Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.103

version 1.41.2.2, 2003/06/13 07:45:28 version 1.103, 2005/09/30 15:54:49
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.103  2005/09/30 15:54:49  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.102  2004/09/15 17:31:30  brouard
   first survey ("cross") where individuals from different ages are    Add the possibility to read data file including tab characters.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.101  2004/09/15 10:38:38  brouard
   second wave of interviews ("longitudinal") which measure each change    Fix on curr_time
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.100  2004/07/12 18:29:06  brouard
   model. More health states you consider, more time is necessary to reach the    Add version for Mac OS X. Just define UNIX in Makefile
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.99  2004/06/05 08:57:40  brouard
   probability to be observed in state j at the second wave    *** empty log message ***
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.98  2004/05/16 15:05:56  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    New version 0.97 . First attempt to estimate force of mortality
   complex model than "constant and age", you should modify the program    directly from the data i.e. without the need of knowing the health
   where the markup *Covariates have to be included here again* invites    state at each age, but using a Gompertz model: log u =a + b*age .
   you to do it.  More covariates you add, slower the    This is the basic analysis of mortality and should be done before any
   convergence.    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
   The advantage of this computer programme, compared to a simple    from other sources like vital statistic data.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    The same imach parameter file can be used but the option for mle should be -3.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    The output is very simple: only an estimate of the intercept and of
   split into an exact number (nh*stepm) of unobserved intermediate    the slope with 95% confident intervals.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Current limitations:
   matrix is simply the matrix product of nh*stepm elementary matrices    A) Even if you enter covariates, i.e. with the
   and the contribution of each individual to the likelihood is simply    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   hPijx.    B) There is no computation of Life Expectancy nor Life Table.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.97  2004/02/20 13:25:42  lievre
   of the life expectancies. It also computes the prevalence limits.    Version 0.96d. Population forecasting command line is (temporarily)
      suppressed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.96  2003/07/15 15:38:55  brouard
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   from the European Union.    rewritten within the same printf. Workaround: many printfs.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.95  2003/07/08 07:54:34  brouard
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Repository):
   **********************************************************************/    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
 #include <math.h>  
 #include <stdio.h>    Revision 1.94  2003/06/27 13:00:02  brouard
 #include <stdlib.h>    Just cleaning
 #include <unistd.h>  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define MAXLINE 256    (Module): On windows (cygwin) function asctime_r doesn't
 #define GNUPLOTPROGRAM "wgnuplot"    exist so I changed back to asctime which exists.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): Version 0.96b
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 /*#define windows*/    exist so I changed back to asctime which exists.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Repository): Elapsed time after each iteration is now output. It
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 #define NINTERVMAX 8    concerning matrix of covariance. It has extension -cov.htm.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.90  2003/06/24 12:34:15  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Some bugs corrected for windows. Also, when
 #define MAXN 20000    mle=-1 a template is output in file "or"mypar.txt with the design
 #define YEARM 12. /* Number of months per year */    of the covariance matrix to be input.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int erreur; /* Error number */    of the covariance matrix to be input.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.88  2003/06/23 17:54:56  brouard
 int npar=NPARMAX;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.87  2003/06/18 12:26:01  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Version 0.96
 int popbased=0;  
     Revision 1.86  2003/06/17 20:04:08  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Change position of html and gnuplot routines and added
 int maxwav; /* Maxim number of waves */    routine fileappend.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.85  2003/06/17 13:12:43  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Repository): Check when date of death was earlier that
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    current date of interview. It may happen when the death was just
 double jmean; /* Mean space between 2 waves */    prior to the death. In this case, dh was negative and likelihood
 double **oldm, **newm, **savm; /* Working pointers to matrices */    was wrong (infinity). We still send an "Error" but patch by
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    assuming that the date of death was just one stepm after the
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    interview.
