   }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   /* CV preval stable (period) */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   for (k1=1; k1<= m ; k1 ++) {   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     for (cpt=1; cpt<=nlstate ; cpt ++) {  standard deviations wide on each axis. <br>\
       k=3;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 set ter png small\nset size 0.65,0.65\n\  
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);    cov[1]=1;
           tj=cptcoveff;
       for (i=1; i< nlstate ; i ++)    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         fprintf(ficgp,"+$%d",k+i+1);    j1=0;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    for(t=1; t<=tj;t++){
             for(i1=1; i1<=ncodemax[t];i1++){
       l=3+(nlstate+ndeath)*cpt;        j1++;
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);        if  (cptcovn>0) {
       for (i=1; i< nlstate ; i ++) {          fprintf(ficresprob, "\n#********** Variable ");
         l=3+(nlstate+ndeath)*cpt;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficgp,"+$%d",l+i+1);          fprintf(ficresprob, "**********\n#\n");
       }          fprintf(ficresprobcov, "\n#********** Variable ");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);             for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }           fprintf(ficresprobcov, "**********\n#\n");
   }           
             fprintf(ficgp, "\n#********** Variable ");
   /* proba elementaires */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficgp, "**********\n#\n");
     for(k=1; k <=(nlstate+ndeath); k++){         
       if (k != i) {         
         for(j=1; j <=ncovmodel; j++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           jk++;           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficgp,"\n");         
         }          fprintf(ficresprobcor, "\n#********** Variable ");    
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresprobcor, "**********\n#");    
    }        }
        
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        for (age=bage; age<=fage; age ++){
      for(jk=1; jk <=m; jk++) {          cov[2]=age;
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);           for (k=1; k<=cptcovn;k++) {
        if (ng==2)            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          }
        else          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          fprintf(ficgp,"\nset title \"Probability\"\n");          for (k=1; k<=cptcovprod;k++)
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        i=1;         
        for(k2=1; k2<=nlstate; k2++) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
          k3=i;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
          for(k=1; k<=(nlstate+ndeath); k++) {          gp=vector(1,(nlstate)*(nlstate+ndeath));
            if (k != k2){          gm=vector(1,(nlstate)*(nlstate+ndeath));
              if(ng==2)     
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          for(theta=1; theta <=npar; theta++){
              else            for(i=1; i<=npar; i++)
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
              ij=1;           
              for(j=3; j <=ncovmodel; j++) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {           
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            k=0;
                  ij++;            for(i=1; i<= (nlstate); i++){
                }              for(j=1; j<=(nlstate+ndeath);j++){
                else                k=k+1;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                gp[k]=pmmij[i][j];
              }              }
              fprintf(ficgp,")/(1");            }
                         
              for(k1=1; k1 <=nlstate; k1++){               for(i=1; i<=npar; i++)
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                ij=1;     
                for(j=3; j <=ncovmodel; j++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            k=0;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            for(i=1; i<=(nlstate); i++){
                    ij++;              for(j=1; j<=(nlstate+ndeath);j++){
                  }                k=k+1;
                  else                gm[k]=pmmij[i][j];
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              }
                }            }
                fprintf(ficgp,")");       
              }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          }
              i=i+ncovmodel;  
            }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
          } /* end k */            for(theta=1; theta <=npar; theta++)
        } /* end k2 */              trgradg[j][theta]=gradg[theta][j];
      } /* end jk */         
    } /* end ng */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
    fflush(ficgp);           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 }  /* end gnuplot */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 /*************** Moving average **************/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
   int i, cpt, cptcod;         
   int modcovmax =1;          k=0;
   int mobilavrange, mob;          for(i=1; i<=(nlstate); i++){
   double age;            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose               mu[k][(int) age]=pmmij[i][j];
                            a covariate has 2 modalities */            }
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     if(mobilav==1) mobilavrange=5; /* default */              varpij[i][j][(int)age] = doldm[i][j];
     else mobilavrange=mobilav;  
     for (age=bage; age<=fage; age++)          /*printf("\n%d ",(int)age);
       for (i=1; i<=nlstate;i++)            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         for (cptcod=1;cptcod<=modcovmax;cptcod++)            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     /* We keep the original values on the extreme ages bage, fage and for             }*/
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2  
        we use a 5 terms etc. until the borders are no more concerned.           fprintf(ficresprob,"\n%d ",(int)age);
     */           fprintf(ficresprobcov,"\n%d ",(int)age);
     for (mob=3;mob <=mobilavrange;mob=mob+2){          fprintf(ficresprobcor,"\n%d ",(int)age);
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  
         for (i=1; i<=nlstate;i++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               for (cpt=1;cpt<=(mob-1)/2;cpt++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];          }
               }          i=0;
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;          for (k=1; k<=(nlstate);k++){
           }            for (l=1; l<=(nlstate+ndeath);l++){
         }              i=i++;
       }/* end age */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     }/* end mob */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   }else return -1;              for (j=1; j<=i;j++){
   return 0;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 }/* End movingaverage */                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
 /************** Forecasting ******************/          }/* end of loop for state */
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){        } /* end of loop for age */
   /* proj1, year, month, day of starting projection   
      agemin, agemax range of age        /* Confidence intervalle of pij  */
      dateprev1 dateprev2 range of dates during which prevalence is computed        /*
      anproj2 year of en of projection (same day and month as proj1).          fprintf(ficgp,"\nset noparametric;unset label");
   */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   int *popage;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   double agec; /* generic age */          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   double *popeffectif,*popcount;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   double ***p3mat;        */
   double ***mobaverage;  
   char fileresf[FILENAMELENGTH];        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
   agelim=AGESUP;        for (k2=1; k2<=(nlstate);k2++){
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          for (l2=1; l2<=(nlstate+ndeath);l2++){
              if(l2==k2) continue;
   strcpy(fileresf,"f");             j=(k2-1)*(nlstate+ndeath)+l2;
   strcat(fileresf,fileres);            for (k1=1; k1<=(nlstate);k1++){
   if((ficresf=fopen(fileresf,"w"))==NULL) {              for (l1=1; l1<=(nlstate+ndeath);l1++){
     printf("Problem with forecast resultfile: %s\n", fileresf);                if(l1==k1) continue;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);                i=(k1-1)*(nlstate+ndeath)+l1;
   }                if(i<=j) continue;
   printf("Computing forecasting: result on file '%s' \n", fileresf);                for (age=bage; age<=fage; age ++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   if (mobilav!=0) {                    mu1=mu[i][(int) age]/stepm*YEARM ;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    mu2=mu[j][(int) age]/stepm*YEARM;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){                    c12=cv12/sqrt(v1*v2);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                    /* Computing eigen value of matrix of covariance */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   }                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    /*v21=sqrt(1.-v11*v11); *//* error */
   if (stepm<=12) stepsize=1;                    v21=(lc1-v1)/cv12*v11;
   if(estepm < stepm){                    v12=-v21;
     printf ("Problem %d lower than %d\n",estepm, stepm);                    v22=v11;
   }                    tnalp=v21/v11;
   else  hstepm=estepm;                       if(first1==1){
                       first1=0;
   hstepm=hstepm/stepm;                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and                    }
                                fractional in yp1 */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   anprojmean=yp;                    /*printf(fignu*/
   yp2=modf((yp1*12),&yp);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   mprojmean=yp;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   yp1=modf((yp2*30.5),&yp);                    if(first==1){
   jprojmean=yp;                      first=0;
   if(jprojmean==0) jprojmean=1;                      fprintf(ficgp,"\nset parametric;unset label");
   if(mprojmean==0) jprojmean=1;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   i1=cptcoveff;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   if (cptcovn < 1){i1=1;}   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                 subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fprintf(ficresf,"#****** Routine prevforecast **\n");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 /*            if (h==(int)(YEARM*yearp)){ */                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       k=k+1;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fprintf(ficresf,"\n#******");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for(j=1;j<=cptcoveff;j++) {                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    }else{
       }                      first=0;
       fprintf(ficresf,"******\n");                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       for(j=1; j<=nlstate+ndeath;j++){                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         for(i=1; i<=nlstate;i++)                                    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           fprintf(ficresf," p%d%d",i,j);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fprintf(ficresf," p.%d",j);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }/* if first */
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {                   } /* age mod 5 */
         fprintf(ficresf,"\n");                } /* end loop age */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);                   fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
         for (agec=fage; agec>=(ageminpar-1); agec--){               } /*l12 */
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);             } /* k12 */
           nhstepm = nhstepm/hstepm;           } /*l1 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }/* k1 */
           oldm=oldms;savm=savms;      } /* loop covariates */
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);      }
             free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           for (h=0; h<=nhstepm; h++){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
             if (h*hstepm/YEARM*stepm ==yearp) {    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
               fprintf(ficresf,"\n");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
               for(j=1;j<=cptcoveff;j++)     free_vector(xp,1,npar);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprob);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);    fclose(ficresprobcov);
             }     fclose(ficresprobcor);
             for(j=1; j<=nlstate+ndeath;j++) {    fflush(ficgp);
               ppij=0.;    fflush(fichtmcov);
               for(i=1; i<=nlstate;i++) {  }
                 if (mobilav==1)   
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];  
                 else {  /******************* Printing html file ***********/
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                 }                    int lastpass, int stepm, int weightopt, char model[],\
                 if (h*hstepm/YEARM*stepm== yearp) {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);                    int popforecast, int estepm ,\
                 }                    double jprev1, double mprev1,double anprev1, \
               } /* end i */                    double jprev2, double mprev2,double anprev2){
               if (h*hstepm/YEARM*stepm==yearp) {    int jj1, k1, i1, cpt;
                 fprintf(ficresf," %.3f", ppij);  
               }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
             }/* end j */     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
           } /* end h */  </ul>");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
         } /* end agec */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       } /* end yearp */             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     } /* end cptcod */     fprintf(fichtm,"\
   } /* end  cptcov */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                     stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   fclose(ficresf);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 }     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 /************** Forecasting *****not tested NB*************/     <a href=\"%s\">%s</a> <br>\n",
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
        fprintf(fichtm,"\
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;   - Population projections by age and states: \
   int *popage;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   double calagedatem, agelim, kk1, kk2;  
   double *popeffectif,*popcount;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   double ***p3mat,***tabpop,***tabpopprev;  
   double ***mobaverage;   m=cptcoveff;
   char filerespop[FILENAMELENGTH];   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   jj1=0;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   for(k1=1; k1<=m;k1++){
   agelim=AGESUP;     for(i1=1; i1<=ncodemax[k1];i1++){
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       jj1++;
          if (cptcovn > 0) {
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
            for (cpt=1; cpt<=cptcoveff;cpt++)
              fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   strcpy(filerespop,"pop");          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   strcat(filerespop,fileres);       }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       /* Pij */
     printf("Problem with forecast resultfile: %s\n", filerespop);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
   }       /* Quasi-incidences */
   printf("Computing forecasting: result on file '%s' \n", filerespop);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
   if (mobilav!=0) {           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){         }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);       for(cpt=1; cpt<=nlstate;cpt++) {
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
     }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   }       }
      } /* end i1 */
   stepsize=(int) (stepm+YEARM-1)/YEARM;   }/* End k1 */
   if (stepm<=12) stepsize=1;   fprintf(fichtm,"</ul>");
     
