Diff for /imach/src/imach.c between versions 1.50 and 1.88

version 1.50, 2002/06/26 23:25:02 version 1.88, 2003/06/23 17:54:56
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.88  2003/06/23 17:54:56  brouard
      * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.87  2003/06/18 12:26:01  brouard
   first survey ("cross") where individuals from different ages are    Version 0.96
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.86  2003/06/17 20:04:08  brouard
   second wave of interviews ("longitudinal") which measure each change    (Module): Change position of html and gnuplot routines and added
   (if any) in individual health status.  Health expectancies are    routine fileappend.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.85  2003/06/17 13:12:43  brouard
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Repository): Check when date of death was earlier that
   simplest model is the multinomial logistic model where pij is the    current date of interview. It may happen when the death was just
   probability to be observed in state j at the second wave    prior to the death. In this case, dh was negative and likelihood
   conditional to be observed in state i at the first wave. Therefore    was wrong (infinity). We still send an "Error" but patch by
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    assuming that the date of death was just one stepm after the
   'age' is age and 'sex' is a covariate. If you want to have a more    interview.
   complex model than "constant and age", you should modify the program    (Repository): Because some people have very long ID (first column)
   where the markup *Covariates have to be included here again* invites    we changed int to long in num[] and we added a new lvector for
   you to do it.  More covariates you add, slower the    memory allocation. But we also truncated to 8 characters (left
   convergence.    truncation)
     (Repository): No more line truncation errors.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.84  2003/06/13 21:44:43  brouard
   identical for each individual. Also, if a individual missed an    * imach.c (Repository): Replace "freqsummary" at a correct
   intermediate interview, the information is lost, but taken into    place. It differs from routine "prevalence" which may be called
   account using an interpolation or extrapolation.      many times. Probs is memory consuming and must be used with
     parcimony.
   hPijx is the probability to be observed in state i at age x+h    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.83  2003/06/10 13:39:11  lievre
   states. This elementary transition (by month or quarter trimester,    *** empty log message ***
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.82  2003/06/05 15:57:20  brouard
   and the contribution of each individual to the likelihood is simply    Add log in  imach.c and  fullversion number is now printed.
   hPijx.  
   */
   Also this programme outputs the covariance matrix of the parameters but also  /*
   of the life expectancies. It also computes the prevalence limits.     Interpolated Markov Chain
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Short summary of the programme:
            Institut national d'études démographiques, Paris.    
   This software have been partly granted by Euro-REVES, a concerted action    This program computes Healthy Life Expectancies from
   from the European Union.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   It is copyrighted identically to a GNU software product, ie programme and    first survey ("cross") where individuals from different ages are
   software can be distributed freely for non commercial use. Latest version    interviewed on their health status or degree of disability (in the
   can be accessed at http://euroreves.ined.fr/imach .    case of a health survey which is our main interest) -2- at least a
   **********************************************************************/    second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
 #include <math.h>    computed from the time spent in each health state according to a
 #include <stdio.h>    model. More health states you consider, more time is necessary to reach the
 #include <stdlib.h>    Maximum Likelihood of the parameters involved in the model.  The
 #include <unistd.h>    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 #define MAXLINE 256    conditional to be observed in state i at the first wave. Therefore
 #define GNUPLOTPROGRAM "gnuplot"    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    'age' is age and 'sex' is a covariate. If you want to have a more
 #define FILENAMELENGTH 80    complex model than "constant and age", you should modify the program
 /*#define DEBUG*/    where the markup *Covariates have to be included here again* invites
 #define windows    you to do it.  More covariates you add, slower the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    convergence.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     The advantage of this computer programme, compared to a simple
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    multinomial logistic model, is clear when the delay between waves is not
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 #define NINTERVMAX 8    account using an interpolation or extrapolation.  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    hPijx is the probability to be observed in state i at age x+h
 #define NCOVMAX 8 /* Maximum number of covariates */    conditional to the observed state i at age x. The delay 'h' can be
 #define MAXN 20000    split into an exact number (nh*stepm) of unobserved intermediate
 #define YEARM 12. /* Number of months per year */    states. This elementary transition (by month, quarter,
 #define AGESUP 130    semester or year) is modelled as a multinomial logistic.  The hPx
 #define AGEBASE 40    matrix is simply the matrix product of nh*stepm elementary matrices
 #ifdef windows    and the contribution of each individual to the likelihood is simply
 #define DIRSEPARATOR '\\'    hPijx.
 #define ODIRSEPARATOR '/'  
 #else    Also this programme outputs the covariance matrix of the parameters but also
 #define DIRSEPARATOR '/'    of the life expectancies. It also computes the stable prevalence. 
 #define ODIRSEPARATOR '\\'    
 #endif    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    This software have been partly granted by Euro-REVES, a concerted action
 int erreur; /* Error number */    from the European Union.
 int nvar;    It is copyrighted identically to a GNU software product, ie programme and
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    software can be distributed freely for non commercial use. Latest version
 int npar=NPARMAX;    can be accessed at http://euroreves.ined.fr/imach .
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int popbased=0;    
     **********************************************************************/
 int *wav; /* Number of waves for this individuual 0 is possible */  /*
 int maxwav; /* Maxim number of waves */    main
 int jmin, jmax; /* min, max spacing between 2 waves */    read parameterfile
 int mle, weightopt;    read datafile
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    concatwav
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    freqsummary
 double jmean; /* Mean space between 2 waves */    if (mle >= 1)
 double **oldm, **newm, **savm; /* Working pointers to matrices */      mlikeli
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    print results files
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    if mle==1 
 FILE *ficlog;       computes hessian
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    read end of parameter file: agemin, agemax, bage, fage, estepm
 FILE *ficresprobmorprev;        begin-prev-date,...
 FILE *fichtm; /* Html File */    open gnuplot file
 FILE *ficreseij;    open html file
 char filerese[FILENAMELENGTH];    stable prevalence
 FILE  *ficresvij;     for age prevalim()
 char fileresv[FILENAMELENGTH];    h Pij x
 FILE  *ficresvpl;    variance of p varprob
 char fileresvpl[FILENAMELENGTH];    forecasting if prevfcast==1 prevforecast call prevalence()
 char title[MAXLINE];    health expectancies
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Variance-covariance of DFLE
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    prevalence()
      movingaverage()
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    varevsij() 
 char filelog[FILENAMELENGTH]; /* Log file */    if popbased==1 varevsij(,popbased)
 char filerest[FILENAMELENGTH];    total life expectancies
 char fileregp[FILENAMELENGTH];    Variance of stable prevalence
 char popfile[FILENAMELENGTH];   end
   */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
   
 #define NR_END 1  
 #define FREE_ARG char*   
 #define FTOL 1.0e-10  #include <math.h>
   #include <stdio.h>
 #define NRANSI  #include <stdlib.h>
 #define ITMAX 200  #include <unistd.h>
   
 #define TOL 2.0e-4  #include <sys/time.h>
   #include <time.h>
 #define CGOLD 0.3819660  #include "timeval.h"
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 #define GOLD 1.618034  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define GLIMIT 100.0  #define FILENAMELENGTH 132
 #define TINY 1.0e-20  /*#define DEBUG*/
   /*#define windows*/
 static double maxarg1,maxarg2;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
    #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define rint(a) floor(a+0.5)  
   #define NINTERVMAX 8
 static double sqrarg;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 int imx;  #define YEARM 12. /* Number of months per year */
 int stepm;  #define AGESUP 130
 /* Stepm, step in month: minimum step interpolation*/  #define AGEBASE 40
   #ifdef unix
 int estepm;  #define DIRSEPARATOR '/'
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define ODIRSEPARATOR '\\'
   #else
 int m,nb;  #define DIRSEPARATOR '\\'
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define ODIRSEPARATOR '/'
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #endif
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;  /* $Id$ */
   /* $State$ */
 double *weight;  
 int **s; /* Status */  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
 double *agedc, **covar, idx;  char fullversion[]="$Revision$ $Date$"; 
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int erreur; /* Error number */
   int nvar;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double ftolhess; /* Tolerance for computing hessian */  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /**************** split *************************/  int ndeath=1; /* Number of dead states */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
    l1 = strlen( path );                 /* length of path */  int jmin, jmax; /* min, max spacing between 2 waves */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int gipmx, gsw; /* Global variables on the number of contributions 
    s= strrchr( path, DIRSEPARATOR );            /* find last / */                     to the likelihood and the sum of weights (done by funcone)*/
    if ( s == NULL ) {                   /* no directory, so use current */  int mle, weightopt;
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #if     defined(__bsd__)                /* get current working directory */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       extern char       *getwd( );             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
       if ( getwd( dirc ) == NULL ) {  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #else  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       extern char       *getcwd( );  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int globpr; /* Global variable for printing or not */
 #endif  double fretone; /* Only one call to likelihood */
          return( GLOCK_ERROR_GETCWD );  long ipmx; /* Number of contributions */
       }  double sw; /* Sum of weights */
       strcpy( name, path );             /* we've got it */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    } else {                             /* strip direcotry from path */  FILE *ficresilk;
       s++;                              /* after this, the filename */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       l2 = strlen( s );                 /* length of filename */  FILE *ficresprobmorprev;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE *fichtm; /* Html File */
       strcpy( name, s );                /* save file name */  FILE *ficreseij;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  char filerese[FILENAMELENGTH];
       dirc[l1-l2] = 0;                  /* add zero */  FILE  *ficresvij;
    }  char fileresv[FILENAMELENGTH];
    l1 = strlen( dirc );                 /* length of directory */  FILE  *ficresvpl;
 #ifdef windows  char fileresvpl[FILENAMELENGTH];
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char title[MAXLINE];
 #else  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 #endif  char tmpout[FILENAMELENGTH]; 
    s = strrchr( name, '.' );            /* find last / */  char command[FILENAMELENGTH];
    s++;  int  outcmd=0;
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    l2= strlen( s)+1;  char lfileres[FILENAMELENGTH];
    strncpy( finame, name, l1-l2);  char filelog[FILENAMELENGTH]; /* Log file */
    finame[l1-l2]= 0;  char filerest[FILENAMELENGTH];
    return( 0 );                         /* we're done */  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 /******************************************/  
   #define NR_END 1
 void replace(char *s, char*t)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   int i;  
   int lg=20;  #define NRANSI 
   i=0;  #define ITMAX 200 
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  #define TOL 2.0e-4 
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  #define CGOLD 0.3819660 
   }  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 int nbocc(char *s, char occ)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   int i,j=0;  #define TINY 1.0e-20 
   int lg=20;  
   i=0;  static double maxarg1,maxarg2;
   lg=strlen(s);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for(i=0; i<= lg; i++) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if  (s[i] == occ ) j++;    
   }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   return j;  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 void cutv(char *u,char *v, char*t, char occ)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  int imx; 
      gives u="abcedf" and v="ghi2j" */  int stepm;
   int i,lg,j,p=0;  /* Stepm, step in month: minimum step interpolation*/
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  int estepm;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   }  
   int m,nb;
   lg=strlen(t);  long *num;
   for(j=0; j<p; j++) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
     (u[j] = t[j]);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   }  double **pmmij, ***probs;
      u[p]='\0';  double dateintmean=0;
   
    for(j=0; j<= lg; j++) {  double *weight;
     if (j>=(p+1))(v[j-p-1] = t[j]);  int **s; /* Status */
   }  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /********************** nrerror ********************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 void nrerror(char error_text[])  
 {  /**************** split *************************/
   fprintf(stderr,"ERREUR ...\n");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   fprintf(stderr,"%s\n",error_text);  {
   exit(1);    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double *v;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    if ( ss == NULL ) {                   /* no directory, so use current */
   if (!v) nrerror("allocation failure in vector");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   return v-nl+NR_END;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /************************ free vector ******************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 void free_vector(double*v, int nl, int nh)        return( GLOCK_ERROR_GETCWD );
 {      }
   free((FREE_ARG)(v+nl-NR_END));      strcpy( name, path );               /* we've got it */
 }    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 /************************ivector *******************************/      l2 = strlen( ss );                  /* length of filename */
 int *ivector(long nl,long nh)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 {      strcpy( name, ss );         /* save file name */
   int *v;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      dirc[l1-l2] = 0;                    /* add zero */
   if (!v) nrerror("allocation failure in ivector");    }
   return v-nl+NR_END;    l1 = strlen( dirc );                  /* length of directory */
 }    /*#ifdef windows
     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 /******************free ivector **************************/  #else
 void free_ivector(int *v, long nl, long nh)    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 {  #endif
   free((FREE_ARG)(v+nl-NR_END));    */
 }    ss = strrchr( name, '.' );            /* find last / */
     ss++;
 /******************* imatrix *******************************/    strcpy(ext,ss);                       /* save extension */
 int **imatrix(long nrl, long nrh, long ncl, long nch)    l1= strlen( name);
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    l2= strlen(ss)+1;
 {    strncpy( finame, name, l1-l2);
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    finame[l1-l2]= 0;
   int **m;    return( 0 );                          /* we're done */
    }
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /******************************************/
   m += NR_END;  
   m -= nrl;  void replace(char *s, char*t)
    {
      int i;
   /* allocate rows and set pointers to them */    int lg=20;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    i=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    lg=strlen(t);
   m[nrl] += NR_END;    for(i=0; i<= lg; i++) {
   m[nrl] -= ncl;      (s[i] = t[i]);
        if (t[i]== '\\') s[i]='/';
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    }
    }
   /* return pointer to array of pointers to rows */  
   return m;  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /****************** free_imatrix *************************/    int lg=20;
 void free_imatrix(m,nrl,nrh,ncl,nch)    i=0;
       int **m;    lg=strlen(s);
       long nch,ncl,nrh,nrl;    for(i=0; i<= lg; i++) {
      /* free an int matrix allocated by imatrix() */    if  (s[i] == occ ) j++;
 {    }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    return j;
   free((FREE_ARG) (m+nrl-NR_END));  }
 }  
   void cutv(char *u,char *v, char*t, char occ)
 /******************* matrix *******************************/  {
 double **matrix(long nrl, long nrh, long ncl, long nch)    /* cuts string t into u and v where u is ended by char occ excluding it
 {       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;       gives u="abcedf" and v="ghi2j" */
   double **m;    int i,lg,j,p=0;
     i=0;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    for(j=0; j<=strlen(t)-1; j++) {
   if (!m) nrerror("allocation failure 1 in matrix()");      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m += NR_END;    }
   m -= nrl;  
     lg=strlen(t);
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    for(j=0; j<p; j++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      (u[j] = t[j]);
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;       u[p]='\0';
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;     for(j=0; j<= lg; j++) {
   return m;      if (j>=(p+1))(v[j-p-1] = t[j]);
 }    }
   }
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /********************** nrerror ********************/
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  void nrerror(char error_text[])
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /******************* ma3x *******************************/    exit(EXIT_FAILURE);
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  }
 {  /*********************** vector *******************/
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double *vector(int nl, int nh)
   double ***m;  {
     double *v;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!v) nrerror("allocation failure in vector");
   m += NR_END;    return v-nl+NR_END;
   m -= nrl;  }
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /************************ free vector ******************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void free_vector(double*v, int nl, int nh)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    free((FREE_ARG)(v+nl-NR_END));
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   /************************ivector *******************************/
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int *ivector(long nl,long nh)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  {
   m[nrl][ncl] += NR_END;    int *v;
   m[nrl][ncl] -= nll;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (j=ncl+1; j<=nch; j++)    if (!v) nrerror("allocation failure in ivector");
     m[nrl][j]=m[nrl][j-1]+nlay;    return v-nl+NR_END;
    }
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /******************free ivector **************************/
     for (j=ncl+1; j<=nch; j++)  void free_ivector(int *v, long nl, long nh)
       m[i][j]=m[i][j-1]+nlay;  {
   }    free((FREE_ARG)(v+nl-NR_END));
   return m;  }
 }  
   /************************lvector *******************************/
 /*************************free ma3x ************************/  long *lvector(long nl,long nh)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    long *v;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (!v) nrerror("allocation failure in ivector");
   free((FREE_ARG)(m+nrl-NR_END));    return v-nl+NR_END;
 }  }
   
