Diff for /imach/src/imach.c between versions 1.50 and 1.90

version 1.50, 2002/06/26 23:25:02 version 1.90, 2003/06/24 12:34:15
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.90  2003/06/24 12:34:15  brouard
      (Module): Some bugs corrected for windows. Also, when
   This program computes Healthy Life Expectancies from    mle=-1 a template is output in file "or"mypar.txt with the design
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    of the covariance matrix to be input.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.89  2003/06/24 12:30:52  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Some bugs corrected for windows. Also, when
   second wave of interviews ("longitudinal") which measure each change    mle=-1 a template is output in file "or"mypar.txt with the design
   (if any) in individual health status.  Health expectancies are    of the covariance matrix to be input.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.88  2003/06/23 17:54:56  brouard
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.87  2003/06/18 12:26:01  brouard
   conditional to be observed in state i at the first wave. Therefore    Version 0.96
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.86  2003/06/17 20:04:08  brouard
   complex model than "constant and age", you should modify the program    (Module): Change position of html and gnuplot routines and added
   where the markup *Covariates have to be included here again* invites    routine fileappend.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
   The advantage of this computer programme, compared to a simple    current date of interview. It may happen when the death was just
   multinomial logistic model, is clear when the delay between waves is not    prior to the death. In this case, dh was negative and likelihood
   identical for each individual. Also, if a individual missed an    was wrong (infinity). We still send an "Error" but patch by
   intermediate interview, the information is lost, but taken into    assuming that the date of death was just one stepm after the
   account using an interpolation or extrapolation.      interview.
     (Repository): Because some people have very long ID (first column)
   hPijx is the probability to be observed in state i at age x+h    we changed int to long in num[] and we added a new lvector for
   conditional to the observed state i at age x. The delay 'h' can be    memory allocation. But we also truncated to 8 characters (left
   split into an exact number (nh*stepm) of unobserved intermediate    truncation)
   states. This elementary transition (by month or quarter trimester,    (Repository): No more line truncation errors.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.84  2003/06/13 21:44:43  brouard
   and the contribution of each individual to the likelihood is simply    * imach.c (Repository): Replace "freqsummary" at a correct
   hPijx.    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
   Also this programme outputs the covariance matrix of the parameters but also    parcimony.
   of the life expectancies. It also computes the prevalence limits.    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.83  2003/06/10 13:39:11  lievre
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.82  2003/06/05 15:57:20  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Add log in  imach.c and  fullversion number is now printed.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .  */
   **********************************************************************/  /*
       Interpolated Markov Chain
 #include <math.h>  
 #include <stdio.h>    Short summary of the programme:
 #include <stdlib.h>    
 #include <unistd.h>    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define MAXLINE 256    first survey ("cross") where individuals from different ages are
 #define GNUPLOTPROGRAM "gnuplot"    interviewed on their health status or degree of disability (in the
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    case of a health survey which is our main interest) -2- at least a
 #define FILENAMELENGTH 80    second wave of interviews ("longitudinal") which measure each change
 /*#define DEBUG*/    (if any) in individual health status.  Health expectancies are
 #define windows    computed from the time spent in each health state according to a
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    model. More health states you consider, more time is necessary to reach the
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    probability to be observed in state j at the second wave
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define NINTERVMAX 8    'age' is age and 'sex' is a covariate. If you want to have a more
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    complex model than "constant and age", you should modify the program
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    where the markup *Covariates have to be included here again* invites
 #define NCOVMAX 8 /* Maximum number of covariates */    you to do it.  More covariates you add, slower the
 #define MAXN 20000    convergence.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    The advantage of this computer programme, compared to a simple
 #define AGEBASE 40    multinomial logistic model, is clear when the delay between waves is not
 #ifdef windows    identical for each individual. Also, if a individual missed an
 #define DIRSEPARATOR '\\'    intermediate interview, the information is lost, but taken into
 #define ODIRSEPARATOR '/'    account using an interpolation or extrapolation.  
 #else  
 #define DIRSEPARATOR '/'    hPijx is the probability to be observed in state i at age x+h
 #define ODIRSEPARATOR '\\'    conditional to the observed state i at age x. The delay 'h' can be
 #endif    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    semester or year) is modelled as a multinomial logistic.  The hPx
 int erreur; /* Error number */    matrix is simply the matrix product of nh*stepm elementary matrices
 int nvar;    and the contribution of each individual to the likelihood is simply
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    hPijx.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Also this programme outputs the covariance matrix of the parameters but also
 int ndeath=1; /* Number of dead states */    of the life expectancies. It also computes the stable prevalence. 
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    
 int popbased=0;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 int *wav; /* Number of waves for this individuual 0 is possible */    This software have been partly granted by Euro-REVES, a concerted action
 int maxwav; /* Maxim number of waves */    from the European Union.
 int jmin, jmax; /* min, max spacing between 2 waves */    It is copyrighted identically to a GNU software product, ie programme and
 int mle, weightopt;    software can be distributed freely for non commercial use. Latest version
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    can be accessed at http://euroreves.ined.fr/imach .
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 double **oldm, **newm, **savm; /* Working pointers to matrices */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    **********************************************************************/
 FILE *ficlog;  /*
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    main
 FILE *ficresprobmorprev;    read parameterfile
 FILE *fichtm; /* Html File */    read datafile
 FILE *ficreseij;    concatwav
 char filerese[FILENAMELENGTH];    freqsummary
 FILE  *ficresvij;    if (mle >= 1)
 char fileresv[FILENAMELENGTH];      mlikeli
 FILE  *ficresvpl;    print results files
 char fileresvpl[FILENAMELENGTH];    if mle==1 
 char title[MAXLINE];       computes hessian
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    read end of parameter file: agemin, agemax, bage, fage, estepm
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        begin-prev-date,...
     open gnuplot file
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    open html file
 char filelog[FILENAMELENGTH]; /* Log file */    stable prevalence
 char filerest[FILENAMELENGTH];     for age prevalim()
 char fileregp[FILENAMELENGTH];    h Pij x
 char popfile[FILENAMELENGTH];    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    health expectancies
     Variance-covariance of DFLE
 #define NR_END 1    prevalence()
 #define FREE_ARG char*     movingaverage()
 #define FTOL 1.0e-10    varevsij() 
     if popbased==1 varevsij(,popbased)
 #define NRANSI    total life expectancies
 #define ITMAX 200    Variance of stable prevalence
    end
 #define TOL 2.0e-4  */
   
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   
   #include <math.h>
 #define GOLD 1.618034  #include <stdio.h>
 #define GLIMIT 100.0  #include <stdlib.h>
 #define TINY 1.0e-20  #include <unistd.h>
   
 static double maxarg1,maxarg2;  #include <sys/time.h>
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #include <time.h>
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #include "timeval.h"
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define MAXLINE 256
 #define rint(a) floor(a+0.5)  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 static double sqrarg;  #define FILENAMELENGTH 132
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /*#define DEBUG*/
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int imx;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 int m,nb;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define NCOVMAX 8 /* Maximum number of covariates */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define MAXN 20000
 double **pmmij, ***probs, ***mobaverage;  #define YEARM 12. /* Number of months per year */
 double dateintmean=0;  #define AGESUP 130
   #define AGEBASE 40
 double *weight;  #ifdef unix
 int **s; /* Status */  #define DIRSEPARATOR '/'
 double *agedc, **covar, idx;  #define ODIRSEPARATOR '\\'
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #else
   #define DIRSEPARATOR '\\'
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define ODIRSEPARATOR '/'
 double ftolhess; /* Tolerance for computing hessian */  #endif
   
 /**************** split *************************/  /* $Id$ */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  /* $State$ */
 {  
    char *s;                             /* pointer */  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
    int  l1, l2;                         /* length counters */  char fullversion[]="$Revision$ $Date$"; 
   int erreur; /* Error number */
    l1 = strlen( path );                 /* length of path */  int nvar;
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  int npar=NPARMAX;
    if ( s == NULL ) {                   /* no directory, so use current */  int nlstate=2; /* Number of live states */
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  int ndeath=1; /* Number of dead states */
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #if     defined(__bsd__)                /* get current working directory */  int popbased=0;
       extern char       *getwd( );  
   int *wav; /* Number of waves for this individuual 0 is possible */
       if ( getwd( dirc ) == NULL ) {  int maxwav; /* Maxim number of waves */
 #else  int jmin, jmax; /* min, max spacing between 2 waves */
       extern char       *getcwd( );  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int mle, weightopt;
 #endif  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
          return( GLOCK_ERROR_GETCWD );  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       strcpy( name, path );             /* we've got it */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    } else {                             /* strip direcotry from path */  double jmean; /* Mean space between 2 waves */
       s++;                              /* after this, the filename */  double **oldm, **newm, **savm; /* Working pointers to matrices */
       l2 = strlen( s );                 /* length of filename */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       strcpy( name, s );                /* save file name */  FILE *ficlog, *ficrespow;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int globpr; /* Global variable for printing or not */
       dirc[l1-l2] = 0;                  /* add zero */  double fretone; /* Only one call to likelihood */
    }  long ipmx; /* Number of contributions */
    l1 = strlen( dirc );                 /* length of directory */  double sw; /* Sum of weights */
 #ifdef windows  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  FILE *ficresilk;
 #else  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  FILE *ficresprobmorprev;
 #endif  FILE *fichtm; /* Html File */
    s = strrchr( name, '.' );            /* find last / */  FILE *ficreseij;
    s++;  char filerese[FILENAMELENGTH];
    strcpy(ext,s);                       /* save extension */  FILE  *ficresvij;
    l1= strlen( name);  char fileresv[FILENAMELENGTH];
    l2= strlen( s)+1;  FILE  *ficresvpl;
    strncpy( finame, name, l1-l2);  char fileresvpl[FILENAMELENGTH];
    finame[l1-l2]= 0;  char title[MAXLINE];
    return( 0 );                         /* we're done */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /******************************************/  int  outcmd=0;
   
 void replace(char *s, char*t)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  char lfileres[FILENAMELENGTH];
   int i;  char filelog[FILENAMELENGTH]; /* Log file */
   int lg=20;  char filerest[FILENAMELENGTH];
   i=0;  char fileregp[FILENAMELENGTH];
   lg=strlen(t);  char popfile[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  
   }  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 int nbocc(char *s, char occ)  
 {  #define NRANSI 
   int i,j=0;  #define ITMAX 200 
   int lg=20;  
   i=0;  #define TOL 2.0e-4 
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define CGOLD 0.3819660 
   if  (s[i] == occ ) j++;  #define ZEPS 1.0e-10 
   }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   return j;  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 void cutv(char *u,char *v, char*t, char occ)  #define TINY 1.0e-20 
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it  static double maxarg1,maxarg2;
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
      gives u="abcedf" and v="ghi2j" */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   int i,lg,j,p=0;    
   i=0;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for(j=0; j<=strlen(t)-1; j++) {  #define rint(a) floor(a+0.5)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   lg=strlen(t);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  int imx; 
   }  int stepm;
      u[p]='\0';  /* Stepm, step in month: minimum step interpolation*/
   
    for(j=0; j<= lg; j++) {  int estepm;
     if (j>=(p+1))(v[j-p-1] = t[j]);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   }  
 }  int m,nb;
   long *num;
 /********************** nrerror ********************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 void nrerror(char error_text[])  double **pmmij, ***probs;
 {  double dateintmean=0;
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  double *weight;
   exit(1);  int **s; /* Status */
 }  double *agedc, **covar, idx;
 /*********************** vector *******************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 double *vector(int nl, int nh)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double *v;  double ftolhess; /* Tolerance for computing hessian */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  /**************** split *************************/
   return v-nl+NR_END;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     char  *ss;                            /* pointer */
 /************************ free vector ******************/    int   l1, l2;                         /* length counters */
 void free_vector(double*v, int nl, int nh)  
 {    l1 = strlen(path );                   /* length of path */
   free((FREE_ARG)(v+nl-NR_END));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
 /************************ivector *******************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 int *ivector(long nl,long nh)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   int *v;      /*    extern  char* getcwd ( char *buf , int len);*/
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   if (!v) nrerror("allocation failure in ivector");        return( GLOCK_ERROR_GETCWD );
   return v-nl+NR_END;      }
 }      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
 /******************free ivector **************************/      ss++;                               /* after this, the filename */
 void free_ivector(int *v, long nl, long nh)      l2 = strlen( ss );                  /* length of filename */
 {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG)(v+nl-NR_END));      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /******************* imatrix *******************************/    }
 int **imatrix(long nrl, long nrh, long ncl, long nch)    l1 = strlen( dirc );                  /* length of directory */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    /*#ifdef windows
 {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #else
   int **m;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
    #endif
   /* allocate pointers to rows */    */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    ss = strrchr( name, '.' );            /* find last / */
   if (!m) nrerror("allocation failure 1 in matrix()");    ss++;
   m += NR_END;    strcpy(ext,ss);                       /* save extension */
   m -= nrl;    l1= strlen( name);
      l2= strlen(ss)+1;
      strncpy( finame, name, l1-l2);
   /* allocate rows and set pointers to them */    finame[l1-l2]= 0;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    return( 0 );                          /* we're done */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  
    /******************************************/
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    void replace_back_to_slash(char *s, char*t)
   /* return pointer to array of pointers to rows */  {
   return m;    int i;
 }    int lg=0;
     i=0;
 /****************** free_imatrix *************************/    lg=strlen(t);
 void free_imatrix(m,nrl,nrh,ncl,nch)    for(i=0; i<= lg; i++) {
       int **m;      (s[i] = t[i]);
       long nch,ncl,nrh,nrl;      if (t[i]== '\\') s[i]='/';
      /* free an int matrix allocated by imatrix() */    }
 {  }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /******************* matrix *******************************/    int lg=20;
 double **matrix(long nrl, long nrh, long ncl, long nch)    i=0;
 {    lg=strlen(s);
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    for(i=0; i<= lg; i++) {
   double **m;    if  (s[i] == occ ) j++;
     }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    return j;
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  void cutv(char *u,char *v, char*t, char occ)
   {
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    /* cuts string t into u and v where u is ended by char occ excluding it
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m[nrl] += NR_END;       gives u="abcedf" and v="ghi2j" */
   m[nrl] -= ncl;    int i,lg,j,p=0;
     i=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for(j=0; j<=strlen(t)-1; j++) {
   return m;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 }    }
   
 /*************************free matrix ************************/    lg=strlen(t);
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    for(j=0; j<p; j++) {
 {      (u[j] = t[j]);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));       u[p]='\0';
 }  
      for(j=0; j<= lg; j++) {
 /******************* ma3x *******************************/      if (j>=(p+1))(v[j-p-1] = t[j]);
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    }
 {  }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  /********************** nrerror ********************/
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  void nrerror(char error_text[])
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    fprintf(stderr,"ERREUR ...\n");
   m -= nrl;    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*********************** vector *******************/
   m[nrl] += NR_END;  double *vector(int nl, int nh)
   m[nrl] -= ncl;  {
     double *v;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    return v-nl+NR_END;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  /************************ free vector ******************/
   for (j=ncl+1; j<=nch; j++)  void free_vector(double*v, int nl, int nh)
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      free((FREE_ARG)(v+nl-NR_END));
   for (i=nrl+1; i<=nrh; i++) {  }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  /************************ivector *******************************/
       m[i][j]=m[i][j-1]+nlay;  int *ivector(long nl,long nh)
   }  {
   return m;    int *v;
 }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /*************************free ma3x ************************/    return v-nl+NR_END;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /******************free ivector **************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  void free_ivector(int *v, long nl, long nh)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /***************** f1dim *************************/  
 extern int ncom;  /************************lvector *******************************/
 extern double *pcom,*xicom;  long *lvector(long nl,long nh)
 extern double (*nrfunc)(double []);  {
      long *v;
 double f1dim(double x)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 {    if (!v) nrerror("allocation failure in ivector");
   int j;    return v-nl+NR_END;
   double f;  }
   double *xt;  
    /******************free lvector **************************/
   xt=vector(1,ncom);  void free_lvector(long *v, long nl, long nh)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  {
   f=(*nrfunc)(xt);    free((FREE_ARG)(v+nl-NR_END));
   free_vector(xt,1,ncom);  }
   return f;  
 }  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 /*****************brent *************************/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  { 
 {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int iter;    int **m; 
   double a,b,d,etemp;    
   double fu,fv,fw,fx;    /* allocate pointers to rows */ 
   double ftemp;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double e=0.0;    m += NR_END; 
      m -= nrl; 
   a=(ax < cx ? ax : cx);    
   b=(ax > cx ? ax : cx);    
   x=w=v=bx;    /* allocate rows and set pointers to them */ 
   fw=fv=fx=(*f)(x);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   for (iter=1;iter<=ITMAX;iter++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     xm=0.5*(a+b);    m[nrl] += NR_END; 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    m[nrl] -= ncl; 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    
     printf(".");fflush(stdout);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     fprintf(ficlog,".");fflush(ficlog);    
 #ifdef DEBUG    /* return pointer to array of pointers to rows */ 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    return m; 
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  } 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /****************** free_imatrix *************************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  void free_imatrix(m,nrl,nrh,ncl,nch)
       *xmin=x;        int **m;
       return fx;        long nch,ncl,nrh,nrl; 
     }       /* free an int matrix allocated by imatrix() */ 
     ftemp=fu;  { 
     if (fabs(e) > tol1) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       r=(x-w)*(fx-fv);    free((FREE_ARG) (m+nrl-NR_END)); 
       q=(x-v)*(fx-fw);  } 
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  /******************* matrix *******************************/
       if (q > 0.0) p = -p;  double **matrix(long nrl, long nrh, long ncl, long nch)
       q=fabs(q);  {
       etemp=e;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       e=d;    double **m;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       else {    if (!m) nrerror("allocation failure 1 in matrix()");
         d=p/q;    m += NR_END;
         u=x+d;    m -= nrl;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     } else {    m[nrl] += NR_END;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl] -= ncl;
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     fu=(*f)(u);    return m;
     if (fu <= fx) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       if (u >= x) a=x; else b=x;     */
       SHFT(v,w,x,u)  }
         SHFT(fv,fw,fx,fu)  
         } else {  /*************************free matrix ************************/
           if (u < x) a=u; else b=u;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
           if (fu <= fw || w == x) {  {
             v=w;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             w=u;    free((FREE_ARG)(m+nrl-NR_END));
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /******************* ma3x *******************************/
             v=u;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
             fv=fu;  {
           }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         }    double ***m;
   }  
   nrerror("Too many iterations in brent");    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *xmin=x;    if (!m) nrerror("allocation failure 1 in matrix()");
   return fx;    m += NR_END;
 }    m -= nrl;
   