   agelim=AGESUP;  
      fprintf(fichtm,"\
   hstepm=1;  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   hstepm=hstepm/stepm;    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     
   if (popforecast==1) {   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     if((ficpop=fopen(popfile,"r"))==NULL) {           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       printf("Problem with population file : %s\n",popfile);exit(0);   fprintf(fichtm,"\
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);   fprintf(fichtm,"\
     popcount=vector(0,AGESUP);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     i=1;      fprintf(fichtm,"\
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
         <a href=\"%s\">%s</a> <br>\n</li>",
     imx=i;             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];   fprintf(fichtm,"\
   }   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   fprintf(fichtm,"\
       k=k+1;   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       fprintf(ficrespop,"\n#******");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       for(j=1;j<=cptcoveff;j++) {   fprintf(fichtm,"\
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
       }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       fprintf(ficrespop,"******\n");   fprintf(fichtm,"\
       fprintf(ficrespop,"# Age");   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
         /*  if(popforecast==1) fprintf(fichtm,"\n */
       for (cpt=0; cpt<=0;cpt++) {   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           /*      <br>",fileres,fileres,fileres,fileres); */
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   /*  else  */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           nhstepm = nhstepm/hstepm;    fflush(fichtm);
              fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;   m=cptcoveff;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           
           for (h=0; h<=nhstepm; h++){   jj1=0;
             if (h==(int) (calagedatem+YEARM*cpt)) {   for(k1=1; k1<=m;k1++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     for(i1=1; i1<=ncodemax[k1];i1++){
             }        jj1++;
             for(j=1; j<=nlstate+ndeath;j++) {       if (cptcovn > 0) {
               kk1=0.;kk2=0;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
               for(i=1; i<=nlstate;i++) {                       for (cpt=1; cpt<=cptcoveff;cpt++)
                 if (mobilav==1)            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                 else {       }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       for(cpt=1; cpt<=nlstate;cpt++) {
                 }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
               }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
               if (h==(int)(calagedatem+12*cpt)){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;       }
                   /*fprintf(ficrespop," %.3f", kk1);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  health expectancies in states (1) and (2): %s%d.png<br>\
               }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
             }     } /* end i1 */
             for(i=1; i<=nlstate;i++){   }/* End k1 */
               kk1=0.;   fprintf(fichtm,"</ul>");
                 for(j=1; j<=nlstate;j++){   fflush(fichtm);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   }
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];  /******************* Gnuplot file **************/
             }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)     char dirfileres[132],optfileres[132];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
           }    int ng;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         }  /*     printf("Problem with file %s",optionfilegnuplot); */
       }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
    /*   } */
   /******/  
     /*#ifdef windows */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {     fprintf(ficgp,"cd \"%s\" \n",pathc);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         /*#endif */
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){     m=pow(2,cptcoveff);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
           nhstepm = nhstepm/hstepm;     strcpy(dirfileres,optionfilefiname);
               strcpy(optfileres,"vpl");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   /* 1eme*/
           oldm=oldms;savm=savms;    for (cpt=1; cpt<= nlstate ; cpt ++) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       for (k1=1; k1<= m ; k1 ++) {
           for (h=0; h<=nhstepm; h++){       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
             if (h==(int) (calagedatem+YEARM*cpt)) {       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       fprintf(ficgp,"set xlabel \"Age\" \n\
             }   set ylabel \"Probability\" \n\
             for(j=1; j<=nlstate+ndeath;j++) {  set ter png small\n\
               kk1=0.;kk2=0;  set size 0.65,0.65\n\
               for(i=1; i<=nlstate;i++) {                plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }       for (i=1; i<= nlstate ; i ++) {
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                 if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             }         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }       }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         }       for (i=1; i<= nlstate ; i ++) {
       }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }
         fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if (popforecast==1) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
     free_ivector(popage,0,AGESUP);       }  
     free_vector(popeffectif,0,AGESUP);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     free_vector(popcount,0,AGESUP);     }
   }    }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*2 eme*/
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
   fclose(ficrespop);    for (k1=1; k1<= m ; k1 ++) {
 } /* End of popforecast */      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 int fileappend(FILE *fichier, char *optionfich)     
 {      for (i=1; i<= nlstate+1 ; i ++) {
   if((fichier=fopen(optionfich,"a"))==NULL) {        k=2*i;
     printf("Problem with file: %s\n", optionfich);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     fprintf(ficlog,"Problem with file: %s\n", optionfich);        for (j=1; j<= nlstate+1 ; j ++) {
     return (0);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fflush(fichier);        }  
   return (1);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 {        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   char ca[32], cb[32], cc[32];          else fprintf(ficgp," \%%*lf (\%%*lf)");
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;        }  
   int numlinepar;        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(i=1; i <=nlstate; i++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     jj=0;        }  
     for(j=1; j <=nlstate+ndeath; j++){        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       if(j==i) continue;        else fprintf(ficgp,"\" t\"\" w l 0,");
       jj++;      }
       /*ca[0]= k+'a'-1;ca[1]='\0';*/    }
       printf("%1d%1d",i,j);   
       fprintf(ficparo,"%1d%1d",i,j);    /*3eme*/
       for(k=1; k<=ncovmodel;k++){   
         /*        printf(" %lf",param[i][j][k]); */    for (k1=1; k1<= m ; k1 ++) {
         /*        fprintf(ficparo," %lf",param[i][j][k]); */      for (cpt=1; cpt<= nlstate ; cpt ++) {
         printf(" 0.");        /*       k=2+nlstate*(2*cpt-2); */
         fprintf(ficparo," 0.");        k=2+(nlstate+1)*(cpt-1);
       }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       printf("\n");        fprintf(ficgp,"set ter png small\n\
       fprintf(ficparo,"\n");  set size 0.65,0.65\n\
     }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   printf("# Scales (for hessian or gradient estimation)\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   for(i=1; i <=nlstate; i++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     jj=0;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     for(j=1; j <=nlstate+ndeath; j++){         
       if(j==i) continue;        */
       jj++;        for (i=1; i< nlstate ; i ++) {
       fprintf(ficparo,"%1d%1d",i,j);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
       printf("%1d%1d",i,j);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
       fflush(stdout);         
       for(k=1; k<=ncovmodel;k++){        }
         /*      printf(" %le",delti3[i][j][k]); */        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */      }
         printf(" 0.");    }
         fprintf(ficparo," 0.");   
       }    /* CV preval stable (period) */
       numlinepar++;    for (k1=1; k1<= m ; k1 ++) {
       printf("\n");      for (cpt=1; cpt<=nlstate ; cpt ++) {
       fprintf(ficparo,"\n");        k=3;
     }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   printf("# Covariance matrix\n");  set ter png small\nset size 0.65,0.65\n\
 /* # 121 Var(a12)\n\ */  unset log y\n\
 /* # 122 Cov(b12,a12) Var(b12)\n\ */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */       
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */        for (i=1; i< nlstate ; i ++)
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */          fprintf(ficgp,"+$%d",k+i+1);
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */       
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        l=3+(nlstate+ndeath)*cpt;
   fflush(stdout);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   fprintf(ficparo,"# Covariance matrix\n");        for (i=1; i< nlstate ; i ++) {
   /* # 121 Var(a12)\n\ */          l=3+(nlstate+ndeath)*cpt;
   /* # 122 Cov(b12,a12) Var(b12)\n\ */          fprintf(ficgp,"+$%d",l+i+1);
   /* #   ...\n\ */        }
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
         }
   for(itimes=1;itimes<=2;itimes++){    }  
     jj=0;   
     for(i=1; i <=nlstate; i++){    /* proba elementaires */
       for(j=1; j <=nlstate+ndeath; j++){    for(i=1,jk=1; i <=nlstate; i++){
         if(j==i) continue;      for(k=1; k <=(nlstate+ndeath); k++){
         for(k=1; k<=ncovmodel;k++){        if (k != i) {
           jj++;          for(j=1; j <=ncovmodel; j++){
           ca[0]= k+'a'-1;ca[1]='\0';            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
           if(itimes==1){            jk++;
             printf("#%1d%1d%d",i,j,k);            fprintf(ficgp,"\n");
             fprintf(ficparo,"#%1d%1d%d",i,j,k);          }
           }else{        }
             printf("%1d%1d%d",i,j,k);      }
             fprintf(ficparo,"%1d%1d%d",i,j,k);     }
             /*  printf(" %.5le",matcov[i][j]); */  
           }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           ll=0;       for(jk=1; jk <=m; jk++) {
           for(li=1;li <=nlstate; li++){         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
             for(lj=1;lj <=nlstate+ndeath; lj++){         if (ng==2)
               if(lj==li) continue;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
               for(lk=1;lk<=ncovmodel;lk++){         else
                 ll++;           fprintf(ficgp,"\nset title \"Probability\"\n");
                 if(ll<=jj){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                   cb[0]= lk +'a'-1;cb[1]='\0';         i=1;
                   if(ll<jj){         for(k2=1; k2<=nlstate; k2++) {
                     if(itimes==1){           k3=i;
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);           for(k=1; k<=(nlstate+ndeath); k++) {
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);             if (k != k2){
                     }else{               if(ng==2)
                       printf(" 0.");                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                       fprintf(ficparo," 0.");               else
                     }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                   }else{               ij=1;
                     if(itimes==1){               for(j=3; j <=ncovmodel; j++) {
                       printf(" Var(%s%1d%1d)",ca,i,j);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                     }else{                   ij++;
                       printf(" 0.");                 }
                       fprintf(ficparo," 0.");                 else
                     }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   }               }
                 }               fprintf(ficgp,")/(1");
               } /* end lk */               
             } /* end lj */               for(k1=1; k1 <=nlstate; k1++){  
           } /* end li */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           printf("\n");                 ij=1;
           fprintf(ficparo,"\n");                 for(j=3; j <=ncovmodel; j++){
           numlinepar++;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         } /* end k*/                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       } /*end j */                     ij++;
     } /* end i */                   }
   }                   else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 } /* end of prwizard */                 }
                  fprintf(ficgp,")");
 /***********************************************/               }
 /**************** Main Program *****************/               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 /***********************************************/               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
 int main(int argc, char *argv[])             }
 {           } /* end k */
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);         } /* end k2 */
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;       } /* end jk */
   int jj, imk;     } /* end ng */
   int numlinepar=0; /* Current linenumber of parameter file */     fflush(ficgp);
   /*  FILE *fichtm; *//* Html File */  }  /* end gnuplot */
   /* FILE *ficgp;*/ /*Gnuplot File */  
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   double fret;  
   double **xi,tmp,delta;    int i, cpt, cptcod;
     int modcovmax =1;
   double dum; /* Dummy variable */    int mobilavrange, mob;
   double ***p3mat;    double age;
   double ***mobaverage;  
   int *indx;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
   char line[MAXLINE], linepar[MAXLINE];                             a covariate has 2 modalities */
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   char pathr[MAXLINE];   
   int firstobs=1, lastobs=10;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   int sdeb, sfin; /* Status at beginning and end */      if(mobilav==1) mobilavrange=5; /* default */
   int c,  h , cpt,l;      else mobilavrange=mobilav;
   int ju,jl, mi;      for (age=bage; age<=fage; age++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for (i=1; i<=nlstate;i++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;           for (cptcod=1;cptcod<=modcovmax;cptcod++)
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   int mobilav=0,popforecast=0;      /* We keep the original values on the extreme ages bage, fage and for
   int hstepm, nhstepm;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;         we use a 5 terms etc. until the borders are no more concerned.
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;      */
       for (mob=3;mob <=mobilavrange;mob=mob+2){
   double bage, fage, age, agelim, agebase;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   double ftolpl=FTOL;          for (i=1; i<=nlstate;i++){
   double **prlim;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   double *severity;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   double ***param; /* Matrix of parameters */                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   double  *p;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   double **matcov; /* Matrix of covariance */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   double ***delti3; /* Scale */                }
   double *delti; /* Scale */              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   double ***eij, ***vareij;            }
   double **varpl; /* Variances of prevalence limits by age */          }
   double *epj, vepp;        }/* end age */
   double kk1, kk2;      }/* end mob */
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    }else return -1;
     return 0;
   char *alph[]={"a","a","b","c","d","e"}, str[4];  }/* End movingaverage */
   