 /***************** f1dim *************************/  /******************free lvector **************************/
 extern int ncom;  void free_lvector(long *v, long nl, long nh)
 extern double *pcom,*xicom;  {
 extern double (*nrfunc)(double []);    free((FREE_ARG)(v+nl-NR_END));
    }
 double f1dim(double x)  
 {  /******************* imatrix *******************************/
   int j;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double f;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double *xt;  { 
      long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   xt=vector(1,ncom);    int **m; 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    
   f=(*nrfunc)(xt);    /* allocate pointers to rows */ 
   free_vector(xt,1,ncom);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   return f;    if (!m) nrerror("allocation failure 1 in matrix()"); 
 }    m += NR_END; 
     m -= nrl; 
 /*****************brent *************************/    
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    
 {    /* allocate rows and set pointers to them */ 
   int iter;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double a,b,d,etemp;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double fu,fv,fw,fx;    m[nrl] += NR_END; 
   double ftemp;    m[nrl] -= ncl; 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    
   double e=0.0;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
   a=(ax < cx ? ax : cx);    /* return pointer to array of pointers to rows */ 
   b=(ax > cx ? ax : cx);    return m; 
   x=w=v=bx;  } 
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /****************** free_imatrix *************************/
     xm=0.5*(a+b);  void free_imatrix(m,nrl,nrh,ncl,nch)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);        int **m;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/        long nch,ncl,nrh,nrl; 
     printf(".");fflush(stdout);       /* free an int matrix allocated by imatrix() */ 
     fprintf(ficlog,".");fflush(ficlog);  { 
 #ifdef DEBUG    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    free((FREE_ARG) (m+nrl-NR_END)); 
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  } 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /******************* matrix *******************************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double **matrix(long nrl, long nrh, long ncl, long nch)
       *xmin=x;  {
       return fx;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     }    double **m;
     ftemp=fu;  
     if (fabs(e) > tol1) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       r=(x-w)*(fx-fv);    if (!m) nrerror("allocation failure 1 in matrix()");
       q=(x-v)*(fx-fw);    m += NR_END;
       p=(x-v)*q-(x-w)*r;    m -= nrl;
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       q=fabs(q);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       etemp=e;    m[nrl] += NR_END;
       e=d;    m[nrl] -= ncl;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       else {    return m;
         d=p/q;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         u=x+d;     */
         if (u-a < tol2 || b-u < tol2)  }
           d=SIGN(tol1,xm-x);  
       }  /*************************free matrix ************************/
     } else {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    free((FREE_ARG)(m+nrl-NR_END));
     fu=(*f)(u);  }
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  /******************* ma3x *******************************/
       SHFT(v,w,x,u)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         SHFT(fv,fw,fx,fu)  {
         } else {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
           if (u < x) a=u; else b=u;    double ***m;
           if (fu <= fw || w == x) {  
             v=w;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             w=u;    if (!m) nrerror("allocation failure 1 in matrix()");
             fv=fw;    m += NR_END;
             fw=fu;    m -= nrl;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             fv=fu;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           }    m[nrl] += NR_END;
         }    m[nrl] -= ncl;
   }  
   nrerror("Too many iterations in brent");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   *xmin=x;  
   return fx;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 /****************** mnbrak ***********************/    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      m[nrl][j]=m[nrl][j-1]+nlay;
             double (*func)(double))    
 {    for (i=nrl+1; i<=nrh; i++) {
   double ulim,u,r,q, dum;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double fu;      for (j=ncl+1; j<=nch; j++) 
          m[i][j]=m[i][j-1]+nlay;
   *fa=(*func)(*ax);    }
   *fb=(*func)(*bx);    return m; 
   if (*fb > *fa) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     SHFT(dum,*ax,*bx,dum)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       SHFT(dum,*fb,*fa,dum)    */
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /*************************free ma3x ************************/
   while (*fb > *fc) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     r=(*bx-*ax)*(*fb-*fc);  {
     q=(*bx-*cx)*(*fb-*fa);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    free((FREE_ARG)(m+nrl-NR_END));
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /***************** f1dim *************************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  extern int ncom; 
       fu=(*func)(u);  extern double *pcom,*xicom;
       if (fu < *fc) {  extern double (*nrfunc)(double []); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   
           SHFT(*fb,*fc,fu,(*func)(u))  double f1dim(double x) 
           }  { 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    int j; 
       u=ulim;    double f;
       fu=(*func)(u);    double *xt; 
     } else {   
       u=(*cx)+GOLD*(*cx-*bx);    xt=vector(1,ncom); 
       fu=(*func)(u);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
     SHFT(*ax,*bx,*cx,u)    free_vector(xt,1,ncom); 
       SHFT(*fa,*fb,*fc,fu)    return f; 
       }  } 
 }  
   /*****************brent *************************/
 /*************** linmin ************************/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
 int ncom;    int iter; 
 double *pcom,*xicom;    double a,b,d,etemp;
 double (*nrfunc)(double []);    double fu,fv,fw,fx;
      double ftemp;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 {    double e=0.0; 
   double brent(double ax, double bx, double cx,   
                double (*f)(double), double tol, double *xmin);    a=(ax < cx ? ax : cx); 
   double f1dim(double x);    b=(ax > cx ? ax : cx); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    x=w=v=bx; 
               double *fc, double (*func)(double));    fw=fv=fx=(*f)(x); 
   int j;    for (iter=1;iter<=ITMAX;iter++) { 
   double xx,xmin,bx,ax;      xm=0.5*(a+b); 
   double fx,fb,fa;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
        /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   ncom=n;      printf(".");fflush(stdout);
   pcom=vector(1,n);      fprintf(ficlog,".");fflush(ficlog);
   xicom=vector(1,n);  #ifdef DEBUG
   nrfunc=func;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (j=1;j<=n;j++) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     pcom[j]=p[j];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     xicom[j]=xi[j];  #endif
   }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   ax=0.0;        *xmin=x; 
   xx=1.0;        return fx; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      } 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      ftemp=fu;
 #ifdef DEBUG      if (fabs(e) > tol1) { 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        r=(x-w)*(fx-fv); 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        q=(x-v)*(fx-fw); 
 #endif        p=(x-v)*q-(x-w)*r; 
   for (j=1;j<=n;j++) {        q=2.0*(q-r); 
     xi[j] *= xmin;        if (q > 0.0) p = -p; 
     p[j] += xi[j];        q=fabs(q); 
   }        etemp=e; 
   free_vector(xicom,1,n);        e=d; 
   free_vector(pcom,1,n);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 /*************** powell ************************/          d=p/q; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,          u=x+d; 
             double (*func)(double []))          if (u-a < tol2 || b-u < tol2) 
 {            d=SIGN(tol1,xm-x); 
   void linmin(double p[], double xi[], int n, double *fret,        } 
               double (*func)(double []));      } else { 
   int i,ibig,j;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double del,t,*pt,*ptt,*xit;      } 
   double fp,fptt;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double *xits;      fu=(*f)(u); 
   pt=vector(1,n);      if (fu <= fx) { 
   ptt=vector(1,n);        if (u >= x) a=x; else b=x; 
   xit=vector(1,n);        SHFT(v,w,x,u) 
   xits=vector(1,n);          SHFT(fv,fw,fx,fu) 
   *fret=(*func)(p);          } else { 
   for (j=1;j<=n;j++) pt[j]=p[j];            if (u < x) a=u; else b=u; 
   for (*iter=1;;++(*iter)) {            if (fu <= fw || w == x) { 
     fp=(*fret);              v=w; 
     ibig=0;              w=u; 
     del=0.0;              fv=fw; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);              fw=fu; 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);            } else if (fu <= fv || v == x || v == w) { 
     for (i=1;i<=n;i++)              v=u; 
       printf(" %d %.12f",i, p[i]);              fv=fu; 
     fprintf(ficlog," %d %.12f",i, p[i]);            } 
     printf("\n");          } 
     fprintf(ficlog,"\n");    } 
     for (i=1;i<=n;i++) {    nrerror("Too many iterations in brent"); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    *xmin=x; 
       fptt=(*fret);    return fx; 
 #ifdef DEBUG  } 
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);  /****************** mnbrak ***********************/
 #endif  
       printf("%d",i);fflush(stdout);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       fprintf(ficlog,"%d",i);fflush(ficlog);              double (*func)(double)) 
       linmin(p,xit,n,fret,func);  { 
       if (fabs(fptt-(*fret)) > del) {    double ulim,u,r,q, dum;
         del=fabs(fptt-(*fret));    double fu; 
         ibig=i;   
       }    *fa=(*func)(*ax); 
 #ifdef DEBUG    *fb=(*func)(*bx); 
       printf("%d %.12e",i,(*fret));    if (*fb > *fa) { 
       fprintf(ficlog,"%d %.12e",i,(*fret));      SHFT(dum,*ax,*bx,dum) 
       for (j=1;j<=n;j++) {        SHFT(dum,*fb,*fa,dum) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        } 
         printf(" x(%d)=%.12e",j,xit[j]);    *cx=(*bx)+GOLD*(*bx-*ax); 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    *fc=(*func)(*cx); 
       }    while (*fb > *fc) { 
       for(j=1;j<=n;j++) {      r=(*bx-*ax)*(*fb-*fc); 
         printf(" p=%.12e",p[j]);      q=(*bx-*cx)*(*fb-*fa); 
         fprintf(ficlog," p=%.12e",p[j]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       printf("\n");      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       fprintf(ficlog,"\n");      if ((*bx-u)*(u-*cx) > 0.0) { 
 #endif        fu=(*func)(u); 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        fu=(*func)(u); 
 #ifdef DEBUG        if (fu < *fc) { 
       int k[2],l;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       k[0]=1;            SHFT(*fb,*fc,fu,(*func)(u)) 
       k[1]=-1;            } 
       printf("Max: %.12e",(*func)(p));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       fprintf(ficlog,"Max: %.12e",(*func)(p));        u=ulim; 
       for (j=1;j<=n;j++) {        fu=(*func)(u); 
         printf(" %.12e",p[j]);      } else { 
         fprintf(ficlog," %.12e",p[j]);        u=(*cx)+GOLD*(*cx-*bx); 
       }        fu=(*func)(u); 
       printf("\n");      } 
       fprintf(ficlog,"\n");      SHFT(*ax,*bx,*cx,u) 
       for(l=0;l<=1;l++) {        SHFT(*fa,*fb,*fc,fu) 
         for (j=1;j<=n;j++) {        } 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  } 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /*************** linmin ************************/
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int ncom; 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double *pcom,*xicom;
       }  double (*nrfunc)(double []); 
 #endif   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
       free_vector(xit,1,n);    double brent(double ax, double bx, double cx, 
       free_vector(xits,1,n);                 double (*f)(double), double tol, double *xmin); 
       free_vector(ptt,1,n);    double f1dim(double x); 
       free_vector(pt,1,n);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       return;                double *fc, double (*func)(double)); 
     }    int j; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double xx,xmin,bx,ax; 
     for (j=1;j<=n;j++) {    double fx,fb,fa;
       ptt[j]=2.0*p[j]-pt[j];   
       xit[j]=p[j]-pt[j];    ncom=n; 
       pt[j]=p[j];    pcom=vector(1,n); 
     }    xicom=vector(1,n); 
     fptt=(*func)(ptt);    nrfunc=func; 
     if (fptt < fp) {    for (j=1;j<=n;j++) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      pcom[j]=p[j]; 
       if (t < 0.0) {      xicom[j]=xi[j]; 
         linmin(p,xit,n,fret,func);    } 
         for (j=1;j<=n;j++) {    ax=0.0; 
           xi[j][ibig]=xi[j][n];    xx=1.0; 
           xi[j][n]=xit[j];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(j=1;j<=n;j++){  #endif
           printf(" %.12e",xit[j]);    for (j=1;j<=n;j++) { 
           fprintf(ficlog," %.12e",xit[j]);      xi[j] *= xmin; 
         }      p[j] += xi[j]; 
         printf("\n");    } 
         fprintf(ficlog,"\n");    free_vector(xicom,1,n); 
 #endif    free_vector(pcom,1,n); 
       }  } 
     }  
   }  /*************** powell ************************/
 }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
 /**** Prevalence limit ****************/  { 
     void linmin(double p[], double xi[], int n, double *fret, 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)                double (*func)(double [])); 
 {    int i,ibig,j; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double del,t,*pt,*ptt,*xit;
      matrix by transitions matrix until convergence is reached */    double fp,fptt;
     double *xits;
   int i, ii,j,k;    pt=vector(1,n); 
   double min, max, maxmin, maxmax,sumnew=0.;    ptt=vector(1,n); 
   double **matprod2();    xit=vector(1,n); 
   double **out, cov[NCOVMAX], **pmij();    xits=vector(1,n); 
   double **newm;    *fret=(*func)(p); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   for (ii=1;ii<=nlstate+ndeath;ii++)      fp=(*fret); 
     for (j=1;j<=nlstate+ndeath;j++){      ibig=0; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      del=0.0; 
     }      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
    cov[1]=1.;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
        for (i=1;i<=n;i++) {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        printf(" %d %.12f",i, p[i]);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        fprintf(ficlog," %d %.12lf",i, p[i]);
     newm=savm;        fprintf(ficrespow," %.12lf", p[i]);
     /* Covariates have to be included here again */      }
      cov[2]=agefin;      printf("\n");
        fprintf(ficlog,"\n");
       for (k=1; k<=cptcovn;k++) {      fprintf(ficrespow,"\n");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      for (i=1;i<=n;i++) { 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #ifdef DEBUG
       for (k=1; k<=cptcovprod;k++)        printf("fret=%lf \n",*fret);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        printf("%d",i);fflush(stdout);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        fprintf(ficlog,"%d",i);fflush(ficlog);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        linmin(p,xit,n,fret,func); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
     savm=oldm;          ibig=i; 
     oldm=newm;        } 
     maxmax=0.;  #ifdef DEBUG
     for(j=1;j<=nlstate;j++){        printf("%d %.12e",i,(*fret));
       min=1.;        fprintf(ficlog,"%d %.12e",i,(*fret));
       max=0.;        for (j=1;j<=n;j++) {
       for(i=1; i<=nlstate; i++) {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         sumnew=0;          printf(" x(%d)=%.12e",j,xit[j]);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         prlim[i][j]= newm[i][j]/(1-sumnew);        }
         max=FMAX(max,prlim[i][j]);        for(j=1;j<=n;j++) {
         min=FMIN(min,prlim[i][j]);          printf(" p=%.12e",p[j]);
       }          fprintf(ficlog," p=%.12e",p[j]);
       maxmin=max-min;        }
       maxmax=FMAX(maxmax,maxmin);        printf("\n");
     }        fprintf(ficlog,"\n");
     if(maxmax < ftolpl){  #endif
       return prlim;      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   }  #ifdef DEBUG
 }        int k[2],l;
         k[0]=1;
 /*************** transition probabilities ***************/        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        fprintf(ficlog,"Max: %.12e",(*func)(p));
 {        for (j=1;j<=n;j++) {
   double s1, s2;          printf(" %.12e",p[j]);
   /*double t34;*/          fprintf(ficlog," %.12e",p[j]);
   int i,j,j1, nc, ii, jj;        }
         printf("\n");
     for(i=1; i<= nlstate; i++){        fprintf(ficlog,"\n");
     for(j=1; j<i;j++){        for(l=0;l<=1;l++) {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          for (j=1;j<=n;j++) {
         /*s2 += param[i][j][nc]*cov[nc];*/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }          }
       ps[i][j]=s2;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }        }
     for(j=i+1; j<=nlstate+ndeath;j++){  #endif
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        free_vector(xit,1,n); 
       }        free_vector(xits,1,n); 
       ps[i][j]=s2;        free_vector(ptt,1,n); 
     }        free_vector(pt,1,n); 
   }        return; 
     /*ps[3][2]=1;*/      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for(i=1; i<= nlstate; i++){      for (j=1;j<=n;j++) { 
      s1=0;        ptt[j]=2.0*p[j]-pt[j]; 
     for(j=1; j<i; j++)        xit[j]=p[j]-pt[j]; 
       s1+=exp(ps[i][j]);        pt[j]=p[j]; 
     for(j=i+1; j<=nlstate+ndeath; j++)      } 
       s1+=exp(ps[i][j]);      fptt=(*func)(ptt); 
     ps[i][i]=1./(s1+1.);      if (fptt < fp) { 
     for(j=1; j<i; j++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        if (t < 0.0) { 
     for(j=i+1; j<=nlstate+ndeath; j++)          linmin(p,xit,n,fret,func); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          for (j=1;j<=n;j++) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            xi[j][ibig]=xi[j][n]; 
   } /* end i */            xi[j][n]=xit[j]; 
           }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #ifdef DEBUG
     for(jj=1; jj<= nlstate+ndeath; jj++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       ps[ii][jj]=0;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       ps[ii][ii]=1;          for(j=1;j<=n;j++){
     }            printf(" %.12e",xit[j]);
   }            fprintf(ficlog," %.12e",xit[j]);
           }
           printf("\n");
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          fprintf(ficlog,"\n");
     for(jj=1; jj<= nlstate+ndeath; jj++){  #endif
      printf("%lf ",ps[ii][jj]);        }
    }      } 
     printf("\n ");    } 
     }  } 
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /**** Prevalence limit (stable prevalence)  ****************/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     return ps;  {
 }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
 /**************** Product of 2 matrices ******************/  
     int i, ii,j,k;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double min, max, maxmin, maxmax,sumnew=0.;
 {    double **matprod2();
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double **out, cov[NCOVMAX], **pmij();
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double **newm;
   /* in, b, out are matrice of pointers which should have been initialized    double agefin, delaymax=50 ; /* Max number of years to converge */
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */    for (ii=1;ii<=nlstate+ndeath;ii++)
   long i, j, k;      for (j=1;j<=nlstate+ndeath;j++){
   for(i=nrl; i<= nrh; i++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(k=ncolol; k<=ncoloh; k++)      }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];     cov[1]=1.;
    
   return out;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
       /* Covariates have to be included here again */
 /************* Higher Matrix Product ***************/       cov[2]=agefin;
     