 /****************** mnbrak ***********************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m[nrl] += NR_END;
             double (*func)(double))    m[nrl] -= ncl;
 {  
   double ulim,u,r,q, dum;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double fu;  
      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   *fa=(*func)(*ax);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   *fb=(*func)(*bx);    m[nrl][ncl] += NR_END;
   if (*fb > *fa) {    m[nrl][ncl] -= nll;
     SHFT(dum,*ax,*bx,dum)    for (j=ncl+1; j<=nch; j++) 
       SHFT(dum,*fb,*fa,dum)      m[nrl][j]=m[nrl][j-1]+nlay;
       }    
   *cx=(*bx)+GOLD*(*bx-*ax);    for (i=nrl+1; i<=nrh; i++) {
   *fc=(*func)(*cx);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   while (*fb > *fc) {      for (j=ncl+1; j<=nch; j++) 
     r=(*bx-*ax)*(*fb-*fc);        m[i][j]=m[i][j-1]+nlay;
     q=(*bx-*cx)*(*fb-*fa);    }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    return m; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     ulim=(*bx)+GLIMIT*(*cx-*bx);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     if ((*bx-u)*(u-*cx) > 0.0) {    */
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /*************************free ma3x ************************/
       if (fu < *fc) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  {
           SHFT(*fb,*fc,fu,(*func)(u))    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
           }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    free((FREE_ARG)(m+nrl-NR_END));
       u=ulim;  }
       fu=(*func)(u);  
     } else {  /***************** f1dim *************************/
       u=(*cx)+GOLD*(*cx-*bx);  extern int ncom; 
       fu=(*func)(u);  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
     SHFT(*ax,*bx,*cx,u)   
       SHFT(*fa,*fb,*fc,fu)  double f1dim(double x) 
       }  { 
 }    int j; 
     double f;
 /*************** linmin ************************/    double *xt; 
    
 int ncom;    xt=vector(1,ncom); 
 double *pcom,*xicom;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 double (*nrfunc)(double []);    f=(*nrfunc)(xt); 
      free_vector(xt,1,ncom); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    return f; 
 {  } 
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /*****************brent *************************/
   double f1dim(double x);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  { 
               double *fc, double (*func)(double));    int iter; 
   int j;    double a,b,d,etemp;
   double xx,xmin,bx,ax;    double fu,fv,fw,fx;
   double fx,fb,fa;    double ftemp;
      double p,q,r,tol1,tol2,u,v,w,x,xm; 
   ncom=n;    double e=0.0; 
   pcom=vector(1,n);   
   xicom=vector(1,n);    a=(ax < cx ? ax : cx); 
   nrfunc=func;    b=(ax > cx ? ax : cx); 
   for (j=1;j<=n;j++) {    x=w=v=bx; 
     pcom[j]=p[j];    fw=fv=fx=(*f)(x); 
     xicom[j]=xi[j];    for (iter=1;iter<=ITMAX;iter++) { 
   }      xm=0.5*(a+b); 
   ax=0.0;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   xx=1.0;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      printf(".");fflush(stdout);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #endif      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for (j=1;j<=n;j++) {  #endif
     xi[j] *= xmin;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     p[j] += xi[j];        *xmin=x; 
   }        return fx; 
   free_vector(xicom,1,n);      } 
   free_vector(pcom,1,n);      ftemp=fu;
 }      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
 /*************** powell ************************/        q=(x-v)*(fx-fw); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        p=(x-v)*q-(x-w)*r; 
             double (*func)(double []))        q=2.0*(q-r); 
 {        if (q > 0.0) p = -p; 
   void linmin(double p[], double xi[], int n, double *fret,        q=fabs(q); 
               double (*func)(double []));        etemp=e; 
   int i,ibig,j;        e=d; 
   double del,t,*pt,*ptt,*xit;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double fp,fptt;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double *xits;        else { 
   pt=vector(1,n);          d=p/q; 
   ptt=vector(1,n);          u=x+d; 
   xit=vector(1,n);          if (u-a < tol2 || b-u < tol2) 
   xits=vector(1,n);            d=SIGN(tol1,xm-x); 
   *fret=(*func)(p);        } 
   for (j=1;j<=n;j++) pt[j]=p[j];      } else { 
   for (*iter=1;;++(*iter)) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     fp=(*fret);      } 
     ibig=0;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     del=0.0;      fu=(*f)(u); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      if (fu <= fx) { 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        if (u >= x) a=x; else b=x; 
     for (i=1;i<=n;i++)        SHFT(v,w,x,u) 
       printf(" %d %.12f",i, p[i]);          SHFT(fv,fw,fx,fu) 
     fprintf(ficlog," %d %.12f",i, p[i]);          } else { 
     printf("\n");            if (u < x) a=u; else b=u; 
     fprintf(ficlog,"\n");            if (fu <= fw || w == x) { 
     for (i=1;i<=n;i++) {              v=w; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];              w=u; 
       fptt=(*fret);              fv=fw; 
 #ifdef DEBUG              fw=fu; 
       printf("fret=%lf \n",*fret);            } else if (fu <= fv || v == x || v == w) { 
       fprintf(ficlog,"fret=%lf \n",*fret);              v=u; 
 #endif              fv=fu; 
       printf("%d",i);fflush(stdout);            } 
       fprintf(ficlog,"%d",i);fflush(ficlog);          } 
       linmin(p,xit,n,fret,func);    } 
       if (fabs(fptt-(*fret)) > del) {    nrerror("Too many iterations in brent"); 
         del=fabs(fptt-(*fret));    *xmin=x; 
         ibig=i;    return fx; 
       }  } 
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /****************** mnbrak ***********************/
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);              double (*func)(double)) 
         printf(" x(%d)=%.12e",j,xit[j]);  { 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    double ulim,u,r,q, dum;
       }    double fu; 
       for(j=1;j<=n;j++) {   
         printf(" p=%.12e",p[j]);    *fa=(*func)(*ax); 
         fprintf(ficlog," p=%.12e",p[j]);    *fb=(*func)(*bx); 
       }    if (*fb > *fa) { 
       printf("\n");      SHFT(dum,*ax,*bx,dum) 
       fprintf(ficlog,"\n");        SHFT(dum,*fb,*fa,dum) 
 #endif        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    *fc=(*func)(*cx); 
 #ifdef DEBUG    while (*fb > *fc) { 
       int k[2],l;      r=(*bx-*ax)*(*fb-*fc); 
       k[0]=1;      q=(*bx-*cx)*(*fb-*fa); 
       k[1]=-1;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       printf("Max: %.12e",(*func)(p));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       fprintf(ficlog,"Max: %.12e",(*func)(p));      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for (j=1;j<=n;j++) {      if ((*bx-u)*(u-*cx) > 0.0) { 
         printf(" %.12e",p[j]);        fu=(*func)(u); 
         fprintf(ficlog," %.12e",p[j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       }        fu=(*func)(u); 
       printf("\n");        if (fu < *fc) { 
       fprintf(ficlog,"\n");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       for(l=0;l<=1;l++) {            SHFT(*fb,*fc,fu,(*func)(u)) 
         for (j=1;j<=n;j++) {            } 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        u=ulim; 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        fu=(*func)(u); 
         }      } else { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        u=(*cx)+GOLD*(*cx-*bx); 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        fu=(*func)(u); 
       }      } 
 #endif      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
         } 
       free_vector(xit,1,n);  } 
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  /*************** linmin ************************/
       free_vector(pt,1,n);  
       return;  int ncom; 
     }  double *pcom,*xicom;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  double (*nrfunc)(double []); 
     for (j=1;j<=n;j++) {   
       ptt[j]=2.0*p[j]-pt[j];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       xit[j]=p[j]-pt[j];  { 
       pt[j]=p[j];    double brent(double ax, double bx, double cx, 
     }                 double (*f)(double), double tol, double *xmin); 
     fptt=(*func)(ptt);    double f1dim(double x); 
     if (fptt < fp) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);                double *fc, double (*func)(double)); 
       if (t < 0.0) {    int j; 
         linmin(p,xit,n,fret,func);    double xx,xmin,bx,ax; 
         for (j=1;j<=n;j++) {    double fx,fb,fa;
           xi[j][ibig]=xi[j][n];   
           xi[j][n]=xit[j];    ncom=n; 
         }    pcom=vector(1,n); 
 #ifdef DEBUG    xicom=vector(1,n); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    nrfunc=func; 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    for (j=1;j<=n;j++) { 
         for(j=1;j<=n;j++){      pcom[j]=p[j]; 
           printf(" %.12e",xit[j]);      xicom[j]=xi[j]; 
           fprintf(ficlog," %.12e",xit[j]);    } 
         }    ax=0.0; 
         printf("\n");    xx=1.0; 
         fprintf(ficlog,"\n");    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 #endif    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       }  #ifdef DEBUG
     }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }  #endif
     for (j=1;j<=n;j++) { 
 /**** Prevalence limit ****************/      xi[j] *= xmin; 
       p[j] += xi[j]; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    } 
 {    free_vector(xicom,1,n); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    free_vector(pcom,1,n); 
      matrix by transitions matrix until convergence is reached */  } 
   
   int i, ii,j,k;  /*************** powell ************************/
   double min, max, maxmin, maxmax,sumnew=0.;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double **matprod2();              double (*func)(double [])) 
   double **out, cov[NCOVMAX], **pmij();  { 
   double **newm;    void linmin(double p[], double xi[], int n, double *fret, 
   double agefin, delaymax=50 ; /* Max number of years to converge */                double (*func)(double [])); 
     int i,ibig,j; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    double del,t,*pt,*ptt,*xit;
     for (j=1;j<=nlstate+ndeath;j++){    double fp,fptt;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double *xits;
     }    pt=vector(1,n); 
     ptt=vector(1,n); 
    cov[1]=1.;    xit=vector(1,n); 
      xits=vector(1,n); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    *fret=(*func)(p); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for (j=1;j<=n;j++) pt[j]=p[j]; 
     newm=savm;    for (*iter=1;;++(*iter)) { 
     /* Covariates have to be included here again */      fp=(*fret); 
      cov[2]=agefin;      ibig=0; 
        del=0.0; 
       for (k=1; k<=cptcovn;k++) {      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       }      for (i=1;i<=n;i++) {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        printf(" %d %.12f",i, p[i]);
       for (k=1; k<=cptcovprod;k++)        fprintf(ficlog," %d %.12lf",i, p[i]);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fprintf(ficrespow," %.12lf", p[i]);
       }
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      printf("\n");
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      fprintf(ficlog,"\n");
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      fprintf(ficrespow,"\n");
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     savm=oldm;        fptt=(*fret); 
     oldm=newm;  #ifdef DEBUG
     maxmax=0.;        printf("fret=%lf \n",*fret);
     for(j=1;j<=nlstate;j++){        fprintf(ficlog,"fret=%lf \n",*fret);
       min=1.;  #endif
       max=0.;        printf("%d",i);fflush(stdout);
       for(i=1; i<=nlstate; i++) {        fprintf(ficlog,"%d",i);fflush(ficlog);
         sumnew=0;        linmin(p,xit,n,fret,func); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        if (fabs(fptt-(*fret)) > del) { 
         prlim[i][j]= newm[i][j]/(1-sumnew);          del=fabs(fptt-(*fret)); 
         max=FMAX(max,prlim[i][j]);          ibig=i; 
         min=FMIN(min,prlim[i][j]);        } 
       }  #ifdef DEBUG
       maxmin=max-min;        printf("%d %.12e",i,(*fret));
       maxmax=FMAX(maxmax,maxmin);        fprintf(ficlog,"%d %.12e",i,(*fret));
     }        for (j=1;j<=n;j++) {
     if(maxmax < ftolpl){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       return prlim;          printf(" x(%d)=%.12e",j,xit[j]);
     }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   }        }
 }        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
 /*************** transition probabilities ***************/          fprintf(ficlog," p=%.12e",p[j]);
         }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        printf("\n");
 {        fprintf(ficlog,"\n");
   double s1, s2;  #endif
   /*double t34;*/      } 
   int i,j,j1, nc, ii, jj;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
     for(i=1; i<= nlstate; i++){        int k[2],l;
     for(j=1; j<i;j++){        k[0]=1;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        k[1]=-1;
         /*s2 += param[i][j][nc]*cov[nc];*/        printf("Max: %.12e",(*func)(p));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog,"Max: %.12e",(*func)(p));
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        for (j=1;j<=n;j++) {
       }          printf(" %.12e",p[j]);
       ps[i][j]=s2;          fprintf(ficlog," %.12e",p[j]);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        }
     }        printf("\n");
     for(j=i+1; j<=nlstate+ndeath;j++){        fprintf(ficlog,"\n");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        for(l=0;l<=1;l++) {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          for (j=1;j<=n;j++) {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       ps[i][j]=s2;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }          }
   }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     /*ps[3][2]=1;*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   for(i=1; i<= nlstate; i++){  #endif
      s1=0;  
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);        free_vector(xit,1,n); 
     for(j=i+1; j<=nlstate+ndeath; j++)        free_vector(xits,1,n); 
       s1+=exp(ps[i][j]);        free_vector(ptt,1,n); 
     ps[i][i]=1./(s1+1.);        free_vector(pt,1,n); 
     for(j=1; j<i; j++)        return; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } 
     for(j=i+1; j<=nlstate+ndeath; j++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      for (j=1;j<=n;j++) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        ptt[j]=2.0*p[j]-pt[j]; 
   } /* end i */        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      } 
     for(jj=1; jj<= nlstate+ndeath; jj++){      fptt=(*func)(ptt); 
       ps[ii][jj]=0;      if (fptt < fp) { 
       ps[ii][ii]=1;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
   }          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            xi[j][n]=xit[j]; 
     for(jj=1; jj<= nlstate+ndeath; jj++){          }
      printf("%lf ",ps[ii][jj]);  #ifdef DEBUG
    }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     printf("\n ");          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
     printf("\n ");printf("%lf ",cov[2]);*/            printf(" %.12e",xit[j]);
 /*            fprintf(ficlog," %.12e",xit[j]);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          }
   goto end;*/          printf("\n");
     return ps;          fprintf(ficlog,"\n");
 }  #endif
         }
 /**************** Product of 2 matrices ******************/      } 
     } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  } 
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /**** Prevalence limit (stable prevalence)  ****************/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   long i, j, k;       matrix by transitions matrix until convergence is reached */
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)    int i, ii,j,k;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double min, max, maxmin, maxmax,sumnew=0.;
         out[i][k] +=in[i][j]*b[j][k];    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
   return out;    double **newm;
 }    double agefin, delaymax=50 ; /* Max number of years to converge */
   
     for (ii=1;ii<=nlstate+ndeath;ii++)
 /************* Higher Matrix Product ***************/      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      }
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month     cov[1]=1.;
      duration (i.e. until   
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
      (typically every 2 years instead of every month which is too big).      newm=savm;
      Model is determined by parameters x and covariates have to be      /* Covariates have to be included here again */
      included manually here.       cov[2]=agefin;
     
      */        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int i, j, d, h, k;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   double **out, cov[NCOVMAX];        }
   double **newm;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   /* Hstepm could be zero and should return the unit matrix */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       oldm[i][j]=(i==j ? 1.0 : 0.0);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       po[i][j][0]=(i==j ? 1.0 : 0.0);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){      savm=oldm;
     for(d=1; d <=hstepm; d++){      oldm=newm;
       newm=savm;      maxmax=0.;
       /* Covariates have to be included here again */      for(j=1;j<=nlstate;j++){
       cov[1]=1.;        min=1.;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        max=0.;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        for(i=1; i<=nlstate; i++) {
       for (k=1; k<=cptcovage;k++)          sumnew=0;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for (k=1; k<=cptcovprod;k++)          prlim[i][j]= newm[i][j]/(1-sumnew);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
         }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        maxmin=max-min;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        maxmax=FMAX(maxmax,maxmin);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      if(maxmax < ftolpl){
       savm=oldm;        return prlim;
       oldm=newm;      }
     }    }
     for(i=1; i<=nlstate+ndeath; i++)  }
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  /*************** transition probabilities ***************/ 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       }  {
   } /* end h */    double s1, s2;
   return po;    /*double t34;*/
 }    int i,j,j1, nc, ii, jj;
   
       for(i=1; i<= nlstate; i++){
 /*************** log-likelihood *************/      for(j=1; j<i;j++){
 double func( double *x)        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {          /*s2 += param[i][j][nc]*cov[nc];*/
   int i, ii, j, k, mi, d, kk;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   double **out;        }
   double sw; /* Sum of weights */        ps[i][j]=s2;
   double lli; /* Individual log likelihood */        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   long ipmx;      }
   /*extern weight */      for(j=i+1; j<=nlstate+ndeath;j++){
   /* We are differentiating ll according to initial status */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*for(i=1;i<imx;i++)          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
     printf(" %d\n",s[4][i]);        }
   */        ps[i][j]=s2;
   cov[1]=1.;      }
     }
   for(k=1; k<=nlstate; k++) ll[k]=0.;      /*ps[3][2]=1;*/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    for(i=1; i<= nlstate; i++){
     for(mi=1; mi<= wav[i]-1; mi++){       s1=0;
       for (ii=1;ii<=nlstate+ndeath;ii++)      for(j=1; j<i; j++)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        s1+=exp(ps[i][j]);
       for(d=0; d<dh[mi][i]; d++){      for(j=i+1; j<=nlstate+ndeath; j++)
         newm=savm;        s1+=exp(ps[i][j]);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      ps[i][i]=1./(s1+1.);
         for (kk=1; kk<=cptcovage;kk++) {      for(j=1; j<i; j++)
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        ps[i][j]= exp(ps[i][j])*ps[i][i];
         }      for(j=i+1; j<=nlstate+ndeath; j++)
                ps[i][j]= exp(ps[i][j])*ps[i][i];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    } /* end i */
         savm=oldm;  
         oldm=newm;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
              for(jj=1; jj<= nlstate+ndeath; jj++){
                ps[ii][jj]=0;
       } /* end mult */        ps[ii][ii]=1;
            }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;  
       sw += weight[i];    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for(jj=1; jj<= nlstate+ndeath; jj++){
     } /* end of wave */       printf("%lf ",ps[ii][jj]);
   } /* end of individual */     }
       printf("\n ");
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      printf("\n ");printf("%lf ",cov[2]);*/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*
   return -l;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
 }    goto end;*/
       return ps;
   }
 /*********** Maximum Likelihood Estimation ***************/  
   /**************** Product of 2 matrices ******************/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   int i,j, iter;  {
   double **xi,*delti;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double fret;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   xi=matrix(1,npar,1,npar);    /* in, b, out are matrice of pointers which should have been initialized 
   for (i=1;i<=npar;i++)       before: only the contents of out is modified. The function returns
     for (j=1;j<=npar;j++)       a pointer to pointers identical to out */
       xi[i][j]=(i==j ? 1.0 : 0.0);    long i, j, k;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    for(i=nrl; i<= nrh; i++)
   powell(p,xi,npar,ftol,&iter,&fret,func);      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          out[i][k] +=in[i][j]*b[j][k];
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    return out;
   }
 }  
   