   
   char z[1]="c", occ;  /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /* proj1, year, month, day of starting projection
   char strstart[80], *strt, strtend[80];       agemin, agemax range of age
   char *stratrunc;       dateprev1 dateprev2 range of dates during which prevalence is computed
   int lstra;       anproj2 year of en of projection (same day and month as proj1).
     */
   long total_usecs;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   struct timeval start_time, end_time, curr_time;    int *popage;
   struct timezone tzp;    double agec; /* generic age */
   extern int gettimeofday();    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   struct tm tmg, tm, *gmtime(), *localtime();    double *popeffectif,*popcount;
   long time_value;    double ***p3mat;
   extern long time();    double ***mobaverage;
      char fileresf[FILENAMELENGTH];
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   (void) gettimeofday(&start_time,&tzp);    agelim=AGESUP;
   tm = *localtime(&start_time.tv_sec);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   tmg = *gmtime(&start_time.tv_sec);   
   strcpy(strstart,asctime(&tm));    strcpy(fileresf,"f");
     strcat(fileresf,fileres);
 /*  printf("Localtime (at start)=%s",strstart); */    if((ficresf=fopen(fileresf,"w"))==NULL) {
 /*  tp.tv_sec = tp.tv_sec +86400; */      printf("Problem with forecast resultfile: %s\n", fileresf);
 /*  tm = *localtime(&start_time.tv_sec); */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */    }
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */    printf("Computing forecasting: result on file '%s' \n", fileresf);
 /*   tmg.tm_hour=tmg.tm_hour + 1; */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 /*   tp.tv_sec = mktime(&tmg); */  
 /*   strt=asctime(&tmg); */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 /*   printf("Time(after) =%s",strstart);  */  
 /*  (void) time (&time_value);    if (mobilav!=0) {
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 *  tm = *localtime(&time_value);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 *  strstart=asctime(&tm);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);         printf(" Error in movingaverage mobilav=%d\n",mobilav);
 */      }
     }
   getcwd(pathcd, size);  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
   printf("\n%s\n%s",version,fullversion);    if (stepm<=12) stepsize=1;
   if(argc <=1){    if(estepm < stepm){
     printf("\nEnter the parameter file name: ");      printf ("Problem %d lower than %d\n",estepm, stepm);
     scanf("%s",pathtot);    }
   }    else  hstepm=estepm;  
   else{  
     strcpy(pathtot,argv[1]);    hstepm=hstepm/stepm;
   }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/                                 fractional in yp1 */
   /*cygwin_split_path(pathtot,path,optionfile);    anprojmean=yp;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    yp2=modf((yp1*12),&yp);
   /* cutv(path,optionfile,pathtot,'\\');*/    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    jprojmean=yp;
   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    if(jprojmean==0) jprojmean=1;
   chdir(path);    if(mprojmean==0) jprojmean=1;
   strcpy(command,"mkdir ");  
   strcat(command,optionfilefiname);    i1=cptcoveff;
   if((outcmd=system(command)) != 0){    if (cptcovn < 1){i1=1;}
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);   
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
     /* fclose(ficlog); */   
 /*     exit(1); */    fprintf(ficresf,"#****** Routine prevforecast **\n");
   }  
 /*   if((imk=mkdir(optionfilefiname))<0){ */  /*            if (h==(int)(YEARM*yearp)){ */
 /*     perror("mkdir"); */    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 /*   } */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   /*-------- arguments in the command line --------*/        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
   /* Log file */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   strcat(filelog, optionfilefiname);        }
   strcat(filelog,".log");    /* */        fprintf(ficresf,"******\n");
   if((ficlog=fopen(filelog,"w"))==NULL)    {        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     printf("Problem with logfile %s\n",filelog);        for(j=1; j<=nlstate+ndeath;j++){
     goto end;          for(i=1; i<=nlstate;i++)              
   }            fprintf(ficresf," p%d%d",i,j);
   fprintf(ficlog,"Log filename:%s\n",filelog);          fprintf(ficresf," p.%d",j);
   fprintf(ficlog,"\n%s\n%s",version,fullversion);        }
   fprintf(ficlog,"\nEnter the parameter file name: ");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   fprintf(ficlog,"pathtot=%s\n\          fprintf(ficresf,"\n");
  path=%s \n\          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
  optionfile=%s\n\  
  optionfilext=%s\n\          for (agec=fage; agec>=(ageminpar-1); agec--){
  optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   printf("Localtime (at start):%s",strstart);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficlog,"Localtime (at start): %s",strstart);            oldm=oldms;savm=savms;
   fflush(ficlog);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
          