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        for (k=1; k<=cptcovn;k++) {
 {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
      duration (i.e. until        }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        for (k=1; k<=cptcovprod;k++)
      (typically every 2 years instead of every month which is too big).          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      Model is determined by parameters x and covariates have to be  
      included manually here.        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];      savm=oldm;
   double **newm;      oldm=newm;
       maxmax=0.;
   /* Hstepm could be zero and should return the unit matrix */      for(j=1;j<=nlstate;j++){
   for (i=1;i<=nlstate+ndeath;i++)        min=1.;
     for (j=1;j<=nlstate+ndeath;j++){        max=0.;
       oldm[i][j]=(i==j ? 1.0 : 0.0);        for(i=1; i<=nlstate; i++) {
       po[i][j][0]=(i==j ? 1.0 : 0.0);          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          prlim[i][j]= newm[i][j]/(1-sumnew);
   for(h=1; h <=nhstepm; h++){          max=FMAX(max,prlim[i][j]);
     for(d=1; d <=hstepm; d++){          min=FMIN(min,prlim[i][j]);
       newm=savm;        }
       /* Covariates have to be included here again */        maxmin=max-min;
       cov[1]=1.;        maxmax=FMAX(maxmax,maxmin);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      if(maxmax < ftolpl){
       for (k=1; k<=cptcovage;k++)        return prlim;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
       for (k=1; k<=cptcovprod;k++)    }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
   /*************** transition probabilities ***************/ 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double s1, s2;
       savm=oldm;    /*double t34;*/
       oldm=newm;    int i,j,j1, nc, ii, jj;
     }  
     for(i=1; i<=nlstate+ndeath; i++)      for(i=1; i<= nlstate; i++){
       for(j=1;j<=nlstate+ndeath;j++) {      for(j=1; j<i;j++){
         po[i][j][h]=newm[i][j];        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          /*s2 += param[i][j][nc]*cov[nc];*/
          */          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       }          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   } /* end h */        }
   return po;        ps[i][j]=s2;
 }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       }
       for(j=i+1; j<=nlstate+ndeath;j++){
 /*************** log-likelihood *************/        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 double func( double *x)          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   int i, ii, j, k, mi, d, kk;        }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        ps[i][j]=s2;
   double **out;      }
   double sw; /* Sum of weights */    }
   double lli; /* Individual log likelihood */      /*ps[3][2]=1;*/
   long ipmx;  
   /*extern weight */    for(i=1; i<= nlstate; i++){
   /* We are differentiating ll according to initial status */       s1=0;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for(j=1; j<i; j++)
   /*for(i=1;i<imx;i++)        s1+=exp(ps[i][j]);
     printf(" %d\n",s[4][i]);      for(j=i+1; j<=nlstate+ndeath; j++)
   */        s1+=exp(ps[i][j]);
   cov[1]=1.;      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
   for(k=1; k<=nlstate; k++) ll[k]=0.;        ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for(j=i+1; j<=nlstate+ndeath; j++)
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(mi=1; mi<= wav[i]-1; mi++){      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for (ii=1;ii<=nlstate+ndeath;ii++)    } /* end i */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         newm=savm;      for(jj=1; jj<= nlstate+ndeath; jj++){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        ps[ii][jj]=0;
         for (kk=1; kk<=cptcovage;kk++) {        ps[ii][ii]=1;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
         }    }
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
         savm=oldm;      for(jj=1; jj<= nlstate+ndeath; jj++){
         oldm=newm;       printf("%lf ",ps[ii][jj]);
             }
              printf("\n ");
       } /* end mult */      }
            printf("\n ");printf("%lf ",cov[2]);*/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /*
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       ipmx +=1;    goto end;*/
       sw += weight[i];      return ps;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  }
     } /* end of wave */  
   } /* end of individual */  /**************** Product of 2 matrices ******************/
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   return -l;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 }    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
 /*********** Maximum Likelihood Estimation ***************/    long i, j, k;
     for(i=nrl; i<= nrh; i++)
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      for(k=ncolol; k<=ncoloh; k++)
 {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   int i,j, iter;          out[i][k] +=in[i][j]*b[j][k];
   double **xi,*delti;  
   double fret;    return out;
   xi=matrix(1,npar,1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  /************* Higher Matrix Product ***************/
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    /* Computes the transition matrix starting at age 'age' over 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));       'nhstepm*hstepm*stepm' months (i.e. until
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
 }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
 /**** Computes Hessian and covariance matrix ***/       for the memory).
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))       Model is determined by parameters x and covariates have to be 
 {       included manually here. 
   double  **a,**y,*x,pd;  
   double **hess;       */
   int i, j,jk;  
   int *indx;    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
   double hessii(double p[], double delta, int theta, double delti[]);    double **newm;
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;    /* Hstepm could be zero and should return the unit matrix */
   void ludcmp(double **a, int npar, int *indx, double *d) ;    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
   hess=matrix(1,npar,1,npar);        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
   printf("\nCalculation of the hessian matrix. Wait...\n");      }
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=npar;i++){    for(h=1; h <=nhstepm; h++){
     printf("%d",i);fflush(stdout);      for(d=1; d <=hstepm; d++){
     fprintf(ficlog,"%d",i);fflush(ficlog);        newm=savm;
     hess[i][i]=hessii(p,ftolhess,i,delti);        /* Covariates have to be included here again */
     /*printf(" %f ",p[i]);*/        cov[1]=1.;
     /*printf(" %lf ",hess[i][i]);*/        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
   for (i=1;i<=npar;i++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (j=1;j<=npar;j++)  {        for (k=1; k<=cptcovprod;k++)
       if (j>i) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  
         hess[i][j]=hessij(p,delti,i,j);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         hess[j][i]=hess[i][j];            /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         /*printf(" %lf ",hess[i][j]);*/        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     }        savm=oldm;
   }        oldm=newm;
   printf("\n");      }
   fprintf(ficlog,"\n");      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          po[i][j][h]=newm[i][j];
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             */
   a=matrix(1,npar,1,npar);        }
   y=matrix(1,npar,1,npar);    } /* end h */
   x=vector(1,npar);    return po;
   indx=ivector(1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  /*************** log-likelihood *************/
   double func( double *x)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    int i, ii, j, k, mi, d, kk;
     x[j]=1;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     lubksb(a,npar,indx,x);    double **out;
     for (i=1;i<=npar;i++){    double sw; /* Sum of weights */
       matcov[i][j]=x[i];    double lli; /* Individual log likelihood */
     }    int s1, s2;
   }    double bbh, survp;
     long ipmx;
   printf("\n#Hessian matrix#\n");    /*extern weight */
   fprintf(ficlog,"\n#Hessian matrix#\n");    /* We are differentiating ll according to initial status */
   for (i=1;i<=npar;i++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for (j=1;j<=npar;j++) {    /*for(i=1;i<imx;i++) 
       printf("%.3e ",hess[i][j]);      printf(" %d\n",s[4][i]);
       fprintf(ficlog,"%.3e ",hess[i][j]);    */
     }    cov[1]=1.;
     printf("\n");  
     fprintf(ficlog,"\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
     if(mle==1){
   /* Recompute Inverse */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=1;i<=npar;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
   ludcmp(a,npar,indx,&pd);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   /*  printf("\n#Hessian matrix recomputed#\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1;j<=npar;j++) {            }
     for (i=1;i<=npar;i++) x[i]=0;          for(d=0; d<dh[mi][i]; d++){
     x[j]=1;            newm=savm;
     lubksb(a,npar,indx,x);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1;i<=npar;i++){            for (kk=1; kk<=cptcovage;kk++) {
       y[i][j]=x[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       printf("%.3e ",y[i][j]);            }
       fprintf(ficlog,"%.3e ",y[i][j]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("\n");            savm=oldm;
     fprintf(ficlog,"\n");            oldm=newm;
   }          } /* end mult */
   */        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   free_matrix(a,1,npar,1,npar);          /* But now since version 0.9 we anticipate for bias and large stepm.
   free_matrix(y,1,npar,1,npar);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   free_vector(x,1,npar);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   free_ivector(indx,1,npar);           * the nearest (and in case of equal distance, to the lowest) interval but now
   free_matrix(hess,1,npar,1,npar);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
 }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 /*************** hessian matrix ****************/           * For stepm=1 the results are the same as for previous versions of Imach.
 double hessii( double x[], double delta, int theta, double delti[])           * For stepm > 1 the results are less biased than in previous versions. 
 {           */
   int i;          s1=s[mw[mi][i]][i];
   int l=1, lmax=20;          s2=s[mw[mi+1][i]][i];
   double k1,k2;          bbh=(double)bh[mi][i]/(double)stepm; 
   double p2[NPARMAX+1];          /* bias is positive if real duration
   double res;           * is higher than the multiple of stepm and negative otherwise.
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           */
   double fx;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int k=0,kmax=10;          if( s2 > nlstate){ 
   double l1;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                to the likelihood is the probability to die between last step unit time and current 
   fx=func(x);               step unit time, which is also the differences between probability to die before dh 
   for (i=1;i<=npar;i++) p2[i]=x[i];               and probability to die before dh-stepm . 
   for(l=0 ; l <=lmax; l++){               In version up to 0.92 likelihood was computed
     l1=pow(10,l);          as if date of death was unknown. Death was treated as any other
     delts=delt;          health state: the date of the interview describes the actual state
     for(k=1 ; k <kmax; k=k+1){          and not the date of a change in health state. The former idea was
       delt = delta*(l1*k);          to consider that at each interview the state was recorded
       p2[theta]=x[theta] +delt;          (healthy, disable or death) and IMaCh was corrected; but when we
       k1=func(p2)-fx;          introduced the exact date of death then we should have modified
       p2[theta]=x[theta]-delt;          the contribution of an exact death to the likelihood. This new
       k2=func(p2)-fx;          contribution is smaller and very dependent of the step unit
       /*res= (k1-2.0*fx+k2)/delt/delt; */          stepm. It is no more the probability to die between last interview
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          and month of death but the probability to survive from last
                interview up to one month before death multiplied by the
 #ifdef DEBUG          probability to die within a month. Thanks to Chris
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          Jackson for correcting this bug.  Former versions increased
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          mortality artificially. The bad side is that we add another loop
 #endif          which slows down the processing. The difference can be up to 10%
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          lower mortality.
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            */
         k=kmax;            lli=log(out[s1][s2] - savm[s1][s2]);
       }          }else{
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         k=kmax; l=lmax*10.;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       }          } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         delts=delt;          /*if(lli ==000.0)*/
       }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
   }          sw += weight[i];
   delti[theta]=delts;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   return res;        } /* end of wave */
        } /* end of individual */
 }    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 double hessij( double x[], double delti[], int thetai,int thetaj)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   int i;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int l=1, l1, lmax=20;            for (j=1;j<=nlstate+ndeath;j++){
   double k1,k2,k3,k4,res,fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double p2[NPARMAX+1];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k;            }
           for(d=0; d<=dh[mi][i]; d++){
   fx=func(x);            newm=savm;
   for (k=1; k<=2; k++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1;i<=npar;i++) p2[i]=x[i];            for (kk=1; kk<=cptcovage;kk++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            }
     k1=func(p2)-fx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetai]=x[thetai]+delti[thetai]/k;            savm=oldm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            oldm=newm;
     k2=func(p2)-fx;          } /* end mult */
          
     p2[thetai]=x[thetai]-delti[thetai]/k;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /* But now since version 0.9 we anticipate for bias and large stepm.
     k3=func(p2)-fx;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
     p2[thetai]=x[thetai]-delti[thetai]/k;           * the nearest (and in case of equal distance, to the lowest) interval but now
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     k4=func(p2)-fx;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           * probability in order to take into account the bias as a fraction of the way
 #ifdef DEBUG           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * -stepm/2 to stepm/2 .
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * For stepm=1 the results are the same as for previous versions of Imach.
 #endif           * For stepm > 1 the results are less biased than in previous versions. 
   }           */
   return res;          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /************** Inverse of matrix **************/          /* bias is positive if real duration
 void ludcmp(double **a, int n, int *indx, double *d)           * is higher than the multiple of stepm and negative otherwise.
 {           */
   int i,imax,j,k;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double big,dum,sum,temp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double *vv;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   vv=vector(1,n);          /*if(lli ==000.0)*/
   *d=1.0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for (i=1;i<=n;i++) {          ipmx +=1;
     big=0.0;          sw += weight[i];
     for (j=1;j<=n;j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if ((temp=fabs(a[i][j])) > big) big=temp;        } /* end of wave */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      } /* end of individual */
     vv[i]=1.0/big;    }  else if(mle==3){  /* exponential inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (j=1;j<=n;j++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1;i<j;i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       sum=a[i][j];          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            for (j=1;j<=nlstate+ndeath;j++){
       a[i][j]=sum;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     big=0.0;            }
     for (i=j;i<=n;i++) {          for(d=0; d<dh[mi][i]; d++){
       sum=a[i][j];            newm=savm;
       for (k=1;k<j;k++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         sum -= a[i][k]*a[k][j];            for (kk=1; kk<=cptcovage;kk++) {
       a[i][j]=sum;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if ( (dum=vv[i]*fabs(sum)) >= big) {            }
         big=dum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         imax=i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     }            oldm=newm;
     if (j != imax) {          } /* end mult */
       for (k=1;k<=n;k++) {        
         dum=a[imax][k];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         a[imax][k]=a[j][k];          /* But now since version 0.9 we anticipate for bias and large stepm.
         a[j][k]=dum;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       }           * (in months) between two waves is not a multiple of stepm, we rounded to 
       *d = -(*d);           * the nearest (and in case of equal distance, to the lowest) interval but now
       vv[imax]=vv[j];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     indx[j]=imax;           * probability in order to take into account the bias as a fraction of the way
     if (a[j][j] == 0.0) a[j][j]=TINY;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     if (j != n) {           * -stepm/2 to stepm/2 .
       dum=1.0/(a[j][j]);           * For stepm=1 the results are the same as for previous versions of Imach.
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
   }          s1=s[mw[mi][i]][i];
   free_vector(vv,1,n);  /* Doesn't work */          s2=s[mw[mi+1][i]][i];
 ;          bbh=(double)bh[mi][i]/(double)stepm; 
 }          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 void lubksb(double **a, int n, int *indx, double b[])           */
 {          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   int i,ii=0,ip,j;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double sum;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
   for (i=1;i<=n;i++) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     ip=indx[i];          ipmx +=1;
     sum=b[ip];          sw += weight[i];
     b[ip]=b[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (ii)        } /* end of wave */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      } /* end of individual */
     else if (sum) ii=i;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     b[i]=sum;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=n;i>=1;i--) {        for(mi=1; mi<= wav[i]-1; mi++){
     sum=b[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            for (j=1;j<=nlstate+ndeath;j++){
     b[i]=sum/a[i][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<dh[mi][i]; d++){
 /************ Frequencies ********************/            newm=savm;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {  /* Some frequencies */            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            }
   int first;          
   double ***freq; /* Frequencies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double *pp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double pos, k2, dateintsum=0,k2cpt=0;            savm=oldm;
   FILE *ficresp;            oldm=newm;
   char fileresp[FILENAMELENGTH];          } /* end mult */
          
   pp=vector(1,nlstate);          s1=s[mw[mi][i]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          s2=s[mw[mi+1][i]][i];
   strcpy(fileresp,"p");          if( s2 > nlstate){ 
   strcat(fileresp,fileres);            lli=log(out[s1][s2] - savm[s1][s2]);
   if((ficresp=fopen(fileresp,"w"))==NULL) {          }else{
     printf("Problem with prevalence resultfile: %s\n", fileresp);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          }
     exit(0);          ipmx +=1;
   }          sw += weight[i];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   j1=0;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          } /* end of wave */
   j=cptcoveff;      } /* end of individual */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   first=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   for(k1=1; k1<=j;k1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i1=1; i1<=ncodemax[k1];i1++){            for (j=1;j<=nlstate+ndeath;j++){
       j1++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         scanf("%d", i);*/            }
       for (i=-1; i<=nlstate+ndeath; i++)            for(d=0; d<dh[mi][i]; d++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)              newm=savm;
           for(m=agemin; m <= agemax+3; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             freq[i][jk][m]=0;            for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       dateintsum=0;            }
       k2cpt=0;          
       for (i=1; i<=imx; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         bool=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if  (cptcovn>0) {            savm=oldm;
           for (z1=1; z1<=cptcoveff; z1++)            oldm=newm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          } /* end mult */
               bool=0;        
         }          s1=s[mw[mi][i]][i];
         if (bool==1) {          s2=s[mw[mi+1][i]][i];
           for(m=firstpass; m<=lastpass; m++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             k2=anint[m][i]+(mint[m][i]/12.);          ipmx +=1;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          sw += weight[i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
               if (m<lastpass) {        } /* end of wave */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      } /* end of individual */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    } /* End of if */
               }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                  /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                 dateintsum=dateintsum+k2;    return -l;
                 k2cpt++;  }
               }  
             }  /*************** log-likelihood *************/
           }  double funcone( double *x)
         }  {
       }    /* Same as likeli but slower because of a lot of printf and if */
            int i, ii, j, k, mi, d, kk;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
       if  (cptcovn>0) {    double lli; /* Individual log likelihood */
         fprintf(ficresp, "\n#********** Variable ");    double llt;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int s1, s2;
         fprintf(ficresp, "**********\n#");    double bbh, survp;
       }    /*extern weight */
       for(i=1; i<=nlstate;i++)    /* We are differentiating ll according to initial status */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       fprintf(ficresp, "\n");    /*for(i=1;i<imx;i++) 
            printf(" %d\n",s[4][i]);
       for(i=(int)agemin; i <= (int)agemax+3; i++){    */
         if(i==(int)agemax+3){    cov[1]=1.;
           fprintf(ficlog,"Total");  
         }else{    for(k=1; k<=nlstate; k++) ll[k]=0.;
           if(first==1){  
             first=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             printf("See log file for details...\n");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }      for(mi=1; mi<= wav[i]-1; mi++){
           fprintf(ficlog,"Age %d", i);        for (ii=1;ii<=nlstate+ndeath;ii++)
         }          for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];          }
         }        for(d=0; d<dh[mi][i]; d++){
         for(jk=1; jk <=nlstate ; jk++){          newm=savm;
           for(m=-1, pos=0; m <=0 ; m++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             pos += freq[jk][m][i];          for (kk=1; kk<=cptcovage;kk++) {
           if(pp[jk]>=1.e-10){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if(first==1){          }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          savm=oldm;
           }else{          oldm=newm;
             if(first==1)        } /* end mult */
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        s1=s[mw[mi][i]][i];
           }        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
         for(jk=1; jk <=nlstate ; jk++){         * is higher than the multiple of stepm and negative otherwise.
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)         */
             pp[jk] += freq[jk][m][i];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         }          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if (mle==1){
         for(jk=1,pos=0; jk <=nlstate ; jk++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           pos += pp[jk];        } else if(mle==2){
         for(jk=1; jk <=nlstate ; jk++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           if(pos>=1.e-5){        } else if(mle==3){  /* exponential inter-extrapolation */
             if(first==1)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          lli=log(out[s1][s2]); /* Original formula */
           }else{        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
             if(first==1)          lli=log(out[s1][s2]); /* Original formula */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        } /* End of if */
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        ipmx +=1;
           }        sw += weight[i];
           if( i <= (int) agemax){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if(pos>=1.e-5){  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        if(globpr){
               probs[i][jk][j1]= pp[jk]/pos;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/   %10.6f %10.6f %10.6f ", \
             }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
             else                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           }            llt +=ll[k]*gipmx/gsw;
         }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                  }
         for(jk=-1; jk <=nlstate+ndeath; jk++)          fprintf(ficresilk," %10.6f\n", -llt);
           for(m=-1; m <=nlstate+ndeath; m++)        }
             if(freq[jk][m][i] !=0 ) {      } /* end of wave */
             if(first==1)    } /* end of individual */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         if(i <= (int) agemax)    if(globpr==0){ /* First time we count the contributions and weights */
           fprintf(ficresp,"\n");      gipmx=ipmx;
         if(first==1)      gsw=sw;
           printf("Others in log...\n");    }
         fprintf(ficlog,"\n");    return -l;
       }  }
     }  
   }  char *subdirf(char fileres[])
   dateintmean=dateintsum/k2cpt;  {
      
   fclose(ficresp);    strcpy(tmpout,optionfilefiname);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    strcat(tmpout,"/"); /* Add to the right */
   free_vector(pp,1,nlstate);    strcat(tmpout,fileres);
      return tmpout;
   /* End of Freq */  }
 }  
   char *subdirf2(char fileres[], char *preop)
 /************ Prevalence ********************/  {
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    
 {  /* Some frequencies */    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/");
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    strcat(tmpout,preop);
   double ***freq; /* Frequencies */    strcat(tmpout,fileres);
   double *pp;    return tmpout;
   double pos, k2;  }
   char *subdirf3(char fileres[], char *preop, char *preop2)
   pp=vector(1,nlstate);  {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    
      strcpy(tmpout,optionfilefiname);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    strcat(tmpout,"/");
   j1=0;    strcat(tmpout,preop);
      strcat(tmpout,preop2);
   j=cptcoveff;    strcat(tmpout,fileres);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    return tmpout;
    }
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       j1++;  {
          /* This routine should help understanding what is done with 
       for (i=-1; i<=nlstate+ndeath; i++)         the selection of individuals/waves and
         for (jk=-1; jk<=nlstate+ndeath; jk++)         to check the exact contribution to the likelihood.
           for(m=agemin; m <= agemax+3; m++)       Plotting could be done.
             freq[i][jk][m]=0;     */
          int k;
       for (i=1; i<=imx; i++) {  
         bool=1;    if(*globpri !=0){ /* Just counts and sums, no printings */
         if  (cptcovn>0) {      strcpy(fileresilk,"ilk"); 
           for (z1=1; z1<=cptcoveff; z1++)      strcat(fileresilk,fileres);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
               bool=0;        printf("Problem with resultfile: %s\n", fileresilk);
         }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         if (bool==1) {      }
           for(m=firstpass; m<=lastpass; m++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
             k2=anint[m][i]+(mint[m][i]/12.);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for(k=1; k<=nlstate; k++) 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
               if (m<lastpass) {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
                 if (calagedate>0)    }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
                 else    *fretone=(*funcone)(p);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    if(*globpri !=0){
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      fclose(ficresilk);
               }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
             }      fflush(fichtm); 
           }    } 
         }    return;
       }  }
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*********** Maximum Likelihood Estimation ***************/
             pp[jk] += freq[jk][m][i];  
         }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=-1, pos=0; m <=0 ; m++)    int i,j, iter;
             pos += freq[jk][m][i];    double **xi;
         }    double fret;
            double fretone; /* Only one call to likelihood */
         for(jk=1; jk <=nlstate ; jk++){    char filerespow[FILENAMELENGTH];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    xi=matrix(1,npar,1,npar);
             pp[jk] += freq[jk][m][i];    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++)
                xi[i][j]=(i==j ? 1.0 : 0.0);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
            strcpy(filerespow,"pow"); 
         for(jk=1; jk <=nlstate ; jk++){        strcat(filerespow,fileres);
           if( i <= (int) agemax){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
             if(pos>=1.e-5){      printf("Problem with resultfile: %s\n", filerespow);
               probs[i][jk][j1]= pp[jk]/pos;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
             }    }
           }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         }/* end jk */    for (i=1;i<=nlstate;i++)
       }/* end i */      for(j=1;j<=nlstate+ndeath;j++)
     } /* end i1 */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   } /* end k1 */    fprintf(ficrespow,"\n");
   
      powell(p,xi,npar,ftol,&iter,&fret,func);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);    fclose(ficrespow);
      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 }  /* End of Freq */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /************* Waves Concatenation ***************/  
   }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {  /**** Computes Hessian and covariance matrix ***/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      Death is a valid wave (if date is known).  {
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double  **a,**y,*x,pd;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double **hess;
      and mw[mi+1][i]. dh depends on stepm.    int i, j,jk;
      */    int *indx;
   