 /**** Computes Hessian and covariance matrix ***/  /************* Higher Matrix Product ***************/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double  **a,**y,*x,pd;  {
   double **hess;    /* Computes the transition matrix starting at age 'age' over 
   int i, j,jk;       'nhstepm*hstepm*stepm' months (i.e. until
   int *indx;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
   double hessii(double p[], double delta, int theta, double delti[]);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double hessij(double p[], double delti[], int i, int j);       (typically every 2 years instead of every month which is too big 
   void lubksb(double **a, int npar, int *indx, double b[]) ;       for the memory).
   void ludcmp(double **a, int npar, int *indx, double *d) ;       Model is determined by parameters x and covariates have to be 
        included manually here. 
   hess=matrix(1,npar,1,npar);  
        */
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    int i, j, d, h, k;
   for (i=1;i<=npar;i++){    double **out, cov[NCOVMAX];
     printf("%d",i);fflush(stdout);    double **newm;
     fprintf(ficlog,"%d",i);fflush(ficlog);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    /* Hstepm could be zero and should return the unit matrix */
     /*printf(" %f ",p[i]);*/    for (i=1;i<=nlstate+ndeath;i++)
     /*printf(" %lf ",hess[i][i]);*/      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[i][j]=(i==j ? 1.0 : 0.0);
          po[i][j][0]=(i==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++) {      }
     for (j=1;j<=npar;j++)  {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       if (j>i) {    for(h=1; h <=nhstepm; h++){
         printf(".%d%d",i,j);fflush(stdout);      for(d=1; d <=hstepm; d++){
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        newm=savm;
         hess[i][j]=hessij(p,delti,i,j);        /* Covariates have to be included here again */
         hess[j][i]=hess[i][j];            cov[1]=1.;
         /*printf(" %lf ",hess[i][j]);*/        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        for (k=1; k<=cptcovage;k++)
   }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   printf("\n");        for (k=1; k<=cptcovprod;k++)
   fprintf(ficlog,"\n");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   a=matrix(1,npar,1,npar);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   y=matrix(1,npar,1,npar);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   x=vector(1,npar);        savm=oldm;
   indx=ivector(1,npar);        oldm=newm;
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      for(i=1; i<=nlstate+ndeath; i++)
   ludcmp(a,npar,indx,&pd);        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
   for (j=1;j<=npar;j++) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for (i=1;i<=npar;i++) x[i]=0;           */
     x[j]=1;        }
     lubksb(a,npar,indx,x);    } /* end h */
     for (i=1;i<=npar;i++){    return po;
       matcov[i][j]=x[i];  }
     }  
   }  
   /*************** log-likelihood *************/
   printf("\n#Hessian matrix#\n");  double func( double *x)
   fprintf(ficlog,"\n#Hessian matrix#\n");  {
   for (i=1;i<=npar;i++) {    int i, ii, j, k, mi, d, kk;
     for (j=1;j<=npar;j++) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       printf("%.3e ",hess[i][j]);    double **out;
       fprintf(ficlog,"%.3e ",hess[i][j]);    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     printf("\n");    int s1, s2;
     fprintf(ficlog,"\n");    double bbh, survp;
   }    long ipmx;
     /*extern weight */
   /* Recompute Inverse */    /* We are differentiating ll according to initial status */
   for (i=1;i<=npar;i++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /*for(i=1;i<imx;i++) 
   ludcmp(a,npar,indx,&pd);      printf(" %d\n",s[4][i]);
     */
   /*  printf("\n#Hessian matrix recomputed#\n");    cov[1]=1.;
   
   for (j=1;j<=npar;j++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    if(mle==1){
     lubksb(a,npar,indx,x);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1;i<=npar;i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       y[i][j]=x[i];        for(mi=1; mi<= wav[i]-1; mi++){
       printf("%.3e ",y[i][j]);          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficlog,"%.3e ",y[i][j]);            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"\n");            }
   }          for(d=0; d<dh[mi][i]; d++){
   */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(a,1,npar,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   free_matrix(y,1,npar,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_vector(x,1,npar);            }
   free_ivector(indx,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_matrix(hess,1,npar,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
 }          } /* end mult */
         
 /*************** hessian matrix ****************/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 double hessii( double x[], double delta, int theta, double delti[])          /* But now since version 0.9 we anticipate for bias and large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int l=1, lmax=20;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double k1,k2;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double p2[NPARMAX+1];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   double res;           * probability in order to take into account the bias as a fraction of the way
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double fx;           * -stepm/2 to stepm/2 .
   int k=0,kmax=10;           * For stepm=1 the results are the same as for previous versions of Imach.
   double l1;           * For stepm > 1 the results are less biased than in previous versions. 
            */
   fx=func(x);          s1=s[mw[mi][i]][i];
   for (i=1;i<=npar;i++) p2[i]=x[i];          s2=s[mw[mi+1][i]][i];
   for(l=0 ; l <=lmax; l++){          bbh=(double)bh[mi][i]/(double)stepm; 
     l1=pow(10,l);          /* bias is positive if real duration
     delts=delt;           * is higher than the multiple of stepm and negative otherwise.
     for(k=1 ; k <kmax; k=k+1){           */
       delt = delta*(l1*k);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       p2[theta]=x[theta] +delt;          if( s2 > nlstate){ 
       k1=func(p2)-fx;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       p2[theta]=x[theta]-delt;               to the likelihood is the probability to die between last step unit time and current 
       k2=func(p2)-fx;               step unit time, which is also the differences between probability to die before dh 
       /*res= (k1-2.0*fx+k2)/delt/delt; */               and probability to die before dh-stepm . 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */               In version up to 0.92 likelihood was computed
                as if date of death was unknown. Death was treated as any other
 #ifdef DEBUG          health state: the date of the interview describes the actual state
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          and not the date of a change in health state. The former idea was
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          to consider that at each interview the state was recorded
 #endif          (healthy, disable or death) and IMaCh was corrected; but when we
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          introduced the exact date of death then we should have modified
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          the contribution of an exact death to the likelihood. This new
         k=kmax;          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          and month of death but the probability to survive from last
         k=kmax; l=lmax*10.;          interview up to one month before death multiplied by the
       }          probability to die within a month. Thanks to Chris
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          Jackson for correcting this bug.  Former versions increased
         delts=delt;          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
   }            */
   delti[theta]=delts;            lli=log(out[s1][s2] - savm[s1][s2]);
   return res;          }else{
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
 double hessij( double x[], double delti[], int thetai,int thetaj)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 {          /*if(lli ==000.0)*/
   int i;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int l=1, l1, lmax=20;          ipmx +=1;
   double k1,k2,k3,k4,res,fx;          sw += weight[i];
   double p2[NPARMAX+1];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int k;        } /* end of wave */
       } /* end of individual */
   fx=func(x);    }  else if(mle==2){
   for (k=1; k<=2; k++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1;i<=npar;i++) p2[i]=x[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
     k1=func(p2)-fx;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]+delti[thetai]/k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            }
     k2=func(p2)-fx;          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
     p2[thetai]=x[thetai]-delti[thetai]/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            for (kk=1; kk<=cptcovage;kk++) {
     k3=func(p2)-fx;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
     p2[thetai]=x[thetai]-delti[thetai]/k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     k4=func(p2)-fx;            savm=oldm;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            oldm=newm;
 #ifdef DEBUG          } /* end mult */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 #endif          /* But now since version 0.9 we anticipate for bias and large stepm.
   }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   return res;           * (in months) between two waves is not a multiple of stepm, we rounded to 
 }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
 /************** Inverse of matrix **************/           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 void ludcmp(double **a, int n, int *indx, double *d)           * probability in order to take into account the bias as a fraction of the way
 {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   int i,imax,j,k;           * -stepm/2 to stepm/2 .
   double big,dum,sum,temp;           * For stepm=1 the results are the same as for previous versions of Imach.
   double *vv;           * For stepm > 1 the results are less biased than in previous versions. 
             */
   vv=vector(1,n);          s1=s[mw[mi][i]][i];
   *d=1.0;          s2=s[mw[mi+1][i]][i];
   for (i=1;i<=n;i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
     big=0.0;          /* bias is positive if real duration
     for (j=1;j<=n;j++)           * is higher than the multiple of stepm and negative otherwise.
       if ((temp=fabs(a[i][j])) > big) big=temp;           */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     vv[i]=1.0/big;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   for (j=1;j<=n;j++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for (i=1;i<j;i++) {          /*if(lli ==000.0)*/
       sum=a[i][j];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          ipmx +=1;
       a[i][j]=sum;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     big=0.0;        } /* end of wave */
     for (i=j;i<=n;i++) {      } /* end of individual */
       sum=a[i][j];    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (k=1;k<j;k++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         sum -= a[i][k]*a[k][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       a[i][j]=sum;        for(mi=1; mi<= wav[i]-1; mi++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         big=dum;            for (j=1;j<=nlstate+ndeath;j++){
         imax=i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     if (j != imax) {          for(d=0; d<dh[mi][i]; d++){
       for (k=1;k<=n;k++) {            newm=savm;
         dum=a[imax][k];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         a[imax][k]=a[j][k];            for (kk=1; kk<=cptcovage;kk++) {
         a[j][k]=dum;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       *d = -(*d);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       vv[imax]=vv[j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     indx[j]=imax;            oldm=newm;
     if (a[j][j] == 0.0) a[j][j]=TINY;          } /* end mult */
     if (j != n) {        
       dum=1.0/(a[j][j]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          /* But now since version 0.9 we anticipate for bias and large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   free_vector(vv,1,n);  /* Doesn't work */           * the nearest (and in case of equal distance, to the lowest) interval but now
 ;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
 void lubksb(double **a, int n, int *indx, double b[])           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 {           * -stepm/2 to stepm/2 .
   int i,ii=0,ip,j;           * For stepm=1 the results are the same as for previous versions of Imach.
   double sum;           * For stepm > 1 the results are less biased than in previous versions. 
             */
   for (i=1;i<=n;i++) {          s1=s[mw[mi][i]][i];
     ip=indx[i];          s2=s[mw[mi+1][i]][i];
     sum=b[ip];          bbh=(double)bh[mi][i]/(double)stepm; 
     b[ip]=b[i];          /* bias is positive if real duration
     if (ii)           * is higher than the multiple of stepm and negative otherwise.
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           */
     else if (sum) ii=i;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
     b[i]=sum;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   for (i=n;i>=1;i--) {          /*if(lli ==000.0)*/
     sum=b[i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          ipmx +=1;
     b[i]=sum/a[i][i];          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 /************ Frequencies ********************/    }else if (mle==4){  /* ml=4 no inter-extrapolation */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {  /* Some frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int first;            for (j=1;j<=nlstate+ndeath;j++){
   double ***freq; /* Frequencies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *pp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos, k2, dateintsum=0,k2cpt=0;            }
   FILE *ficresp;          for(d=0; d<dh[mi][i]; d++){
   char fileresp[FILENAMELENGTH];            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   pp=vector(1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   strcpy(fileresp,"p");            }
   strcat(fileresp,fileres);          
   if((ficresp=fopen(fileresp,"w"))==NULL) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("Problem with prevalence resultfile: %s\n", fileresp);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            savm=oldm;
     exit(0);            oldm=newm;
   }          } /* end mult */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        
   j1=0;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   j=cptcoveff;          if( s2 > nlstate){ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   first=1;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
   for(k1=1; k1<=j;k1++){          ipmx +=1;
     for(i1=1; i1<=ncodemax[k1];i1++){          sw += weight[i];
       j1++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         scanf("%d", i);*/        } /* end of wave */
       for (i=-1; i<=nlstate+ndeath; i++)        } /* end of individual */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           for(m=agemin; m <= agemax+3; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             freq[i][jk][m]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       dateintsum=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
       k2cpt=0;            for (j=1;j<=nlstate+ndeath;j++){
       for (i=1; i<=imx; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         bool=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {            }
           for (z1=1; z1<=cptcoveff; z1++)          for(d=0; d<dh[mi][i]; d++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            newm=savm;
               bool=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         if (bool==1) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);          
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if(agev[m][i]==0) agev[m][i]=agemax+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(agev[m][i]==1) agev[m][i]=agemax+2;            savm=oldm;
               if (m<lastpass) {            oldm=newm;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          } /* end mult */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        
               }          s1=s[mw[mi][i]][i];
                        s2=s[mw[mi+1][i]][i];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                 dateintsum=dateintsum+k2;          ipmx +=1;
                 k2cpt++;          sw += weight[i];
               }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           }        } /* end of wave */
         }      } /* end of individual */
       }    } /* End of if */
            for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if  (cptcovn>0) {    return -l;
         fprintf(ficresp, "\n#********** Variable ");  }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");  /*************** log-likelihood *************/
       }  double funcone( double *x)
       for(i=1; i<=nlstate;i++)  {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /* Same as likeli but slower because of a lot of printf and if */
       fprintf(ficresp, "\n");    int i, ii, j, k, mi, d, kk;
          double l, ll[NLSTATEMAX], cov[NCOVMAX];
       for(i=(int)agemin; i <= (int)agemax+3; i++){    double **out;
         if(i==(int)agemax+3){    double lli; /* Individual log likelihood */
           fprintf(ficlog,"Total");    double llt;
         }else{    int s1, s2;
           if(first==1){    double bbh, survp;
             first=0;    /*extern weight */
             printf("See log file for details...\n");    /* We are differentiating ll according to initial status */
           }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           fprintf(ficlog,"Age %d", i);    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
         for(jk=1; jk <=nlstate ; jk++){    */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    cov[1]=1.;
             pp[jk] += freq[jk][m][i];  
         }    for(k=1; k<=nlstate; k++) ll[k]=0.;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             pos += freq[jk][m][i];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if(pp[jk]>=1.e-10){      for(mi=1; mi<= wav[i]-1; mi++){
             if(first==1){        for (ii=1;ii<=nlstate+ndeath;ii++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          for (j=1;j<=nlstate+ndeath;j++){
             }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }else{          }
             if(first==1)        for(d=0; d<dh[mi][i]; d++){
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          newm=savm;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }          for (kk=1; kk<=cptcovage;kk++) {
         }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
         for(jk=1; jk <=nlstate ; jk++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             pp[jk] += freq[jk][m][i];          savm=oldm;
         }          oldm=newm;
         } /* end mult */
         for(jk=1,pos=0; jk <=nlstate ; jk++)        
           pos += pp[jk];        s1=s[mw[mi][i]][i];
         for(jk=1; jk <=nlstate ; jk++){        s2=s[mw[mi+1][i]][i];
           if(pos>=1.e-5){        bbh=(double)bh[mi][i]/(double)stepm; 
             if(first==1)        /* bias is positive if real duration
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);         * is higher than the multiple of stepm and negative otherwise.
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);         */
           }else{        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             if(first==1)          lli=log(out[s1][s2] - savm[s1][s2]);
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        } else if (mle==1){
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           }        } else if(mle==2){
           if( i <= (int) agemax){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             if(pos>=1.e-5){        } else if(mle==3){  /* exponential inter-extrapolation */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               probs[i][jk][j1]= pp[jk]/pos;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          lli=log(out[s1][s2]); /* Original formula */
             }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
             else          lli=log(out[s1][s2]); /* Original formula */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        } /* End of if */
           }        ipmx +=1;
         }        sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=-1; jk <=nlstate+ndeath; jk++)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for(m=-1; m <=nlstate+ndeath; m++)        if(globpr){
             if(freq[jk][m][i] !=0 ) {          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
             if(first==1)   %10.6f %10.6f %10.6f ", \
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
             }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         if(i <= (int) agemax)            llt +=ll[k]*gipmx/gsw;
           fprintf(ficresp,"\n");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         if(first==1)          }
           printf("Others in log...\n");          fprintf(ficresilk," %10.6f\n", -llt);
         fprintf(ficlog,"\n");        }
       }      } /* end of wave */
     }    } /* end of individual */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   dateintmean=dateintsum/k2cpt;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   fclose(ficresp);    if(globpr==0){ /* First time we count the contributions and weights */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      gipmx=ipmx;
   free_vector(pp,1,nlstate);      gsw=sw;
      }
   /* End of Freq */    return -l;
 }  }
   
 /************ Prevalence ********************/  char *subdirf(char fileres[])
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  {
 {  /* Some frequencies */    
      strcpy(tmpout,optionfilefiname);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    strcat(tmpout,"/"); /* Add to the right */
   double ***freq; /* Frequencies */    strcat(tmpout,fileres);
   double *pp;    return tmpout;
   double pos, k2;  }
   
   pp=vector(1,nlstate);  char *subdirf2(char fileres[], char *preop)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
      
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    strcpy(tmpout,optionfilefiname);
   j1=0;    strcat(tmpout,"/");
      strcat(tmpout,preop);
   j=cptcoveff;    strcat(tmpout,fileres);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    return tmpout;
    }
   for(k1=1; k1<=j;k1++){  char *subdirf3(char fileres[], char *preop, char *preop2)
     for(i1=1; i1<=ncodemax[k1];i1++){  {
       j1++;    
          strcpy(tmpout,optionfilefiname);
       for (i=-1; i<=nlstate+ndeath; i++)      strcat(tmpout,"/");
         for (jk=-1; jk<=nlstate+ndeath; jk++)      strcat(tmpout,preop);
           for(m=agemin; m <= agemax+3; m++)    strcat(tmpout,preop2);
             freq[i][jk][m]=0;    strcat(tmpout,fileres);
          return tmpout;
       for (i=1; i<=imx; i++) {  }
         bool=1;  
         if  (cptcovn>0) {  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           for (z1=1; z1<=cptcoveff; z1++)  {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /* This routine should help understanding what is done with 
               bool=0;       the selection of individuals/waves and
         }       to check the exact contribution to the likelihood.
         if (bool==1) {       Plotting could be done.
           for(m=firstpass; m<=lastpass; m++){     */
             k2=anint[m][i]+(mint[m][i]/12.);    int k;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    if(*globpri !=0){ /* Just counts and sums, no printings */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      strcpy(fileresilk,"ilk"); 
               if (m<lastpass) {      strcat(fileresilk,fileres);
                 if (calagedate>0)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        printf("Problem with resultfile: %s\n", fileresilk);
                 else        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
               }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
             }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           }      for(k=1; k<=nlstate; k++) 
         }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for(i=(int)agemin; i <= (int)agemax+3; i++){    }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    *fretone=(*funcone)(p);
             pp[jk] += freq[jk][m][i];    if(*globpri !=0){
         }      fclose(ficresilk);
         for(jk=1; jk <=nlstate ; jk++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           for(m=-1, pos=0; m <=0 ; m++)      fflush(fichtm); 
             pos += freq[jk][m][i];    } 
         }    return;
          }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];  /*********** Maximum Likelihood Estimation ***************/
         }  
          void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  {
            int i,j, iter;
         for(jk=1; jk <=nlstate ; jk++){        double **xi;
           if( i <= (int) agemax){    double fret;
             if(pos>=1.e-5){    double fretone; /* Only one call to likelihood */
               probs[i][jk][j1]= pp[jk]/pos;    char filerespow[FILENAMELENGTH];
             }    xi=matrix(1,npar,1,npar);
           }    for (i=1;i<=npar;i++)
         }/* end jk */      for (j=1;j<=npar;j++)
       }/* end i */        xi[i][j]=(i==j ? 1.0 : 0.0);
     } /* end i1 */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   } /* end k1 */    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
      if((ficrespow=fopen(filerespow,"w"))==NULL) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      printf("Problem with resultfile: %s\n", filerespow);
   free_vector(pp,1,nlstate);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      }
 }  /* End of Freq */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
 /************* Waves Concatenation ***************/      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    fprintf(ficrespow,"\n");
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    powell(p,xi,npar,ftol,&iter,&fret,func);
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    fclose(ficrespow);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      and mw[mi+1][i]. dh depends on stepm.    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
   int i, mi, m;  }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/  /**** Computes Hessian and covariance matrix ***/
   int first;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   int j, k=0,jk, ju, jl;  {
   double sum=0.;    double  **a,**y,*x,pd;
   first=0;    double **hess;
   jmin=1e+5;    int i, j,jk;
   jmax=-1;    int *indx;
   jmean=0.;  
   for(i=1; i<=imx; i++){    double hessii(double p[], double delta, int theta, double delti[]);
     mi=0;    double hessij(double p[], double delti[], int i, int j);
     m=firstpass;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     while(s[m][i] <= nlstate){    void ludcmp(double **a, int npar, int *indx, double *d) ;
       if(s[m][i]>=1)  
         mw[++mi][i]=m;    hess=matrix(1,npar,1,npar);
       if(m >=lastpass)  
         break;    printf("\nCalculation of the hessian matrix. Wait...\n");
       else    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         m++;    for (i=1;i<=npar;i++){
     }/* end while */      printf("%d",i);fflush(stdout);
     if (s[m][i] > nlstate){      fprintf(ficlog,"%d",i);fflush(ficlog);
       mi++;     /* Death is another wave */      hess[i][i]=hessii(p,ftolhess,i,delti);
       /* if(mi==0)  never been interviewed correctly before death */      /*printf(" %f ",p[i]);*/
          /* Only death is a correct wave */      /*printf(" %lf ",hess[i][i]);*/
       mw[mi][i]=m;    }
     }    
     for (i=1;i<=npar;i++) {
     wav[i]=mi;      for (j=1;j<=npar;j++)  {
     if(mi==0){        if (j>i) { 
       if(first==0){          printf(".%d%d",i,j);fflush(stdout);
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         first=1;          hess[i][j]=hessij(p,delti,i,j);
       }          hess[j][i]=hess[i][j];    
       if(first==1){          /*printf(" %lf ",hess[i][j]);*/
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        }
       }      }
     } /* end mi==0 */    }
   }    printf("\n");
     fprintf(ficlog,"\n");
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       if (stepm <=0)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         dh[mi][i]=1;    
       else{    a=matrix(1,npar,1,npar);
         if (s[mw[mi+1][i]][i] > nlstate) {    y=matrix(1,npar,1,npar);
           if (agedc[i] < 2*AGESUP) {    x=vector(1,npar);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    indx=ivector(1,npar);
           if(j==0) j=1;  /* Survives at least one month after exam */    for (i=1;i<=npar;i++)
           k=k+1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           if (j >= jmax) jmax=j;    ludcmp(a,npar,indx,&pd);
           if (j <= jmin) jmin=j;  
           sum=sum+j;    for (j=1;j<=npar;j++) {
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      for (i=1;i<=npar;i++) x[i]=0;
           }      x[j]=1;
         }      lubksb(a,npar,indx,x);
         else{      for (i=1;i<=npar;i++){ 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        matcov[i][j]=x[i];
           k=k+1;      }
           if (j >= jmax) jmax=j;    }
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    printf("\n#Hessian matrix#\n");
           sum=sum+j;    fprintf(ficlog,"\n#Hessian matrix#\n");
         }    for (i=1;i<=npar;i++) { 
         jk= j/stepm;      for (j=1;j<=npar;j++) { 
         jl= j -jk*stepm;        printf("%.3e ",hess[i][j]);
         ju= j -(jk+1)*stepm;        fprintf(ficlog,"%.3e ",hess[i][j]);
         if(jl <= -ju)      }
           dh[mi][i]=jk;      printf("\n");
         else      fprintf(ficlog,"\n");
           dh[mi][i]=jk+1;    }
         if(dh[mi][i]==0)  
           dh[mi][i]=1; /* At least one step */    /* Recompute Inverse */
       }    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   }    ludcmp(a,npar,indx,&pd);
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    /*  printf("\n#Hessian matrix recomputed#\n");
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 /*********** Tricode ****************************/      x[j]=1;
 void tricode(int *Tvar, int **nbcode, int imx)      lubksb(a,npar,indx,x);
 {      for (i=1;i<=npar;i++){ 
   int Ndum[20],ij=1, k, j, i;        y[i][j]=x[i];
   int cptcode=0;        printf("%.3e ",y[i][j]);
   cptcoveff=0;        fprintf(ficlog,"%.3e ",y[i][j]);
        }
   for (k=0; k<19; k++) Ndum[k]=0;      printf("\n");
   for (k=1; k<=7; k++) ncodemax[k]=0;      fprintf(ficlog,"\n");
     }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    */
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);    free_matrix(a,1,npar,1,npar);
       Ndum[ij]++;    free_matrix(y,1,npar,1,npar);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    free_vector(x,1,npar);
       if (ij > cptcode) cptcode=ij;    free_ivector(indx,1,npar);
     }    free_matrix(hess,1,npar,1,npar);
   