   /* */            for (h=0; h<=nhstepm; h++){
   strcpy(fileres,"r");              if (h*hstepm/YEARM*stepm ==yearp) {
   strcat(fileres, optionfilefiname);                fprintf(ficresf,"\n");
   strcat(fileres,".txt");    /* Other files have txt extension */                for(j=1;j<=cptcoveff;j++)
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /*---------arguments file --------*/                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              for(j=1; j<=nlstate+ndeath;j++) {
     printf("Problem with optionfile %s\n",optionfile);                ppij=0.;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                for(i=1; i<=nlstate;i++) {
     fflush(ficlog);                  if (mobilav==1)
     goto end;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   }                  else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
   strcpy(filereso,"o");                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   strcat(filereso,fileres);                  }
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */                } /* end i */
     printf("Problem with Output resultfile: %s\n", filereso);                if (h*hstepm/YEARM*stepm==yearp) {
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);                  fprintf(ficresf," %.3f", ppij);
     fflush(ficlog);                }
     goto end;              }/* end j */
   }            } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* Reads comments: lines beginning with '#' */          } /* end agec */
   numlinepar=0;        } /* end yearp */
   while((c=getc(ficpar))=='#' && c!= EOF){      } /* end cptcod */
     ungetc(c,ficpar);    } /* end  cptcov */
     fgets(line, MAXLINE, ficpar);         
     numlinepar++;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     puts(line);  
     fputs(line,ficparo);    fclose(ficresf);
     fputs(line,ficlog);  }
   }  
   ungetc(c,ficpar);  /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);   
   numlinepar++;    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    int *popage;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double calagedatem, agelim, kk1, kk2;
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double *popeffectif,*popcount;
   fflush(ficlog);    double ***p3mat,***tabpop,***tabpopprev;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***mobaverage;
     ungetc(c,ficpar);    char filerespop[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);  
     numlinepar++;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     puts(line);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fputs(line,ficparo);    agelim=AGESUP;
     fputs(line,ficlog);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   }   
   ungetc(c,ficpar);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
       
   covar=matrix(0,NCOVMAX,1,n);     strcpy(filerespop,"pop");
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    strcat(filerespop,fileres);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    }
      printf("Computing forecasting: result on file '%s' \n", filerespop);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);  
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  
     fclose (ficparo);    if (mobilav!=0) {
     fclose (ficlog);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     exit(0);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   /* Read guess parameters */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     numlinepar++;    if (stepm<=12) stepsize=1;
     puts(line);   
     fputs(line,ficparo);    agelim=AGESUP;
     fputs(line,ficlog);   
   }    hstepm=1;
   ungetc(c,ficpar);    hstepm=hstepm/stepm;
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if (popforecast==1) {
   for(i=1; i <=nlstate; i++){      if((ficpop=fopen(popfile,"r"))==NULL) {
     j=0;        printf("Problem with population file : %s\n",popfile);exit(0);
     for(jj=1; jj <=nlstate+ndeath; jj++){        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       if(jj==i) continue;      }
       j++;      popage=ivector(0,AGESUP);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      popeffectif=vector(0,AGESUP);
       if ((i1 != i) && (j1 != j)){      popcount=vector(0,AGESUP);
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);     
         exit(1);      i=1;  
       }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       fprintf(ficparo,"%1d%1d",i1,j1);     
       if(mle==1)      imx=i;
         printf("%1d%1d",i,j);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
       fprintf(ficlog,"%1d%1d",i,j);    }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
         if(mle==1){     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           printf(" %lf",param[i][j][k]);        k=k+1;
           fprintf(ficlog," %lf",param[i][j][k]);        fprintf(ficrespop,"\n#******");
         }        for(j=1;j<=cptcoveff;j++) {
         else          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," %lf",param[i][j][k]);        }
         fprintf(ficparo," %lf",param[i][j][k]);        fprintf(ficrespop,"******\n");
       }        fprintf(ficrespop,"# Age");
       fscanf(ficpar,"\n");        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
       numlinepar++;        if (popforecast==1)  fprintf(ficrespop," [Population]");
       if(mle==1)       
         printf("\n");        for (cpt=0; cpt<=0;cpt++) {
       fprintf(ficlog,"\n");          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
       fprintf(ficparo,"\n");         
     }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   }              nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   fflush(ficlog);            nhstepm = nhstepm/hstepm;
            
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
   p=param[1][1];            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
            
   /* Reads comments: lines beginning with '#' */            for (h=0; h<=nhstepm; h++){
   while((c=getc(ficpar))=='#' && c!= EOF){              if (h==(int) (calagedatem+YEARM*cpt)) {
     ungetc(c,ficpar);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     fgets(line, MAXLINE, ficpar);              }
     numlinepar++;              for(j=1; j<=nlstate+ndeath;j++) {
     puts(line);                kk1=0.;kk2=0;
     fputs(line,ficparo);                for(i=1; i<=nlstate;i++) {              
     fputs(line,ficlog);                  if (mobilav==1)
   }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   ungetc(c,ficpar);                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                  }
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */                }
   for(i=1; i <=nlstate; i++){                if (h==(int)(calagedatem+12*cpt)){
     for(j=1; j <=nlstate+ndeath-1; j++){                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    /*fprintf(ficrespop," %.3f", kk1);
       if ((i1-i)*(j1-j)!=0){                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);                }
         exit(1);              }
       }              for(i=1; i<=nlstate;i++){
       printf("%1d%1d",i,j);                kk1=0.;
       fprintf(ficparo,"%1d%1d",i1,j1);                  for(j=1; j<=nlstate;j++){
       fprintf(ficlog,"%1d%1d",i1,j1);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
       for(k=1; k<=ncovmodel;k++){                  }
         fscanf(ficpar,"%le",&delti3[i][j][k]);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
         printf(" %le",delti3[i][j][k]);              }
         fprintf(ficparo," %le",delti3[i][j][k]);  
         fprintf(ficlog," %le",delti3[i][j][k]);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
       }                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
       fscanf(ficpar,"\n");            }
       numlinepar++;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("\n");          }
       fprintf(ficparo,"\n");        }
       fprintf(ficlog,"\n");   
     }    /******/
   }  
   fflush(ficlog);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   delti=delti3[1][1];          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */           
               p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* Reads comments: lines beginning with '#' */            oldm=oldms;savm=savms;
   while((c=getc(ficpar))=='#' && c!= EOF){            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     ungetc(c,ficpar);            for (h=0; h<=nhstepm; h++){
     fgets(line, MAXLINE, ficpar);              if (h==(int) (calagedatem+YEARM*cpt)) {
     numlinepar++;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     puts(line);              }
     fputs(line,ficparo);              for(j=1; j<=nlstate+ndeath;j++) {
     fputs(line,ficlog);                kk1=0.;kk2=0;
   }                for(i=1; i<=nlstate;i++) {              
   ungetc(c,ficpar);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                   }
   matcov=matrix(1,npar,1,npar);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   for(i=1; i <=npar; i++){              }
     fscanf(ficpar,"%s",&str);            }
     if(mle==1)            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("%s",str);          }
     fprintf(ficlog,"%s",str);        }
     fprintf(ficparo,"%s",str);     }
     for(j=1; j <=i; j++){    }
       fscanf(ficpar," %le",&matcov[i][j]);   
       if(mle==1){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         printf(" %.5le",matcov[i][j]);  
       }    if (popforecast==1) {
       fprintf(ficlog," %.5le",matcov[i][j]);      free_ivector(popage,0,AGESUP);
       fprintf(ficparo," %.5le",matcov[i][j]);      free_vector(popeffectif,0,AGESUP);
     }      free_vector(popcount,0,AGESUP);
     fscanf(ficpar,"\n");    }
     numlinepar++;    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if(mle==1)    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("\n");    fclose(ficrespop);
     fprintf(ficlog,"\n");  } /* End of popforecast */
     fprintf(ficparo,"\n");  
   }  int fileappend(FILE *fichier, char *optionfich)
   for(i=1; i <=npar; i++)  {
     for(j=i+1;j<=npar;j++)    if((fichier=fopen(optionfich,"a"))==NULL) {
       matcov[i][j]=matcov[j][i];      printf("Problem with file: %s\n", optionfich);
          fprintf(ficlog,"Problem with file: %s\n", optionfich);
   if(mle==1)      return (0);
     printf("\n");    }
   fprintf(ficlog,"\n");    fflush(fichier);
     return (1);
   fflush(ficlog);  }
   
   /*-------- Rewriting paramater file ----------*/  
   strcpy(rfileres,"r");    /* "Rparameterfile */  /**************** function prwizard **********************/
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   strcat(rfileres,".");    /* */  {
   strcat(rfileres,optionfilext);    /* Other files have txt extension */  
   if((ficres =fopen(rfileres,"w"))==NULL) {    /* Wizard to print covariance matrix template */
     printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    char ca[32], cb[32], cc[32];
   }    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   fprintf(ficres,"#%s\n",version);    int numlinepar;
       