   int i, mi, m;    double hessii(double p[], double delta, int theta, double delti[]);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    double hessij(double p[], double delti[], int i, int j);
      double sum=0., jmean=0.;*/    void lubksb(double **a, int npar, int *indx, double b[]) ;
   int first;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   int j, k=0,jk, ju, jl;  
   double sum=0.;    hess=matrix(1,npar,1,npar);
   first=0;  
   jmin=1e+5;    printf("\nCalculation of the hessian matrix. Wait...\n");
   jmax=-1;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   jmean=0.;    for (i=1;i<=npar;i++){
   for(i=1; i<=imx; i++){      printf("%d",i);fflush(stdout);
     mi=0;      fprintf(ficlog,"%d",i);fflush(ficlog);
     m=firstpass;      hess[i][i]=hessii(p,ftolhess,i,delti);
     while(s[m][i] <= nlstate){      /*printf(" %f ",p[i]);*/
       if(s[m][i]>=1)      /*printf(" %lf ",hess[i][i]);*/
         mw[++mi][i]=m;    }
       if(m >=lastpass)    
         break;    for (i=1;i<=npar;i++) {
       else      for (j=1;j<=npar;j++)  {
         m++;        if (j>i) { 
     }/* end while */          printf(".%d%d",i,j);fflush(stdout);
     if (s[m][i] > nlstate){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       mi++;     /* Death is another wave */          hess[i][j]=hessij(p,delti,i,j);
       /* if(mi==0)  never been interviewed correctly before death */          hess[j][i]=hess[i][j];    
          /* Only death is a correct wave */          /*printf(" %lf ",hess[i][j]);*/
       mw[mi][i]=m;        }
     }      }
     }
     wav[i]=mi;    printf("\n");
     if(mi==0){    fprintf(ficlog,"\n");
       if(first==0){  
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         first=1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    
       if(first==1){    a=matrix(1,npar,1,npar);
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    y=matrix(1,npar,1,npar);
       }    x=vector(1,npar);
     } /* end mi==0 */    indx=ivector(1,npar);
   }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   for(i=1; i<=imx; i++){    ludcmp(a,npar,indx,&pd);
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)    for (j=1;j<=npar;j++) {
         dh[mi][i]=1;      for (i=1;i<=npar;i++) x[i]=0;
       else{      x[j]=1;
         if (s[mw[mi+1][i]][i] > nlstate) {      lubksb(a,npar,indx,x);
           if (agedc[i] < 2*AGESUP) {      for (i=1;i<=npar;i++){ 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        matcov[i][j]=x[i];
           if(j==0) j=1;  /* Survives at least one month after exam */      }
           k=k+1;    }
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;    printf("\n#Hessian matrix#\n");
           sum=sum+j;    fprintf(ficlog,"\n#Hessian matrix#\n");
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    for (i=1;i<=npar;i++) { 
           }      for (j=1;j<=npar;j++) { 
         }        printf("%.3e ",hess[i][j]);
         else{        fprintf(ficlog,"%.3e ",hess[i][j]);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      }
           k=k+1;      printf("\n");
           if (j >= jmax) jmax=j;      fprintf(ficlog,"\n");
           else if (j <= jmin)jmin=j;    }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           sum=sum+j;    /* Recompute Inverse */
         }    for (i=1;i<=npar;i++)
         jk= j/stepm;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         jl= j -jk*stepm;    ludcmp(a,npar,indx,&pd);
         ju= j -(jk+1)*stepm;  
         if(jl <= -ju)    /*  printf("\n#Hessian matrix recomputed#\n");
           dh[mi][i]=jk;  
         else    for (j=1;j<=npar;j++) {
           dh[mi][i]=jk+1;      for (i=1;i<=npar;i++) x[i]=0;
         if(dh[mi][i]==0)      x[j]=1;
           dh[mi][i]=1; /* At least one step */      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
     }        y[i][j]=x[i];
   }        printf("%.3e ",y[i][j]);
   jmean=sum/k;        fprintf(ficlog,"%.3e ",y[i][j]);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      }
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      printf("\n");
  }      fprintf(ficlog,"\n");
     }
 /*********** Tricode ****************************/    */
 void tricode(int *Tvar, int **nbcode, int imx)  
 {    free_matrix(a,1,npar,1,npar);
   int Ndum[20],ij=1, k, j, i;    free_matrix(y,1,npar,1,npar);
   int cptcode=0;    free_vector(x,1,npar);
   cptcoveff=0;    free_ivector(indx,1,npar);
      free_matrix(hess,1,npar,1,npar);
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  
   }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {  /*************** hessian matrix ****************/
       ij=(int)(covar[Tvar[j]][i]);  double hessii( double x[], double delta, int theta, double delti[])
       Ndum[ij]++;  {
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    int i;
       if (ij > cptcode) cptcode=ij;    int l=1, lmax=20;
     }    double k1,k2;
     double p2[NPARMAX+1];
     for (i=0; i<=cptcode; i++) {    double res;
       if(Ndum[i]!=0) ncodemax[j]++;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     }    double fx;
     ij=1;    int k=0,kmax=10;
     double l1;
   
     for (i=1; i<=ncodemax[j]; i++) {    fx=func(x);
       for (k=0; k<=19; k++) {    for (i=1;i<=npar;i++) p2[i]=x[i];
         if (Ndum[k] != 0) {    for(l=0 ; l <=lmax; l++){
           nbcode[Tvar[j]][ij]=k;      l1=pow(10,l);
                delts=delt;
           ij++;      for(k=1 ; k <kmax; k=k+1){
         }        delt = delta*(l1*k);
         if (ij > ncodemax[j]) break;        p2[theta]=x[theta] +delt;
       }          k1=func(p2)-fx;
     }        p2[theta]=x[theta]-delt;
   }          k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
  for (k=0; k<19; k++) Ndum[k]=0;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
  for (i=1; i<=ncovmodel-2; i++) {  #ifdef DEBUG
    ij=Tvar[i];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    Ndum[ij]++;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
  }  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
  ij=1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
  for (i=1; i<=10; i++) {          k=kmax;
    if((Ndum[i]!=0) && (i<=ncovcol)){        }
      Tvaraff[ij]=i;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
      ij++;          k=kmax; l=lmax*10.;
    }        }
  }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
  cptcoveff=ij-1;        }
 }      }
     }
 /*********** Health Expectancies ****************/    delti[theta]=delts;
     return res; 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    
   }
 {  
   /* Health expectancies */  double hessij( double x[], double delti[], int thetai,int thetaj)
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  {
   double age, agelim, hf;    int i;
   double ***p3mat,***varhe;    int l=1, l1, lmax=20;
   double **dnewm,**doldm;    double k1,k2,k3,k4,res,fx;
   double *xp;    double p2[NPARMAX+1];
   double **gp, **gm;    int k;
   double ***gradg, ***trgradg;  
   int theta;    fx=func(x);
     for (k=1; k<=2; k++) {
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      for (i=1;i<=npar;i++) p2[i]=x[i];
   xp=vector(1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   dnewm=matrix(1,nlstate*2,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   doldm=matrix(1,nlstate*2,1,nlstate*2);      k1=func(p2)-fx;
      
   fprintf(ficreseij,"# Health expectancies\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
   fprintf(ficreseij,"# Age");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   for(i=1; i<=nlstate;i++)      k2=func(p2)-fx;
     for(j=1; j<=nlstate;j++)    
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficreseij,"\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
   if(estepm < stepm){    
     printf ("Problem %d lower than %d\n",estepm, stepm);      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   else  hstepm=estepm;        k4=func(p2)-fx;
   /* We compute the life expectancy from trapezoids spaced every estepm months      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
    * This is mainly to measure the difference between two models: for example  #ifdef DEBUG
    * if stepm=24 months pijx are given only every 2 years and by summing them      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    * we are calculating an estimate of the Life Expectancy assuming a linear      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    * progression inbetween and thus overestimating or underestimating according  #endif
    * to the curvature of the survival function. If, for the same date, we    }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    return res;
    * to compare the new estimate of Life expectancy with the same linear  }
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
   /* For example we decided to compute the life expectancy with the smallest unit */  { 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int i,imax,j,k; 
      nhstepm is the number of hstepm from age to agelim    double big,dum,sum,temp; 
      nstepm is the number of stepm from age to agelin.    double *vv; 
      Look at hpijx to understand the reason of that which relies in memory size   
      and note for a fixed period like estepm months */    vv=vector(1,n); 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    *d=1.0; 
      survival function given by stepm (the optimization length). Unfortunately it    for (i=1;i<=n;i++) { 
      means that if the survival funtion is printed only each two years of age and if      big=0.0; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (j=1;j<=n;j++) 
      results. So we changed our mind and took the option of the best precision.        if ((temp=fabs(a[i][j])) > big) big=temp; 
   */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      vv[i]=1.0/big; 
     } 
   agelim=AGESUP;    for (j=1;j<=n;j++) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1;i<j;i++) { 
     /* nhstepm age range expressed in number of stepm */        sum=a[i][j]; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        a[i][j]=sum; 
     /* if (stepm >= YEARM) hstepm=1;*/      } 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      big=0.0; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=j;i<=n;i++) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        sum=a[i][j]; 
     gp=matrix(0,nhstepm,1,nlstate*2);        for (k=1;k<j;k++) 
     gm=matrix(0,nhstepm,1,nlstate*2);          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        if ( (dum=vv[i]*fabs(sum)) >= big) { 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          big=dum; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            imax=i; 
          } 
       } 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      if (j != imax) { 
         for (k=1;k<=n;k++) { 
     /* Computing Variances of health expectancies */          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
      for(theta=1; theta <=npar; theta++){          a[j][k]=dum; 
       for(i=1; i<=npar; i++){        } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        *d = -(*d); 
       }        vv[imax]=vv[j]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } 
        indx[j]=imax; 
       cptj=0;      if (a[j][j] == 0.0) a[j][j]=TINY; 
       for(j=1; j<= nlstate; j++){      if (j != n) { 
         for(i=1; i<=nlstate; i++){        dum=1.0/(a[j][j]); 
           cptj=cptj+1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      } 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    } 
           }    free_vector(vv,1,n);  /* Doesn't work */
         }  ;
       }  } 
        
        void lubksb(double **a, int n, int *indx, double b[]) 
       for(i=1; i<=npar; i++)  { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i,ii=0,ip,j; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double sum; 
         
       cptj=0;    for (i=1;i<=n;i++) { 
       for(j=1; j<= nlstate; j++){      ip=indx[i]; 
         for(i=1;i<=nlstate;i++){      sum=b[ip]; 
           cptj=cptj+1;      b[ip]=b[i]; 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      if (ii) 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           }      else if (sum) ii=i; 
         }      b[i]=sum; 
       }    } 
       for(j=1; j<= nlstate*2; j++)    for (i=n;i>=1;i--) { 
         for(h=0; h<=nhstepm-1; h++){      sum=b[i]; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         }      b[i]=sum/a[i][i]; 
      }    } 
      } 
 /* End theta */  
   /************ Frequencies ********************/
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   {  /* Some frequencies */
      for(h=0; h<=nhstepm-1; h++)    
       for(j=1; j<=nlstate*2;j++)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for(theta=1; theta <=npar; theta++)    int first;
           trgradg[h][j][theta]=gradg[h][theta][j];    double ***freq; /* Frequencies */
          double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
      for(i=1;i<=nlstate*2;i++)    FILE *ficresp;
       for(j=1;j<=nlstate*2;j++)    char fileresp[FILENAMELENGTH];
         varhe[i][j][(int)age] =0.;    
     pp=vector(1,nlstate);
      printf("%d|",(int)age);fflush(stdout);    prop=matrix(1,nlstate,iagemin,iagemax+3);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    strcpy(fileresp,"p");
      for(h=0;h<=nhstepm-1;h++){    strcat(fileresp,fileres);
       for(k=0;k<=nhstepm-1;k++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      printf("Problem with prevalence resultfile: %s\n", fileresp);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         for(i=1;i<=nlstate*2;i++)      exit(0);
           for(j=1;j<=nlstate*2;j++)    }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       }    j1=0;
     }    
     /* Computing expectancies */    j=cptcoveff;
     for(i=1; i<=nlstate;i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    first=1;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
              for(k1=1; k1<=j;k1++){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
     fprintf(ficreseij,"%3.0f",age );        for (i=-1; i<=nlstate+ndeath; i++)  
     cptj=0;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     for(i=1; i<=nlstate;i++)            for(m=iagemin; m <= iagemax+3; m++)
       for(j=1; j<=nlstate;j++){              freq[i][jk][m]=0;
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      for (i=1; i<=nlstate; i++)  
       }        for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficreseij,"\n");          prop[i][m]=0;
            
     free_matrix(gm,0,nhstepm,1,nlstate*2);        dateintsum=0;
     free_matrix(gp,0,nhstepm,1,nlstate*2);        k2cpt=0;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        for (i=1; i<=imx; i++) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          bool=1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
   printf("\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   fprintf(ficlog,"\n");                bool=0;
           }
   free_vector(xp,1,npar);          if (bool==1){
   free_matrix(dnewm,1,nlstate*2,1,npar);            for(m=firstpass; m<=lastpass; m++){
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);              k2=anint[m][i]+(mint[m][i]/12.);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /************ Variance ******************/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)                if (m<lastpass) {
 {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   /* Variance of health expectancies */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                }
   /* double **newm;*/                
   double **dnewm,**doldm;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double **dnewmp,**doldmp;                  dateintsum=dateintsum+k2;
   int i, j, nhstepm, hstepm, h, nstepm ;                  k2cpt++;
   int k, cptcode;                }
   double *xp;                /*}*/
   double **gp, **gm;  /* for var eij */            }
   double ***gradg, ***trgradg; /*for var eij */          }
   double **gradgp, **trgradgp; /* for var p point j */        }
   double *gpp, *gmp; /* for var p point j */         
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   double ***p3mat;  
   double age,agelim, hf;        if  (cptcovn>0) {
   int theta;          fprintf(ficresp, "\n#********** Variable "); 
   char digit[4];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char digitp[16];          fprintf(ficresp, "**********\n#");
         }
   char fileresprobmorprev[FILENAMELENGTH];        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   if(popbased==1)        fprintf(ficresp, "\n");
     strcpy(digitp,"-populbased-");        
   else        for(i=iagemin; i <= iagemax+3; i++){
     strcpy(digitp,"-stablbased-");          if(i==iagemax+3){
             fprintf(ficlog,"Total");
   strcpy(fileresprobmorprev,"prmorprev");          }else{
   sprintf(digit,"%-d",ij);            if(first==1){
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/              first=0;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */              printf("See log file for details...\n");
   strcat(fileresprobmorprev,digitp); /* Popbased or not */            }
   strcat(fileresprobmorprev,fileres);            fprintf(ficlog,"Age %d", i);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   }              pp[jk] += freq[jk][m][i]; 
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          }
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");            for(m=-1, pos=0; m <=0 ; m++)
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);              pos += freq[jk][m][i];
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){            if(pp[jk]>=1.e-10){
     fprintf(ficresprobmorprev," p.%-d SE",j);              if(first==1){
     for(i=1; i<=nlstate;i++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);              }
   }                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   fprintf(ficresprobmorprev,"\n");            }else{
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              if(first==1)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     exit(0);            }
   }          }
   else{  
     fprintf(ficgp,"\n# Routine varevsij");          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              pp[jk] += freq[jk][m][i];
     printf("Problem with html file: %s\n", optionfilehtm);          }       
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     exit(0);            pos += pp[jk];
   }            posprop += prop[jk][i];
   else{          }
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          for(jk=1; jk <=nlstate ; jk++){
   }            if(pos>=1.e-5){
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(ficresvij,"# Age");            }else{
   for(i=1; i<=nlstate;i++)              if(first==1)
     for(j=1; j<=nlstate;j++)                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficresvij,"\n");            }
             if( i <= iagemax){
   xp=vector(1,npar);              if(pos>=1.e-5){
   dnewm=matrix(1,nlstate,1,npar);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   doldm=matrix(1,nlstate,1,nlstate);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              }
               else
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   gpp=vector(nlstate+1,nlstate+ndeath);            }
   gmp=vector(nlstate+1,nlstate+ndeath);          }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          
            for(jk=-1; jk <=nlstate+ndeath; jk++)
   if(estepm < stepm){            for(m=-1; m <=nlstate+ndeath; m++)
     printf ("Problem %d lower than %d\n",estepm, stepm);              if(freq[jk][m][i] !=0 ) {
   }              if(first==1)
   else  hstepm=estepm;                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   /* For example we decided to compute the life expectancy with the smallest unit */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              }
      nhstepm is the number of hstepm from age to agelim          if(i <= iagemax)
      nstepm is the number of stepm from age to agelin.            fprintf(ficresp,"\n");
      Look at hpijx to understand the reason of that which relies in memory size          if(first==1)
      and note for a fixed period like k years */            printf("Others in log...\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          fprintf(ficlog,"\n");
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed only each two years of age and if      }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    }
      results. So we changed our mind and took the option of the best precision.    dateintmean=dateintsum/k2cpt; 
   */   
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    fclose(ficresp);
   agelim = AGESUP;    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    free_vector(pp,1,nlstate);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    /* End of Freq */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  /************ Prevalence ********************/
     gm=matrix(0,nhstepm,1,nlstate);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     for(theta=1; theta <=npar; theta++){       in each health status at the date of interview (if between dateprev1 and dateprev2).
       for(i=1; i<=npar; i++){ /* Computes gradient */       We still use firstpass and lastpass as another selection.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    */
       }   
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double ***freq; /* Frequencies */
     double *pp, **prop;
       if (popbased==1) {    double pos,posprop; 
         for(i=1; i<=nlstate;i++)    double  y2; /* in fractional years */
           prlim[i][i]=probs[(int)age][i][ij];    int iagemin, iagemax;
       }  
      iagemin= (int) agemin;
       for(j=1; j<= nlstate; j++){    iagemax= (int) agemax;
         for(h=0; h<=nhstepm; h++){    /*pp=vector(1,nlstate);*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         }    j1=0;
       }    
       /* This for computing forces of mortality (h=1)as a weighted average */    j=cptcoveff;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(i=1; i<= nlstate; i++)    
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    for(k1=1; k1<=j;k1++){
       }          for(i1=1; i1<=ncodemax[k1];i1++){
       /* end force of mortality */        j1++;
         
       for(i=1; i<=npar; i++) /* Computes gradient */        for (i=1; i<=nlstate; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(m=iagemin; m <= iagemax+3; m++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              prop[i][m]=0.0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       
          for (i=1; i<=imx; i++) { /* Each individual */
       if (popbased==1) {          bool=1;
         for(i=1; i<=nlstate;i++)          if  (cptcovn>0) {
           prlim[i][i]=probs[(int)age][i][ij];            for (z1=1; z1<=cptcoveff; z1++) 
       }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
       for(j=1; j<= nlstate; j++){          } 
         for(h=0; h<=nhstepm; h++){          if (bool==1) { 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       /* This for computing force of mortality (h=1)as a weighted average */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         for(i=1; i<= nlstate; i++)                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           gmp[j] += prlim[i][i]*p3mat[i][j][1];                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       }                      prop[s[m][i]][(int)agev[m][i]] += weight[i];
       /* end force of mortality */                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
       for(j=1; j<= nlstate; j++) /* vareij */              }
         for(h=0; h<=nhstepm; h++){            } /* end selection of waves */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }        }
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        for(i=iagemin; i <= iagemax+3; i++){  
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          
       }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
     } /* End theta */          } 
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
     for(h=0; h<=nhstepm; h++) /* veij */              if(posprop>=1.e-5){ 
       for(j=1; j<=nlstate;j++)                probs[i][jk][j1]= prop[jk][i]/posprop;
         for(theta=1; theta <=npar; theta++)              } 
           trgradg[h][j][theta]=gradg[h][theta][j];            } 
           }/* end jk */ 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        }/* end i */ 
       for(theta=1; theta <=npar; theta++)      } /* end i1 */
         trgradgp[j][theta]=gradgp[theta][j];    } /* end k1 */
     