 FILE *ficgp,*ficresprob,*ficpop;    (Repository): Because some people have very long ID (first column)
 FILE *ficreseij;    we changed int to long in num[] and we added a new lvector for
   char filerese[FILENAMELENGTH];    memory allocation. But we also truncated to 8 characters (left
  FILE  *ficresvij;    truncation)
   char fileresv[FILENAMELENGTH];    (Repository): No more line truncation errors.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define NR_END 1    place. It differs from routine "prevalence" which may be called
 #define FREE_ARG char*    many times. Probs is memory consuming and must be used with
 #define FTOL 1.0e-10    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define NRANSI  
 #define ITMAX 200    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define TOL 2.0e-4  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define CGOLD 0.3819660    Add log in  imach.c and  fullversion number is now printed.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  */
   /*
 #define GOLD 1.618034     Interpolated Markov Chain
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Short summary of the programme:
     
 static double maxarg1,maxarg2;    This program computes Healthy Life Expectancies from
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    first survey ("cross") where individuals from different ages are
      interviewed on their health status or degree of disability (in the
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    case of a health survey which is our main interest) -2- at least a
 #define rint(a) floor(a+0.5)    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 static double sqrarg;    computed from the time spent in each health state according to a
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    model. More health states you consider, more time is necessary to reach the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 int imx;    probability to be observed in state j at the second wave
 int stepm;    conditional to be observed in state i at the first wave. Therefore
 /* Stepm, step in month: minimum step interpolation*/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 int estepm;    complex model than "constant and age", you should modify the program
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 int m,nb;    convergence.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    The advantage of this computer programme, compared to a simple
 double **pmmij, ***probs, ***mobaverage;    multinomial logistic model, is clear when the delay between waves is not
 double dateintmean=0;    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 double *weight;    account using an interpolation or extrapolation.  
 int **s; /* Status */  
 double *agedc, **covar, idx;    hPijx is the probability to be observed in state i at age x+h
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    states. This elementary transition (by month, quarter,
 double ftolhess; /* Tolerance for computing hessian */    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 /**************** split *************************/    and the contribution of each individual to the likelihood is simply
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    hPijx.
 {  
    char *s;                             /* pointer */    Also this programme outputs the covariance matrix of the parameters but also
    int  l1, l2;                         /* length counters */    of the life expectancies. It also computes the stable prevalence. 
     
    l1 = strlen( path );                 /* length of path */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );             Institut national d'études démographiques, Paris.
 #ifdef windows    This software have been partly granted by Euro-REVES, a concerted action
    s = strrchr( path, '\\' );           /* find last / */    from the European Union.
 #else    It is copyrighted identically to a GNU software product, ie programme and
    s = strrchr( path, '/' );            /* find last / */    software can be distributed freely for non commercial use. Latest version
 #endif    can be accessed at http://euroreves.ined.fr/imach .
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       extern char       *getwd( );    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
       if ( getwd( dirc ) == NULL ) {    **********************************************************************/
 #else  /*
       extern char       *getcwd( );    main
     read parameterfile
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    read datafile
 #endif    concatwav
          return( GLOCK_ERROR_GETCWD );    freqsummary
       }    if (mle >= 1)
       strcpy( name, path );             /* we've got it */      mlikeli
    } else {                             /* strip direcotry from path */    print results files
       s++;                              /* after this, the filename */    if mle==1 
       l2 = strlen( s );                 /* length of filename */       computes hessian
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    read end of parameter file: agemin, agemax, bage, fage, estepm
       strcpy( name, s );                /* save file name */        begin-prev-date,...