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;  }
     }  
     ij=1;  /*************** hessian matrix ****************/
   double hessii( double x[], double delta, int theta, double delti[])
   {
     for (i=1; i<=ncodemax[j]; i++) {    int i;
       for (k=0; k<=19; k++) {    int l=1, lmax=20;
         if (Ndum[k] != 0) {    double k1,k2;
           nbcode[Tvar[j]][ij]=k;    double p2[NPARMAX+1];
              double res;
           ij++;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         }    double fx;
         if (ij > ncodemax[j]) break;    int k=0,kmax=10;
       }      double l1;
     }  
   }      fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
  for (k=0; k<19; k++) Ndum[k]=0;    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
  for (i=1; i<=ncovmodel-2; i++) {      delts=delt;
    ij=Tvar[i];      for(k=1 ; k <kmax; k=k+1){
    Ndum[ij]++;        delt = delta*(l1*k);
  }        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
  ij=1;        p2[theta]=x[theta]-delt;
  for (i=1; i<=10; i++) {        k2=func(p2)-fx;
    if((Ndum[i]!=0) && (i<=ncovcol)){        /*res= (k1-2.0*fx+k2)/delt/delt; */
      Tvaraff[ij]=i;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
      ij++;        
    }  #ifdef DEBUG
  }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
  cptcoveff=ij-1;  #endif
 }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 /*********** Health Expectancies ****************/          k=kmax;
         }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
 {        }
   /* Health expectancies */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          delts=delt;
   double age, agelim, hf;        }
   double ***p3mat,***varhe;      }
   double **dnewm,**doldm;    }
   double *xp;    delti[theta]=delts;
   double **gp, **gm;    return res; 
   double ***gradg, ***trgradg;    
   int theta;  }
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  double hessij( double x[], double delti[], int thetai,int thetaj)
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate*2,1,npar);    int i;
   doldm=matrix(1,nlstate*2,1,nlstate*2);    int l=1, l1, lmax=20;
      double k1,k2,k3,k4,res,fx;
   fprintf(ficreseij,"# Health expectancies\n");    double p2[NPARMAX+1];
   fprintf(ficreseij,"# Age");    int k;
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    fx=func(x);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    for (k=1; k<=2; k++) {
   fprintf(ficreseij,"\n");      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   if(estepm < stepm){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     printf ("Problem %d lower than %d\n",estepm, stepm);      k1=func(p2)-fx;
   }    
   else  hstepm=estepm;        p2[thetai]=x[thetai]+delti[thetai]/k;
   /* We compute the life expectancy from trapezoids spaced every estepm months      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    * This is mainly to measure the difference between two models: for example      k2=func(p2)-fx;
    * if stepm=24 months pijx are given only every 2 years and by summing them    
    * we are calculating an estimate of the Life Expectancy assuming a linear      p2[thetai]=x[thetai]-delti[thetai]/k;
    * progression inbetween and thus overestimating or underestimating according      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
    * to the curvature of the survival function. If, for the same date, we      k3=func(p2)-fx;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    
    * to compare the new estimate of Life expectancy with the same linear      p2[thetai]=x[thetai]-delti[thetai]/k;
    * hypothesis. A more precise result, taking into account a more precise      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    * curvature will be obtained if estepm is as small as stepm. */      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   /* For example we decided to compute the life expectancy with the smallest unit */  #ifdef DEBUG
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      nhstepm is the number of hstepm from age to agelim      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      nstepm is the number of stepm from age to agelin.  #endif
      Look at hpijx to understand the reason of that which relies in memory size    }
      and note for a fixed period like estepm months */    return res;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  }
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  /************** Inverse of matrix **************/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  void ludcmp(double **a, int n, int *indx, double *d) 
      results. So we changed our mind and took the option of the best precision.  { 
   */    int i,imax,j,k; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double big,dum,sum,temp; 
     double *vv; 
   agelim=AGESUP;   
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    vv=vector(1,n); 
     /* nhstepm age range expressed in number of stepm */    *d=1.0; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    for (i=1;i<=n;i++) { 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      big=0.0; 
     /* if (stepm >= YEARM) hstepm=1;*/      for (j=1;j<=n;j++) 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        if ((temp=fabs(a[i][j])) > big) big=temp; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      vv[i]=1.0/big; 
     gp=matrix(0,nhstepm,1,nlstate*2);    } 
     gm=matrix(0,nhstepm,1,nlstate*2);    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        sum=a[i][j]; 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          a[i][j]=sum; 
        } 
       big=0.0; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
     /* Computing Variances of health expectancies */        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
      for(theta=1; theta <=npar; theta++){        a[i][j]=sum; 
       for(i=1; i<=npar; i++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          big=dum; 
       }          imax=i; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } 
        } 
       cptj=0;      if (j != imax) { 
       for(j=1; j<= nlstate; j++){        for (k=1;k<=n;k++) { 
         for(i=1; i<=nlstate; i++){          dum=a[imax][k]; 
           cptj=cptj+1;          a[imax][k]=a[j][k]; 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          a[j][k]=dum; 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        } 
           }        *d = -(*d); 
         }        vv[imax]=vv[j]; 
       }      } 
            indx[j]=imax; 
            if (a[j][j] == 0.0) a[j][j]=TINY; 
       for(i=1; i<=npar; i++)      if (j != n) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        dum=1.0/(a[j][j]); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (i=j+1;i<=n;i++) a[i][j] *= dum; 
            } 
       cptj=0;    } 
       for(j=1; j<= nlstate; j++){    free_vector(vv,1,n);  /* Doesn't work */
         for(i=1;i<=nlstate;i++){  ;
           cptj=cptj+1;  } 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  void lubksb(double **a, int n, int *indx, double b[]) 
           }  { 
         }    int i,ii=0,ip,j; 
       }    double sum; 
       for(j=1; j<= nlstate*2; j++)   
         for(h=0; h<=nhstepm-1; h++){    for (i=1;i<=n;i++) { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      ip=indx[i]; 
         }      sum=b[ip]; 
      }      b[ip]=b[i]; 
          if (ii) 
 /* End theta */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      b[i]=sum; 
     } 
      for(h=0; h<=nhstepm-1; h++)    for (i=n;i>=1;i--) { 
       for(j=1; j<=nlstate*2;j++)      sum=b[i]; 
         for(theta=1; theta <=npar; theta++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           trgradg[h][j][theta]=gradg[h][theta][j];      b[i]=sum/a[i][i]; 
          } 
   } 
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)  /************ Frequencies ********************/
         varhe[i][j][(int)age] =0.;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   {  /* Some frequencies */
      printf("%d|",(int)age);fflush(stdout);    
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      for(h=0;h<=nhstepm-1;h++){    int first;
       for(k=0;k<=nhstepm-1;k++){    double ***freq; /* Frequencies */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    double *pp, **prop;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(i=1;i<=nlstate*2;i++)    FILE *ficresp;
           for(j=1;j<=nlstate*2;j++)    char fileresp[FILENAMELENGTH];
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    
       }    pp=vector(1,nlstate);
     }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     /* Computing expectancies */    strcpy(fileresp,"p");
     for(i=1; i<=nlstate;i++)    strcat(fileresp,fileres);
       for(j=1; j<=nlstate;j++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                exit(0);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    }
     freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         }    j1=0;
     
     fprintf(ficreseij,"%3.0f",age );    j=cptcoveff;
     cptj=0;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    first=1;
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficreseij,"\n");        j1++;
            /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     free_matrix(gm,0,nhstepm,1,nlstate*2);          scanf("%d", i);*/
     free_matrix(gp,0,nhstepm,1,nlstate*2);        for (i=-1; i<=nlstate+ndeath; i++)  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);            for(m=iagemin; m <= iagemax+3; m++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              freq[i][jk][m]=0;
   }  
   printf("\n");      for (i=1; i<=nlstate; i++)  
   fprintf(ficlog,"\n");        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
   free_vector(xp,1,npar);        
   free_matrix(dnewm,1,nlstate*2,1,npar);        dateintsum=0;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        k2cpt=0;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        for (i=1; i<=imx; i++) {
 }          bool=1;
           if  (cptcovn>0) {
 /************ Variance ******************/            for (z1=1; z1<=cptcoveff; z1++) 
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 {                bool=0;
   /* Variance of health expectancies */          }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          if (bool==1){
   /* double **newm;*/            for(m=firstpass; m<=lastpass; m++){
   double **dnewm,**doldm;              k2=anint[m][i]+(mint[m][i]/12.);
   double **dnewmp,**doldmp;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   int i, j, nhstepm, hstepm, h, nstepm ;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int k, cptcode;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double *xp;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double **gp, **gm;  /* for var eij */                if (m<lastpass) {
   double ***gradg, ***trgradg; /*for var eij */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double **gradgp, **trgradgp; /* for var p point j */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double *gpp, *gmp; /* for var p point j */                }
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */                
   double ***p3mat;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double age,agelim, hf;                  dateintsum=dateintsum+k2;
   int theta;                  k2cpt++;
   char digit[4];                }
   char digitp[16];                /*}*/
             }
   char fileresprobmorprev[FILENAMELENGTH];          }
         }
   if(popbased==1)         
     strcpy(digitp,"-populbased-");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   else  
     strcpy(digitp,"-stablbased-");        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
   strcpy(fileresprobmorprev,"prmorprev");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   sprintf(digit,"%-d",ij);          fprintf(ficresp, "**********\n#");
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        }
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        for(i=1; i<=nlstate;i++) 
   strcat(fileresprobmorprev,digitp); /* Popbased or not */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   strcat(fileresprobmorprev,fileres);        fprintf(ficresp, "\n");
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        
     printf("Problem with resultfile: %s\n", fileresprobmorprev);        for(i=iagemin; i <= iagemax+3; i++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);          if(i==iagemax+3){
   }            fprintf(ficlog,"Total");
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          }else{
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            if(first==1){
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");              first=0;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);              printf("See log file for details...\n");
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){            }
     fprintf(ficresprobmorprev," p.%-d SE",j);            fprintf(ficlog,"Age %d", i);
     for(i=1; i<=nlstate;i++)          }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          for(jk=1; jk <=nlstate ; jk++){
   }              for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   fprintf(ficresprobmorprev,"\n");              pp[jk] += freq[jk][m][i]; 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            for(m=-1, pos=0; m <=0 ; m++)
     exit(0);              pos += freq[jk][m][i];
   }            if(pp[jk]>=1.e-10){
   else{              if(first==1){
     fprintf(ficgp,"\n# Routine varevsij");              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }              }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     printf("Problem with html file: %s\n", optionfilehtm);            }else{
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);              if(first==1)
     exit(0);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   else{            }
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          }
   }  
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");              pp[jk] += freq[jk][m][i];
   fprintf(ficresvij,"# Age");          }       
   for(i=1; i<=nlstate;i++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     for(j=1; j<=nlstate;j++)            pos += pp[jk];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            posprop += prop[jk][i];
   fprintf(ficresvij,"\n");          }
           for(jk=1; jk <=nlstate ; jk++){
   xp=vector(1,npar);            if(pos>=1.e-5){
   dnewm=matrix(1,nlstate,1,npar);              if(first==1)
   doldm=matrix(1,nlstate,1,nlstate);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            }else{
               if(first==1)
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   gpp=vector(nlstate+1,nlstate+ndeath);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   gmp=vector(nlstate+1,nlstate+ndeath);            }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            if( i <= iagemax){
                if(pos>=1.e-5){
   if(estepm < stepm){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     printf ("Problem %d lower than %d\n",estepm, stepm);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   else  hstepm=estepm;                }
   /* For example we decided to compute the life expectancy with the smallest unit */              else
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      nhstepm is the number of hstepm from age to agelim            }
      nstepm is the number of stepm from age to agelin.          }
      Look at hpijx to understand the reason of that which relies in memory size          
      and note for a fixed period like k years */          for(jk=-1; jk <=nlstate+ndeath; jk++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            for(m=-1; m <=nlstate+ndeath; m++)
      survival function given by stepm (the optimization length). Unfortunately it              if(freq[jk][m][i] !=0 ) {
      means that if the survival funtion is printed only each two years of age and if              if(first==1)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
      results. So we changed our mind and took the option of the best precision.                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   */              }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          if(i <= iagemax)
   agelim = AGESUP;            fprintf(ficresp,"\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          if(first==1)
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            printf("Others in log...\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          fprintf(ficlog,"\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      }
     gp=matrix(0,nhstepm,1,nlstate);    }
     gm=matrix(0,nhstepm,1,nlstate);    dateintmean=dateintsum/k2cpt; 
    
     fclose(ficresp);
     for(theta=1; theta <=npar; theta++){    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_vector(pp,1,nlstate);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       }    /* End of Freq */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   /************ Prevalence ********************/
       if (popbased==1) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         for(i=1; i<=nlstate;i++)  {  
           prlim[i][i]=probs[(int)age][i][ij];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       }       in each health status at the date of interview (if between dateprev1 and dateprev2).
         We still use firstpass and lastpass as another selection.
       for(j=1; j<= nlstate; j++){    */
         for(h=0; h<=nhstepm; h++){   
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double ***freq; /* Frequencies */
         }    double *pp, **prop;
       }    double pos,posprop; 
       /* This for computing forces of mortality (h=1)as a weighted average */    double  y2; /* in fractional years */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    int iagemin, iagemax;
         for(i=1; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    iagemin= (int) agemin;
       }        iagemax= (int) agemax;
       /* end force of mortality */    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
       for(i=1; i<=npar; i++) /* Computes gradient */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    j1=0;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    j=cptcoveff;
      if (cptcovn<1) {j=1;ncodemax[1]=1;}
       if (popbased==1) {    
         for(i=1; i<=nlstate;i++)    for(k1=1; k1<=j;k1++){
           prlim[i][i]=probs[(int)age][i][ij];      for(i1=1; i1<=ncodemax[k1];i1++){
       }        j1++;
         
       for(j=1; j<= nlstate; j++){        for (i=1; i<=nlstate; i++)  
         for(h=0; h<=nhstepm; h++){          for(m=iagemin; m <= iagemax+3; m++)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            prop[i][m]=0.0;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];       
         }        for (i=1; i<=imx; i++) { /* Each individual */
       }          bool=1;
       /* This for computing force of mortality (h=1)as a weighted average */          if  (cptcovn>0) {
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){            for (z1=1; z1<=cptcoveff; z1++) 
         for(i=1; i<= nlstate; i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1];                bool=0;
       }              } 
       /* end force of mortality */          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(j=1; j<= nlstate; j++) /* vareij */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for(h=0; h<=nhstepm; h++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
     } /* End theta */                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */              }
             } /* end selection of waves */
     for(h=0; h<=nhstepm; h++) /* veij */          }
       for(j=1; j<=nlstate;j++)        }
         for(theta=1; theta <=npar; theta++)        for(i=iagemin; i <= iagemax+3; i++){  
           trgradg[h][j][theta]=gradg[h][theta][j];          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */            posprop += prop[jk][i]; 
       for(theta=1; theta <=npar; theta++)          } 
         trgradgp[j][theta]=gradgp[theta][j];  
           for(jk=1; jk <=nlstate ; jk++){     
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            if( i <=  iagemax){ 
     for(i=1;i<=nlstate;i++)              if(posprop>=1.e-5){ 
       for(j=1;j<=nlstate;j++)                probs[i][jk][j1]= prop[jk][i]/posprop;
         vareij[i][j][(int)age] =0.;              } 
             } 
     for(h=0;h<=nhstepm;h++){          }/* end jk */ 
       for(k=0;k<=nhstepm;k++){        }/* end i */ 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      } /* end i1 */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    } /* end k1 */
         for(i=1;i<=nlstate;i++)    
           for(j=1;j<=nlstate;j++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    /*free_vector(pp,1,nlstate);*/
       }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     }  }  /* End of prevalence */
   