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for(i=1;i<=nlstate;i++)    /*free_vector(pp,1,nlstate);*/
       for(j=1;j<=nlstate;j++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         vareij[i][j][(int)age] =0.;  }  /* End of prevalence */
   
     for(h=0;h<=nhstepm;h++){  /************* Waves Concatenation ***************/
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  {
         for(i=1;i<=nlstate;i++)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           for(j=1;j<=nlstate;j++)       Death is a valid wave (if date is known).
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     }       and mw[mi+1][i]. dh depends on stepm.
        */
     /* pptj */  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    int i, mi, m;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)       double sum=0., jmean=0.;*/
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    int first;
         varppt[j][i]=doldmp[j][i];    int j, k=0,jk, ju, jl;
     /* end ppptj */    double sum=0.;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      first=0;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    jmin=1e+5;
      jmax=-1;
     if (popbased==1) {    jmean=0.;
       for(i=1; i<=nlstate;i++)    for(i=1; i<=imx; i++){
         prlim[i][i]=probs[(int)age][i][ij];      mi=0;
     }      m=firstpass;
          while(s[m][i] <= nlstate){
     /* This for computing force of mortality (h=1)as a weighted average */        if(s[m][i]>=1)
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          mw[++mi][i]=m;
       for(i=1; i<= nlstate; i++)        if(m >=lastpass)
         gmp[j] += prlim[i][i]*p3mat[i][j][1];          break;
     }            else
     /* end force of mortality */          m++;
       }/* end while */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      if (s[m][i] > nlstate){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        mi++;     /* Death is another wave */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        /* if(mi==0)  never been interviewed correctly before death */
       for(i=1; i<=nlstate;i++){           /* Only death is a correct wave */
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        mw[mi][i]=m;
       }      }
     }  
     fprintf(ficresprobmorprev,"\n");      wav[i]=mi;
       if(mi==0){
     fprintf(ficresvij,"%.0f ",age );        if(first==0){
     for(i=1; i<=nlstate;i++)          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for(j=1; j<=nlstate;j++){          first=1;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        }
       }        if(first==1){
     fprintf(ficresvij,"\n");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     free_matrix(gp,0,nhstepm,1,nlstate);        }
     free_matrix(gm,0,nhstepm,1,nlstate);      } /* end mi==0 */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    } /* End individuals */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=imx; i++){
   } /* End age */      for(mi=1; mi<wav[i];mi++){
   free_vector(gpp,nlstate+1,nlstate+ndeath);        if (stepm <=0)
   free_vector(gmp,nlstate+1,nlstate+ndeath);          dh[mi][i]=1;
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        else{
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");            if (agedc[i] < 2*AGESUP) {
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");              if(j==0) j=1;  /* Survives at least one month after exam */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);              else if(j<0){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);                j=1; /* Careful Patch */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
               }
   free_vector(xp,1,npar);              k=k+1;
   free_matrix(doldm,1,nlstate,1,nlstate);              if (j >= jmax) jmax=j;
   free_matrix(dnewm,1,nlstate,1,npar);              if (j <= jmin) jmin=j;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              sum=sum+j;
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   fclose(ficresprobmorprev);            }
   fclose(ficgp);          }
   fclose(fichtm);          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             k=k+1;
 /************ Variance of prevlim ******************/            if (j >= jmax) jmax=j;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            else if (j <= jmin)jmin=j;
 {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   /* Variance of prevalence limit */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            if(j<0){
   double **newm;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double **dnewm,**doldm;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   int i, j, nhstepm, hstepm;            }
   int k, cptcode;            sum=sum+j;
   double *xp;          }
   double *gp, *gm;          jk= j/stepm;
   double **gradg, **trgradg;          jl= j -jk*stepm;
   double age,agelim;          ju= j -(jk+1)*stepm;
   int theta;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                if(jl==0){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");              dh[mi][i]=jk;
   fprintf(ficresvpl,"# Age");              bh[mi][i]=0;
   for(i=1; i<=nlstate;i++)            }else{ /* We want a negative bias in order to only have interpolation ie
       fprintf(ficresvpl," %1d-%1d",i,i);                    * at the price of an extra matrix product in likelihood */
   fprintf(ficresvpl,"\n");              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   xp=vector(1,npar);            }
   dnewm=matrix(1,nlstate,1,npar);          }else{
   doldm=matrix(1,nlstate,1,nlstate);            if(jl <= -ju){
                dh[mi][i]=jk;
   hstepm=1*YEARM; /* Every year of age */              bh[mi][i]=jl;       /* bias is positive if real duration
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                                   * is higher than the multiple of stepm and negative otherwise.
   agelim = AGESUP;                                   */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            else{
     if (stepm >= YEARM) hstepm=1;              dh[mi][i]=jk+1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              bh[mi][i]=ju;
     gradg=matrix(1,npar,1,nlstate);            }
     gp=vector(1,nlstate);            if(dh[mi][i]==0){
     gm=vector(1,nlstate);              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
     for(theta=1; theta <=npar; theta++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */            }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          } /* end if mle */
       }        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } /* end wave */
       for(i=1;i<=nlstate;i++)    }
         gp[i] = prlim[i][i];    jmean=sum/k;
        printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       for(i=1; i<=npar; i++) /* Computes gradient */    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  /*********** Tricode ****************************/
         gm[i] = prlim[i][i];  void tricode(int *Tvar, int **nbcode, int imx)
   {
       for(i=1;i<=nlstate;i++)    
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    int Ndum[20],ij=1, k, j, i, maxncov=19;
     } /* End theta */    int cptcode=0;
     cptcoveff=0; 
     trgradg =matrix(1,nlstate,1,npar);   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
     for(j=1; j<=nlstate;j++)    for (k=1; k<=7; k++) ncodemax[k]=0;
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     for(i=1;i<=nlstate;i++)                                 modality*/ 
       varpl[i][(int)age] =0.;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        Ndum[ij]++; /*store the modality */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     for(i=1;i<=nlstate;i++)        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
     fprintf(ficresvpl,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for (i=0; i<=cptcode; i++) {
     fprintf(ficresvpl,"\n");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     free_vector(gp,1,nlstate);      }
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);      ij=1; 
     free_matrix(trgradg,1,nlstate,1,npar);      for (i=1; i<=ncodemax[j]; i++) {
   } /* End age */        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
   free_vector(xp,1,npar);            nbcode[Tvar[j]][ij]=k; 
   free_matrix(doldm,1,nlstate,1,npar);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   free_matrix(dnewm,1,nlstate,1,nlstate);            
             ij++;
 }          }
           if (ij > ncodemax[j]) break; 
 /************ Variance of one-step probabilities  ******************/        }  
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      } 
 {    }  
   int i, j=0,  i1, k1, l1, t, tj;  
   int k2, l2, j1,  z1;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   int k=0,l, cptcode;  
   int first=1, first1;   for (i=1; i<=ncovmodel-2; i++) { 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   double **dnewm,**doldm;     ij=Tvar[i];
   double *xp;     Ndum[ij]++;
   double *gp, *gm;   }
   double **gradg, **trgradg;  
   double **mu;   ij=1;
   double age,agelim, cov[NCOVMAX];   for (i=1; i<= maxncov; i++) {
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */     if((Ndum[i]!=0) && (i<=ncovcol)){
   int theta;       Tvaraff[ij]=i; /*For printing */
   char fileresprob[FILENAMELENGTH];       ij++;
   char fileresprobcov[FILENAMELENGTH];     }
   char fileresprobcor[FILENAMELENGTH];   }
    
   double ***varpij;   cptcoveff=ij-1; /*Number of simple covariates*/
   }
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);  /*********** Health Expectancies ****************/
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }  {
   strcpy(fileresprobcov,"probcov");    /* Health expectancies */
   strcat(fileresprobcov,fileres);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    double age, agelim, hf;
     printf("Problem with resultfile: %s\n", fileresprobcov);    double ***p3mat,***varhe;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    double **dnewm,**doldm;
   }    double *xp;
   strcpy(fileresprobcor,"probcor");    double **gp, **gm;
   strcat(fileresprobcor,fileres);    double ***gradg, ***trgradg;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    int theta;
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    fprintf(ficreseij,"# Health expectancies\n");
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    fprintf(ficreseij,"# Age");
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   fprintf(ficresprob,"# Age");    fprintf(ficreseij,"\n");
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");    if(estepm < stepm){
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficresprobcov,"# Age");    }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   for(i=1; i<=nlstate;i++)     * This is mainly to measure the difference between two models: for example
     for(j=1; j<=(nlstate+ndeath);j++){     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);     * progression in between and thus overestimating or underestimating according
       fprintf(ficresprobcor," p%1d-%1d ",i,j);     * to the curvature of the survival function. If, for the same date, we 
     }       * estimate the model with stepm=1 month, we can keep estepm to 24 months
   fprintf(ficresprob,"\n");     * to compare the new estimate of Life expectancy with the same linear 
   fprintf(ficresprobcov,"\n");     * hypothesis. A more precise result, taking into account a more precise
   fprintf(ficresprobcor,"\n");     * curvature will be obtained if estepm is as small as stepm. */
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    /* For example we decided to compute the life expectancy with the smallest unit */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);       nhstepm is the number of hstepm from age to agelim 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);       nstepm is the number of stepm from age to agelin. 
   first=1;       Look at hpijx to understand the reason of that which relies in memory size
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       and note for a fixed period like estepm months */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);       survival function given by stepm (the optimization length). Unfortunately it
     exit(0);       means that if the survival funtion is printed only each two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   else{       results. So we changed our mind and took the option of the best precision.
     fprintf(ficgp,"\n# Routine varprob");    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  
     printf("Problem with html file: %s\n", optionfilehtm);    agelim=AGESUP;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     exit(0);      /* nhstepm age range expressed in number of stepm */
   }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   else{      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      /* if (stepm >= YEARM) hstepm=1;*/
     fprintf(fichtm,"\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   cov[1]=1;   
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   j1=0;  
   for(t=1; t<=tj;t++){      /* Computing Variances of health expectancies */
     for(i1=1; i1<=ncodemax[t];i1++){  
       j1++;       for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++){ 
       if  (cptcovn>0) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficresprob, "\n#********** Variable ");        }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficresprob, "**********\n#");    
         fprintf(ficresprobcov, "\n#********** Variable ");        cptj=0;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<= nlstate; j++){
         fprintf(ficresprobcov, "**********\n#");          for(i=1; i<=nlstate; i++){
                    cptj=cptj+1;
         fprintf(ficgp, "\n#********** Variable ");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         fprintf(ficgp, "**********\n#");            }
                  }
                }
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");       
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        for(i=1; i<=npar; i++) 
                  xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficresprobcor, "\n#********** Variable ");            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        
         fprintf(ficgp, "**********\n#");            cptj=0;
       }        for(j=1; j<= nlstate; j++){
                for(i=1;i<=nlstate;i++){
       for (age=bage; age<=fage; age ++){            cptj=cptj+1;
         cov[2]=age;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         }            }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          }
         for (k=1; k<=cptcovprod;k++)        }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(j=1; j<= nlstate*nlstate; j++)
                  for(h=0; h<=nhstepm-1; h++){
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          }
         gp=vector(1,(nlstate)*(nlstate+ndeath));       } 
         gm=vector(1,(nlstate)*(nlstate+ndeath));     
      /* End theta */
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  
                 for(h=0; h<=nhstepm-1; h++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        for(j=1; j<=nlstate*nlstate;j++)
                    for(theta=1; theta <=npar; theta++)
           k=0;            trgradg[h][j][theta]=gradg[h][theta][j];
           for(i=1; i<= (nlstate); i++){       
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;       for(i=1;i<=nlstate*nlstate;i++)
               gp[k]=pmmij[i][j];        for(j=1;j<=nlstate*nlstate;j++)
             }          varhe[i][j][(int)age] =0.;
           }  
                 printf("%d|",(int)age);fflush(stdout);
           for(i=1; i<=npar; i++)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);       for(h=0;h<=nhstepm-1;h++){
            for(k=0;k<=nhstepm-1;k++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           k=0;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1; i<=(nlstate); i++){          for(i=1;i<=nlstate*nlstate;i++)
             for(j=1; j<=(nlstate+ndeath);j++){            for(j=1;j<=nlstate*nlstate;j++)
               k=k+1;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
               gm[k]=pmmij[i][j];        }
             }      }
           }      /* Computing expectancies */
            for(i=1; i<=nlstate;i++)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        for(j=1; j<=nlstate;j++)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];          }
          
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      fprintf(ficreseij,"%3.0f",age );
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      cptj=0;
              for(i=1; i<=nlstate;i++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);        for(j=1; j<=nlstate;j++){
                  cptj++;
         k=0;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         for(i=1; i<=(nlstate); i++){        }
           for(j=1; j<=(nlstate+ndeath);j++){      fprintf(ficreseij,"\n");
             k=k+1;     
             mu[k][(int) age]=pmmij[i][j];      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             varpij[i][j][(int)age] = doldm[i][j];    }
     printf("\n");
         /*printf("\n%d ",(int)age);    fprintf(ficlog,"\n");
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    free_vector(xp,1,npar);
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      }*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         fprintf(ficresprob,"\n%d ",(int)age);  }
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  {
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    /* Variance of health expectancies */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    /* double **newm;*/
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    double **dnewm,**doldm;
         }    double **dnewmp,**doldmp;
         i=0;    int i, j, nhstepm, hstepm, h, nstepm ;
         for (k=1; k<=(nlstate);k++){    int k, cptcode;
           for (l=1; l<=(nlstate+ndeath);l++){    double *xp;
             i=i++;    double **gp, **gm;  /* for var eij */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    double ***gradg, ***trgradg; /*for var eij */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    double **gradgp, **trgradgp; /* for var p point j */
             for (j=1; j<=i;j++){    double *gpp, *gmp; /* for var p point j */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    double ***p3mat;
             }    double age,agelim, hf;
           }    double ***mobaverage;
         }/* end of loop for state */    int theta;
       } /* end of loop for age */    char digit[4];
     char digitp[25];
       /* Confidence intervalle of pij  */  
       /*    char fileresprobmorprev[FILENAMELENGTH];
       fprintf(ficgp,"\nset noparametric;unset label");  
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    if(popbased==1){
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      if(mobilav!=0)
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        strcpy(digitp,"-populbased-mobilav-");
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);      else strcpy(digitp,"-populbased-nomobil-");
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    }
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    else 
       */      strcpy(digitp,"-stablbased-");
   
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    if (mobilav!=0) {
       first1=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for (k1=1; k1<=(nlstate);k1++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         for (l1=1; l1<=(nlstate+ndeath);l1++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           if(l1==k1) continue;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           i=(k1-1)*(nlstate+ndeath)+l1;      }
           for (k2=1; k2<=(nlstate);k2++){    }
             for (l2=1; l2<=(nlstate+ndeath);l2++){  
               if(l2==k2) continue;    strcpy(fileresprobmorprev,"prmorprev"); 
               j=(k2-1)*(nlstate+ndeath)+l2;    sprintf(digit,"%-d",ij);
               if(j<=i) continue;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
               for (age=bage; age<=fage; age ++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                 if ((int)age %5==0){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    strcat(fileresprobmorprev,fileres);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   mu1=mu[i][(int) age]/stepm*YEARM ;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   mu2=mu[j][(int) age]/stepm*YEARM;    }
                   /* Computing eigen value of matrix of covariance */    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                   if(first1==1){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                     first1=0;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);      fprintf(ficresprobmorprev," p.%-d SE",j);
                   }      for(i=1; i<=nlstate;i++)
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   /* Eigen vectors */    }  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    fprintf(ficresprobmorprev,"\n");
                   v21=sqrt(1.-v11*v11);    fprintf(ficgp,"\n# Routine varevsij");
                   v12=-v21;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   v22=v11;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                   /*printf(fignu*/  /*   } */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */  
                   if(first==1){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                     first=0;    fprintf(ficresvij,"# Age");
                     fprintf(ficgp,"\nset parametric;set nolabel");    for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      for(j=1; j<=nlstate;j++)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);    fprintf(ficresvij,"\n");
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);    xp=vector(1,npar);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    dnewm=matrix(1,nlstate,1,npar);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    doldm=matrix(1,nlstate,1,nlstate);
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  
                     */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    gpp=vector(nlstate+1,nlstate+ndeath);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    gmp=vector(nlstate+1,nlstate+ndeath);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   }else{    
                     first=0;    if(estepm < stepm){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      printf ("Problem %d lower than %d\n",estepm, stepm);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    }
                     /*    else  hstepm=estepm;   
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    /* For example we decided to compute the life expectancy with the smallest unit */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);       nhstepm is the number of hstepm from age to agelim 
                     */       nstepm is the number of stepm from age to agelin. 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\       Look at hpijx to understand the reason of that which relies in memory size
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \       and note for a fixed period like k years */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   }/* if first */       survival function given by stepm (the optimization length). Unfortunately it
                 } /* age mod 5 */       means that if the survival funtion is printed every two years of age and if
               } /* end loop age */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);       results. So we changed our mind and took the option of the best precision.
               first=1;    */
             } /*l12 */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           } /* k12 */    agelim = AGESUP;
         } /*l1 */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }/* k1 */      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     } /* loop covariates */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      gp=matrix(0,nhstepm,1,nlstate);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      gm=matrix(0,nhstepm,1,nlstate);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }      for(theta=1; theta <=npar; theta++){
   free_vector(xp,1,npar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   fclose(ficresprob);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fclose(ficresprobcov);        }
   fclose(ficresprobcor);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fclose(ficgp);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fclose(fichtm);  
 }        if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
 /******************* Printing html file ***********/              prlim[i][i]=probs[(int)age][i][ij];
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          }else{ /* mobilav */ 
                   int lastpass, int stepm, int weightopt, char model[],\            for(i=1; i<=nlstate;i++)
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\              prlim[i][i]=mobaverage[(int)age][i][ij];
                   int popforecast, int estepm ,\          }
                   double jprev1, double mprev1,double anprev1, \        }
                   double jprev2, double mprev2,double anprev2){    
   int jj1, k1, i1, cpt;        for(j=1; j<= nlstate; j++){
   /*char optionfilehtm[FILENAMELENGTH];*/          for(h=0; h<=nhstepm; h++){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     printf("Problem with %s \n",optionfilehtm), exit(0);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          }
   }        }
         /* This for computing probability of death (h=1 means
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n           computed over hstepm matrices product = hstepm*stepm months) 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n           as a weighted average of prlim.
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  - Life expectancies by age and initial health status (estepm=%2d months):          for(i=1,gpp[j]=0.; i<= nlstate; i++)
    <a href=\"e%s\">e%s</a> <br>\n</li>", \            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        }    
         /* end probability of death */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
  m=cptcoveff;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  jj1=0;   
  for(k1=1; k1<=m;k1++){        if (popbased==1) {
    for(i1=1; i1<=ncodemax[k1];i1++){          if(mobilav ==0){
      jj1++;            for(i=1; i<=nlstate;i++)
      if (cptcovn > 0) {              prlim[i][i]=probs[(int)age][i][ij];
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          }else{ /* mobilav */ 
        for (cpt=1; cpt<=cptcoveff;cpt++)            for(i=1; i<=nlstate;i++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              prlim[i][i]=mobaverage[(int)age][i][ij];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          }
      }        }
      /* Pij */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        for(j=1; j<= nlstate; j++){
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              for(h=0; h<=nhstepm; h++){
      /* Quasi-incidences */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
        /* Stable prevalence in each health state */        }
        for(cpt=1; cpt<nlstate;cpt++){        /* This for computing probability of death (h=1 means
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>           computed over hstepm matrices product = hstepm*stepm months) 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);           as a weighted average of prlim.
        }        */
      for(cpt=1; cpt<=nlstate;cpt++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          for(i=1,gmp[j]=0.; i<= nlstate; i++)
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
      }        }    
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        /* end probability of death */
 health expectancies in states (1) and (2): e%s%d.png<br>  
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(j=1; j<= nlstate; j++) /* vareij */
    } /* end i1 */          for(h=0; h<=nhstepm; h++){
  }/* End k1 */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  fprintf(fichtm,"</ul>");          }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      } /* End theta */
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
  if(popforecast==1) fprintf(fichtm,"\n          for(theta=1; theta <=npar; theta++)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            trgradg[h][j][theta]=gradg[h][theta][j];
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
  else        for(theta=1; theta <=npar; theta++)
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          trgradgp[j][theta]=gradgp[theta][j];
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    
   