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    open gnuplot file
       dirc[l1-l2] = 0;                  /* add zero */    open html file
    }    stable prevalence
    l1 = strlen( dirc );                 /* length of directory */     for age prevalim()
 #ifdef windows    h Pij x
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    variance of p varprob
 #else    forecasting if prevfcast==1 prevforecast call prevalence()
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    health expectancies
 #endif    Variance-covariance of DFLE
    s = strrchr( name, '.' );            /* find last / */    prevalence()
    s++;     movingaverage()
    strcpy(ext,s);                       /* save extension */    varevsij() 
    l1= strlen( name);    if popbased==1 varevsij(,popbased)
    l2= strlen( s)+1;    total life expectancies
    strncpy( finame, name, l1-l2);    Variance of stable prevalence
    finame[l1-l2]= 0;   end
    return( 0 );                         /* we're done */  */
 }  
   
   
 /******************************************/   
   #include <math.h>
 void replace(char *s, char*t)  #include <stdio.h>
 {  #include <stdlib.h>
   int i;  #include <unistd.h>
   int lg=20;  
   i=0;  /* #include <sys/time.h> */
   lg=strlen(t);  #include <time.h>
   for(i=0; i<= lg; i++) {  #include "timeval.h"
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  /* #include <libintl.h> */
   }  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 int nbocc(char *s, char occ)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   int i,j=0;  #define FILENAMELENGTH 132
   int lg=20;  /*#define DEBUG*/
   i=0;  /*#define windows*/
   lg=strlen(s);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for(i=0; i<= lg; i++) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   if  (s[i] == occ ) j++;  
   }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   return j;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 void cutv(char *u,char *v, char*t, char occ)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int i,lg,j,p=0;  #define NCOVMAX 8 /* Maximum number of covariates */
   i=0;  #define MAXN 20000
   for(j=0; j<=strlen(t)-1; j++) {  #define YEARM 12. /* Number of months per year */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define AGESUP 130
   }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   lg=strlen(t);  #ifdef UNIX
   for(j=0; j<p; j++) {  #define DIRSEPARATOR '/'
     (u[j] = t[j]);  #define ODIRSEPARATOR '\\'
   }  #else
      u[p]='\0';  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
    for(j=0; j<= lg; j++) {  #endif
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  /* $Id$ */
 }  /* $State$ */
   
 /********************** nrerror ********************/  char version[]="Imach version 0.97c, September 2004, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 void nrerror(char error_text[])  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   fprintf(stderr,"ERREUR ...\n");  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   fprintf(stderr,"%s\n",error_text);  int npar=NPARMAX;
   exit(1);  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
 /*********************** vector *******************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double *vector(int nl, int nh)  int popbased=0;
 {  
   double *v;  int *wav; /* Number of waves for this individuual 0 is possible */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int maxwav; /* Maxim number of waves */
   if (!v) nrerror("allocation failure in vector");  int jmin, jmax; /* min, max spacing between 2 waves */
   return v-nl+NR_END;  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /************************ free vector ******************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 void free_vector(double*v, int nl, int nh)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   free((FREE_ARG)(v+nl-NR_END));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /************************ivector *******************************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 int *ivector(long nl,long nh)  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   int *v;  int globpr; /* Global variable for printing or not */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double fretone; /* Only one call to likelihood */
   if (!v) nrerror("allocation failure in ivector");  long ipmx; /* Number of contributions */
   return v-nl+NR_END;  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /******************free ivector **************************/  FILE *ficresilk;
 void free_ivector(int *v, long nl, long nh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   free((FREE_ARG)(v+nl-NR_END));  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /******************* imatrix *******************************/  FILE  *ficresvij;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char fileresv[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char title[MAXLINE];
   int **m;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   /* allocate pointers to rows */  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char command[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  int  outcmd=0;
   m += NR_END;  
   m -= nrl;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    
    char filelog[FILENAMELENGTH]; /* Log file */
   /* allocate rows and set pointers to them */  char filerest[FILENAMELENGTH];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char fileregp[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char popfile[FILENAMELENGTH];
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
   /* return pointer to array of pointers to rows */  extern int gettimeofday();