   /*-------- data file ----------*/    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   if((fic=fopen(datafile,"r"))==NULL)    {    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("Problem with datafile: %s\n", datafile);goto end;    for(i=1; i <=nlstate; i++){
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;      jj=0;
   }      for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
   n= lastobs;        jj++;
   severity = vector(1,maxwav);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   outcome=imatrix(1,maxwav+1,1,n);        printf("%1d%1d",i,j);
   num=lvector(1,n);        fprintf(ficparo,"%1d%1d",i,j);
   moisnais=vector(1,n);        for(k=1; k<=ncovmodel;k++){
   annais=vector(1,n);          /*        printf(" %lf",param[i][j][k]); */
   moisdc=vector(1,n);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   andc=vector(1,n);          printf(" 0.");
   agedc=vector(1,n);          fprintf(ficparo," 0.");
   cod=ivector(1,n);        }
   weight=vector(1,n);        printf("\n");
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        fprintf(ficparo,"\n");
   mint=matrix(1,maxwav,1,n);      }
   anint=matrix(1,maxwav,1,n);    }
   s=imatrix(1,maxwav+1,1,n);    printf("# Scales (for hessian or gradient estimation)\n");
   tab=ivector(1,NCOVMAX);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   ncodemax=ivector(1,8);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     for(i=1; i <=nlstate; i++){
   i=1;      jj=0;
   while (fgets(line, MAXLINE, fic) != NULL)    {      for(j=1; j <=nlstate+ndeath; j++){
     if ((i >= firstobs) && (i <=lastobs)) {        if(j==i) continue;
                 jj++;
       for (j=maxwav;j>=1;j--){        fprintf(ficparo,"%1d%1d",i,j);
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);         printf("%1d%1d",i,j);
         strcpy(line,stra);        fflush(stdout);
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(k=1; k<=ncovmodel;k++){
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          /*      printf(" %le",delti3[i][j][k]); */
       }          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                   printf(" 0.");
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficparo," 0.");
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         numlinepar++;
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        printf("\n");
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficparo,"\n");
       }
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    }
       for (j=ncovcol;j>=1;j--){    printf("# Covariance matrix\n");
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /* # 121 Var(a12)\n\ */
       }   /* # 122 Cov(b12,a12) Var(b12)\n\ */
       lstra=strlen(stra);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
         stratrunc = &(stra[lstra-9]);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
         num[i]=atol(stratrunc);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       }  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       else  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
         num[i]=atol(stra);    fflush(stdout);
             fprintf(ficparo,"# Covariance matrix\n");
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    /* # 121 Var(a12)\n\ */
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
       i=i+1;    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     }   
   }    for(itimes=1;itimes<=2;itimes++){
   /* printf("ii=%d", ij);      jj=0;
      scanf("%d",i);*/      for(i=1; i <=nlstate; i++){
   imx=i-1; /* Number of individuals */        for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
   /* for (i=1; i<=imx; i++){          for(k=1; k<=ncovmodel;k++){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            jj++;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            ca[0]= k+'a'-1;ca[1]='\0';
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            if(itimes==1){
     }*/              printf("#%1d%1d%d",i,j,k);
    /*  for (i=1; i<=imx; i++){              fprintf(ficparo,"#%1d%1d%d",i,j,k);
      if (s[4][i]==9)  s[4][i]=-1;             }else{
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              printf("%1d%1d%d",i,j,k);
                 fprintf(ficparo,"%1d%1d%d",i,j,k);
  for (i=1; i<=imx; i++)              /*  printf(" %.5le",matcov[i][j]); */
              }
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;            ll=0;
      else weight[i]=1;*/            for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
   /* Calculation of the number of parameter from char model*/                if(lj==li) continue;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                for(lk=1;lk<=ncovmodel;lk++){
   Tprod=ivector(1,15);                   ll++;
   Tvaraff=ivector(1,15);                   if(ll<=jj){
   Tvard=imatrix(1,15,1,2);                    cb[0]= lk +'a'-1;cb[1]='\0';
   Tage=ivector(1,15);                          if(ll<jj){
                          if(itimes==1){
   if (strlen(model) >1){ /* If there is at least 1 covariate */                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     j=0, j1=0, k1=1, k2=1;                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     j=nbocc(model,'+'); /* j=Number of '+' */                      }else{
     j1=nbocc(model,'*'); /* j1=Number of '*' */                        printf(" 0.");
     cptcovn=j+1;                         fprintf(ficparo," 0.");
     cptcovprod=j1; /*Number of products */                      }
                         }else{
     strcpy(modelsav,model);                       if(itimes==1){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                        printf(" Var(%s%1d%1d)",ca,i,j);
       printf("Error. Non available option model=%s ",model);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
       fprintf(ficlog,"Error. Non available option model=%s ",model);                      }else{
       goto end;                        printf(" 0.");
     }                        fprintf(ficparo," 0.");
                           }
     /* This loop fills the array Tvar from the string 'model'.*/                    }
                   }
     for(i=(j+1); i>=1;i--){                } /* end lk */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */               } /* end lj */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */            } /* end li */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            printf("\n");
       /*scanf("%d",i);*/            fprintf(ficparo,"\n");
       if (strchr(strb,'*')) {  /* Model includes a product */            numlinepar++;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/          } /* end k*/
         if (strcmp(strc,"age")==0) { /* Vn*age */        } /*end j */
           cptcovprod--;      } /* end i */
           cutv(strb,stre,strd,'V');    } /* end itimes */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  
           cptcovage++;  } /* end of prwizard */
             Tage[cptcovage]=i;  /******************* Gompertz Likelihood ******************************/
             /*printf("stre=%s ", stre);*/  double gompertz(double x[])
         }  {
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    double A,B,L=0.0,sump=0.,num=0.;
           cptcovprod--;    int i,n=0; /* n is the size of the sample */
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);    for (i=0;i<=imx-1 ; i++) {
           cptcovage++;      sump=sump+weight[i];
           Tage[cptcovage]=i;      /*    sump=sump+1;*/
         }      num=num+1;
         else {  /* Age is not in the model */    }
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/   
           Tvar[i]=ncovcol+k1;   
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    /* for (i=0; i<=imx; i++)
           Tprod[k1]=i;       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
           Tvard[k1][1]=atoi(strc); /* m*/  
           Tvard[k1][2]=atoi(stre); /* n */    for (i=1;i<=imx ; i++)
           Tvar[cptcovn+k2]=Tvard[k1][1];      {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         if (cens[i] == 1 && wav[i]>1)
           for (k=1; k<=lastobs;k++)           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       
           k1++;        if (cens[i] == 0 && wav[i]>1)
           k2=k2+2;          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
         }               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
       }       
       else { /* no more sum */        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        if (wav[i] > 1 ) { /* ??? */
        /*  scanf("%d",i);*/          L=L+A*weight[i];
       cutv(strd,strc,strb,'V');          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       Tvar[i]=atoi(strc);        }
       }      }
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
         scanf("%d",i);*/   
     } /* end of loop + */    return -2*L*num/sump;
   } /* end model */  }
     
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.  /******************* Printing html file ***********/
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                    int imx,  double p[],double **matcov,double agemortsup){
   printf("cptcovprod=%d ", cptcovprod);    int i,k;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   scanf("%d ",i);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   fclose(fic);*/    for (i=1;i<=2;i++)
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     /*  if(mle==1){*/    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   if (weightopt != 1) { /* Maximisation without weights*/    fprintf(fichtm,"</ul>");
     for(i=1;i<=n;i++) weight[i]=1.0;  
   }  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     /*-calculation of age at interview from date of interview and age at death -*/  
   agev=matrix(1,maxwav,1,imx);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
   for (i=1; i<=imx; i++) {   for (k=agegomp;k<(agemortsup-2);k++)
     for(m=2; (m<= maxwav); m++) {     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){  
         anint[m][i]=9999;   
         s[m][i]=-1;    fflush(fichtm);
       }  }
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){  
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  /******************* Gnuplot file **************/
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         s[m][i]=-1;  
       }    char dirfileres[132],optfileres[132];
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     int ng;
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);   
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */  
       }    /*#ifdef windows */
     }    fprintf(ficgp,"cd \"%s\" \n",pathc);
   }      /*#endif */
   
   for (i=1; i<=imx; i++)  {  
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    strcpy(dirfileres,optionfilefiname);
     for(m=firstpass; (m<= lastpass); m++){    strcpy(optfileres,"vpl");
       if(s[m][i] >0){    fprintf(ficgp,"set out \"graphmort.png\"\n ");
         if (s[m][i] >= nlstate+1) {    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
           if(agedc[i]>0)    fprintf(ficgp, "set ter png small\n set log y\n");
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    fprintf(ficgp, "set size 0.65,0.65\n");
               agev[m][i]=agedc[i];    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
             else {  }
               if ((int)andc[i]!=9999){  
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);  
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);  
                 agev[m][i]=-1;  
               }  
             }  /***********************************************/
         }  /**************** Main Program *****************/
         else if(s[m][i] !=9){ /* Standard case, age in fractional  /***********************************************/
                                  years but with the precision of a  
                                  month */  int main(int argc, char *argv[])
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  {
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
             agev[m][i]=1;    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
           else if(agev[m][i] <agemin){     int linei, month, year,iout;
             agemin=agev[m][i];    int jj, ll, li, lj, lk, imk;
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    int numlinepar=0; /* Current linenumber of parameter file */
           }    int itimes;
           else if(agev[m][i] >agemax){    int NDIM=2;
             agemax=agev[m][i];  
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    char ca[32], cb[32], cc[32];
           }    char dummy[]="                         ";
           /*agev[m][i]=anint[m][i]-annais[i];*/    /*  FILE *fichtm; *//* Html File */
           /*     agev[m][i] = age[i]+2*m;*/    /* FILE *ficgp;*/ /*Gnuplot File */
         }    struct stat info;
         else { /* =9 */    double agedeb, agefin,hf;
           agev[m][i]=1;    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
           s[m][i]=-1;  
         }    double fret;
       }    double **xi,tmp,delta;
       else /*= 0 Unknown */  
         agev[m][i]=1;    double dum; /* Dummy variable */
     }    double ***p3mat;
         double ***mobaverage;
   }    int *indx;
   for (i=1; i<=imx; i++)  {    char line[MAXLINE], linepar[MAXLINE];
     for(m=firstpass; (m<=lastpass); m++){    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       if (s[m][i] > (nlstate+ndeath)) {    char pathr[MAXLINE], pathimach[MAXLINE];
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         char **bp, *tok, *val; /* pathtot */
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         int firstobs=1, lastobs=10;
         goto end;    int sdeb, sfin; /* Status at beginning and end */
       }    int c,  h , cpt,l;
     }    int ju,jl, mi;
   }    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
   /*for (i=1; i<=imx; i++){    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   for (m=firstpass; (m<lastpass); m++){    int mobilav=0,popforecast=0;
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    int hstepm, nhstepm;
 }    int agemortsup;
     float  sumlpop=0.;
 }*/    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
   free_vector(severity,1,maxwav);    double **prlim;
   free_imatrix(outcome,1,maxwav+1,1,n);    double *severity;
   free_vector(moisnais,1,n);    double ***param; /* Matrix of parameters */
   free_vector(annais,1,n);    double  *p;
   /* free_matrix(mint,1,maxwav,1,n);    double **matcov; /* Matrix of covariance */
      free_matrix(anint,1,maxwav,1,n);*/    double ***delti3; /* Scale */
   free_vector(moisdc,1,n);    double *delti; /* Scale */
   free_vector(andc,1,n);    double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
        double *epj, vepp;
   wav=ivector(1,imx);    double kk1, kk2;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    double **ximort;
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    char *alph[]={"a","a","b","c","d","e"}, str[4];
        int *dcwave;
   /* Concatenates waves */  
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    char z[1]="c", occ;
   
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
   Tcode=ivector(1,100);    char *stratrunc;
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     int lstra;
   ncodemax[1]=1;  
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    long total_usecs;
          