  m=cptcoveff;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
  jj1=0;          vareij[i][j][(int)age] =0.;
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){      for(h=0;h<=nhstepm;h++){
      jj1++;        for(k=0;k<=nhstepm;k++){
      if (cptcovn > 0) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
        for (cpt=1; cpt<=cptcoveff;cpt++)          for(i=1;i<=nlstate;i++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            for(j=1;j<=nlstate;j++)
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
      }        }
      for(cpt=1; cpt<=nlstate;cpt++) {      }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    
 interval) in state (%d): v%s%d%d.png <br>      /* pptj */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
      }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
    } /* end i1 */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
  }/* End k1 */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
  fprintf(fichtm,"</ul>");          varppt[j][i]=doldmp[j][i];
 fclose(fichtm);      /* end ppptj */
 }      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 /******************* Gnuplot file **************/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){   
       if (popbased==1) {
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        if(mobilav ==0){
   int ng;          for(i=1; i<=nlstate;i++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            prlim[i][i]=probs[(int)age][i][ij];
     printf("Problem with file %s",optionfilegnuplot);        }else{ /* mobilav */ 
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);          for(i=1; i<=nlstate;i++)
   }            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
 #ifdef windows      }
     fprintf(ficgp,"cd \"%s\" \n",pathc);               
 #endif      /* This for computing probability of death (h=1 means
 m=pow(2,cptcoveff);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
  /* 1eme*/      */
   for (cpt=1; cpt<= nlstate ; cpt ++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
    for (k1=1; k1<= m ; k1 ++) {        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 #ifdef windows      }    
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      /* end probability of death */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 #ifdef unix      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        for(i=1; i<=nlstate;i++){
 #endif          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
 for (i=1; i<= nlstate ; i ++) {      } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficresprobmorprev,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      fprintf(ficresvij,"%.0f ",age );
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      for(i=1; i<=nlstate;i++)
     for (i=1; i<= nlstate ; i ++) {        for(j=1; j<=nlstate;j++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }      fprintf(ficresvij,"\n");
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      free_matrix(gp,0,nhstepm,1,nlstate);
      for (i=1; i<= nlstate ; i ++) {      free_matrix(gm,0,nhstepm,1,nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 }        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    } /* End age */
 #ifdef unix    free_vector(gpp,nlstate+1,nlstate+ndeath);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    free_vector(gmp,nlstate+1,nlstate+ndeath);
 #endif    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
    }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   /*2 eme*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   for (k1=1; k1<= m ; k1 ++) {  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
        fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     for (i=1; i<= nlstate+1 ; i ++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       k=2*i;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  */
 }    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;",digitp,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    free_vector(xp,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    free_matrix(doldm,1,nlstate,1,nlstate);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(dnewm,1,nlstate,1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 }      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficgp,"\" t\"\" w l 0,");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for (j=1; j<= nlstate+1 ; j ++) {    fclose(ficresprobmorprev);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fflush(ficgp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fflush(fichtm); 
 }    }  /* end varevsij */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  /************ Variance of prevlim ******************/
     }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   }  {
      /* Variance of prevalence limit */
   /*3eme*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
   for (k1=1; k1<= m ; k1 ++) {    double **dnewm,**doldm;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int i, j, nhstepm, hstepm;
       k=2+nlstate*(2*cpt-2);    int k, cptcode;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    double *xp;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    double *gp, *gm;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double **gradg, **trgradg;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double age,agelim;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    int theta;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
 */        fprintf(ficresvpl," %1d-%1d",i,i);
       for (i=1; i< nlstate ; i ++) {    fprintf(ficresvpl,"\n");
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  
     xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
   }    
      hstepm=1*YEARM; /* Every year of age */
   /* CV preval stat */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     for (k1=1; k1<= m ; k1 ++) {    agelim = AGESUP;
     for (cpt=1; cpt<nlstate ; cpt ++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       k=3;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      if (stepm >= YEARM) hstepm=1;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       for (i=1; i< nlstate ; i ++)      gp=vector(1,nlstate);
         fprintf(ficgp,"+$%d",k+i+1);      gm=vector(1,nlstate);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
            for(theta=1; theta <=npar; theta++){
       l=3+(nlstate+ndeath)*cpt;        for(i=1; i<=npar; i++){ /* Computes gradient */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for (i=1; i< nlstate ; i ++) {        }
         l=3+(nlstate+ndeath)*cpt;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficgp,"+$%d",l+i+1);        for(i=1;i<=nlstate;i++)
       }          gp[i] = prlim[i][i];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        
     }        for(i=1; i<=npar; i++) /* Computes gradient */
   }            xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* proba elementaires */        for(i=1;i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){          gm[i] = prlim[i][i];
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {        for(i=1;i<=nlstate;i++)
         for(j=1; j <=ncovmodel; j++){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      } /* End theta */
           jk++;  
           fprintf(ficgp,"\n");      trgradg =matrix(1,nlstate,1,npar);
         }  
       }      for(j=1; j<=nlstate;j++)
     }        for(theta=1; theta <=npar; theta++)
    }          trgradg[j][theta]=gradg[theta][j];
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      for(i=1;i<=nlstate;i++)
      for(jk=1; jk <=m; jk++) {        varpl[i][(int)age] =0.;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        if (ng==2)      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      for(i=1;i<=nlstate;i++)
        else        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      fprintf(ficresvpl,"%.0f ",age );
        i=1;      for(i=1; i<=nlstate;i++)
        for(k2=1; k2<=nlstate; k2++) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
          k3=i;      fprintf(ficresvpl,"\n");
          for(k=1; k<=(nlstate+ndeath); k++) {      free_vector(gp,1,nlstate);
            if (k != k2){      free_vector(gm,1,nlstate);
              if(ng==2)      free_matrix(gradg,1,npar,1,nlstate);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      free_matrix(trgradg,1,nlstate,1,npar);
              else    } /* End age */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;    free_vector(xp,1,npar);
              for(j=3; j <=ncovmodel; j++) {    free_matrix(doldm,1,nlstate,1,npar);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(dnewm,1,nlstate,1,nlstate);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;  }
                }  
                else  /************ Variance of one-step probabilities  ******************/
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
              }  {
              fprintf(ficgp,")/(1");    int i, j=0,  i1, k1, l1, t, tj;
                  int k2, l2, j1,  z1;
              for(k1=1; k1 <=nlstate; k1++){      int k=0,l, cptcode;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    int first=1, first1;
                ij=1;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                for(j=3; j <=ncovmodel; j++){    double **dnewm,**doldm;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double *xp;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double *gp, *gm;
                    ij++;    double **gradg, **trgradg;
                  }    double **mu;
                  else    double age,agelim, cov[NCOVMAX];
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                }    int theta;
                fprintf(ficgp,")");    char fileresprob[FILENAMELENGTH];
              }    char fileresprobcov[FILENAMELENGTH];
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    char fileresprobcor[FILENAMELENGTH];
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;    double ***varpij;
            }  
          } /* end k */    strcpy(fileresprob,"prob"); 
        } /* end k2 */    strcat(fileresprob,fileres);
      } /* end jk */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
    } /* end ng */      printf("Problem with resultfile: %s\n", fileresprob);
    fclose(ficgp);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 }  /* end gnuplot */    }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
 /*************** Moving average **************/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   int i, cpt, cptcod;    }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    strcpy(fileresprobcor,"probcor"); 
       for (i=1; i<=nlstate;i++)    strcat(fileresprobcor,fileres);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           mobaverage[(int)agedeb][i][cptcod]=0.;      printf("Problem with resultfile: %s\n", fileresprobcor);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    }
       for (i=1; i<=nlstate;i++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           for (cpt=0;cpt<=4;cpt++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         }    
       }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     }    fprintf(ficresprob,"# Age");
        fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 }    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
      for(i=1; i<=nlstate;i++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for(j=1; j<=(nlstate+ndeath);j++){
   int *popage;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   double *popeffectif,*popcount;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   double ***p3mat;      }  
   char fileresf[FILENAMELENGTH];   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
  agelim=AGESUP;    fprintf(ficresprobcor,"\n");
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;   */
    xp=vector(1,npar);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   strcpy(fileresf,"f");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   strcat(fileresf,fileres);    first=1;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(ficgp,"\n# Routine varprob");
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    fprintf(fichtm,"\n");
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     cov[1]=1;
   if (mobilav==1) {    tj=cptcoveff;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     movingaverage(agedeb, fage, ageminpar, mobaverage);    j1=0;
   }    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;        j1++;
   if (stepm<=12) stepsize=1;        if  (cptcovn>0) {
            fprintf(ficresprob, "\n#********** Variable "); 
   agelim=AGESUP;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprob, "**********\n#\n");
   hstepm=1;          fprintf(ficresprobcov, "\n#********** Variable "); 
   hstepm=hstepm/stepm;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   yp1=modf(dateintmean,&yp);          fprintf(ficresprobcov, "**********\n#\n");
   anprojmean=yp;          
   yp2=modf((yp1*12),&yp);          fprintf(ficgp, "\n#********** Variable "); 
   mprojmean=yp;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   yp1=modf((yp2*30.5),&yp);          fprintf(ficgp, "**********\n#\n");
   jprojmean=yp;          
   if(jprojmean==0) jprojmean=1;          
   if(mprojmean==0) jprojmean=1;          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
   for(cptcov=1;cptcov<=i2;cptcov++){          fprintf(ficresprobcor, "\n#********** Variable ");    
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       k=k+1;          fprintf(ficresprobcor, "**********\n#");    
       fprintf(ficresf,"\n#******");        }
       for(j=1;j<=cptcoveff;j++) {        
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (age=bage; age<=fage; age ++){ 
       }          cov[2]=age;
       fprintf(ficresf,"******\n");          for (k=1; k<=cptcovn;k++) {
       fprintf(ficresf,"# StartingAge FinalAge");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          }
                for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                for (k=1; k<=cptcovprod;k++)
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         fprintf(ficresf,"\n");          
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          gp=vector(1,(nlstate)*(nlstate+ndeath));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          gm=vector(1,(nlstate)*(nlstate+ndeath));
           nhstepm = nhstepm/hstepm;      
                    for(theta=1; theta <=npar; theta++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=npar; i++)
           oldm=oldms;savm=savms;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              
                    pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for (h=0; h<=nhstepm; h++){            
             if (h==(int) (calagedate+YEARM*cpt)) {            k=0;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            for(i=1; i<= (nlstate); i++){
             }              for(j=1; j<=(nlstate+ndeath);j++){
             for(j=1; j<=nlstate+ndeath;j++) {                k=k+1;
               kk1=0.;kk2=0;                gp[k]=pmmij[i][j];
               for(i=1; i<=nlstate;i++) {                            }
                 if (mobilav==1)            }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            
                 else {            for(i=1; i<=npar; i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                 }      
                            pmij(pmmij,cov,ncovmodel,xp,nlstate);
               }            k=0;
               if (h==(int)(calagedate+12*cpt)){            for(i=1; i<=(nlstate); i++){
                 fprintf(ficresf," %.3f", kk1);              for(j=1; j<=(nlstate+ndeath);j++){
                                        k=k+1;
               }                gm[k]=pmmij[i][j];
             }              }
           }            }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       
         }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     }          }
   }  
                  for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
   fclose(ficresf);          
 }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 /************** Forecasting ******************/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   int *popage;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;          pmij(pmmij,cov,ncovmodel,x,nlstate);
   double ***p3mat,***tabpop,***tabpopprev;          
   char filerespop[FILENAMELENGTH];          k=0;
           for(i=1; i<=(nlstate); i++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(j=1; j<=(nlstate+ndeath);j++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              k=k+1;
   agelim=AGESUP;              mu[k][(int) age]=pmmij[i][j];
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            }
            }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
              for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                varpij[i][j][(int)age] = doldm[i][j];
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);          /*printf("\n%d ",(int)age);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     printf("Problem with forecast resultfile: %s\n", filerespop);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   }            }*/
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(ficresprobcor,"\n%d ",(int)age);
   
   if (mobilav==1) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     movingaverage(agedeb, fage, ageminpar, mobaverage);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   if (stepm<=12) stepsize=1;          i=0;
            for (k=1; k<=(nlstate);k++){
   agelim=AGESUP;            for (l=1; l<=(nlstate+ndeath);l++){ 
                i=i++;
   hstepm=1;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   hstepm=hstepm/stepm;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                for (j=1; j<=i;j++){
   if (popforecast==1) {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     if((ficpop=fopen(popfile,"r"))==NULL) {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       printf("Problem with population file : %s\n",popfile);exit(0);              }
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);            }
     }          }/* end of loop for state */
     popage=ivector(0,AGESUP);        } /* end of loop for age */
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);        /* Confidence intervalle of pij  */
            /*
     i=1;            fprintf(ficgp,"\nset noparametric;unset label");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
              fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     imx=i;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   for(cptcov=1;cptcov<=i2;cptcov++){        */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       fprintf(ficrespop,"\n#******");        first1=1;
       for(j=1;j<=cptcoveff;j++) {        for (k2=1; k2<=(nlstate);k2++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       }            if(l2==k2) continue;
       fprintf(ficrespop,"******\n");            j=(k2-1)*(nlstate+ndeath)+l2;
       fprintf(ficrespop,"# Age");            for (k1=1; k1<=(nlstate);k1++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       if (popforecast==1)  fprintf(ficrespop," [Population]");                if(l1==k1) continue;
                      i=(k1-1)*(nlstate+ndeath)+l1;
       for (cpt=0; cpt<=0;cpt++) {                if(i<=j) continue;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  for (age=bage; age<=fage; age ++){ 
                          if ((int)age %5==0){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           nhstepm = nhstepm/hstepm;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                              mu1=mu[i][(int) age]/stepm*YEARM ;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    mu2=mu[j][(int) age]/stepm*YEARM;
           oldm=oldms;savm=savms;                    c12=cv12/sqrt(v1*v2);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      /* Computing eigen value of matrix of covariance */
                            lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           for (h=0; h<=nhstepm; h++){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             if (h==(int) (calagedate+YEARM*cpt)) {                    /* Eigen vectors */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
             }                    /*v21=sqrt(1.-v11*v11); *//* error */
             for(j=1; j<=nlstate+ndeath;j++) {                    v21=(lc1-v1)/cv12*v11;
               kk1=0.;kk2=0;                    v12=-v21;
               for(i=1; i<=nlstate;i++) {                                  v22=v11;
                 if (mobilav==1)                    tnalp=v21/v11;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                    if(first1==1){
                 else {                      first1=0;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                 }                    }
               }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
               if (h==(int)(calagedate+12*cpt)){                    /*printf(fignu*/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   /*fprintf(ficrespop," %.3f", kk1);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                    if(first==1){
               }                      first=0;
             }                      fprintf(ficgp,"\nset parametric;unset label");
             for(i=1; i<=nlstate;i++){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
               kk1=0.;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                 for(j=1; j<=nlstate;j++){                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                 }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
             }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   /******/                    }else{
                       first=0;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           nhstepm = nhstepm/hstepm;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                        mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    }/* if first */
           oldm=oldms;savm=savms;                  } /* age mod 5 */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  } /* end loop age */
           for (h=0; h<=nhstepm; h++){                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             if (h==(int) (calagedate+YEARM*cpt)) {                first=1;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              } /*l12 */
             }            } /* k12 */
             for(j=1; j<=nlstate+ndeath;j++) {          } /*l1 */
               kk1=0.;kk2=0;        }/* k1 */
               for(i=1; i<=nlstate;i++) {                    } /* loop covariates */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        }
               }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
             }    free_vector(xp,1,npar);
           }    fclose(ficresprob);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fclose(ficresprobcov);
         }    fclose(ficresprobcor);
       }    /*  fclose(ficgp);*/
    }  }
   }  
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   if (popforecast==1) {                    int lastpass, int stepm, int weightopt, char model[],\
     free_ivector(popage,0,AGESUP);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     free_vector(popeffectif,0,AGESUP);                    int popforecast, int estepm ,\
     free_vector(popcount,0,AGESUP);                    double jprev1, double mprev1,double anprev1, \
   }                    double jprev2, double mprev2,double anprev2){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int jj1, k1, i1, cpt;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*char optionfilehtm[FILENAMELENGTH];*/
   fclose(ficrespop);  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
 }  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
 /***********************************************/  /*   } */
 /**************** Main Program *****************/  
 /***********************************************/     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
 int main(int argc, char *argv[])   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
 {   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;     <a href=\"%s\">%s</a> <br>\n</li>", \
   double agedeb, agefin,hf;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
   double fret;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   double **xi,tmp,delta;  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   double dum; /* Dummy variable */  
   double ***p3mat;   m=cptcoveff;
   int *indx;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   char line[MAXLINE], linepar[MAXLINE];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];   jj1=0;
   int firstobs=1, lastobs=10;   for(k1=1; k1<=m;k1++){
   int sdeb, sfin; /* Status at beginning and end */     for(i1=1; i1<=ncodemax[k1];i1++){
   int c,  h , cpt,l;       jj1++;
   int ju,jl, mi;       if (cptcovn > 0) {
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;         for (cpt=1; cpt<=cptcoveff;cpt++) 
   int mobilav=0,popforecast=0;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   int hstepm, nhstepm;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;       }
        /* Pij */
   double bage, fage, age, agelim, agebase;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   double ftolpl=FTOL;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   double **prlim;       /* Quasi-incidences */
   double *severity;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   double ***param; /* Matrix of parameters */   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   double  *p;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   double **matcov; /* Matrix of covariance */         /* Stable prevalence in each health state */
   double ***delti3; /* Scale */         for(cpt=1; cpt<nlstate;cpt++){
   double *delti; /* Scale */           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   double ***eij, ***vareij;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   double **varpl; /* Variances of prevalence limits by age */         }
   double *epj, vepp;       for(cpt=1; cpt<=nlstate;cpt++) {
   double kk1, kk2;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exo"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   char *alph[]={"a","a","b","c","d","e"}, str[4];  health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
   char z[1]="c", occ;   }/* End k1 */
 #include <sys/time.h>   fprintf(fichtm,"</ul>");
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
     fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   /* long total_usecs;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
   struct timeval start_time, end_time;   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   getcwd(pathcd, size);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
   printf("\n%s",version);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   if(argc <=1){           rfileres,rfileres,\
     printf("\nEnter the parameter file name: ");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
     scanf("%s",pathtot);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
   }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
   else{           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
     strcpy(pathtot,argv[1]);           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
   }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /* cutv(path,optionfile,pathtot,'\\');*/  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  /*  else  */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   chdir(path);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   replace(pathc,path);  
    m=cptcoveff;
 /*-------- arguments in the command line --------*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   /* Log file */   jj1=0;
   strcat(filelog, optionfilefiname);   for(k1=1; k1<=m;k1++){
   strcat(filelog,".log");    /* */     for(i1=1; i1<=ncodemax[k1];i1++){
   if((ficlog=fopen(filelog,"w"))==NULL)    {       jj1++;
     printf("Problem with logfile %s\n",filelog);       if (cptcovn > 0) {
     goto end;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++) 
   fprintf(ficlog,"Log filename:%s\n",filelog);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   fprintf(ficlog,"\n%s",version);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   fprintf(ficlog,"\nEnter the parameter file name: ");       }
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);       for(cpt=1; cpt<=nlstate;cpt++) {
   fflush(ficlog);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   /* */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"pe"),cpt,jj1,subdirf2(optionfilefiname,"pe"),cpt,jj1);  
   strcpy(fileres,"r");       }
   strcat(fileres, optionfilefiname);     } /* end i1 */
   strcat(fileres,".txt");    /* Other files have txt extension */   }/* End k1 */
    fprintf(fichtm,"</ul>");
   /*---------arguments file --------*/   fflush(fichtm);
   }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);  /******************* Gnuplot file **************/
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char path[], double p[]){
     goto end;  
   }    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   strcpy(filereso,"o");    int ng;
   strcat(filereso,fileres);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   if((ficparo=fopen(filereso,"w"))==NULL) {  /*     printf("Problem with file %s",optionfilegnuplot); */
     printf("Problem with Output resultfile: %s\n", filereso);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  /*   } */
     goto end;  
   }    /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",path);
   /* Reads comments: lines beginning with '#' */      /*#endif */
   while((c=getc(ficpar))=='#' && c!= EOF){    m=pow(2,cptcoveff);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    strcpy(dirfileres,optionfilefiname);
     puts(line);    strcpy(optfileres,"vpl");
     fputs(line,ficparo);   /* 1eme*/
   }    for (cpt=1; cpt<= nlstate ; cpt ++) {
   ungetc(c,ficpar);     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);       fprintf(ficgp,"set xlabel \"Age\" \n\
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  set ylabel \"Probability\" \n\
 while((c=getc(ficpar))=='#' && c!= EOF){  set ter png small\n\
     ungetc(c,ficpar);  set size 0.65,0.65\n\
     fgets(line, MAXLINE, ficpar);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     puts(line);  
     fputs(line,ficparo);       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   ungetc(c,ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }
           fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   covar=matrix(0,NCOVMAX,1,n);       for (i=1; i<= nlstate ; i ++) {
   cptcovn=0;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
   ncovmodel=2+cptcovn;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /* Read guess parameters */         else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* Reads comments: lines beginning with '#' */       }  
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     ungetc(c,ficpar);     }
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    /*2 eme*/
     fputs(line,ficparo);    
   }    for (k1=1; k1<= m ; k1 ++) { 
   ungetc(c,ficpar);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
        fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      
     for(i=1; i <=nlstate; i++)      for (i=1; i<= nlstate+1 ; i ++) {
     for(j=1; j <=nlstate+ndeath-1; j++){        k=2*i;
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficparo,"%1d%1d",i1,j1);        for (j=1; j<= nlstate+1 ; j ++) {
       if(mle==1)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         printf("%1d%1d",i,j);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficlog,"%1d%1d",i,j);        }   
       for(k=1; k<=ncovmodel;k++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         fscanf(ficpar," %lf",&param[i][j][k]);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         if(mle==1){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           printf(" %lf",param[i][j][k]);        for (j=1; j<= nlstate+1 ; j ++) {
           fprintf(ficlog," %lf",param[i][j][k]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         }          else fprintf(ficgp," \%%*lf (\%%*lf)");
         else        }   
           fprintf(ficlog," %lf",param[i][j][k]);        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficparo," %lf",param[i][j][k]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       }        for (j=1; j<= nlstate+1 ; j ++) {
       fscanf(ficpar,"\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       if(mle==1)          else fprintf(ficgp," \%%*lf (\%%*lf)");
         printf("\n");        }   
       fprintf(ficlog,"\n");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       fprintf(ficparo,"\n");        else fprintf(ficgp,"\" t\"\" w l 0,");
     }      }
      }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    
     /*3eme*/
   p=param[1][1];    
      for (k1=1; k1<= m ; k1 ++) { 
   /* Reads comments: lines beginning with '#' */      for (cpt=1; cpt<= nlstate ; cpt ++) {
   while((c=getc(ficpar))=='#' && c!= EOF){        k=2+nlstate*(2*cpt-2);
     ungetc(c,ficpar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"set ter png small\n\
     puts(line);  set size 0.65,0.65\n\
     fputs(line,ficparo);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   ungetc(c,ficpar);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   for(i=1; i <=nlstate; i++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     for(j=1; j <=nlstate+ndeath-1; j++){          
       fscanf(ficpar,"%1d%1d",&i1,&j1);        */
       printf("%1d%1d",i,j);        for (i=1; i< nlstate ; i ++) {
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
       for(k=1; k<=ncovmodel;k++){          
         fscanf(ficpar,"%le",&delti3[i][j][k]);        } 
         printf(" %le",delti3[i][j][k]);      }
         fprintf(ficparo," %le",delti3[i][j][k]);    }
       }    
       fscanf(ficpar,"\n");    /* CV preval stable (period) */
       printf("\n");    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficparo,"\n");      for (cpt=1; cpt<=nlstate ; cpt ++) {
     }        k=3;
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   delti=delti3[1][1];        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    set ter png small\nset size 0.65,0.65\n\
   /* Reads comments: lines beginning with '#' */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   while((c=getc(ficpar))=='#' && c!= EOF){        
     ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++)
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,"+$%d",k+i+1);
     puts(line);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     fputs(line,ficparo);        
   }        l=3+(nlstate+ndeath)*cpt;
   ungetc(c,ficpar);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
          for (i=1; i< nlstate ; i ++) {
   matcov=matrix(1,npar,1,npar);          l=3+(nlstate+ndeath)*cpt;
   for(i=1; i <=npar; i++){          fprintf(ficgp,"+$%d",l+i+1);
     fscanf(ficpar,"%s",&str);        }
     if(mle==1)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       printf("%s",str);      } 
     fprintf(ficlog,"%s",str);    }  
     fprintf(ficparo,"%s",str);    
     for(j=1; j <=i; j++){    /* proba elementaires */
       fscanf(ficpar," %le",&matcov[i][j]);    for(i=1,jk=1; i <=nlstate; i++){
       if(mle==1){      for(k=1; k <=(nlstate+ndeath); k++){
         printf(" %.5le",matcov[i][j]);        if (k != i) {
         fprintf(ficlog," %.5le",matcov[i][j]);          for(j=1; j <=ncovmodel; j++){
       }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       else            jk++; 
         fprintf(ficlog," %.5le",matcov[i][j]);            fprintf(ficgp,"\n");
       fprintf(ficparo," %.5le",matcov[i][j]);          }
     }        }
     fscanf(ficpar,"\n");      }
     if(mle==1)     }
       printf("\n");  
     fprintf(ficlog,"\n");     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     fprintf(ficparo,"\n");       for(jk=1; jk <=m; jk++) {
   }         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   for(i=1; i <=npar; i++)         if (ng==2)
     for(j=i+1;j<=npar;j++)           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       matcov[i][j]=matcov[j][i];         else
               fprintf(ficgp,"\nset title \"Probability\"\n");
   if(mle==1)         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     printf("\n");         i=1;
   fprintf(ficlog,"\n");         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
     /*-------- Rewriting paramater file ----------*/             if (k != k2){
      strcpy(rfileres,"r");    /* "Rparameterfile */               if(ng==2)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
      strcat(rfileres,".");    /* */               else
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     if((ficres =fopen(rfileres,"w"))==NULL) {               ij=1;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;               for(j=3; j <=ncovmodel; j++) {
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     fprintf(ficres,"#%s\n",version);                   ij++;
                     }
     /*-------- data file ----------*/                 else
     if((fic=fopen(datafile,"r"))==NULL)    {                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       printf("Problem with datafile: %s\n", datafile);goto end;               }
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;               fprintf(ficgp,")/(1");
     }               
                for(k1=1; k1 <=nlstate; k1++){   
     n= lastobs;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     severity = vector(1,maxwav);                 ij=1;
     outcome=imatrix(1,maxwav+1,1,n);                 for(j=3; j <=ncovmodel; j++){
     num=ivector(1,n);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     moisnais=vector(1,n);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     annais=vector(1,n);                     ij++;
     moisdc=vector(1,n);                   }
     andc=vector(1,n);                   else
     agedc=vector(1,n);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     cod=ivector(1,n);                 }
     weight=vector(1,n);                 fprintf(ficgp,")");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */               }
     mint=matrix(1,maxwav,1,n);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     anint=matrix(1,maxwav,1,n);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     s=imatrix(1,maxwav+1,1,n);               i=i+ncovmodel;
     adl=imatrix(1,maxwav+1,1,n);                 }
     tab=ivector(1,NCOVMAX);           } /* end k */
     ncodemax=ivector(1,8);         } /* end k2 */
        } /* end jk */
     i=1;     } /* end ng */
     while (fgets(line, MAXLINE, fic) != NULL)    {     fflush(ficgp); 
       if ((i >= firstobs) && (i <=lastobs)) {  }  /* end gnuplot */
          