     /* pptj */  /************* Waves Concatenation ***************/
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  {
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         varppt[j][i]=doldmp[j][i];       Death is a valid wave (if date is known).
     /* end ppptj */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);       and mw[mi+1][i]. dh depends on stepm.
         */
     if (popbased==1) {  
       for(i=1; i<=nlstate;i++)    int i, mi, m;
         prlim[i][i]=probs[(int)age][i][ij];    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     }       double sum=0., jmean=0.;*/
        int first;
     /* This for computing force of mortality (h=1)as a weighted average */    int j, k=0,jk, ju, jl;
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    double sum=0.;
       for(i=1; i<= nlstate; i++)    first=0;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    jmin=1e+5;
     }        jmax=-1;
     /* end force of mortality */    jmean=0.;
     for(i=1; i<=imx; i++){
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      mi=0;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      m=firstpass;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      while(s[m][i] <= nlstate){
       for(i=1; i<=nlstate;i++){        if(s[m][i]>=1)
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          mw[++mi][i]=m;
       }        if(m >=lastpass)
     }          break;
     fprintf(ficresprobmorprev,"\n");        else
           m++;
     fprintf(ficresvij,"%.0f ",age );      }/* end while */
     for(i=1; i<=nlstate;i++)      if (s[m][i] > nlstate){
       for(j=1; j<=nlstate;j++){        mi++;     /* Death is another wave */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        /* if(mi==0)  never been interviewed correctly before death */
       }           /* Only death is a correct wave */
     fprintf(ficresvij,"\n");        mw[mi][i]=m;
     free_matrix(gp,0,nhstepm,1,nlstate);      }
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      wav[i]=mi;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      if(mi==0){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(first==0){
   } /* End age */          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   free_vector(gpp,nlstate+1,nlstate+ndeath);          first=1;
   free_vector(gmp,nlstate+1,nlstate+ndeath);        }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        if(first==1){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      } /* end mi==0 */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    } /* End individuals */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    for(i=1; i<=imx; i++){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);      for(mi=1; mi<wav[i];mi++){
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);        if (stepm <=0)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);          dh[mi][i]=1;
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   free_vector(xp,1,npar);            if (agedc[i] < 2*AGESUP) {
   free_matrix(doldm,1,nlstate,1,nlstate);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   free_matrix(dnewm,1,nlstate,1,npar);              if(j==0) j=1;  /* Survives at least one month after exam */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              else if(j<0){
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                j=1; /* Careful Patch */
   fclose(ficresprobmorprev);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   fclose(ficgp);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fclose(fichtm);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
               }
 }              k=k+1;
               if (j >= jmax) jmax=j;
 /************ Variance of prevlim ******************/              if (j <= jmin) jmin=j;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              sum=sum+j;
 {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   /* Variance of prevalence limit */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            }
   double **newm;          }
   double **dnewm,**doldm;          else{
   int i, j, nhstepm, hstepm;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   int k, cptcode;            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   double *xp;            k=k+1;
   double *gp, *gm;            if (j >= jmax) jmax=j;
   double **gradg, **trgradg;            else if (j <= jmin)jmin=j;
   double age,agelim;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   int theta;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                if(j<0){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficresvpl,"# Age");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for(i=1; i<=nlstate;i++)            }
       fprintf(ficresvpl," %1d-%1d",i,i);            sum=sum+j;
   fprintf(ficresvpl,"\n");          }
           jk= j/stepm;
   xp=vector(1,npar);          jl= j -jk*stepm;
   dnewm=matrix(1,nlstate,1,npar);          ju= j -(jk+1)*stepm;
   doldm=matrix(1,nlstate,1,nlstate);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
   hstepm=1*YEARM; /* Every year of age */              dh[mi][i]=jk;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              bh[mi][i]=0;
   agelim = AGESUP;            }else{ /* We want a negative bias in order to only have interpolation ie
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                    * at the price of an extra matrix product in likelihood */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              dh[mi][i]=jk+1;
     if (stepm >= YEARM) hstepm=1;              bh[mi][i]=ju;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
     gradg=matrix(1,npar,1,nlstate);          }else{
     gp=vector(1,nlstate);            if(jl <= -ju){
     gm=vector(1,nlstate);              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
     for(theta=1; theta <=npar; theta++){                                   * is higher than the multiple of stepm and negative otherwise.
       for(i=1; i<=npar; i++){ /* Computes gradient */                                   */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
       }            else{
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              dh[mi][i]=jk+1;
       for(i=1;i<=nlstate;i++)              bh[mi][i]=ju;
         gp[i] = prlim[i][i];            }
                if(dh[mi][i]==0){
       for(i=1; i<=npar; i++) /* Computes gradient */              dh[mi][i]=1; /* At least one step */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              bh[mi][i]=ju; /* At least one step */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for(i=1;i<=nlstate;i++)            }
         gm[i] = prlim[i][i];          } /* end if mle */
         }
       for(i=1;i<=nlstate;i++)      } /* end wave */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }
     } /* End theta */    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     trgradg =matrix(1,nlstate,1,npar);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)  /*********** Tricode ****************************/
         trgradg[j][theta]=gradg[theta][j];  void tricode(int *Tvar, int **nbcode, int imx)
   {
     for(i=1;i<=nlstate;i++)    
       varpl[i][(int)age] =0.;    int Ndum[20],ij=1, k, j, i, maxncov=19;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    int cptcode=0;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    cptcoveff=0; 
     for(i=1;i<=nlstate;i++)   
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     fprintf(ficresvpl,"\n");                                 modality*/ 
     free_vector(gp,1,nlstate);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     free_vector(gm,1,nlstate);        Ndum[ij]++; /*store the modality */
     free_matrix(gradg,1,npar,1,nlstate);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     free_matrix(trgradg,1,nlstate,1,npar);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   } /* End age */                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
   free_vector(xp,1,npar);      }
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 }      }
   
 /************ Variance of one-step probabilities  ******************/      ij=1; 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      for (i=1; i<=ncodemax[j]; i++) {
 {        for (k=0; k<= maxncov; k++) {
   int i, j=0,  i1, k1, l1, t, tj;          if (Ndum[k] != 0) {
   int k2, l2, j1,  z1;            nbcode[Tvar[j]][ij]=k; 
   int k=0,l, cptcode;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   int first=1, first1;            
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;            ij++;
   double **dnewm,**doldm;          }
   double *xp;          if (ij > ncodemax[j]) break; 
   double *gp, *gm;        }  
   double **gradg, **trgradg;      } 
   double **mu;    }  
   double age,agelim, cov[NCOVMAX];  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */   for (k=0; k< maxncov; k++) Ndum[k]=0;
   int theta;  
   char fileresprob[FILENAMELENGTH];   for (i=1; i<=ncovmodel-2; i++) { 
   char fileresprobcov[FILENAMELENGTH];     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   char fileresprobcor[FILENAMELENGTH];     ij=Tvar[i];
      Ndum[ij]++;
   double ***varpij;   }
   
   strcpy(fileresprob,"prob");   ij=1;
   strcat(fileresprob,fileres);   for (i=1; i<= maxncov; i++) {
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     printf("Problem with resultfile: %s\n", fileresprob);       Tvaraff[ij]=i; /*For printing */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);       ij++;
   }     }
   strcpy(fileresprobcov,"probcov");   }
   strcat(fileresprobcov,fileres);   
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {   cptcoveff=ij-1; /*Number of simple covariates*/
     printf("Problem with resultfile: %s\n", fileresprobcov);  }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  
   }  /*********** Health Expectancies ****************/
   strcpy(fileresprobcor,"probcor");  
   strcat(fileresprobcor,fileres);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcor);  {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    /* Health expectancies */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double age, agelim, hf;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double ***p3mat,***varhe;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double **dnewm,**doldm;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double *xp;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double **gp, **gm;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double ***gradg, ***trgradg;
      int theta;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  
   fprintf(ficresprob,"# Age");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    xp=vector(1,npar);
   fprintf(ficresprobcov,"# Age");    dnewm=matrix(1,nlstate*nlstate,1,npar);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficresprobcov,"# Age");    
     fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
   for(i=1; i<=nlstate;i++)    for(i=1; i<=nlstate;i++)
     for(j=1; j<=(nlstate+ndeath);j++){      for(j=1; j<=nlstate;j++)
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    fprintf(ficreseij,"\n");
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  
     }      if(estepm < stepm){
   fprintf(ficresprob,"\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficresprobcov,"\n");    }
   fprintf(ficresprobcor,"\n");    else  hstepm=estepm;   
   xp=vector(1,npar);    /* We compute the life expectancy from trapezoids spaced every estepm months
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);     * This is mainly to measure the difference between two models: for example
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));     * if stepm=24 months pijx are given only every 2 years and by summing them
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);     * progression in between and thus overestimating or underestimating according
   first=1;     * to the curvature of the survival function. If, for the same date, we 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);     * to compare the new estimate of Life expectancy with the same linear 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);     * hypothesis. A more precise result, taking into account a more precise
     exit(0);     * curvature will be obtained if estepm is as small as stepm. */
   }  
   else{    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(ficgp,"\n# Routine varprob");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {       nstepm is the number of stepm from age to agelin. 
     printf("Problem with html file: %s\n", optionfilehtm);       Look at hpijx to understand the reason of that which relies in memory size
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);       and note for a fixed period like estepm months */
     exit(0);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   else{       means that if the survival funtion is printed only each two years of age and if
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(fichtm,"\n");       results. So we changed our mind and took the option of the best precision.
     */
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   cov[1]=1;      /* if (stepm >= YEARM) hstepm=1;*/
   tj=cptcoveff;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   j1=0;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   for(t=1; t<=tj;t++){      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     for(i1=1; i1<=ncodemax[t];i1++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       j1++;  
            /* Computed by stepm unit matrices, product of hstepm matrices, stored
       if  (cptcovn>0) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficresprob, "\n#********** Variable ");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   
         fprintf(ficresprob, "**********\n#");  
         fprintf(ficresprobcov, "\n#********** Variable ");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprobcov, "**********\n#");      /* Computing Variances of health expectancies */
          
         fprintf(ficgp, "\n#********** Variable ");       for(theta=1; theta <=npar; theta++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(i=1; i<=npar; i++){ 
         fprintf(ficgp, "**********\n#");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                }
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        cptj=0;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        for(j=1; j<= nlstate; j++){
                  for(i=1; i<=nlstate; i++){
         fprintf(ficresprobcor, "\n#********** Variable ");                cptj=cptj+1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         fprintf(ficgp, "**********\n#");                  gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       }            }
                }
       for (age=bage; age<=fage; age ++){        }
         cov[2]=age;       
         for (k=1; k<=cptcovn;k++) {       
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for(i=1; i<=npar; i++) 
         }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for (k=1; k<=cptcovprod;k++)        
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        cptj=0;
                for(j=1; j<= nlstate; j++){
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          for(i=1;i<=nlstate;i++){
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            cptj=cptj+1;
         gp=vector(1,(nlstate)*(nlstate+ndeath));            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         gm=vector(1,(nlstate)*(nlstate+ndeath));  
                  gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for(theta=1; theta <=npar; theta++){            }
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
                  for(j=1; j<= nlstate*nlstate; j++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(h=0; h<=nhstepm-1; h++){
                      gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           k=0;          }
           for(i=1; i<= (nlstate); i++){       } 
             for(j=1; j<=(nlstate+ndeath);j++){     
               k=k+1;  /* End theta */
               gp[k]=pmmij[i][j];  
             }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           }  
                 for(h=0; h<=nhstepm-1; h++)
           for(i=1; i<=npar; i++)        for(j=1; j<=nlstate*nlstate;j++)
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(theta=1; theta <=npar; theta++)
                trgradg[h][j][theta]=gradg[h][theta][j];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       
           k=0;  
           for(i=1; i<=(nlstate); i++){       for(i=1;i<=nlstate*nlstate;i++)
             for(j=1; j<=(nlstate+ndeath);j++){        for(j=1;j<=nlstate*nlstate;j++)
               k=k+1;          varhe[i][j][(int)age] =0.;
               gm[k]=pmmij[i][j];  
             }       printf("%d|",(int)age);fflush(stdout);
           }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             for(h=0;h<=nhstepm-1;h++){
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        for(k=0;k<=nhstepm-1;k++){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            for(j=1;j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
             trgradg[j][theta]=gradg[theta][j];        }
              }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      /* Computing expectancies */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                    eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         k=0;            
         for(i=1; i<=(nlstate); i++){  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;          }
             mu[k][(int) age]=pmmij[i][j];  
           }      fprintf(ficreseij,"%3.0f",age );
         }      cptj=0;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      for(i=1; i<=nlstate;i++)
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        for(j=1; j<=nlstate;j++){
             varpij[i][j][(int)age] = doldm[i][j];          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         /*printf("\n%d ",(int)age);        }
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      fprintf(ficreseij,"\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));     
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      }*/      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         fprintf(ficresprob,"\n%d ",(int)age);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficresprobcov,"\n%d ",(int)age);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficresprobcor,"\n%d ",(int)age);    }
     printf("\n");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    fprintf(ficlog,"\n");
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    free_vector(xp,1,npar);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         i=0;  }
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){  /************ Variance ******************/
             i=i++;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  {
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    /* Variance of health expectancies */
             for (j=1; j<=i;j++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    /* double **newm;*/
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    double **dnewm,**doldm;
             }    double **dnewmp,**doldmp;
           }    int i, j, nhstepm, hstepm, h, nstepm ;
         }/* end of loop for state */    int k, cptcode;
       } /* end of loop for age */    double *xp;
     double **gp, **gm;  /* for var eij */
       /* Confidence intervalle of pij  */    double ***gradg, ***trgradg; /*for var eij */
       /*    double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficgp,"\nset noparametric;unset label");    double *gpp, *gmp; /* for var p point j */
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double ***p3mat;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    double age,agelim, hf;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    double ***mobaverage;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    int theta;
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    char digit[4];
       */    char digitp[25];
   
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    char fileresprobmorprev[FILENAMELENGTH];
       first1=1;  
       for (k1=1; k1<=(nlstate);k1++){    if(popbased==1){
         for (l1=1; l1<=(nlstate+ndeath);l1++){      if(mobilav!=0)
           if(l1==k1) continue;        strcpy(digitp,"-populbased-mobilav-");
           i=(k1-1)*(nlstate+ndeath)+l1;      else strcpy(digitp,"-populbased-nomobil-");
           for (k2=1; k2<=(nlstate);k2++){    }
             for (l2=1; l2<=(nlstate+ndeath);l2++){    else 
               if(l2==k2) continue;      strcpy(digitp,"-stablbased-");
               j=(k2-1)*(nlstate+ndeath)+l2;  
               if(j<=i) continue;    if (mobilav!=0) {
               for (age=bage; age<=fage; age ++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 if ((int)age %5==0){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      }
                   mu1=mu[i][(int) age]/stepm*YEARM ;    }
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   /* Computing eigen value of matrix of covariance */    strcpy(fileresprobmorprev,"prmorprev"); 
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    sprintf(digit,"%-d",ij);
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   if(first1==1){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                     first1=0;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);    strcat(fileresprobmorprev,fileres);
                   }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   /* Eigen vectors */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    }
                   v21=sqrt(1.-v11*v11);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   v12=-v21;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   v22=v11;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                   /*printf(fignu*/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      fprintf(ficresprobmorprev," p.%-d SE",j);
                   if(first==1){      for(i=1; i<=nlstate;i++)
                     first=0;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                     fprintf(ficgp,"\nset parametric;set nolabel");    }  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    fprintf(ficresprobmorprev,"\n");
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    fprintf(ficgp,"\n# Routine varevsij");
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);  /*   } */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    fprintf(ficresvij,"# Age");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    for(i=1; i<=nlstate;i++)
                     */      for(j=1; j<=nlstate;j++)
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    fprintf(ficresvij,"\n");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));  
                   }else{    xp=vector(1,npar);
                     first=0;    dnewm=matrix(1,nlstate,1,npar);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    doldm=matrix(1,nlstate,1,nlstate);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                     /*    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    gpp=vector(nlstate+1,nlstate+ndeath);
                     */    gmp=vector(nlstate+1,nlstate+ndeath);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    if(estepm < stepm){
                   }/* if first */      printf ("Problem %d lower than %d\n",estepm, stepm);
                 } /* age mod 5 */    }
               } /* end loop age */    else  hstepm=estepm;   
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);    /* For example we decided to compute the life expectancy with the smallest unit */
               first=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             } /*l12 */       nhstepm is the number of hstepm from age to agelim 
           } /* k12 */       nstepm is the number of stepm from age to agelin. 
         } /*l1 */       Look at hpijx to understand the reason of that which relies in memory size
       }/* k1 */       and note for a fixed period like k years */
     } /* loop covariates */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);       survival function given by stepm (the optimization length). Unfortunately it
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));       means that if the survival funtion is printed every two years of age and if
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);       results. So we changed our mind and took the option of the best precision.
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }    agelim = AGESUP;
   free_vector(xp,1,npar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fclose(ficresprob);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fclose(ficresprobcov);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficresprobcor);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficgp);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   fclose(fichtm);      gp=matrix(0,nhstepm,1,nlstate);
 }      gm=matrix(0,nhstepm,1,nlstate);
   