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of   /*   setlocale (LC_ALL, ""); */
                                  the estimations*/  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   h=0;  /*   textdomain (PACKAGE); */
   m=pow(2,cptcoveff);  /*   setlocale (LC_CTYPE, ""); */
    /*   setlocale (LC_MESSAGES, ""); */
   for(k=1;k<=cptcoveff; k++){  
     for(i=1; i <=(m/pow(2,k));i++){    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       for(j=1; j <= ncodemax[k]; j++){    (void) gettimeofday(&start_time,&tzp);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    curr_time=start_time;
           h++;    tm = *localtime(&start_time.tv_sec);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    tmg = *gmtime(&start_time.tv_sec);
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    strcpy(strstart,asctime(&tm));
         }   
       }  /*  printf("Localtime (at start)=%s",strstart); */
     }  /*  tp.tv_sec = tp.tv_sec +86400; */
   }   /*  tm = *localtime(&start_time.tv_sec); */
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
      codtab[1][2]=1;codtab[2][2]=2; */  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /* for(i=1; i <=m ;i++){   /*   tmg.tm_hour=tmg.tm_hour + 1; */
      for(k=1; k <=cptcovn; k++){  /*   tp.tv_sec = mktime(&tmg); */
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  /*   strt=asctime(&tmg); */
      }  /*   printf("Time(after) =%s",strstart);  */
      printf("\n");  /*  (void) time (&time_value);
      }  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
      scanf("%d",i);*/  *  tm = *localtime(&time_value);
       *  strstart=asctime(&tm);
   /*------------ gnuplot -------------*/  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
   strcpy(optionfilegnuplot,optionfilefiname);  */
   strcat(optionfilegnuplot,".gp");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    nberr=0; /* Number of errors and warnings */
     printf("Problem with file %s",optionfilegnuplot);    nbwarn=0;
   }    getcwd(pathcd, size);
   else{  
     fprintf(ficgp,"\n# %s\n", version);     printf("\n%s\n%s",version,fullversion);
     fprintf(ficgp,"# %s\n", optionfilegnuplot);     if(argc <=1){
     fprintf(ficgp,"set missing 'NaNq'\n");      printf("\nEnter the parameter file name: ");
   }      fgets(pathr,FILENAMELENGTH,stdin);
   /*  fclose(ficgp);*/      i=strlen(pathr);
   /*--------- index.htm --------*/      if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
   strcpy(optionfilehtm,optionfilefiname);     for (tok = pathr; tok != NULL; ){
   strcat(optionfilehtm,".htm");        printf("Pathr |%s|\n",pathr);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
     printf("Problem with %s \n",optionfilehtm), exit(0);        printf("val= |%s| pathr=%s\n",val,pathr);
   }        strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \      }
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    else{
 \n\      strcpy(pathtot,argv[1]);
 <hr  size=\"2\" color=\"#EC5E5E\">\    }
  <ul><li><h4>Parameter files</h4>\n\    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    /*cygwin_split_path(pathtot,path,optionfile);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\    /* cutv(path,optionfile,pathtot,'\\');*/
  - Date and time at start: %s</ul>\n",\  
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\    /* Split argv[0], imach program to get pathimach */
           model,fileres,fileres,\    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   /*fclose(fichtm);*/    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   fflush(fichtm);   /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   strcpy(pathr,path);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   strcat(pathr,optionfilefiname);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   chdir(optionfilefiname); /* Move to directory named optionfile */    chdir(path); /* Can be a relative path */
   strcpy(lfileres,fileres);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   strcat(lfileres,"/");      printf("Current directory %s!\n",pathcd);
   strcat(lfileres,optionfilefiname);    strcpy(command,"mkdir ");
       strcat(command,optionfilefiname);
   /*  replace(pathc,path);*/    if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   /* Calculates basic frequencies. Computes observed prevalence at single age      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
      and prints on file fileres'p'. */      /* fclose(ficlog); */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);  /*     exit(1); */
     }
   fprintf(fichtm,"\n");  /*   if((imk=mkdir(optionfilefiname))<0){ */
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\  /*     perror("mkdir"); */
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\  /*   } */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\  
           imx,agemin,agemax,jmin,jmax,jmean);    /*-------- arguments in the command line --------*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Log file */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(filelog, optionfilefiname);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(filelog,".log");    /* */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    if((ficlog=fopen(filelog,"w"))==NULL)    {
           printf("Problem with logfile %s\n",filelog);
          goto end;
   /* For Powell, parameters are in a vector p[] starting at p[1]    }
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fprintf(ficlog,"Log filename:%s\n",filelog);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */   path=%s \n\
   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);   optionfile=%s\n\
   for (k=1; k<=npar;k++)   optionfilext=%s\n\
     printf(" %d %8.5f",k,p[k]);   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   printf("\n");  
   globpr=1; /* to print the contributions */    printf("Local time (at start):%s",strstart);
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    fprintf(ficlog,"Local time (at start): %s",strstart);
   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    fflush(ficlog);
   for (k=1; k<=npar;k++)  /*   (void) gettimeofday(&curr_time,&tzp); */
     printf(" %d %8.5f",k,p[k]);  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   printf("\n");  
   if(mle>=1){ /* Could be 1 or 2 */    /* */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    strcpy(fileres,"r");
   }    strcat(fileres, optionfilefiname);
         strcat(fileres,".txt");    /* Other files have txt extension */
   /*--------- results files --------------*/  
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    /*---------arguments file --------*/
     
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
   jk=1;      printf("Problem with optionfile %s\n",optionfile);
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fflush(ficlog);
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      goto end;
   for(i=1,jk=1; i <=nlstate; i++){    }
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i)   
         {  
           printf("%d%d ",i,k);    strcpy(filereso,"o");
           fprintf(ficlog,"%d%d ",i,k);    strcat(filereso,fileres);
           fprintf(ficres,"%1d%1d ",i,k);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
           for(j=1; j <=ncovmodel; j++){      printf("Problem with Output resultfile: %s\n", filereso);
             printf("%f ",p[jk]);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
             fprintf(ficlog,"%f ",p[jk]);      fflush(ficlog);
             fprintf(ficres,"%f ",p[jk]);      goto end;
             jk++;     }
           }  
           printf("\n");    /* Reads comments: lines beginning with '#' */
           fprintf(ficlog,"\n");    numlinepar=0;
           fprintf(ficres,"\n");    while((c=getc(ficpar))=='#' && c!= EOF){
         }      ungetc(c,ficpar);
     }      fgets(line, MAXLINE, ficpar);
   }      numlinepar++;
   if(mle!=0){      puts(line);
     /* Computing hessian and covariance matrix */      fputs(line,ficparo);
     ftolhess=ftol; /* Usually correct */      fputs(line,ficlog);
     hesscov(matcov, p, npar, delti, ftolhess, func);    }
   }    ungetc(c,ficpar);
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
   printf("# Scales (for hessian or gradient estimation)\n");    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    numlinepar++;
   for(i=1,jk=1; i <=nlstate; i++){    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       if (j!=i) {    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
         fprintf(ficres,"%1d%1d",i,j);    fflush(ficlog);
         printf("%1d%1d",i,j);    while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficlog,"%1d%1d",i,j);      ungetc(c,ficpar);
         for(k=1; k<=ncovmodel;k++){      fgets(line, MAXLINE, ficpar);
           printf(" %.5e",delti[jk]);      numlinepar++;
           fprintf(ficlog," %.5e",delti[jk]);      puts(line);
           fprintf(ficres," %.5e",delti[jk]);      fputs(line,ficparo);
           jk++;      fputs(line,ficlog);
         }    }
         printf("\n");    ungetc(c,ficpar);
         fprintf(ficlog,"\n");  
         fprintf(ficres,"\n");     
       }    covar=matrix(0,NCOVMAX,1,n);
     }    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   }    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
      