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  /*************** Moving average **************/
           strcpy(line,stra);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int i, cpt, cptcod;
         }    int modcovmax =1;
            int mobilavrange, mob;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double age;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                             a covariate has 2 modalities */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
         for (j=ncovcol;j>=1;j--){      if(mobilav==1) mobilavrange=5; /* default */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      else mobilavrange=mobilav;
         }      for (age=bage; age<=fage; age++)
         num[i]=atol(stra);        for (i=1; i<=nlstate;i++)
                  for (cptcod=1;cptcod<=modcovmax;cptcod++)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         i=i+1;         we use a 5 terms etc. until the borders are no more concerned. 
       }      */ 
     }      for (mob=3;mob <=mobilavrange;mob=mob+2){
     /* printf("ii=%d", ij);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
        scanf("%d",i);*/          for (i=1; i<=nlstate;i++){
   imx=i-1; /* Number of individuals */            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   /* for (i=1; i<=imx; i++){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                }
     }*/              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
    /*  for (i=1; i<=imx; i++){            }
      if (s[4][i]==9)  s[4][i]=-1;          }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        }/* end age */
        }/* end mob */
      }else return -1;
   /* Calculation of the number of parameter from char model*/    return 0;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */  }/* End movingaverage */
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);  /************** Forecasting ******************/
   Tage=ivector(1,15);        prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
        /* proj1, year, month, day of starting projection 
   if (strlen(model) >1){       agemin, agemax range of age
     j=0, j1=0, k1=1, k2=1;       dateprev1 dateprev2 range of dates during which prevalence is computed
     j=nbocc(model,'+');       anproj2 year of en of projection (same day and month as proj1).
     j1=nbocc(model,'*');    */
     cptcovn=j+1;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     cptcovprod=j1;    int *popage;
        double agec; /* generic age */
     strcpy(modelsav,model);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    double *popeffectif,*popcount;
       printf("Error. Non available option model=%s ",model);    double ***p3mat;
       fprintf(ficlog,"Error. Non available option model=%s ",model);    double ***mobaverage;
       goto end;    char fileresf[FILENAMELENGTH];
     }  
        agelim=AGESUP;
     for(i=(j+1); i>=1;i--){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */   
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    strcpy(fileresf,"f"); 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    strcat(fileresf,fileres);
       /*scanf("%d",i);*/    if((ficresf=fopen(fileresf,"w"))==NULL) {
       if (strchr(strb,'*')) {  /* Model includes a product */      printf("Problem with forecast resultfile: %s\n", fileresf);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         if (strcmp(strc,"age")==0) { /* Vn*age */    }
           cptcovprod--;    printf("Computing forecasting: result on file '%s' \n", fileresf);
           cutv(strb,stre,strd,'V');    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  
           cptcovage++;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/    if (mobilav!=0) {
         }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           cptcovprod--;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           cutv(strb,stre,strc,'V');        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           Tvar[i]=atoi(stre);      }
           cptcovage++;    }
           Tage[cptcovage]=i;  
         }    stepsize=(int) (stepm+YEARM-1)/YEARM;
         else {  /* Age is not in the model */    if (stepm<=12) stepsize=1;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    if(estepm < stepm){
           Tvar[i]=ncovcol+k1;      printf ("Problem %d lower than %d\n",estepm, stepm);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    }
           Tprod[k1]=i;    else  hstepm=estepm;   
           Tvard[k1][1]=atoi(strc); /* m*/  
           Tvard[k1][2]=atoi(stre); /* n */    hstepm=hstepm/stepm; 
           Tvar[cptcovn+k2]=Tvard[k1][1];    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                                 fractional in yp1 */
           for (k=1; k<=lastobs;k++)    anprojmean=yp;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    yp2=modf((yp1*12),&yp);
           k1++;    mprojmean=yp;
           k2=k2+2;    yp1=modf((yp2*30.5),&yp);
         }    jprojmean=yp;
       }    if(jprojmean==0) jprojmean=1;
       else { /* no more sum */    if(mprojmean==0) jprojmean=1;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/    i1=cptcoveff;
       cutv(strd,strc,strb,'V');    if (cptcovn < 1){i1=1;}
       Tvar[i]=atoi(strc);    
       }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       strcpy(modelsav,stra);      
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(ficresf,"#****** Routine prevforecast **\n");
         scanf("%d",i);*/  
     } /* end of loop + */  /*            if (h==(int)(YEARM*yearp)){ */
   } /* end model */    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
        for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        k=k+1;
   printf("cptcovprod=%d ", cptcovprod);        fprintf(ficresf,"\n#******");
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        for(j=1;j<=cptcoveff;j++) {
   scanf("%d ",i);*/          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fclose(fic);        }
         fprintf(ficresf,"******\n");
     /*  if(mle==1){*/        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     if (weightopt != 1) { /* Maximisation without weights*/        for(j=1; j<=nlstate+ndeath;j++){ 
       for(i=1;i<=n;i++) weight[i]=1.0;          for(i=1; i<=nlstate;i++)              
     }            fprintf(ficresf," p%d%d",i,j);
     /*-calculation of age at interview from date of interview and age at death -*/          fprintf(ficresf," p.%d",j);
     agev=matrix(1,maxwav,1,imx);        }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     for (i=1; i<=imx; i++) {          fprintf(ficresf,"\n");
       for(m=2; (m<= maxwav); m++) {          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;          for (agec=fage; agec>=(ageminpar-1); agec--){ 
          s[m][i]=-1;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
        }            nhstepm = nhstepm/hstepm; 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }            oldm=oldms;savm=savms;
     }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
     for (i=1; i<=imx; i++)  {            for (h=0; h<=nhstepm; h++){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              if (h*hstepm/YEARM*stepm ==yearp) {
       for(m=1; (m<= maxwav); m++){                fprintf(ficresf,"\n");
         if(s[m][i] >0){                for(j=1;j<=cptcoveff;j++) 
           if (s[m][i] >= nlstate+1) {                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             if(agedc[i]>0)                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               if(moisdc[i]!=99 && andc[i]!=9999)              } 
                 agev[m][i]=agedc[i];              for(j=1; j<=nlstate+ndeath;j++) {
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                ppij=0.;
            else {                for(i=1; i<=nlstate;i++) {
               if (andc[i]!=9999){                  if (mobilav==1) 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);                  else {
               agev[m][i]=-1;                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
               }                  }
             }                  if (h*hstepm/YEARM*stepm== yearp) {
           }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
           else if(s[m][i] !=9){ /* Should no more exist */                  }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                } /* end i */
             if(mint[m][i]==99 || anint[m][i]==9999)                if (h*hstepm/YEARM*stepm==yearp) {
               agev[m][i]=1;                  fprintf(ficresf," %.3f", ppij);
             else if(agev[m][i] <agemin){                }
               agemin=agev[m][i];              }/* end j */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            } /* end h */
             }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             else if(agev[m][i] >agemax){          } /* end agec */
               agemax=agev[m][i];        } /* end yearp */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      } /* end cptcod */
             }    } /* end  cptcov */
             /*agev[m][i]=anint[m][i]-annais[i];*/         
             /*   agev[m][i] = age[i]+2*m;*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           }  
           else { /* =9 */    fclose(ficresf);
             agev[m][i]=1;  }
             s[m][i]=-1;  
           }  /************** Forecasting *****not tested NB*************/
         }  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
         else /*= 0 Unknown */    
           agev[m][i]=1;    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       }    int *popage;
        double calagedatem, agelim, kk1, kk2;
     }    double *popeffectif,*popcount;
     for (i=1; i<=imx; i++)  {    double ***p3mat,***tabpop,***tabpopprev;
       for(m=1; (m<= maxwav); m++){    double ***mobaverage;
         if (s[m][i] > (nlstate+ndeath)) {    char filerespop[FILENAMELENGTH];
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           goto end;    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }    agelim=AGESUP;
       }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     }    
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    
     strcpy(filerespop,"pop"); 
     free_vector(severity,1,maxwav);    strcat(filerespop,fileres);
     free_imatrix(outcome,1,maxwav+1,1,n);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     free_vector(moisnais,1,n);      printf("Problem with forecast resultfile: %s\n", filerespop);
     free_vector(annais,1,n);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     /* free_matrix(mint,1,maxwav,1,n);    }
        free_matrix(anint,1,maxwav,1,n);*/    printf("Computing forecasting: result on file '%s' \n", filerespop);
     free_vector(moisdc,1,n);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     free_vector(andc,1,n);  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
      
     wav=ivector(1,imx);    if (mobilav!=0) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
            fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     /* Concatenates waves */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      }
     }
   
       Tcode=ivector(1,100);    stepsize=(int) (stepm+YEARM-1)/YEARM;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    if (stepm<=12) stepsize=1;
       ncodemax[1]=1;    
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    agelim=AGESUP;
          