   return m;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 }  long time_value;
   extern long time();
 /****************** free_imatrix *************************/  char strcurr[80], strfor[80];
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  #define NR_END 1
       long nch,ncl,nrh,nrl;  #define FREE_ARG char*
      /* free an int matrix allocated by imatrix() */  #define FTOL 1.0e-10
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define NRANSI 
   free((FREE_ARG) (m+nrl-NR_END));  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double **m;  
   #define GOLD 1.618034 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define GLIMIT 100.0 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define TINY 1.0e-20 
   m += NR_END;  
   m -= nrl;  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m[nrl] -= ncl;  #define rint(a) floor(a+0.5)
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  static double sqrarg;
   return m;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int imx; 
 {  int stepm=1;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int m,nb;
 {  long *num;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double ***m;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double *ageexmed,*agecens;
   if (!m) nrerror("allocation failure 1 in matrix()");  double dateintmean=0;
   m += NR_END;  
   m -= nrl;  double *weight;
   int **s; /* Status */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double *agedc, **covar, idx;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   /**************** split *************************/
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  {
   m[nrl][ncl] += NR_END;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   m[nrl][ncl] -= nll;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   for (j=ncl+1; j<=nch; j++)    */ 
     m[nrl][j]=m[nrl][j-1]+nlay;    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    l1 = strlen(path );                   /* length of path */
     for (j=ncl+1; j<=nch; j++)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       m[i][j]=m[i][j-1]+nlay;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   }    if ( ss == NULL ) {                   /* no directory, so use current */
   return m;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /*************************free ma3x ************************/      /*    extern  char* getcwd ( char *buf , int len);*/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {        return( GLOCK_ERROR_GETCWD );
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      strcpy( name, path );               /* we've got it */
   free((FREE_ARG)(m+nrl-NR_END));    } else {                              /* strip direcotry from path */
 }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 /***************** f1dim *************************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 extern int ncom;      strcpy( name, ss );         /* save file name */
 extern double *pcom,*xicom;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 extern double (*nrfunc)(double []);      dirc[l1-l2] = 0;                    /* add zero */
      }
 double f1dim(double x)    l1 = strlen( dirc );                  /* length of directory */
 {    /*#ifdef windows
   int j;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   double f;  #else
   double *xt;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
    #endif
   xt=vector(1,ncom);    */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    ss = strrchr( name, '.' );            /* find last / */
   f=(*nrfunc)(xt);    if (ss >0){
   free_vector(xt,1,ncom);      ss++;
   return f;      strcpy(ext,ss);                     /* save extension */
 }      l1= strlen( name);
       l2= strlen(ss)+1;
 /*****************brent *************************/      strncpy( finame, name, l1-l2);
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      finame[l1-l2]= 0;
 {    }
   int iter;    return( 0 );                          /* we're done */
   double a,b,d,etemp;  }
   double fu,fv,fw,fx;  
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /******************************************/
   double e=0.0;  
    void replace_back_to_slash(char *s, char*t)
   a=(ax < cx ? ax : cx);  {
   b=(ax > cx ? ax : cx);    int i;
   x=w=v=bx;    int lg=0;
   fw=fv=fx=(*f)(x);    i=0;
   for (iter=1;iter<=ITMAX;iter++) {    lg=strlen(t);
     xm=0.5*(a+b);    for(i=0; i<= lg; i++) {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      (s[i] = t[i]);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      if (t[i]== '\\') s[i]='/';
     printf(".");fflush(stdout);    }
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int nbocc(char *s, char occ)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    int i,j=0;
       *xmin=x;    int lg=20;
       return fx;    i=0;
     }    lg=strlen(s);
     ftemp=fu;    for(i=0; i<= lg; i++) {
     if (fabs(e) > tol1) {    if  (s[i] == occ ) j++;
       r=(x-w)*(fx-fv);    }
       q=(x-v)*(fx-fw);    return j;
       p=(x-v)*q-(x-w)*r;  }
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  void cutv(char *u,char *v, char*t, char occ)
       q=fabs(q);  {
       etemp=e;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       e=d;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       gives u="abcedf" and v="ghi2j" */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    int i,lg,j,p=0;
       else {    i=0;
         d=p/q;    for(j=0; j<=strlen(t)-1; j++) {
         u=x+d;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         if (u-a < tol2 || b-u < tol2)    }
           d=SIGN(tol1,xm-x);  
       }    lg=strlen(t);