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
   if(mle==1)    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
   for(i=1,k=1;i<=npar;i++){    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /*  if (k>nlstate) k=1;    delti=delti3[1][1];
         i1=(i-1)/(ncovmodel*nlstate)+1;     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
         printf("%s%d%d",alph[k],i1,tab[i]);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     */      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     fprintf(ficres,"%3d",i);      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     if(mle==1)      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       printf("%3d",i);      fclose (ficparo);
     fprintf(ficlog,"%3d",i);      fclose (ficlog);
     for(j=1; j<=i;j++){      goto end;
       fprintf(ficres," %.5e",matcov[i][j]);      exit(0);
       if(mle==1)    }
         printf(" %.5e",matcov[i][j]);    else if(mle==-3) {
       fprintf(ficlog," %.5e",matcov[i][j]);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     }      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     fprintf(ficres,"\n");      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     if(mle==1)      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       printf("\n");      matcov=matrix(1,npar,1,npar);
     fprintf(ficlog,"\n");    }
     k++;    else{
   }      /* Read guess parameters */
          /* Reads comments: lines beginning with '#' */
   while((c=getc(ficpar))=='#' && c!= EOF){      while((c=getc(ficpar))=='#' && c!= EOF){
     ungetc(c,ficpar);        ungetc(c,ficpar);
     fgets(line, MAXLINE, ficpar);        fgets(line, MAXLINE, ficpar);
     puts(line);        numlinepar++;
     fputs(line,ficparo);        puts(line);
   }        fputs(line,ficparo);
   ungetc(c,ficpar);        fputs(line,ficlog);
       }
   estepm=0;      ungetc(c,ficpar);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     
   if (estepm==0 || estepm < stepm) estepm=stepm;      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   if (fage <= 2) {      for(i=1; i <=nlstate; i++){
     bage = ageminpar;        j=0;
     fage = agemaxpar;        for(jj=1; jj <=nlstate+ndeath; jj++){
   }          if(jj==i) continue;
              j++;
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fscanf(ficpar,"%1d%1d",&i1,&j1);
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          if ((i1 != i) && (j1 != j)){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
      It might be a problem of design; if ncovcol and the model are correct\n \
   while((c=getc(ficpar))=='#' && c!= EOF){  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
     ungetc(c,ficpar);            exit(1);
     fgets(line, MAXLINE, ficpar);          }
     puts(line);          fprintf(ficparo,"%1d%1d",i1,j1);
     fputs(line,ficparo);          if(mle==1)
   }            printf("%1d%1d",i,j);
   ungetc(c,ficpar);          fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);            fscanf(ficpar," %lf",&param[i][j][k]);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            if(mle==1){
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              printf(" %lf",param[i][j][k]);
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              fprintf(ficlog," %lf",param[i][j][k]);
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            }
                else
   while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficlog," %lf",param[i][j][k]);
     ungetc(c,ficpar);            fprintf(ficparo," %lf",param[i][j][k]);
     fgets(line, MAXLINE, ficpar);          }
     puts(line);          fscanf(ficpar,"\n");
     fputs(line,ficparo);          numlinepar++;
   }          if(mle==1)
   ungetc(c,ficpar);            printf("\n");
            fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;        }
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;      }  
       fflush(ficlog);
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);         p=param[1][1];
   fprintf(ficres,"pop_based=%d\n",popbased);        
         /* Reads comments: lines beginning with '#' */
   while((c=getc(ficpar))=='#' && c!= EOF){      while((c=getc(ficpar))=='#' && c!= EOF){
     ungetc(c,ficpar);        ungetc(c,ficpar);
     fgets(line, MAXLINE, ficpar);        fgets(line, MAXLINE, ficpar);
     puts(line);        numlinepar++;
     fputs(line,ficparo);        puts(line);
   }        fputs(line,ficparo);
   ungetc(c,ficpar);        fputs(line,ficlog);
       }
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      ungetc(c,ficpar);
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      for(i=1; i <=nlstate; i++){
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        for(j=1; j <=nlstate+ndeath-1; j++){
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          fscanf(ficpar,"%1d%1d",&i1,&j1);
   /* day and month of proj2 are not used but only year anproj2.*/          if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   while((c=getc(ficpar))=='#' && c!= EOF){            exit(1);
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);          printf("%1d%1d",i,j);
     puts(line);          fprintf(ficparo,"%1d%1d",i1,j1);
     fputs(line,ficparo);          fprintf(ficlog,"%1d%1d",i1,j1);
   }          for(k=1; k<=ncovmodel;k++){
   ungetc(c,ficpar);            fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            fprintf(ficparo," %le",delti3[i][j][k]);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            fprintf(ficlog," %le",delti3[i][j][k]);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          }
           fscanf(ficpar,"\n");
   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/          numlinepar++;
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/          printf("\n");
           fprintf(ficparo,"\n");
   printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, path,p);          fprintf(ficlog,"\n");
         }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      }
                model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      fflush(ficlog);
                jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  
        delti=delti3[1][1];
   /*------------ free_vector  -------------*/  
   /*  chdir(path); */  
        /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   free_ivector(wav,1,imx);   
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      /* Reads comments: lines beginning with '#' */
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      while((c=getc(ficpar))=='#' && c!= EOF){
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           ungetc(c,ficpar);
   free_lvector(num,1,n);        fgets(line, MAXLINE, ficpar);
   free_vector(agedc,1,n);        numlinepar++;
   /*free_matrix(covar,0,NCOVMAX,1,n);*/        puts(line);
   /*free_matrix(covar,1,NCOVMAX,1,n);*/        fputs(line,ficparo);
   fclose(ficparo);        fputs(line,ficlog);
   fclose(ficres);      }
       ungetc(c,ficpar);
    
   /*--------------- Prevalence limit  (stable prevalence) --------------*/      matcov=matrix(1,npar,1,npar);
         for(i=1; i <=npar; i++){
   strcpy(filerespl,"pl");        fscanf(ficpar,"%s",&str);
   strcat(filerespl,fileres);        if(mle==1)
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          printf("%s",str);
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;        fprintf(ficlog,"%s",str);
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;        fprintf(ficparo,"%s",str);
   }        for(j=1; j <=i; j++){
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);          fscanf(ficpar," %le",&matcov[i][j]);
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);          if(mle==1){
   fprintf(ficrespl,"#Stable prevalence \n");            printf(" %.5le",matcov[i][j]);
   fprintf(ficrespl,"#Age ");          }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          fprintf(ficlog," %.5le",matcov[i][j]);
   fprintf(ficrespl,"\n");          fprintf(ficparo," %.5le",matcov[i][j]);
           }
   prlim=matrix(1,nlstate,1,nlstate);        fscanf(ficpar,"\n");
         numlinepar++;
   agebase=ageminpar;        if(mle==1)
   agelim=agemaxpar;          printf("\n");
   ftolpl=1.e-10;        fprintf(ficlog,"\n");
   i1=cptcoveff;        fprintf(ficparo,"\n");
   if (cptcovn < 1){i1=1;}      }
       for(i=1; i <=npar; i++)
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        for(j=i+1;j<=npar;j++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          matcov[i][j]=matcov[j][i];
       k=k+1;     
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      if(mle==1)
       fprintf(ficrespl,"\n#******");        printf("\n");
       printf("\n#******");      fprintf(ficlog,"\n");
       fprintf(ficlog,"\n#******");     
       for(j=1;j<=cptcoveff;j++) {      fflush(ficlog);
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*-------- Rewriting parameter file ----------*/
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcpy(rfileres,"r");    /* "Rparameterfile */
       }      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       fprintf(ficrespl,"******\n");      strcat(rfileres,".");    /* */
       printf("******\n");      strcat(rfileres,optionfilext);    /* Other files have txt extension */
       fprintf(ficlog,"******\n");      if((ficres =fopen(rfileres,"w"))==NULL) {
                 printf("Problem writing new parameter file: %s\n", fileres);goto end;
       for (age=agebase; age<=agelim; age++){        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      }
         fprintf(ficrespl,"%.0f ",age );      fprintf(ficres,"#%s\n",version);
         for(j=1;j<=cptcoveff;j++)    }    /* End of mle != -3 */
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         for(i=1; i<=nlstate;i++)    /*-------- data file ----------*/
           fprintf(ficrespl," %.5f", prlim[i][i]);    if((fic=fopen(datafile,"r"))==NULL)    {
         fprintf(ficrespl,"\n");      printf("Problem while opening datafile: %s\n", datafile);goto end;
       }      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }    }
   }  
   fclose(ficrespl);    n= lastobs;
     severity = vector(1,maxwav);
   /*------------- h Pij x at various ages ------------*/    outcome=imatrix(1,maxwav+1,1,n);
       num=lvector(1,n);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    moisnais=vector(1,n);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    annais=vector(1,n);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    moisdc=vector(1,n);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    andc=vector(1,n);
   }    agedc=vector(1,n);
   printf("Computing pij: result on file '%s' \n", filerespij);    cod=ivector(1,n);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    weight=vector(1,n);
       for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    mint=matrix(1,maxwav,1,n);
   /*if (stepm<=24) stepsize=2;*/    anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
   agelim=AGESUP;    tab=ivector(1,NCOVMAX);
   hstepm=stepsize*YEARM; /* Every year of age */    ncodemax=ivector(1,8);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   
     i=1;
   /* hstepm=1;   aff par mois*/    linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      linei=linei+1;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if(line[j] == '\t')
       k=k+1;          line[j] = ' ';
       fprintf(ficrespij,"\n#****** ");      }
       for(j=1;j<=cptcoveff;j++)       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        ;
       fprintf(ficrespij,"******\n");      };
               line[j+1]=0;  /* Trims blanks at end of line */
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      if(line[0]=='#'){
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         fprintf(ficlog,"Comment line\n%s\n",line);
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        printf("Comment line\n%s\n",line);
         continue;
         /*        nhstepm=nhstepm*YEARM; aff par mois*/      }
   
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=maxwav;j>=1;j--){
         oldm=oldms;savm=savms;        cutv(stra, strb,line,' ');
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          errno=0;
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        lval=strtol(strb,&endptr,10);
         for(i=1; i<=nlstate;i++)        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           for(j=1; j<=nlstate+ndeath;j++)        if( strb[0]=='\0' || (*endptr != '\0')){
             fprintf(ficrespij," %1d-%1d",i,j);          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
         fprintf(ficrespij,"\n");          exit(1);
         for (h=0; h<=nhstepm; h++){        }
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        s[j][i]=lval;
           for(i=1; i<=nlstate;i++)       
             for(j=1; j<=nlstate+ndeath;j++)        strcpy(line,stra);
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);        cutv(stra, strb,line,' ');
           fprintf(ficrespij,"\n");        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }        }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        else  if(iout=sscanf(strb,"%s.") != 0){
         fprintf(ficrespij,"\n");          month=99;
       }          year=9999;
     }        }else{
   }          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);        }
         anint[j][i]= (double) year;
   fclose(ficrespij);        mint[j][i]= (double)month;
         strcpy(line,stra);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      } /* ENd Waves */
      