    codtab=imatrix(1,100,1,10);    hstepm=1;
    h=0;    hstepm=hstepm/stepm; 
    m=pow(2,cptcoveff);    
      if (popforecast==1) {
    for(k=1;k<=cptcoveff; k++){      if((ficpop=fopen(popfile,"r"))==NULL) {
      for(i=1; i <=(m/pow(2,k));i++){        printf("Problem with population file : %s\n",popfile);exit(0);
        for(j=1; j <= ncodemax[k]; j++){        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      } 
            h++;      popage=ivector(0,AGESUP);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      popeffectif=vector(0,AGESUP);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      popcount=vector(0,AGESUP);
          }      
        }      i=1;   
      }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
    }     
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      imx=i;
       codtab[1][2]=1;codtab[2][2]=2; */      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
    /* for(i=1; i <=m ;i++){    }
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       }     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       printf("\n");        k=k+1;
       }        fprintf(ficrespop,"\n#******");
       scanf("%d",i);*/        for(j=1;j<=cptcoveff;j++) {
              fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
    /* Calculates basic frequencies. Computes observed prevalence at single age        }
        and prints on file fileres'p'. */        fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
            for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
            if (popforecast==1)  fprintf(ficrespop," [Population]");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (cpt=0; cpt<=0;cpt++) { 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
                  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     /* For Powell, parameters are in a vector p[] starting at p[1]            nhstepm = nhstepm/hstepm; 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
     if(mle==1){            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          
     }            for (h=0; h<=nhstepm; h++){
                  if (h==(int) (calagedatem+YEARM*cpt)) {
     /*--------- results files --------------*/                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              } 
                for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
    jk=1;                for(i=1; i<=nlstate;i++) {              
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                  if (mobilav==1) 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                  else {
    for(i=1,jk=1; i <=nlstate; i++){                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
      for(k=1; k <=(nlstate+ndeath); k++){                  }
        if (k != i)                }
          {                if (h==(int)(calagedatem+12*cpt)){
            printf("%d%d ",i,k);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
            fprintf(ficlog,"%d%d ",i,k);                    /*fprintf(ficrespop," %.3f", kk1);
            fprintf(ficres,"%1d%1d ",i,k);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
            for(j=1; j <=ncovmodel; j++){                }
              printf("%f ",p[jk]);              }
              fprintf(ficlog,"%f ",p[jk]);              for(i=1; i<=nlstate;i++){
              fprintf(ficres,"%f ",p[jk]);                kk1=0.;
              jk++;                  for(j=1; j<=nlstate;j++){
            }                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
            printf("\n");                  }
            fprintf(ficlog,"\n");                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
            fprintf(ficres,"\n");              }
          }  
      }              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
    }                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
    if(mle==1){            }
      /* Computing hessian and covariance matrix */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      ftolhess=ftol; /* Usually correct */          }
      hesscov(matcov, p, npar, delti, ftolhess, func);        }
    }   
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    /******/
    printf("# Scales (for hessian or gradient estimation)\n");  
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
    for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
      for(j=1; j <=nlstate+ndeath; j++){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
        if (j!=i) {            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
          fprintf(ficres,"%1d%1d",i,j);            nhstepm = nhstepm/hstepm; 
          printf("%1d%1d",i,j);            
          fprintf(ficlog,"%1d%1d",i,j);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          for(k=1; k<=ncovmodel;k++){            oldm=oldms;savm=savms;
            printf(" %.5e",delti[jk]);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
            fprintf(ficlog," %.5e",delti[jk]);            for (h=0; h<=nhstepm; h++){
            fprintf(ficres," %.5e",delti[jk]);              if (h==(int) (calagedatem+YEARM*cpt)) {
            jk++;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
          }              } 
          printf("\n");              for(j=1; j<=nlstate+ndeath;j++) {
          fprintf(ficlog,"\n");                kk1=0.;kk2=0;
          fprintf(ficres,"\n");                for(i=1; i<=nlstate;i++) {              
        }                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
      }                }
    }                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
                  }
    k=1;            }
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    if(mle==1)          }
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     } 
    for(i=1;i<=npar;i++){    }
      /*  if (k>nlstate) k=1;   
          i1=(i-1)/(ncovmodel*nlstate)+1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
          printf("%s%d%d",alph[k],i1,tab[i]);*/    if (popforecast==1) {
      fprintf(ficres,"%3d",i);      free_ivector(popage,0,AGESUP);
      if(mle==1)      free_vector(popeffectif,0,AGESUP);
        printf("%3d",i);      free_vector(popcount,0,AGESUP);
      fprintf(ficlog,"%3d",i);    }
      for(j=1; j<=i;j++){    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fprintf(ficres," %.5e",matcov[i][j]);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if(mle==1)    fclose(ficrespop);
          printf(" %.5e",matcov[i][j]);  } /* End of popforecast */
        fprintf(ficlog," %.5e",matcov[i][j]);  
      }  int fileappend(FILE *fichier, char *optionfich)
      fprintf(ficres,"\n");  {
      if(mle==1)    if((fichier=fopen(optionfich,"a"))==NULL) {
        printf("\n");      printf("Problem with file: %s\n", optionfich);
      fprintf(ficlog,"\n");      fprintf(ficlog,"Problem with file: %s\n", optionfich);
      k++;      return (0);
    }    }
        fflush(fichier);
    while((c=getc(ficpar))=='#' && c!= EOF){    return (1);
      ungetc(c,ficpar);  }
      fgets(line, MAXLINE, ficpar);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
      puts(line);  {
      fputs(line,ficparo);  
    }    char ca[32], cb[32], cc[32];
    ungetc(c,ficpar);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
    estepm=0;    int numlinepar;
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
    if (estepm==0 || estepm < stepm) estepm=stepm;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
    if (fage <= 2) {    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
      bage = ageminpar;    for(i=1; i <=nlstate; i++){
      fage = agemaxpar;      jj=0;
    }      for(j=1; j <=nlstate+ndeath; j++){
            if(j==i) continue;
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        jj++;
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        printf("%1d%1d",i,j);
            fprintf(ficparo,"%1d%1d",i,j);
    while((c=getc(ficpar))=='#' && c!= EOF){        for(k=1; k<=ncovmodel;k++){
      ungetc(c,ficpar);          /*        printf(" %lf",param[i][j][k]); */
      fgets(line, MAXLINE, ficpar);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
      puts(line);          printf(" 0.");
      fputs(line,ficparo);          fprintf(ficparo," 0.");
    }        }
    ungetc(c,ficpar);        printf("\n");
          fprintf(ficparo,"\n");
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      }
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    printf("# Scales (for hessian or gradient estimation)\n");
        fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
    while((c=getc(ficpar))=='#' && c!= EOF){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
      ungetc(c,ficpar);    for(i=1; i <=nlstate; i++){
      fgets(line, MAXLINE, ficpar);      jj=0;
      puts(line);      for(j=1; j <=nlstate+ndeath; j++){
      fputs(line,ficparo);        if(j==i) continue;
    }        jj++;
    ungetc(c,ficpar);        fprintf(ficparo,"%1d%1d",i,j);
          printf("%1d%1d",i,j);
         fflush(stdout);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        for(k=1; k<=ncovmodel;k++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   fscanf(ficpar,"pop_based=%d\n",&popbased);          printf(" 0.");
   fprintf(ficparo,"pop_based=%d\n",popbased);            fprintf(ficparo," 0.");
   fprintf(ficres,"pop_based=%d\n",popbased);          }
          numlinepar++;
   while((c=getc(ficpar))=='#' && c!= EOF){        printf("\n");
     ungetc(c,ficpar);        fprintf(ficparo,"\n");
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    }
     fputs(line,ficparo);    printf("# Covariance matrix\n");
   }  /* # 121 Var(a12)\n\ */
   ungetc(c,ficpar);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 while((c=getc(ficpar))=='#' && c!= EOF){    fflush(stdout);
     ungetc(c,ficpar);    fprintf(ficparo,"# Covariance matrix\n");
     fgets(line, MAXLINE, ficpar);    /* # 121 Var(a12)\n\ */
     puts(line);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     fputs(line,ficparo);    /* #   ...\n\ */
   }    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   ungetc(c,ficpar);    
     for(itimes=1;itimes<=2;itimes++){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      jj=0;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      for(i=1; i <=nlstate; i++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for(k=1; k<=ncovmodel;k++){
             jj++;
 /*------------ gnuplot -------------*/            ca[0]= k+'a'-1;ca[1]='\0';
   strcpy(optionfilegnuplot,optionfilefiname);            if(itimes==1){
   strcat(optionfilegnuplot,".gp");              printf("#%1d%1d%d",i,j,k);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              fprintf(ficparo,"#%1d%1d%d",i,j,k);
     printf("Problem with file %s",optionfilegnuplot);            }else{
   }              printf("%1d%1d%d",i,j,k);
   fclose(ficgp);              fprintf(ficparo,"%1d%1d%d",i,j,k);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);              /*  printf(" %.5le",matcov[i][j]); */
 /*--------- index.htm --------*/            }
             ll=0;
   strcpy(optionfilehtm,optionfile);            for(li=1;li <=nlstate; li++){
   strcat(optionfilehtm,".htm");              for(lj=1;lj <=nlstate+ndeath; lj++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                if(lj==li) continue;
     printf("Problem with %s \n",optionfilehtm), exit(0);                for(lk=1;lk<=ncovmodel;lk++){
   }                  ll++;
                   if(ll<=jj){
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                    cb[0]= lk +'a'-1;cb[1]='\0';
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                    if(ll<jj){
 \n                      if(itimes==1){
 Total number of observations=%d <br>\n                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 <hr  size=\"2\" color=\"#EC5E5E\">                      }else{
  <ul><li><h4>Parameter files</h4>\n                        printf(" 0.");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                        fprintf(ficparo," 0.");
  - Log file of the run: <a href=\"%s\">%s</a><br>\n                      }
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);                    }else{
   fclose(fichtm);                      if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                        }else{
 /*------------ free_vector  -------------*/                        printf(" 0.");
  chdir(path);                        fprintf(ficparo," 0.");
                        }
  free_ivector(wav,1,imx);                    }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                  }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                  } /* end lk */
  free_ivector(num,1,n);              } /* end lj */
  free_vector(agedc,1,n);            } /* end li */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/            printf("\n");
  fclose(ficparo);            fprintf(ficparo,"\n");
  fclose(ficres);            numlinepar++;
           } /* end k*/
         } /*end j */
   /*--------------- Prevalence limit --------------*/      } /* end i */
      }
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);  } /* end of prwizard */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  /***********************************************/
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;  /**************** Main Program *****************/
   }  /***********************************************/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);  int main(int argc, char *argv[])
   fprintf(ficrespl,"#Prevalence limit\n");  {
   fprintf(ficrespl,"#Age ");    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   fprintf(ficrespl,"\n");    int jj, imk;
      int numlinepar=0; /* Current linenumber of parameter file */
   prlim=matrix(1,nlstate,1,nlstate);    /*  FILE *fichtm; *//* Html File */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* FILE *ficgp;*/ /*Gnuplot File */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double agedeb, agefin,hf;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double fret;
   k=0;    double **xi,tmp,delta;
   agebase=ageminpar;  
   agelim=agemaxpar;    double dum; /* Dummy variable */
   ftolpl=1.e-10;    double ***p3mat;
   i1=cptcoveff;    double ***mobaverage;
   if (cptcovn < 1){i1=1;}    int *indx;
     char line[MAXLINE], linepar[MAXLINE];
   for(cptcov=1;cptcov<=i1;cptcov++){    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    char pathr[MAXLINE]; 
         k=k+1;    int firstobs=1, lastobs=10;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    int sdeb, sfin; /* Status at beginning and end */
         fprintf(ficrespl,"\n#******");    int c,  h , cpt,l;
         printf("\n#******");    int ju,jl, mi;
         fprintf(ficlog,"\n#******");    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
         for(j=1;j<=cptcoveff;j++) {    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int mobilav=0,popforecast=0;
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int hstepm, nhstepm;
         }    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
         fprintf(ficrespl,"******\n");    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
         printf("******\n");  
         fprintf(ficlog,"******\n");    double bage, fage, age, agelim, agebase;
            double ftolpl=FTOL;
         for (age=agebase; age<=agelim; age++){    double **prlim;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double *severity;
           fprintf(ficrespl,"%.0f",age );    double ***param; /* Matrix of parameters */
           for(i=1; i<=nlstate;i++)    double  *p;
           fprintf(ficrespl," %.5f", prlim[i][i]);    double **matcov; /* Matrix of covariance */
           fprintf(ficrespl,"\n");    double ***delti3; /* Scale */
         }    double *delti; /* Scale */
       }    double ***eij, ***vareij;
     }    double **varpl; /* Variances of prevalence limits by age */
   fclose(ficrespl);    double *epj, vepp;
     double kk1, kk2;
   /*------------- h Pij x at various ages ------------*/    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    char *alph[]={"a","a","b","c","d","e"}, str[4];
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    char z[1]="c", occ;
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    char strstart[80], *strt, strtend[80];
      char *stratrunc;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int lstra;
   /*if (stepm<=24) stepsize=2;*/  
     long total_usecs;
   agelim=AGESUP;    struct timeval start_time, end_time, curr_time;
   hstepm=stepsize*YEARM; /* Every year of age */    struct timezone tzp;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
   /* hstepm=1;   aff par mois*/    long time_value;
     extern long time();
   k=0;   
   for(cptcov=1;cptcov<=i1;cptcov++){    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    (void) gettimeofday(&start_time,&tzp);
       k=k+1;    tm = *localtime(&start_time.tv_sec);
         fprintf(ficrespij,"\n#****** ");    tmg = *gmtime(&start_time.tv_sec);
         for(j=1;j<=cptcoveff;j++)    strcpy(strstart,asctime(&tm));
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");  /*  printf("Localtime (at start)=%s",strstart); */
          /*  tp.tv_sec = tp.tv_sec +86400; */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  /*  tm = *localtime(&start_time.tv_sec); */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*   printf("Time(after) =%s",strstart);  */
           oldm=oldms;savm=savms;  /*  (void) time (&time_value);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
           fprintf(ficrespij,"# Age");  *  tm = *localtime(&time_value);
           for(i=1; i<=nlstate;i++)  *  strstart=asctime(&tm);
             for(j=1; j<=nlstate+ndeath;j++)  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
               fprintf(ficrespij," %1d-%1d",i,j);  */
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){    getcwd(pathcd, size);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)    printf("\n%s\n%s",version,fullversion);
               for(j=1; j<=nlstate+ndeath;j++)    if(argc <=1){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      printf("\nEnter the parameter file name: ");
             fprintf(ficrespij,"\n");      scanf("%s",pathtot);
              }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    else{
           fprintf(ficrespij,"\n");      strcpy(pathtot,argv[1]);
         }    }
     }    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   }    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    /* cutv(path,optionfile,pathtot,'\\');*/
   
   fclose(ficrespij);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
   /*---------- Forecasting ------------------*/    strcpy(command,"mkdir ");
   if((stepm == 1) && (strcmp(model,".")==0)){    strcat(command,optionfilefiname);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    if((outcmd=system(command)) != 0){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   }      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   else{      /* fclose(ficlog); */
     erreur=108;  /*     exit(1); */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    }
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  /*   if((imk=mkdir(optionfilefiname))<0){ */
   }  /*     perror("mkdir"); */
    /*   } */
   
   /*---------- Health expectancies and variances ------------*/    /*-------- arguments in the command line --------*/
   
   strcpy(filerest,"t");    /* Log file */
   strcat(filerest,fileres);    strcat(filelog, optionfilefiname);
   if((ficrest=fopen(filerest,"w"))==NULL) {    strcat(filelog,".log");    /* */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    if((ficlog=fopen(filelog,"w"))==NULL)    {
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      printf("Problem with logfile %s\n",filelog);
   }      goto end;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    }
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
   strcpy(filerese,"e");    fprintf(ficlog,"pathtot=%s\n\
   strcat(filerese,fileres);   path=%s \n\
   if((ficreseij=fopen(filerese,"w"))==NULL) {   optionfile=%s\n\
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   optionfilext=%s\n\
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    printf("Localtime (at start):%s",strstart);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   strcpy(fileresv,"v");  
   strcat(fileresv,fileres);    /* */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    strcpy(fileres,"r");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    strcat(fileres, optionfilefiname);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    strcat(fileres,".txt");    /* Other files have txt extension */
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /*---------arguments file --------*/
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   k=0;      fflush(ficlog);
   for(cptcov=1;cptcov<=i1;cptcov++){      goto end;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;  
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(filereso,"o");
       fprintf(ficrest,"******\n");    strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       fprintf(ficreseij,"\n#****** ");      printf("Problem with Output resultfile: %s\n", filereso);
       for(j=1;j<=cptcoveff;j++)      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fflush(ficlog);
       fprintf(ficreseij,"******\n");      goto end;
     }
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    /* Reads comments: lines beginning with '#' */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    numlinepar=0;
       fprintf(ficresvij,"******\n");    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fgets(line, MAXLINE, ficpar);
       oldm=oldms;savm=savms;      numlinepar++;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        puts(line);
        fputs(line,ficparo);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fputs(line,ficlog);
       oldm=oldms;savm=savms;    }
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    ungetc(c,ficpar);
       if(popbased==1){  
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
        }    numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
      fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fflush(ficlog);
       fprintf(ficrest,"\n");    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       epj=vector(1,nlstate+1);      fgets(line, MAXLINE, ficpar);
       for(age=bage; age <=fage ;age++){      numlinepar++;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      puts(line);
         if (popbased==1) {      fputs(line,ficparo);
           for(i=1; i<=nlstate;i++)      fputs(line,ficlog);
             prlim[i][i]=probs[(int)age][i][k];    }
         }    ungetc(c,ficpar);
          
         fprintf(ficrest," %4.0f",age);     
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    covar=matrix(0,NCOVMAX,1,n); 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
           epj[nlstate+1] +=epj[j];    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
         }   
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
         for(i=1, vepp=0.;i <=nlstate;i++)      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
           for(j=1;j <=nlstate;j++)      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
             vepp += vareij[i][j][(int)age];      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      fclose (ficparo);
         for(j=1;j <=nlstate;j++){      fclose (ficlog);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      exit(0);
         }    }
         fprintf(ficrest,"\n");    /* Read guess parameters */
       }    /* Reads comments: lines beginning with '#' */
     }    while((c=getc(ficpar))=='#' && c!= EOF){
   }      ungetc(c,ficpar);
 free_matrix(mint,1,maxwav,1,n);      fgets(line, MAXLINE, ficpar);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      numlinepar++;
     free_vector(weight,1,n);      puts(line);
   fclose(ficreseij);      fputs(line,ficparo);
   fclose(ficresvij);      fputs(line,ficlog);
   fclose(ficrest);    }
   fclose(ficpar);    ungetc(c,ficpar);
   free_vector(epj,1,nlstate+1);  
      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   /*------- Variance limit prevalence------*/      for(i=1; i <=nlstate; i++){
       j=0;
   strcpy(fileresvpl,"vpl");      for(jj=1; jj <=nlstate+ndeath; jj++){
   strcat(fileresvpl,fileres);        if(jj==i) continue;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        j++;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        fscanf(ficpar,"%1d%1d",&i1,&j1);
     exit(0);        if ((i1 != i) && (j1 != j)){
   }          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          exit(1);
         }
   k=0;        fprintf(ficparo,"%1d%1d",i1,j1);
   for(cptcov=1;cptcov<=i1;cptcov++){        if(mle==1)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          printf("%1d%1d",i,j);
       k=k+1;        fprintf(ficlog,"%1d%1d",i,j);
       fprintf(ficresvpl,"\n#****** ");        for(k=1; k<=ncovmodel;k++){
       for(j=1;j<=cptcoveff;j++)          fscanf(ficpar," %lf",&param[i][j][k]);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if(mle==1){
       fprintf(ficresvpl,"******\n");            printf(" %lf",param[i][j][k]);
                  fprintf(ficlog," %lf",param[i][j][k]);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          }
       oldm=oldms;savm=savms;          else
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            fprintf(ficlog," %lf",param[i][j][k]);
     }          fprintf(ficparo," %lf",param[i][j][k]);
  }        }
         fscanf(ficpar,"\n");
   fclose(ficresvpl);        numlinepar++;
         if(mle==1)
   /*---------- End : free ----------------*/          printf("\n");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        fprintf(ficlog,"\n");
          fprintf(ficparo,"\n");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    }  
      fflush(ficlog);
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    p=param[1][1];
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    
      /* Reads comments: lines beginning with '#' */
   free_matrix(matcov,1,npar,1,npar);    while((c=getc(ficpar))=='#' && c!= EOF){
   free_vector(delti,1,npar);      ungetc(c,ficpar);
   free_matrix(agev,1,maxwav,1,imx);      fgets(line, MAXLINE, ficpar);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      numlinepar++;
       puts(line);
   fprintf(fichtm,"\n</body>");      fputs(line,ficparo);
   fclose(fichtm);      fputs(line,ficlog);
   fclose(ficgp);    }
      ungetc(c,ficpar);
   
   if(erreur >0){    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     printf("End of Imach with error or warning %d\n",erreur);    /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    for(i=1; i <=nlstate; i++){
   }else{      for(j=1; j <=nlstate+ndeath-1; j++){
    printf("End of Imach\n");        fscanf(ficpar,"%1d%1d",&i1,&j1);
    fprintf(ficlog,"End of Imach\n");        if ((i1-i)*(j1-j)!=0){
   }          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   printf("See log file on %s\n",filelog);          exit(1);
   fclose(ficlog);        }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        printf("%1d%1d",i,j);
          fprintf(ficparo,"%1d%1d",i1,j1);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        fprintf(ficlog,"%1d%1d",i1,j1);
   /*printf("Total time was %d uSec.\n", total_usecs);*/        for(k=1; k<=ncovmodel;k++){
   /*------ End -----------*/          fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
  end:          fprintf(ficlog," %le",delti3[i][j][k]);
 #ifdef windows        }
   /* chdir(pathcd);*/        fscanf(ficpar,"\n");
 #endif        numlinepar++;
  /*system("wgnuplot graph.plt");*/        printf("\n");
  /*system("../gp37mgw/wgnuplot graph.plt");*/        fprintf(ficparo,"\n");
  /*system("cd ../gp37mgw");*/        fprintf(ficlog,"\n");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      }
  strcpy(plotcmd,GNUPLOTPROGRAM);    }
  strcat(plotcmd," ");    fflush(ficlog);
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);    delti=delti3[1][1];
   
 #ifdef windows  
   while (z[0] != 'q') {    /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     /* chdir(path); */    
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    /* Reads comments: lines beginning with '#' */
     scanf("%s",z);    while((c=getc(ficpar))=='#' && c!= EOF){
     if (z[0] == 'c') system("./imach");      ungetc(c,ficpar);
     else if (z[0] == 'e') system(optionfilehtm);      fgets(line, MAXLINE, ficpar);
     else if (z[0] == 'g') system(plotcmd);      numlinepar++;
     else if (z[0] == 'q') exit(0);      puts(line);
   }      fputs(line,ficparo);
 #endif      fputs(line,ficlog);
 }    }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /*  replace(pathc,path);*/
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, path,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.88


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>