   
 /******************* Printing html file ***********/      for(theta=1; theta <=npar; theta++){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                   int lastpass, int stepm, int weightopt, char model[],\          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        }
                   int popforecast, int estepm ,\        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   double jprev1, double mprev1,double anprev1, \        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   double jprev2, double mprev2,double anprev2){  
   int jj1, k1, i1, cpt;        if (popbased==1) {
   /*char optionfilehtm[FILENAMELENGTH];*/          if(mobilav ==0){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            for(i=1; i<=nlstate;i++)
     printf("Problem with %s \n",optionfilehtm), exit(0);              prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          }
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        for(j=1; j<= nlstate; j++){
  - Life expectancies by age and initial health status (estepm=%2d months):          for(h=0; h<=nhstepm; h++){
    <a href=\"e%s\">e%s</a> <br>\n</li>", \            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");        }
         /* This for computing probability of death (h=1 means
  m=cptcoveff;           computed over hstepm matrices product = hstepm*stepm months) 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}           as a weighted average of prlim.
         */
  jj1=0;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  for(k1=1; k1<=m;k1++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
    for(i1=1; i1<=ncodemax[k1];i1++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
      jj1++;        }    
      if (cptcovn > 0) {        /* end probability of death */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      /* Pij */   
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        if (popbased==1) {
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              if(mobilav ==0){
      /* Quasi-incidences */            for(i=1; i<=nlstate;i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              prlim[i][i]=probs[(int)age][i][ij];
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }else{ /* mobilav */ 
        /* Stable prevalence in each health state */            for(i=1; i<=nlstate;i++)
        for(cpt=1; cpt<nlstate;cpt++){              prlim[i][i]=mobaverage[(int)age][i][ij];
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        }
        }  
      for(cpt=1; cpt<=nlstate;cpt++) {        for(j=1; j<= nlstate; j++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          for(h=0; h<=nhstepm; h++){
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
      }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          }
 health expectancies in states (1) and (2): e%s%d.png<br>        }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /* This for computing probability of death (h=1 means
    } /* end i1 */           computed over hstepm matrices product = hstepm*stepm months) 
  }/* End k1 */           as a weighted average of prlim.
  fprintf(fichtm,"</ul>");        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n           gmp[j] += prlim[i][i]*p3mat[i][j][1];
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        }    
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        /* end probability of death */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        for(j=1; j<= nlstate; j++) /* vareij */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          for(h=0; h<=nhstepm; h++){
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          }
   
  if(popforecast==1) fprintf(fichtm,"\n        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        }
         <br>",fileres,fileres,fileres,fileres);  
  else      } /* End theta */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
  m=cptcoveff;      for(h=0; h<=nhstepm; h++) /* veij */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
  jj1=0;            trgradg[h][j][theta]=gradg[h][theta][j];
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
      jj1++;        for(theta=1; theta <=npar; theta++)
      if (cptcovn > 0) {          trgradgp[j][theta]=gradgp[theta][j];
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    
        for (cpt=1; cpt<=cptcoveff;cpt++)  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for(i=1;i<=nlstate;i++)
      }        for(j=1;j<=nlstate;j++)
      for(cpt=1; cpt<=nlstate;cpt++) {          vareij[i][j][(int)age] =0.;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>      for(h=0;h<=nhstepm;h++){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(k=0;k<=nhstepm;k++){
      }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
    } /* end i1 */          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
  }/* End k1 */          for(i=1;i<=nlstate;i++)
  fprintf(fichtm,"</ul>");            for(j=1;j<=nlstate;j++)
 fclose(fichtm);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 }        }
       }
 /******************* Gnuplot file **************/    
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   int ng;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     printf("Problem with file %s",optionfilegnuplot);          varppt[j][i]=doldmp[j][i];
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);      /* end ppptj */
   }      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 #ifdef windows      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     fprintf(ficgp,"cd \"%s\" \n",pathc);   
 #endif      if (popbased==1) {
 m=pow(2,cptcoveff);        if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
  /* 1eme*/            prlim[i][i]=probs[(int)age][i][ij];
   for (cpt=1; cpt<= nlstate ; cpt ++) {        }else{ /* mobilav */ 
    for (k1=1; k1<= m ; k1 ++) {          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
 #ifdef windows        }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);               
 #endif      /* This for computing probability of death (h=1 means
 #ifdef unix         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);         as a weighted average of prlim.
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      */
 #endif      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 for (i=1; i<= nlstate ; i ++) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }    
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* end probability of death */
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     for (i=1; i<= nlstate ; i ++) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<=nlstate;i++){
 }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
      for (i=1; i<= nlstate ; i ++) {      } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficresprobmorprev,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        fprintf(ficresvij,"%.0f ",age );
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      for(i=1; i<=nlstate;i++)
 #ifdef unix        for(j=1; j<=nlstate;j++){
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 #endif        }
    }      fprintf(ficresvij,"\n");
   }      free_matrix(gp,0,nhstepm,1,nlstate);
   /*2 eme*/      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   for (k1=1; k1<= m ; k1 ++) {      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    } /* End age */
        free_vector(gpp,nlstate+1,nlstate+ndeath);
     for (i=1; i<= nlstate+1 ; i ++) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
       k=2*i;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 }    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 }      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficgp,"\" t\"\" w l 0,");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  */
       for (j=1; j<= nlstate+1 ; j ++) {  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      free_vector(xp,1,npar);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    free_matrix(doldm,1,nlstate,1,nlstate);
       else fprintf(ficgp,"\" t\"\" w l 0,");    free_matrix(dnewm,1,nlstate,1,npar);
     }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*3eme*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
   for (k1=1; k1<= m ; k1 ++) {    fflush(ficgp);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fflush(fichtm); 
       k=2+nlstate*(2*cpt-2);  }  /* end varevsij */
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  /************ Variance of prevlim ******************/
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    /* Variance of prevalence limit */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double **newm;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
 */    int k, cptcode;
       for (i=1; i< nlstate ; i ++) {    double *xp;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    double *gp, *gm;
     double **gradg, **trgradg;
       }    double age,agelim;
     }    int theta;
   }     
      fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   /* CV preval stat */    fprintf(ficresvpl,"# Age");
     for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=nlstate;i++)
     for (cpt=1; cpt<nlstate ; cpt ++) {        fprintf(ficresvpl," %1d-%1d",i,i);
       k=3;    fprintf(ficresvpl,"\n");
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
       for (i=1; i< nlstate ; i ++)    doldm=matrix(1,nlstate,1,nlstate);
         fprintf(ficgp,"+$%d",k+i+1);    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    hstepm=1*YEARM; /* Every year of age */
          hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       l=3+(nlstate+ndeath)*cpt;    agelim = AGESUP;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for (i=1; i< nlstate ; i ++) {      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         l=3+(nlstate+ndeath)*cpt;      if (stepm >= YEARM) hstepm=1;
         fprintf(ficgp,"+$%d",l+i+1);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       }      gradg=matrix(1,npar,1,nlstate);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        gp=vector(1,nlstate);
     }      gm=vector(1,nlstate);
   }    
        for(theta=1; theta <=npar; theta++){
   /* proba elementaires */        for(i=1; i<=npar; i++){ /* Computes gradient */
    for(i=1,jk=1; i <=nlstate; i++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(j=1; j <=ncovmodel; j++){        for(i=1;i<=nlstate;i++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          gp[i] = prlim[i][i];
           jk++;      
           fprintf(ficgp,"\n");        for(i=1; i<=npar; i++) /* Computes gradient */
         }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }        for(i=1;i<=nlstate;i++)
    }          gm[i] = prlim[i][i];
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        for(i=1;i<=nlstate;i++)
      for(jk=1; jk <=m; jk++) {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      } /* End theta */
        if (ng==2)  
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      trgradg =matrix(1,nlstate,1,npar);
        else  
          fprintf(ficgp,"\nset title \"Probability\"\n");      for(j=1; j<=nlstate;j++)
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(theta=1; theta <=npar; theta++)
        i=1;          trgradg[j][theta]=gradg[theta][j];
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;      for(i=1;i<=nlstate;i++)
          for(k=1; k<=(nlstate+ndeath); k++) {        varpl[i][(int)age] =0.;
            if (k != k2){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
              if(ng==2)      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      for(i=1;i<=nlstate;i++)
              else        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;      fprintf(ficresvpl,"%.0f ",age );
              for(j=3; j <=ncovmodel; j++) {      for(i=1; i<=nlstate;i++)
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      fprintf(ficresvpl,"\n");
                  ij++;      free_vector(gp,1,nlstate);
                }      free_vector(gm,1,nlstate);
                else      free_matrix(gradg,1,npar,1,nlstate);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      free_matrix(trgradg,1,nlstate,1,npar);
              }    } /* End age */
              fprintf(ficgp,")/(1");  
                  free_vector(xp,1,npar);
              for(k1=1; k1 <=nlstate; k1++){      free_matrix(doldm,1,nlstate,1,npar);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    free_matrix(dnewm,1,nlstate,1,nlstate);
                ij=1;  
                for(j=3; j <=ncovmodel; j++){  }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  /************ Variance of one-step probabilities  ******************/
                    ij++;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
                  }  {
                  else    int i, j=0,  i1, k1, l1, t, tj;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int k2, l2, j1,  z1;
                }    int k=0,l, cptcode;
                fprintf(ficgp,")");    int first=1, first1;
              }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double **dnewm,**doldm;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    double *xp;
              i=i+ncovmodel;    double *gp, *gm;
            }    double **gradg, **trgradg;
          } /* end k */    double **mu;
        } /* end k2 */    double age,agelim, cov[NCOVMAX];
      } /* end jk */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
    } /* end ng */    int theta;
    fclose(ficgp);    char fileresprob[FILENAMELENGTH];
 }  /* end gnuplot */    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
 /*************** Moving average **************/    double ***varpij;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
     strcpy(fileresprob,"prob"); 
   int i, cpt, cptcod;    strcat(fileresprob,fileres);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       for (i=1; i<=nlstate;i++)      printf("Problem with resultfile: %s\n", fileresprob);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           mobaverage[(int)agedeb][i][cptcod]=0.;    }
        strcpy(fileresprobcov,"probcov"); 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    strcat(fileresprobcov,fileres);
       for (i=1; i<=nlstate;i++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf("Problem with resultfile: %s\n", fileresprobcov);
           for (cpt=0;cpt<=4;cpt++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    }
           }    strcpy(fileresprobcor,"probcor"); 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    strcat(fileresprobcor,fileres);
         }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprobcor);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
        }
 }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 /************** Forecasting ******************/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    
   int *popage;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficresprob,"# Age");
   double *popeffectif,*popcount;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   double ***p3mat;    fprintf(ficresprobcov,"# Age");
   char fileresf[FILENAMELENGTH];    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
     for(i=1; i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(j=1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
   strcpy(fileresf,"f");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   strcat(fileresf,fileres);      }  
   if((ficresf=fopen(fileresf,"w"))==NULL) {   /* fprintf(ficresprob,"\n");
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficresprobcov,"\n");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficresprobcor,"\n");
   }   */
   printf("Computing forecasting: result on file '%s' \n", fileresf);   xp=vector(1,npar);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   if (mobilav==1) {    first=1;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\n# Routine varprob");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   }    fprintf(fichtm,"\n");
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
   if (stepm<=12) stepsize=1;    fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   agelim=AGESUP;  
      cov[1]=1;
   hstepm=1;    tj=cptcoveff;
   hstepm=hstepm/stepm;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   yp1=modf(dateintmean,&yp);    j1=0;
   anprojmean=yp;    for(t=1; t<=tj;t++){
   yp2=modf((yp1*12),&yp);      for(i1=1; i1<=ncodemax[t];i1++){ 
   mprojmean=yp;        j1++;
   yp1=modf((yp2*30.5),&yp);        if  (cptcovn>0) {
   jprojmean=yp;          fprintf(ficresprob, "\n#********** Variable "); 
   if(jprojmean==0) jprojmean=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if(mprojmean==0) jprojmean=1;          fprintf(ficresprob, "**********\n#\n");
            fprintf(ficresprobcov, "\n#********** Variable "); 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcov, "**********\n#\n");
   for(cptcov=1;cptcov<=i2;cptcov++){          
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          fprintf(ficgp, "\n#********** Variable "); 
       k=k+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresf,"\n#******");          fprintf(ficgp, "**********\n#\n");
       for(j=1;j<=cptcoveff;j++) {          
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       }          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       fprintf(ficresf,"******\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresf,"# StartingAge FinalAge");          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          
                fprintf(ficresprobcor, "\n#********** Variable ");    
                for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          fprintf(ficresprobcor, "**********\n#");    
         fprintf(ficresf,"\n");        }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          
         for (age=bage; age<=fage; age ++){ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          cov[2]=age;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for (k=1; k<=cptcovn;k++) {
           nhstepm = nhstepm/hstepm;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           oldm=oldms;savm=savms;          for (k=1; k<=cptcovprod;k++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                  
           for (h=0; h<=nhstepm; h++){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
             if (h==(int) (calagedate+YEARM*cpt)) {          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          gp=vector(1,(nlstate)*(nlstate+ndeath));
             }          gm=vector(1,(nlstate)*(nlstate+ndeath));
             for(j=1; j<=nlstate+ndeath;j++) {      
               kk1=0.;kk2=0;          for(theta=1; theta <=npar; theta++){
               for(i=1; i<=nlstate;i++) {                          for(i=1; i<=npar; i++)
                 if (mobilav==1)              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            
                 else {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            
                 }            k=0;
                            for(i=1; i<= (nlstate); i++){
               }              for(j=1; j<=(nlstate+ndeath);j++){
               if (h==(int)(calagedate+12*cpt)){                k=k+1;
                 fprintf(ficresf," %.3f", kk1);                gp[k]=pmmij[i][j];
                                      }
               }            }
             }            
           }            for(i=1; i<=npar; i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         }      
       }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     }            k=0;
   }            for(i=1; i<=(nlstate); i++){
                      for(j=1; j<=(nlstate+ndeath);j++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                k=k+1;
                 gm[k]=pmmij[i][j];
   fclose(ficresf);              }
 }            }
 /************** Forecasting ******************/       
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          }
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   double *popeffectif,*popcount;            for(theta=1; theta <=npar; theta++)
   double ***p3mat,***tabpop,***tabpopprev;              trgradg[j][theta]=gradg[theta][j];
   char filerespop[FILENAMELENGTH];          
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   agelim=AGESUP;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
            pmij(pmmij,cov,ncovmodel,x,nlstate);
            
   strcpy(filerespop,"pop");          k=0;
   strcat(filerespop,fileres);          for(i=1; i<=(nlstate); i++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            for(j=1; j<=(nlstate+ndeath);j++){
     printf("Problem with forecast resultfile: %s\n", filerespop);              k=k+1;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);              mu[k][(int) age]=pmmij[i][j];
   }            }
   printf("Computing forecasting: result on file '%s' \n", filerespop);          }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              varpij[i][j][(int)age] = doldm[i][j];
   
   if (mobilav==1) {          /*printf("\n%d ",(int)age);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
   agelim=AGESUP;          fprintf(ficresprobcor,"\n%d ",(int)age);
    
   hstepm=1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   hstepm=hstepm/stepm;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   if (popforecast==1) {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     if((ficpop=fopen(popfile,"r"))==NULL) {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       printf("Problem with population file : %s\n",popfile);exit(0);          }
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          i=0;
     }          for (k=1; k<=(nlstate);k++){
     popage=ivector(0,AGESUP);            for (l=1; l<=(nlstate+ndeath);l++){ 
     popeffectif=vector(0,AGESUP);              i=i++;
     popcount=vector(0,AGESUP);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                  fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     i=1;                for (j=1; j<=i;j++){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                    fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     imx=i;              }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            }
   }          }/* end of loop for state */
         } /* end of loop for age */
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        /* Confidence intervalle of pij  */
       k=k+1;        /*
       fprintf(ficrespop,"\n#******");          fprintf(ficgp,"\nset noparametric;unset label");
       for(j=1;j<=cptcoveff;j++) {          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       fprintf(ficrespop,"******\n");          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       fprintf(ficrespop,"# Age");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       if (popforecast==1)  fprintf(ficrespop," [Population]");        */
        
       for (cpt=0; cpt<=0;cpt++) {        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          first1=1;
                for (k2=1; k2<=(nlstate);k2++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            if(l2==k2) continue;
           nhstepm = nhstepm/hstepm;            j=(k2-1)*(nlstate+ndeath)+l2;
                      for (k1=1; k1<=(nlstate);k1++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           oldm=oldms;savm=savms;                if(l1==k1) continue;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  i=(k1-1)*(nlstate+ndeath)+l1;
                        if(i<=j) continue;
           for (h=0; h<=nhstepm; h++){                for (age=bage; age<=fage; age ++){ 
             if (h==(int) (calagedate+YEARM*cpt)) {                  if ((int)age %5==0){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
             }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
             for(j=1; j<=nlstate+ndeath;j++) {                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
               kk1=0.;kk2=0;                    mu1=mu[i][(int) age]/stepm*YEARM ;
               for(i=1; i<=nlstate;i++) {                                  mu2=mu[j][(int) age]/stepm*YEARM;
                 if (mobilav==1)                    c12=cv12/sqrt(v1*v2);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                    /* Computing eigen value of matrix of covariance */
                 else {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                 }                    /* Eigen vectors */
               }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
               if (h==(int)(calagedate+12*cpt)){                    /*v21=sqrt(1.-v11*v11); *//* error */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                    v21=(lc1-v1)/cv12*v11;
                   /*fprintf(ficrespop," %.3f", kk1);                    v12=-v21;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                    v22=v11;
               }                    tnalp=v21/v11;
             }                    if(first1==1){
             for(i=1; i<=nlstate;i++){                      first1=0;
               kk1=0.;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                 for(j=1; j<=nlstate;j++){                    }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                 }                    /*printf(fignu*/
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
             }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)                      first=0;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                      fprintf(ficgp,"\nset parametric;unset label");
           }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         }                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
    %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   /******/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                      fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                        fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           nhstepm = nhstepm/hstepm;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                                fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           oldm=oldms;savm=savms;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      }else{
           for (h=0; h<=nhstepm; h++){                      first=0;
             if (h==(int) (calagedate+YEARM*cpt)) {                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
             for(j=1; j<=nlstate+ndeath;j++) {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
               kk1=0.;kk2=0;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
               for(i=1; i<=nlstate;i++) {                                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                        }/* if first */
               }                  } /* age mod 5 */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                } /* end loop age */
             }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           }                first=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              } /*l12 */
         }            } /* k12 */
       }          } /*l1 */
    }        }/* k1 */
   }      } /* loop covariates */
      }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   if (popforecast==1) {    free_vector(xp,1,npar);
     free_ivector(popage,0,AGESUP);    fclose(ficresprob);
     free_vector(popeffectif,0,AGESUP);    fclose(ficresprobcov);
     free_vector(popcount,0,AGESUP);    fclose(ficresprobcor);
   }    /*  fclose(ficgp);*/
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);  
 }  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 /***********************************************/                    int lastpass, int stepm, int weightopt, char model[],\
 /**************** Main Program *****************/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 /***********************************************/                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
 int main(int argc, char *argv[])                    double jprev2, double mprev2,double anprev2){
 {    int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   double agedeb, agefin,hf;  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   double fret;  
   double **xi,tmp,delta;     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
   double dum; /* Dummy variable */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
   double ***p3mat;   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
   int *indx;   - Life expectancies by age and initial health status (estepm=%2d months): \
   char line[MAXLINE], linepar[MAXLINE];     <a href=\"%s\">%s</a> <br>\n</li>", \
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
   int firstobs=1, lastobs=10;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
   int sdeb, sfin; /* Status at beginning and end */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
   int c,  h , cpt,l;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;   m=cptcoveff;
   int hstepm, nhstepm;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
    jj1=0;
   double bage, fage, age, agelim, agebase;   for(k1=1; k1<=m;k1++){
   double ftolpl=FTOL;     for(i1=1; i1<=ncodemax[k1];i1++){
   double **prlim;       jj1++;
   double *severity;       if (cptcovn > 0) {
   double ***param; /* Matrix of parameters */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   double  *p;         for (cpt=1; cpt<=cptcoveff;cpt++) 
   double **matcov; /* Matrix of covariance */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   double ***delti3; /* Scale */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   double *delti; /* Scale */       }
   double ***eij, ***vareij;       /* Pij */
   double **varpl; /* Variances of prevalence limits by age */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   double *epj, vepp;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   double kk1, kk2;       /* Quasi-incidences */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   char *alph[]={"a","a","b","c","d","e"}, str[4];         /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   char z[1]="c", occ;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 #include <sys/time.h>         }
 #include <time.h>       for(cpt=1; cpt<=nlstate;cpt++) {
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   /* long total_usecs;       }
   struct timeval start_time, end_time;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    health expectancies in states (1) and (2): %s%d.png<br>\
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   getcwd(pathcd, size);     } /* end i1 */
    }/* End k1 */
   printf("\n%s",version);   fprintf(fichtm,"</ul>");
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
   else{   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     strcpy(pathtot,argv[1]);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
   /*cygwin_split_path(pathtot,path,optionfile);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   /* cutv(path,optionfile,pathtot,'\\');*/           rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
   chdir(path);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
   replace(pathc,path);           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 /*-------- arguments in the command line --------*/  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /* Log file */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   strcat(filelog, optionfilefiname);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   strcat(filelog,".log");    /* */  /*      <br>",fileres,fileres,fileres,fileres); */
   if((ficlog=fopen(filelog,"w"))==NULL)    {  /*  else  */
     printf("Problem with logfile %s\n",filelog);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     goto end;  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   }  
   fprintf(ficlog,"Log filename:%s\n",filelog);   m=cptcoveff;
   fprintf(ficlog,"\n%s",version);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   fprintf(ficlog,"\nEnter the parameter file name: ");  
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);   jj1=0;
   fflush(ficlog);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   /* */       jj1++;
   strcpy(fileres,"r");       if (cptcovn > 0) {
   strcat(fileres, optionfilefiname);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcat(fileres,".txt");    /* Other files have txt extension */         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /*---------arguments file --------*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       for(cpt=1; cpt<=nlstate;cpt++) {
     printf("Problem with optionfile %s\n",optionfile);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  interval) in state (%d): %s%d%d.png <br>\
     goto end;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   }       }
      } /* end i1 */
   strcpy(filereso,"o");   }/* End k1 */
   strcat(filereso,fileres);   fprintf(fichtm,"</ul>");
   if((ficparo=fopen(filereso,"w"))==NULL) {   fflush(fichtm);
     printf("Problem with Output resultfile: %s\n", filereso);  }
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  
     goto end;  /******************* Gnuplot file **************/
   }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   /* Reads comments: lines beginning with '#' */    char dirfileres[132],optfileres[132];
   while((c=getc(ficpar))=='#' && c!= EOF){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     ungetc(c,ficpar);    int ng;
     fgets(line, MAXLINE, ficpar);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     puts(line);  /*     printf("Problem with file %s",optionfilegnuplot); */
     fputs(line,ficparo);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   }  /*   } */
   ungetc(c,ficpar);  
     /*#ifdef windows */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      /*#endif */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    m=pow(2,cptcoveff);
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    strcpy(dirfileres,optionfilefiname);
     fgets(line, MAXLINE, ficpar);    strcpy(optfileres,"vpl");
     puts(line);   /* 1eme*/
     fputs(line,ficparo);    for (cpt=1; cpt<= nlstate ; cpt ++) {
   }     for (k1=1; k1<= m ; k1 ++) {
   ungetc(c,ficpar);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \n\
   covar=matrix(0,NCOVMAX,1,n);  set ylabel \"Probability\" \n\
   cptcovn=0;  set ter png small\n\
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /* Read guess parameters */         else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* Reads comments: lines beginning with '#' */       }
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     ungetc(c,ficpar);       for (i=1; i<= nlstate ; i ++) {
     fgets(line, MAXLINE, ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     puts(line);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fputs(line,ficparo);       } 
   }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   ungetc(c,ficpar);       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(i=1; i <=nlstate; i++)       }  
     for(j=1; j <=nlstate+ndeath-1; j++){       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       fscanf(ficpar,"%1d%1d",&i1,&j1);     }
       fprintf(ficparo,"%1d%1d",i1,j1);    }
       if(mle==1)    /*2 eme*/
         printf("%1d%1d",i,j);    
       fprintf(ficlog,"%1d%1d",i,j);    for (k1=1; k1<= m ; k1 ++) { 
       for(k=1; k<=ncovmodel;k++){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         fscanf(ficpar," %lf",&param[i][j][k]);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         if(mle==1){      
           printf(" %lf",param[i][j][k]);      for (i=1; i<= nlstate+1 ; i ++) {
           fprintf(ficlog," %lf",param[i][j][k]);        k=2*i;
         }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         else        for (j=1; j<= nlstate+1 ; j ++) {
           fprintf(ficlog," %lf",param[i][j][k]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficparo," %lf",param[i][j][k]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       }        }   
       fscanf(ficpar,"\n");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       if(mle==1)        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         printf("\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficlog,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficparo,"\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   p=param[1][1];        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /* Reads comments: lines beginning with '#' */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){        }   
     ungetc(c,ficpar);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     fgets(line, MAXLINE, ficpar);        else fprintf(ficgp,"\" t\"\" w l 0,");
     puts(line);      }
     fputs(line,ficparo);    }
   }    
   ungetc(c,ficpar);    /*3eme*/
     