   /*---------- Forecasting ------------------*/      cutv(stra, strb,line,' ');
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   if(prevfcast==1){      }
     /*    if(stepm ==1){*/      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);        month=99;
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/        year=9999;
 /*      }  */      }else{
 /*      else{ */        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 /*        erreur=108; */        exit(1);
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      }
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      andc[i]=(double) year;
 /*      } */      moisdc[i]=(double) month;
   }      strcpy(line,stra);
        
       cutv(stra, strb,line,' ');
   /*---------- Health expectancies and variances ------------*/      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
   strcpy(filerest,"t");      else  if(iout=sscanf(strb,"%s.") != 0){
   strcat(filerest,fileres);        month=99;
   if((ficrest=fopen(filerest,"w"))==NULL) {        year=9999;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      }else{
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
   }        exit(1);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       }
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);       annais[i]=(double)(year);
       moisnais[i]=(double)(month);
       strcpy(line,stra);
   strcpy(filerese,"e");     
   strcat(filerese,fileres);      cutv(stra, strb,line,' ');
   if((ficreseij=fopen(filerese,"w"))==NULL) {      errno=0;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      dval=strtod(strb,&endptr);
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      if( strb[0]=='\0' || (*endptr != '\0')){
   }        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        exit(1);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      }
       weight[i]=dval;
   strcpy(fileresv,"v");      strcpy(line,stra);
   strcat(fileresv,fileres);     
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      for (j=ncovcol;j>=1;j--){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        cutv(stra, strb,line,' ');
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        errno=0;
   }        lval=strtol(strb,&endptr,10);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        if( strb[0]=='\0' || (*endptr != '\0')){
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */        }
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        if(lval <-1 || lval >1){
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   */   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
   if (mobilav!=0) {   build V1=0 V2=0 for the reference value (1),\n \
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          V1=1 V2=0 for (2) \n \
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);   output of IMaCh is often meaningless.\n \
       printf(" Error in movingaverage mobilav=%d\n",mobilav);   Exiting.\n",lval,linei, i,line,j);
     }          exit(1);
   }        }
         covar[j][i]=(double)(lval);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        strcpy(line,stra);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
       k=k+1;       lstra=strlen(stra);
       fprintf(ficrest,"\n#****** ");     
       for(j=1;j<=cptcoveff;j++)       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        stratrunc = &(stra[lstra-9]);
       fprintf(ficrest,"******\n");        num[i]=atol(stratrunc);
       }
       fprintf(ficreseij,"\n#****** ");      else
       for(j=1;j<=cptcoveff;j++)         num[i]=atol(stra);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
       fprintf(ficreseij,"******\n");        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
       fprintf(ficresvij,"\n#****** ");      i=i+1;
       for(j=1;j<=cptcoveff;j++)     } /* End loop reading  data */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(fic);
       fprintf(ficresvij,"******\n");    /* printf("ii=%d", ij);
        scanf("%d",i);*/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    imx=i-1; /* Number of individuals */
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      /* for (i=1; i<=imx; i++){
        if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       oldm=oldms;savm=savms;      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);      }*/
       if(popbased==1){     /*  for (i=1; i<=imx; i++){
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);       if (s[4][i]==9)  s[4][i]=-1;
       }       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
      /* for (i=1; i<=imx; i++) */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
       fprintf(ficrest,"\n");       else weight[i]=1;*/
   
       epj=vector(1,nlstate+1);    /* Calculation of the number of parameters from char model */
       for(age=bage; age <=fage ;age++){    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    Tprod=ivector(1,15);
         if (popbased==1) {    Tvaraff=ivector(1,15);
           if(mobilav ==0){    Tvard=imatrix(1,15,1,2);
             for(i=1; i<=nlstate;i++)    Tage=ivector(1,15);      
               prlim[i][i]=probs[(int)age][i][k];     
           }else{ /* mobilav */     if (strlen(model) >1){ /* If there is at least 1 covariate */
             for(i=1; i<=nlstate;i++)      j=0, j1=0, k1=1, k2=1;
               prlim[i][i]=mobaverage[(int)age][i][k];      j=nbocc(model,'+'); /* j=Number of '+' */
           }      j1=nbocc(model,'*'); /* j1=Number of '*' */
         }      cptcovn=j+1;
               cptcovprod=j1; /*Number of products */
         fprintf(ficrest," %4.0f",age);     
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      strcpy(modelsav,model);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        printf("Error. Non available option model=%s ",model);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        fprintf(ficlog,"Error. Non available option model=%s ",model);
           }        goto end;
           epj[nlstate+1] +=epj[j];      }
         }     
       /* This loop fills the array Tvar from the string 'model'.*/
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)      for(i=(j+1); i>=1;i--){
             vepp += vareij[i][j][(int)age];        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         for(j=1;j <=nlstate;j++){        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        /*scanf("%d",i);*/
         }        if (strchr(strb,'*')) {  /* Model includes a product */
         fprintf(ficrest,"\n");          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
       }          if (strcmp(strc,"age")==0) { /* Vn*age */
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            cptcovprod--;
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            cutv(strb,stre,strd,'V');
       free_vector(epj,1,nlstate+1);            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
     }            cptcovage++;
   }              Tage[cptcovage]=i;
   free_vector(weight,1,n);              /*printf("stre=%s ", stre);*/
   free_imatrix(Tvard,1,15,1,2);          }
   free_imatrix(s,1,maxwav+1,1,n);          else if (strcmp(strd,"age")==0) { /* or age*Vn */
   free_matrix(anint,1,maxwav,1,n);             cptcovprod--;
   free_matrix(mint,1,maxwav,1,n);            cutv(strb,stre,strc,'V');
   free_ivector(cod,1,n);            Tvar[i]=atoi(stre);
   free_ivector(tab,1,NCOVMAX);            cptcovage++;
   fclose(ficreseij);            Tage[cptcovage]=i;
   fclose(ficresvij);          }
   fclose(ficrest);          else {  /* Age is not in the model */
   fclose(ficpar);            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
               Tvar[i]=ncovcol+k1;
   /*------- Variance of stable prevalence------*/               cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
   strcpy(fileresvpl,"vpl");            Tvard[k1][1]=atoi(strc); /* m*/
   strcat(fileresvpl,fileres);            Tvard[k1][2]=atoi(stre); /* n */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            Tvar[cptcovn+k2]=Tvard[k1][1];
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);            Tvar[cptcovn+k2+1]=Tvard[k1][2];
     exit(0);            for (k=1; k<=lastobs;k++)
   }              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);            k1++;
             k2=k2+2;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;        else { /* no more sum */
       fprintf(ficresvpl,"\n#****** ");          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
       for(j=1;j<=cptcoveff;j++)          /*  scanf("%d",i);*/
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        cutv(strd,strc,strb,'V');
       fprintf(ficresvpl,"******\n");        Tvar[i]=atoi(strc);
               }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        strcpy(modelsav,stra);  
       oldm=oldms;savm=savms;        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          scanf("%d",i);*/
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      } /* end of loop + */
     }    } /* end model */
   }   
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
   fclose(ficresvpl);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
   /*---------- End : free ----------------*/    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    printf("cptcovprod=%d ", cptcovprod);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    scanf("%d ",i);*/
     
   free_matrix(covar,0,NCOVMAX,1,n);      /*  if(mle==1){*/
   free_matrix(matcov,1,npar,1,npar);    if (weightopt != 1) { /* Maximisation without weights*/
   /*free_vector(delti,1,npar);*/      for(i=1;i<=n;i++) weight[i]=1.0;
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     }
   free_matrix(agev,1,maxwav,1,imx);      /*-calculation of age at interview from date of interview and age at death -*/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    agev=matrix(1,maxwav,1,imx);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
   free_ivector(ncodemax,1,8);        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
   free_ivector(Tvar,1,15);          anint[m][i]=9999;
   free_ivector(Tprod,1,15);          s[m][i]=-1;
   free_ivector(Tvaraff,1,15);        }
   free_ivector(Tage,1,15);        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
   free_ivector(Tcode,1,100);          nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   fflush(fichtm);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   fflush(ficgp);          s[m][i]=-1;
           }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
   if(erreur >0){          nberr++;
     printf("End of Imach with error or warning %d\n",erreur);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
   }else{          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
    printf("End of Imach\n");        }
    fprintf(ficlog,"End of Imach\n");      }
   }    }
   printf("See log file on %s\n",filelog);  
   fclose(ficlog);    for (i=1; i<=imx; i++)  {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
   (void) gettimeofday(&end_time,&tzp);      for(m=firstpass; (m<= lastpass); m++){
   tm = *localtime(&end_time.tv_sec);        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
   tmg = *gmtime(&end_time.tv_sec);          if (s[m][i] >= nlstate+1) {
   strcpy(strtend,asctime(&tm));            if(agedc[i]>0)
   printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend);               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
   fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend);                 agev[m][i]=agedc[i];
   /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
   printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);                if ((int)andc[i]!=9999){
   fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);                  nbwarn++;
   /*  printf("Total time was %d uSec.\n", total_usecs);*/                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 /*   if(fileappend(fichtm,optionfilehtm)){ */                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);                  agev[m][i]=-1;
   fclose(fichtm);                }
   fclose(ficgp);              }
   /*------ End -----------*/          }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
   end:                                   years but with the precision of a month */
 #ifdef windows            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
   /* chdir(pathcd);*/            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 #endif               agev[m][i]=1;
   chdir(path);            else if(agev[m][i] <agemin){
  /*system("wgnuplot graph.plt");*/              agemin=agev[m][i];
  /*system("../gp37mgw/wgnuplot graph.plt");*/              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
  /*system("cd ../gp37mgw");*/            }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            else if(agev[m][i] >agemax){
   strcpy(plotcmd,GNUPLOTPROGRAM);              agemax=agev[m][i];
   strcat(plotcmd," ");              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
   strcat(plotcmd,optionfilegnuplot);            }
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);            /*agev[m][i]=anint[m][i]-annais[i];*/
   system(plotcmd);            /*     agev[m][i] = age[i]+2*m;*/
   printf(" Wait...");          }
           else { /* =9 */
  /*#ifdef windows*/            agev[m][i]=1;
   while (z[0] != 'q') {            s[m][i]=-1;
     /* chdir(path); */          }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        }
     scanf("%s",z);        else /*= 0 Unknown */
     if (z[0] == 'c') system("./imach");          agev[m][i]=1;
     else if (z[0] == 'e') system(optionfilehtm);      }
     else if (z[0] == 'g') system(plotcmd);     
     else if (z[0] == 'q') exit(0);    }
   }    for (i=1; i<=imx; i++)  {
   /*#endif */      for(m=firstpass; (m<=lastpass); m++){
 }        if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.88  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>