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (k1=1; k1<= m ; k1 ++) { 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      for (cpt=1; cpt<= nlstate ; cpt ++) {
   for(i=1; i <=nlstate; i++){        k=2+nlstate*(2*cpt-2);
     for(j=1; j <=nlstate+ndeath-1; j++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficgp,"set ter png small\n\
       printf("%1d%1d",i,j);  set size 0.65,0.65\n\
       fprintf(ficparo,"%1d%1d",i1,j1);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       for(k=1; k<=ncovmodel;k++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         fscanf(ficpar,"%le",&delti3[i][j][k]);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         printf(" %le",delti3[i][j][k]);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       fscanf(ficpar,"\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       printf("\n");          
       fprintf(ficparo,"\n");        */
     }        for (i=1; i< nlstate ; i ++) {
   }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   delti=delti3[1][1];          
          } 
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    /* CV preval stable (period) */
     puts(line);    for (k1=1; k1<= m ; k1 ++) { 
     fputs(line,ficparo);      for (cpt=1; cpt<=nlstate ; cpt ++) {
   }        k=3;
   ungetc(c,ficpar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   matcov=matrix(1,npar,1,npar);  set ter png small\nset size 0.65,0.65\n\
   for(i=1; i <=npar; i++){  unset log y\n\
     fscanf(ficpar,"%s",&str);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     if(mle==1)        
       printf("%s",str);        for (i=1; i< nlstate ; i ++)
     fprintf(ficlog,"%s",str);          fprintf(ficgp,"+$%d",k+i+1);
     fprintf(ficparo,"%s",str);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     for(j=1; j <=i; j++){        
       fscanf(ficpar," %le",&matcov[i][j]);        l=3+(nlstate+ndeath)*cpt;
       if(mle==1){        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         printf(" %.5le",matcov[i][j]);        for (i=1; i< nlstate ; i ++) {
         fprintf(ficlog," %.5le",matcov[i][j]);          l=3+(nlstate+ndeath)*cpt;
       }          fprintf(ficgp,"+$%d",l+i+1);
       else        }
         fprintf(ficlog," %.5le",matcov[i][j]);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       fprintf(ficparo," %.5le",matcov[i][j]);      } 
     }    }  
     fscanf(ficpar,"\n");    
     if(mle==1)    /* proba elementaires */
       printf("\n");    for(i=1,jk=1; i <=nlstate; i++){
     fprintf(ficlog,"\n");      for(k=1; k <=(nlstate+ndeath); k++){
     fprintf(ficparo,"\n");        if (k != i) {
   }          for(j=1; j <=ncovmodel; j++){
   for(i=1; i <=npar; i++)            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     for(j=i+1;j<=npar;j++)            jk++; 
       matcov[i][j]=matcov[j][i];            fprintf(ficgp,"\n");
              }
   if(mle==1)        }
     printf("\n");      }
   fprintf(ficlog,"\n");     }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     /*-------- Rewriting paramater file ----------*/       for(jk=1; jk <=m; jk++) {
      strcpy(rfileres,"r");    /* "Rparameterfile */         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/         if (ng==2)
      strcat(rfileres,".");    /* */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */         else
     if((ficres =fopen(rfileres,"w"))==NULL) {           fprintf(ficgp,"\nset title \"Probability\"\n");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;         i=1;
     }         for(k2=1; k2<=nlstate; k2++) {
     fprintf(ficres,"#%s\n",version);           k3=i;
               for(k=1; k<=(nlstate+ndeath); k++) {
     /*-------- data file ----------*/             if (k != k2){
     if((fic=fopen(datafile,"r"))==NULL)    {               if(ng==2)
       printf("Problem with datafile: %s\n", datafile);goto end;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;               else
     }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
     n= lastobs;               for(j=3; j <=ncovmodel; j++) {
     severity = vector(1,maxwav);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     outcome=imatrix(1,maxwav+1,1,n);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     num=ivector(1,n);                   ij++;
     moisnais=vector(1,n);                 }
     annais=vector(1,n);                 else
     moisdc=vector(1,n);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     andc=vector(1,n);               }
     agedc=vector(1,n);               fprintf(ficgp,")/(1");
     cod=ivector(1,n);               
     weight=vector(1,n);               for(k1=1; k1 <=nlstate; k1++){   
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     mint=matrix(1,maxwav,1,n);                 ij=1;
     anint=matrix(1,maxwav,1,n);                 for(j=3; j <=ncovmodel; j++){
     s=imatrix(1,maxwav+1,1,n);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     adl=imatrix(1,maxwav+1,1,n);                         fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     tab=ivector(1,NCOVMAX);                     ij++;
     ncodemax=ivector(1,8);                   }
                    else
     i=1;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     while (fgets(line, MAXLINE, fic) != NULL)    {                 }
       if ((i >= firstobs) && (i <=lastobs)) {                 fprintf(ficgp,")");
                       }
         for (j=maxwav;j>=1;j--){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           strcpy(line,stra);               i=i+ncovmodel;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);             }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           } /* end k */
         }         } /* end k2 */
               } /* end jk */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);     } /* end ng */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);     fflush(ficgp); 
   }  /* end gnuplot */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
   /*************** Moving average **************/
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int i, cpt, cptcod;
         }    int modcovmax =1;
         num[i]=atol(stra);    int mobilavrange, mob;
            double age;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
         i=i+1;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       }  
     }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     /* printf("ii=%d", ij);      if(mobilav==1) mobilavrange=5; /* default */
        scanf("%d",i);*/      else mobilavrange=mobilav;
   imx=i-1; /* Number of individuals */      for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
   /* for (i=1; i<=imx; i++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      /* We keep the original values on the extreme ages bage, fage and for 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     }*/         we use a 5 terms etc. until the borders are no more concerned. 
    /*  for (i=1; i<=imx; i++){      */ 
      if (s[4][i]==9)  s[4][i]=-1;      for (mob=3;mob <=mobilavrange;mob=mob+2){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            for (i=1; i<=nlstate;i++){
              for (cptcod=1;cptcod<=modcovmax;cptcod++){
   /* Calculation of the number of parameter from char model*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   Tprod=ivector(1,15);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   Tvaraff=ivector(1,15);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   Tvard=imatrix(1,15,1,2);                }
   Tage=ivector(1,15);                    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                }
   if (strlen(model) >1){          }
     j=0, j1=0, k1=1, k2=1;        }/* end age */
     j=nbocc(model,'+');      }/* end mob */
     j1=nbocc(model,'*');    }else return -1;
     cptcovn=j+1;    return 0;
     cptcovprod=j1;  }/* End movingaverage */
      
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  /************** Forecasting ******************/
       printf("Error. Non available option model=%s ",model);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       fprintf(ficlog,"Error. Non available option model=%s ",model);    /* proj1, year, month, day of starting projection 
       goto end;       agemin, agemax range of age
     }       dateprev1 dateprev2 range of dates during which prevalence is computed
           anproj2 year of en of projection (same day and month as proj1).
     for(i=(j+1); i>=1;i--){    */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    int *popage;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    double agec; /* generic age */
       /*scanf("%d",i);*/    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       if (strchr(strb,'*')) {  /* Model includes a product */    double *popeffectif,*popcount;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    double ***p3mat;
         if (strcmp(strc,"age")==0) { /* Vn*age */    double ***mobaverage;
           cptcovprod--;    char fileresf[FILENAMELENGTH];
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    agelim=AGESUP;
           cptcovage++;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
             Tage[cptcovage]=i;   
             /*printf("stre=%s ", stre);*/    strcpy(fileresf,"f"); 
         }    strcat(fileresf,fileres);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    if((ficresf=fopen(fileresf,"w"))==NULL) {
           cptcovprod--;      printf("Problem with forecast resultfile: %s\n", fileresf);
           cutv(strb,stre,strc,'V');      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           Tvar[i]=atoi(stre);    }
           cptcovage++;    printf("Computing forecasting: result on file '%s' \n", fileresf);
           Tage[cptcovage]=i;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         }  
         else {  /* Age is not in the model */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  
           Tvar[i]=ncovcol+k1;    if (mobilav!=0) {
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           Tprod[k1]=i;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           Tvard[k1][1]=atoi(strc); /* m*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           Tvard[k1][2]=atoi(stre); /* n */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           Tvar[cptcovn+k2]=Tvard[k1][1];      }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    }
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    stepsize=(int) (stepm+YEARM-1)/YEARM;
           k1++;    if (stepm<=12) stepsize=1;
           k2=k2+2;    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
       else { /* no more sum */    else  hstepm=estepm;   
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/    hstepm=hstepm/stepm; 
       cutv(strd,strc,strb,'V');    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       Tvar[i]=atoi(strc);                                 fractional in yp1 */
       }    anprojmean=yp;
       strcpy(modelsav,stra);      yp2=modf((yp1*12),&yp);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    mprojmean=yp;
         scanf("%d",i);*/    yp1=modf((yp2*30.5),&yp);
     } /* end of loop + */    jprojmean=yp;
   } /* end model */    if(jprojmean==0) jprojmean=1;
      if(mprojmean==0) jprojmean=1;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);    i1=cptcoveff;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    if (cptcovn < 1){i1=1;}
   scanf("%d ",i);*/    
     fclose(fic);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     /*  if(mle==1){*/    fprintf(ficresf,"#****** Routine prevforecast **\n");
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;  /*            if (h==(int)(YEARM*yearp)){ */
     }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     /*-calculation of age at interview from date of interview and age at death -*/      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     agev=matrix(1,maxwav,1,imx);        k=k+1;
         fprintf(ficresf,"\n#******");
     for (i=1; i<=imx; i++) {        for(j=1;j<=cptcoveff;j++) {
       for(m=2; (m<= maxwav); m++) {          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        }
          anint[m][i]=9999;        fprintf(ficresf,"******\n");
          s[m][i]=-1;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
        }        for(j=1; j<=nlstate+ndeath;j++){ 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          for(i=1; i<=nlstate;i++)              
       }            fprintf(ficresf," p%d%d",i,j);
     }          fprintf(ficresf," p.%d",j);
         }
     for (i=1; i<=imx; i++)  {        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(ficresf,"\n");
       for(m=1; (m<= maxwav); m++){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             if(agedc[i]>0)            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
               if(moisdc[i]!=99 && andc[i]!=9999)            nhstepm = nhstepm/hstepm; 
                 agev[m][i]=agedc[i];            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            oldm=oldms;savm=savms;
            else {            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
               if (andc[i]!=9999){          
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            for (h=0; h<=nhstepm; h++){
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);              if (h*hstepm/YEARM*stepm ==yearp) {
               agev[m][i]=-1;                fprintf(ficresf,"\n");
               }                for(j=1;j<=cptcoveff;j++) 
             }                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
           else if(s[m][i] !=9){ /* Should no more exist */              } 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              for(j=1; j<=nlstate+ndeath;j++) {
             if(mint[m][i]==99 || anint[m][i]==9999)                ppij=0.;
               agev[m][i]=1;                for(i=1; i<=nlstate;i++) {
             else if(agev[m][i] <agemin){                  if (mobilav==1) 
               agemin=agev[m][i];                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                  else {
             }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
             else if(agev[m][i] >agemax){                  }
               agemax=agev[m][i];                  if (h*hstepm/YEARM*stepm== yearp) {
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
             }                  }
             /*agev[m][i]=anint[m][i]-annais[i];*/                } /* end i */
             /*   agev[m][i] = age[i]+2*m;*/                if (h*hstepm/YEARM*stepm==yearp) {
           }                  fprintf(ficresf," %.3f", ppij);
           else { /* =9 */                }
             agev[m][i]=1;              }/* end j */
             s[m][i]=-1;            } /* end h */
           }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }          } /* end agec */
         else /*= 0 Unknown */        } /* end yearp */
           agev[m][i]=1;      } /* end cptcod */
       }    } /* end  cptcov */
             
     }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){    fclose(ficresf);
         if (s[m][i] > (nlstate+ndeath)) {  }
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    /************** Forecasting *****not tested NB*************/
           goto end;  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
         }    
       }    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     }    int *popage;
     double calagedatem, agelim, kk1, kk2;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double *popeffectif,*popcount;
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     free_vector(severity,1,maxwav);    char filerespop[FILENAMELENGTH];
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_vector(annais,1,n);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     /* free_matrix(mint,1,maxwav,1,n);    agelim=AGESUP;
        free_matrix(anint,1,maxwav,1,n);*/    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     free_vector(moisdc,1,n);    
     free_vector(andc,1,n);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
        
     wav=ivector(1,imx);    strcpy(filerespop,"pop"); 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    strcat(filerespop,fileres);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
          printf("Problem with forecast resultfile: %s\n", filerespop);
     /* Concatenates waves */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    if (mobilav!=0) {
            mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    codtab=imatrix(1,100,1,10);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
    h=0;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
    m=pow(2,cptcoveff);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
    for(k=1;k<=cptcoveff; k++){    }
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){    stepsize=(int) (stepm+YEARM-1)/YEARM;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    if (stepm<=12) stepsize=1;
            h++;    
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    agelim=AGESUP;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    
          }    hstepm=1;
        }    hstepm=hstepm/stepm; 
      }    
    }    if (popforecast==1) {
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      if((ficpop=fopen(popfile,"r"))==NULL) {
       codtab[1][2]=1;codtab[2][2]=2; */        printf("Problem with population file : %s\n",popfile);exit(0);
    /* for(i=1; i <=m ;i++){        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       for(k=1; k <=cptcovn; k++){      } 
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      popage=ivector(0,AGESUP);
       }      popeffectif=vector(0,AGESUP);
       printf("\n");      popcount=vector(0,AGESUP);
       }      
       scanf("%d",i);*/      i=1;   
          while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
    /* Calculates basic frequencies. Computes observed prevalence at single age     
        and prints on file fileres'p'. */      imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
        }
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        k=k+1;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficrespop,"\n#******");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(j=1;j<=cptcoveff;j++) {
                fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     /* For Powell, parameters are in a vector p[] starting at p[1]        }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        fprintf(ficrespop,"******\n");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     if(mle==1){        if (popforecast==1)  fprintf(ficrespop," [Population]");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        
     }        for (cpt=0; cpt<=0;cpt++) { 
              fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     /*--------- results files --------------*/          
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
              nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
    jk=1;            
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            oldm=oldms;savm=savms;
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
    for(i=1,jk=1; i <=nlstate; i++){          
      for(k=1; k <=(nlstate+ndeath); k++){            for (h=0; h<=nhstepm; h++){
        if (k != i)              if (h==(int) (calagedatem+YEARM*cpt)) {
          {                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
            printf("%d%d ",i,k);              } 
            fprintf(ficlog,"%d%d ",i,k);              for(j=1; j<=nlstate+ndeath;j++) {
            fprintf(ficres,"%1d%1d ",i,k);                kk1=0.;kk2=0;
            for(j=1; j <=ncovmodel; j++){                for(i=1; i<=nlstate;i++) {              
              printf("%f ",p[jk]);                  if (mobilav==1) 
              fprintf(ficlog,"%f ",p[jk]);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
              fprintf(ficres,"%f ",p[jk]);                  else {
              jk++;                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
            }                  }
            printf("\n");                }
            fprintf(ficlog,"\n");                if (h==(int)(calagedatem+12*cpt)){
            fprintf(ficres,"\n");                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
          }                    /*fprintf(ficrespop," %.3f", kk1);
      }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
    }                }
    if(mle==1){              }
      /* Computing hessian and covariance matrix */              for(i=1; i<=nlstate;i++){
      ftolhess=ftol; /* Usually correct */                kk1=0.;
      hesscov(matcov, p, npar, delti, ftolhess, func);                  for(j=1; j<=nlstate;j++){
    }                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                  }
    printf("# Scales (for hessian or gradient estimation)\n");                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");              }
    for(i=1,jk=1; i <=nlstate; i++){  
      for(j=1; j <=nlstate+ndeath; j++){              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
        if (j!=i) {                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
          fprintf(ficres,"%1d%1d",i,j);            }
          printf("%1d%1d",i,j);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          fprintf(ficlog,"%1d%1d",i,j);          }
          for(k=1; k<=ncovmodel;k++){        }
            printf(" %.5e",delti[jk]);   
            fprintf(ficlog," %.5e",delti[jk]);    /******/
            fprintf(ficres," %.5e",delti[jk]);  
            jk++;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
          }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
          printf("\n");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
          fprintf(ficlog,"\n");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
          fprintf(ficres,"\n");            nhstepm = nhstepm/hstepm; 
        }            
      }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }            oldm=oldms;savm=savms;
                hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
    k=1;            for (h=0; h<=nhstepm; h++){
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              if (h==(int) (calagedatem+YEARM*cpt)) {
    if(mle==1)                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              } 
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              for(j=1; j<=nlstate+ndeath;j++) {
    for(i=1;i<=npar;i++){                kk1=0.;kk2=0;
      /*  if (k>nlstate) k=1;                for(i=1; i<=nlstate;i++) {              
          i1=(i-1)/(ncovmodel*nlstate)+1;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                }
          printf("%s%d%d",alph[k],i1,tab[i]);*/                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
      fprintf(ficres,"%3d",i);              }
      if(mle==1)            }
        printf("%3d",i);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fprintf(ficlog,"%3d",i);          }
      for(j=1; j<=i;j++){        }
        fprintf(ficres," %.5e",matcov[i][j]);     } 
        if(mle==1)    }
          printf(" %.5e",matcov[i][j]);   
        fprintf(ficlog," %.5e",matcov[i][j]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      }  
      fprintf(ficres,"\n");    if (popforecast==1) {
      if(mle==1)      free_ivector(popage,0,AGESUP);
        printf("\n");      free_vector(popeffectif,0,AGESUP);
      fprintf(ficlog,"\n");      free_vector(popcount,0,AGESUP);
      k++;    }
    }    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    while((c=getc(ficpar))=='#' && c!= EOF){    fclose(ficrespop);
      ungetc(c,ficpar);  } /* End of popforecast */
      fgets(line, MAXLINE, ficpar);  
      puts(line);  int fileappend(FILE *fichier, char *optionfich)
      fputs(line,ficparo);  {
    }    if((fichier=fopen(optionfich,"a"))==NULL) {
    ungetc(c,ficpar);      printf("Problem with file: %s\n", optionfich);
    estepm=0;      fprintf(ficlog,"Problem with file: %s\n", optionfich);
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      return (0);
    if (estepm==0 || estepm < stepm) estepm=stepm;    }
    if (fage <= 2) {    fflush(fichier);
      bage = ageminpar;    return (1);
      fage = agemaxpar;  }
    }  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
      {
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    char ca[32], cb[32], cc[32];
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
        int numlinepar;
    while((c=getc(ficpar))=='#' && c!= EOF){  
      ungetc(c,ficpar);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
      fgets(line, MAXLINE, ficpar);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
      puts(line);    for(i=1; i <=nlstate; i++){
      fputs(line,ficparo);      jj=0;
    }      for(j=1; j <=nlstate+ndeath; j++){
    ungetc(c,ficpar);        if(j==i) continue;
          jj++;
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        printf("%1d%1d",i,j);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficparo,"%1d%1d",i,j);
            for(k=1; k<=ncovmodel;k++){
    while((c=getc(ficpar))=='#' && c!= EOF){          /*        printf(" %lf",param[i][j][k]); */
      ungetc(c,ficpar);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
      fgets(line, MAXLINE, ficpar);          printf(" 0.");
      puts(line);          fprintf(ficparo," 0.");
      fputs(line,ficparo);        }
    }        printf("\n");
    ungetc(c,ficpar);        fprintf(ficparo,"\n");
        }
     }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    printf("# Scales (for hessian or gradient estimation)\n");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
   fscanf(ficpar,"pop_based=%d\n",&popbased);    for(i=1; i <=nlstate; i++){
   fprintf(ficparo,"pop_based=%d\n",popbased);        jj=0;
   fprintf(ficres,"pop_based=%d\n",popbased);        for(j=1; j <=nlstate+ndeath; j++){
          if(j==i) continue;
   while((c=getc(ficpar))=='#' && c!= EOF){        jj++;
     ungetc(c,ficpar);        fprintf(ficparo,"%1d%1d",i,j);
     fgets(line, MAXLINE, ficpar);        printf("%1d%1d",i,j);
     puts(line);        fflush(stdout);
     fputs(line,ficparo);        for(k=1; k<=ncovmodel;k++){
   }          /*      printf(" %le",delti3[i][j][k]); */
   ungetc(c,ficpar);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          fprintf(ficparo," 0.");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
 while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    printf("# Covariance matrix\n");
     puts(line);  /* # 121 Var(a12)\n\ */
     fputs(line,ficparo);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   }  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   ungetc(c,ficpar);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
 /*------------ gnuplot -------------*/    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   strcpy(optionfilegnuplot,optionfilefiname);    /* #   ...\n\ */
   strcat(optionfilegnuplot,".gp");    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    
     printf("Problem with file %s",optionfilegnuplot);    for(itimes=1;itimes<=2;itimes++){
   }      jj=0;
   fclose(ficgp);      for(i=1; i <=nlstate; i++){
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        for(j=1; j <=nlstate+ndeath; j++){
 /*--------- index.htm --------*/          if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
   strcpy(optionfilehtm,optionfile);            jj++;
   strcat(optionfilehtm,".htm");            ca[0]= k+'a'-1;ca[1]='\0';
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            if(itimes==1){
     printf("Problem with %s \n",optionfilehtm), exit(0);              printf("#%1d%1d%d",i,j,k);
   }              fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              printf("%1d%1d%d",i,j,k);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              fprintf(ficparo,"%1d%1d%d",i,j,k);
 \n              /*  printf(" %.5le",matcov[i][j]); */
 Total number of observations=%d <br>\n            }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            ll=0;
 <hr  size=\"2\" color=\"#EC5E5E\">            for(li=1;li <=nlstate; li++){
  <ul><li><h4>Parameter files</h4>\n              for(lj=1;lj <=nlstate+ndeath; lj++){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                if(lj==li) continue;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n                for(lk=1;lk<=ncovmodel;lk++){
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);                  ll++;
   fclose(fichtm);                  if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                    if(ll<jj){
                        if(itimes==1){
 /*------------ free_vector  -------------*/                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
  chdir(path);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                        }else{
  free_ivector(wav,1,imx);                        printf(" 0.");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                        fprintf(ficparo," 0.");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                        }
  free_ivector(num,1,n);                    }else{
  free_vector(agedc,1,n);                      if(itimes==1){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                        printf(" Var(%s%1d%1d)",ca,i,j);
  fclose(ficparo);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
  fclose(ficres);                      }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
   /*--------------- Prevalence limit --------------*/                      }
                      }
   strcpy(filerespl,"pl");                  }
   strcat(filerespl,fileres);                } /* end lk */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              } /* end lj */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            } /* end li */
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;            printf("\n");
   }            fprintf(ficparo,"\n");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            numlinepar++;
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);          } /* end k*/
   fprintf(ficrespl,"#Prevalence limit\n");        } /*end j */
   fprintf(ficrespl,"#Age ");      } /* end i */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    }
   fprintf(ficrespl,"\n");  
    } /* end of prwizard */
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /***********************************************/
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /**************** Main Program *****************/
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /***********************************************/
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  int main(int argc, char *argv[])
   k=0;  {
   agebase=ageminpar;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   agelim=agemaxpar;    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   ftolpl=1.e-10;    int jj, imk;
   i1=cptcoveff;    int numlinepar=0; /* Current linenumber of parameter file */
   if (cptcovn < 1){i1=1;}    /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
   for(cptcov=1;cptcov<=i1;cptcov++){    double agedeb, agefin,hf;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    double fret;
         fprintf(ficrespl,"\n#******");    double **xi,tmp,delta;
         printf("\n#******");  
         fprintf(ficlog,"\n#******");    double dum; /* Dummy variable */
         for(j=1;j<=cptcoveff;j++) {    double ***p3mat;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***mobaverage;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int *indx;
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char line[MAXLINE], linepar[MAXLINE];
         }    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
         fprintf(ficrespl,"******\n");    char pathr[MAXLINE]; 
         printf("******\n");    int firstobs=1, lastobs=10;
         fprintf(ficlog,"******\n");    int sdeb, sfin; /* Status at beginning and end */
            int c,  h , cpt,l;
         for (age=agebase; age<=agelim; age++){    int ju,jl, mi;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
           fprintf(ficrespl,"%.0f",age );    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
           for(i=1; i<=nlstate;i++)    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
           fprintf(ficrespl," %.5f", prlim[i][i]);    int mobilav=0,popforecast=0;
           fprintf(ficrespl,"\n");    int hstepm, nhstepm;
         }    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
       }    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
     }  
   fclose(ficrespl);    double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
   /*------------- h Pij x at various ages ------------*/    double **prlim;
      double *severity;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double ***param; /* Matrix of parameters */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double  *p;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double **matcov; /* Matrix of covariance */
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    double ***delti3; /* Scale */
   }    double *delti; /* Scale */
   printf("Computing pij: result on file '%s' \n", filerespij);    double ***eij, ***vareij;
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    double **varpl; /* Variances of prevalence limits by age */
      double *epj, vepp;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double kk1, kk2;
   /*if (stepm<=24) stepsize=2;*/    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
   agelim=AGESUP;    char *alph[]={"a","a","b","c","d","e"}, str[4];
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
     char z[1]="c", occ;
   /* hstepm=1;   aff par mois*/  
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   k=0;    char strstart[80], *strt, strtend[80];
   for(cptcov=1;cptcov<=i1;cptcov++){    char *stratrunc;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int lstra;
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");    long total_usecs;
         for(j=1;j<=cptcoveff;j++)    struct timeval start_time, end_time, curr_time;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    struct timezone tzp;
         fprintf(ficrespij,"******\n");    extern int gettimeofday();
            struct tm tmg, tm, *gmtime(), *localtime();
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    long time_value;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    extern long time();
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    tmg = *gmtime(&start_time.tv_sec);
           oldm=oldms;savm=savms;    strcpy(strstart,asctime(&tm));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");  /*  printf("Localtime (at start)=%s",strstart); */
           for(i=1; i<=nlstate;i++)  /*  tp.tv_sec = tp.tv_sec +86400; */
             for(j=1; j<=nlstate+ndeath;j++)  /*  tm = *localtime(&start_time.tv_sec); */
               fprintf(ficrespij," %1d-%1d",i,j);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
           fprintf(ficrespij,"\n");  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
            for (h=0; h<=nhstepm; h++){  /*   tmg.tm_hour=tmg.tm_hour + 1; */
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  /*   tp.tv_sec = mktime(&tmg); */
             for(i=1; i<=nlstate;i++)  /*   strt=asctime(&tmg); */
               for(j=1; j<=nlstate+ndeath;j++)  /*   printf("Time(after) =%s",strstart);  */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  /*  (void) time (&time_value);
             fprintf(ficrespij,"\n");  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
              }  *  tm = *localtime(&time_value);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  *  strstart=asctime(&tm);
           fprintf(ficrespij,"\n");  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
         }  */
     }  
   }    getcwd(pathcd, size);
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
   fclose(ficrespij);      printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
   /*---------- Forecasting ------------------*/    else{
   if((stepm == 1) && (strcmp(model,".")==0)){      strcpy(pathtot,argv[1]);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   }    /*cygwin_split_path(pathtot,path,optionfile);
   else{      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     erreur=108;    /* cutv(path,optionfile,pathtot,'\\');*/
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   }    printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
      chdir(path);
     strcpy(command,"mkdir ");
   /*---------- Health expectancies and variances ------------*/    strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
   strcpy(filerest,"t");      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   strcat(filerest,fileres);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   if((ficrest=fopen(filerest,"w"))==NULL) {      /* fclose(ficlog); */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /*     exit(1); */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    }
   }  /*   if((imk=mkdir(optionfilefiname))<0){ */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  /*     perror("mkdir"); */
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);  /*   } */
   
     /*-------- arguments in the command line --------*/
   strcpy(filerese,"e");  
   strcat(filerese,fileres);    /* Log file */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    strcat(filelog, optionfilefiname);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    strcat(filelog,".log");    /* */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    if((ficlog=fopen(filelog,"w"))==NULL)    {
   }      printf("Problem with logfile %s\n",filelog);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      goto end;
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    }
     fprintf(ficlog,"Log filename:%s\n",filelog);
   strcpy(fileresv,"v");    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   strcat(fileresv,fileres);    fprintf(ficlog,"\nEnter the parameter file name: ");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    fprintf(ficlog,"pathtot=%s\n\
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   path=%s \n\
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);   optionfile=%s\n\
   }   optionfilext=%s\n\
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;    printf("Localtime (at start):%s",strstart);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    /* */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcpy(fileres,"r");
       k=k+1;    strcat(fileres, optionfilefiname);
       fprintf(ficrest,"\n#****** ");    strcat(fileres,".txt");    /* Other files have txt extension */
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*---------arguments file --------*/
       fprintf(ficrest,"******\n");  
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       fprintf(ficreseij,"\n#****** ");      printf("Problem with optionfile %s\n",optionfile);
       for(j=1;j<=cptcoveff;j++)      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fflush(ficlog);
       fprintf(ficreseij,"******\n");      goto end;
     }
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");    strcpy(filereso,"o");
     strcat(filereso,fileres);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       oldm=oldms;savm=savms;      printf("Problem with Output resultfile: %s\n", filereso);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
        fflush(ficlog);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      goto end;
       oldm=oldms;savm=savms;    }
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);  
       if(popbased==1){    /* Reads comments: lines beginning with '#' */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    numlinepar=0;
        }    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
        fgets(line, MAXLINE, ficpar);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      numlinepar++;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      puts(line);
       fprintf(ficrest,"\n");      fputs(line,ficparo);
       fputs(line,ficlog);
       epj=vector(1,nlstate+1);    }
       for(age=bage; age <=fage ;age++){    ungetc(c,ficpar);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
           for(i=1; i<=nlstate;i++)    numlinepar++;
             prlim[i][i]=probs[(int)age][i][k];    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
         }    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
            fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
         fprintf(ficrest," %4.0f",age);    fflush(ficlog);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    while((c=getc(ficpar))=='#' && c!= EOF){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      ungetc(c,ficpar);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      fgets(line, MAXLINE, ficpar);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      numlinepar++;
           }      puts(line);
           epj[nlstate+1] +=epj[j];      fputs(line,ficparo);
         }      fputs(line,ficlog);
     }
         for(i=1, vepp=0.;i <=nlstate;i++)    ungetc(c,ficpar);
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];     
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    covar=matrix(0,NCOVMAX,1,n); 
         for(j=1;j <=nlstate;j++){    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
         }  
         fprintf(ficrest,"\n");    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
       }    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     }   
   }    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 free_matrix(mint,1,maxwav,1,n);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     free_vector(weight,1,n);      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   fclose(ficreseij);      fclose (ficparo);
   fclose(ficresvij);      fclose (ficlog);
   fclose(ficrest);      exit(0);
   fclose(ficpar);    }
   free_vector(epj,1,nlstate+1);    /* Read guess parameters */
      /* Reads comments: lines beginning with '#' */
   /*------- Variance limit prevalence------*/      while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
   strcpy(fileresvpl,"vpl");      fgets(line, MAXLINE, ficpar);
   strcat(fileresvpl,fileres);      numlinepar++;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      puts(line);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      fputs(line,ficparo);
     exit(0);      fputs(line,ficlog);
   }    }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    ungetc(c,ficpar);
   
   k=0;    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   for(cptcov=1;cptcov<=i1;cptcov++){    for(i=1; i <=nlstate; i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      j=0;
       k=k+1;      for(jj=1; jj <=nlstate+ndeath; jj++){
       fprintf(ficresvpl,"\n#****** ");        if(jj==i) continue;
       for(j=1;j<=cptcoveff;j++)        j++;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fscanf(ficpar,"%1d%1d",&i1,&j1);
       fprintf(ficresvpl,"******\n");        if ((i1 != i) && (j1 != j)){
                printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          exit(1);
       oldm=oldms;savm=savms;        }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        fprintf(ficparo,"%1d%1d",i1,j1);
     }        if(mle==1)
  }          printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
   fclose(ficresvpl);        for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
   /*---------- End : free ----------------*/          if(mle==1){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            printf(" %lf",param[i][j][k]);
              fprintf(ficlog," %lf",param[i][j][k]);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          else
              fprintf(ficlog," %lf",param[i][j][k]);
            fprintf(ficparo," %lf",param[i][j][k]);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        fscanf(ficpar,"\n");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        numlinepar++;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        if(mle==1)
            printf("\n");
   free_matrix(matcov,1,npar,1,npar);        fprintf(ficlog,"\n");
   free_vector(delti,1,npar);        fprintf(ficparo,"\n");
   free_matrix(agev,1,maxwav,1,imx);      }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    }  
     fflush(ficlog);
   fprintf(fichtm,"\n</body>");  
   fclose(fichtm);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   fclose(ficgp);  
      p=param[1][1];
     
   if(erreur >0){    /* Reads comments: lines beginning with '#' */
     printf("End of Imach with error or warning %d\n",erreur);    while((c=getc(ficpar))=='#' && c!= EOF){
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      ungetc(c,ficpar);
   }else{      fgets(line, MAXLINE, ficpar);
    printf("End of Imach\n");      numlinepar++;
    fprintf(ficlog,"End of Imach\n");      puts(line);
   }      fputs(line,ficparo);
   printf("See log file on %s\n",filelog);      fputs(line,ficlog);
   fclose(ficlog);    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    ungetc(c,ficpar);
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
   /*------ End -----------*/    for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
  end:        if ((i1-i)*(j1-j)!=0){
 #ifdef windows          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   /* chdir(pathcd);*/          exit(1);
 #endif        }
  /*system("wgnuplot graph.plt");*/        printf("%1d%1d",i,j);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        fprintf(ficparo,"%1d%1d",i1,j1);
  /*system("cd ../gp37mgw");*/        fprintf(ficlog,"%1d%1d",i1,j1);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        for(k=1; k<=ncovmodel;k++){
  strcpy(plotcmd,GNUPLOTPROGRAM);          fscanf(ficpar,"%le",&delti3[i][j][k]);
  strcat(plotcmd," ");          printf(" %le",delti3[i][j][k]);
  strcat(plotcmd,optionfilegnuplot);          fprintf(ficparo," %le",delti3[i][j][k]);
  system(plotcmd);          fprintf(ficlog," %le",delti3[i][j][k]);
         }
 #ifdef windows        fscanf(ficpar,"\n");
   while (z[0] != 'q') {        numlinepar++;
     /* chdir(path); */        printf("\n");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        fprintf(ficparo,"\n");
     scanf("%s",z);        fprintf(ficlog,"\n");
     if (z[0] == 'c') system("./imach");      }
     else if (z[0] == 'e') system(optionfilehtm);    }
     else if (z[0] == 'g') system(plotcmd);    fflush(ficlog);
     else if (z[0] == 'q') exit(0);  
   }    delti=delti3[1][1];
 #endif  
 }  
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.90


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>