     } else {    for(j=0; j<p; j++) {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      (u[j] = t[j]);
     }    }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));       u[p]='\0';
     fu=(*f)(u);  
     if (fu <= fx) {     for(j=0; j<= lg; j++) {
       if (u >= x) a=x; else b=x;      if (j>=(p+1))(v[j-p-1] = t[j]);
       SHFT(v,w,x,u)    }
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  /********************** nrerror ********************/
           if (fu <= fw || w == x) {  
             v=w;  void nrerror(char error_text[])
             w=u;  {
             fv=fw;    fprintf(stderr,"ERREUR ...\n");
             fw=fu;    fprintf(stderr,"%s\n",error_text);
           } else if (fu <= fv || v == x || v == w) {    exit(EXIT_FAILURE);
             v=u;  }
             fv=fu;  /*********************** vector *******************/
           }  double *vector(int nl, int nh)
         }  {
   }    double *v;
   nrerror("Too many iterations in brent");    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   *xmin=x;    if (!v) nrerror("allocation failure in vector");
   return fx;    return v-nl+NR_END;
 }  }
   
 /****************** mnbrak ***********************/  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  {
             double (*func)(double))    free((FREE_ARG)(v+nl-NR_END));
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /************************ivector *******************************/
    int *ivector(long nl,long nh)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    int *v;
   if (*fb > *fa) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     SHFT(dum,*ax,*bx,dum)    if (!v) nrerror("allocation failure in ivector");
       SHFT(dum,*fb,*fa,dum)    return v-nl+NR_END;
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /******************free ivector **************************/
   while (*fb > *fc) {  void free_ivector(int *v, long nl, long nh)
     r=(*bx-*ax)*(*fb-*fc);  {
     q=(*bx-*cx)*(*fb-*fa);    free((FREE_ARG)(v+nl-NR_END));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /************************lvector *******************************/
     if ((*bx-u)*(u-*cx) > 0.0) {  long *lvector(long nl,long nh)
       fu=(*func)(u);  {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    long *v;
       fu=(*func)(u);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       if (fu < *fc) {    if (!v) nrerror("allocation failure in ivector");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    return v-nl+NR_END;
           SHFT(*fb,*fc,fu,(*func)(u))  }
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /******************free lvector **************************/
       u=ulim;  void free_lvector(long *v, long nl, long nh)
       fu=(*func)(u);  {
     } else {    free((FREE_ARG)(v+nl-NR_END));
       u=(*cx)+GOLD*(*cx-*bx);  }
       fu=(*func)(u);  
     }  /******************* imatrix *******************************/
     SHFT(*ax,*bx,*cx,u)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       SHFT(*fa,*fb,*fc,fu)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       }  { 
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 /*************** linmin ************************/    
     /* allocate pointers to rows */ 
 int ncom;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 double *pcom,*xicom;    if (!m) nrerror("allocation failure 1 in matrix()"); 
 double (*nrfunc)(double []);    m += NR_END; 
      m -= nrl; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    
 {    
   double brent(double ax, double bx, double cx,    /* allocate rows and set pointers to them */ 
                double (*f)(double), double tol, double *xmin);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double f1dim(double x);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m[nrl] += NR_END; 
               double *fc, double (*func)(double));    m[nrl] -= ncl; 
   int j;    
   double xx,xmin,bx,ax;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double fx,fb,fa;    
      /* return pointer to array of pointers to rows */ 
   ncom=n;    return m; 
   pcom=vector(1,n);  } 
   xicom=vector(1,n);  
   nrfunc=func;  /****************** free_imatrix *************************/
   for (j=1;j<=n;j++) {  void free_imatrix(m,nrl,nrh,ncl,nch)
     pcom[j]=p[j];        int **m;
     xicom[j]=xi[j];        long nch,ncl,nrh,nrl; 
   }       /* free an int matrix allocated by imatrix() */ 
   ax=0.0;  { 
   xx=1.0;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    free((FREE_ARG) (m+nrl-NR_END)); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  } 
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /******************* matrix *******************************/
 #endif  double **matrix(long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=n;j++) {  {
     xi[j] *= xmin;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     p[j] += xi[j];    double **m;
   }  
   free_vector(xicom,1,n);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   free_vector(pcom,1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             double (*func)(double []))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   void linmin(double p[], double xi[], int n, double *fret,    m[nrl] -= ncl;
               double (*func)(double []));  
   int i,ibig,j;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double del,t,*pt,*ptt,*xit;    return m;
   double fp,fptt;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double *xits;     */
   pt=vector(1,n);  }
   ptt=vector(1,n);  
   xit=vector(1,n);  /*************************free matrix ************************/
   xits=vector(1,n);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (*iter=1;;++(*iter)) {    free((FREE_ARG)(m+nrl-NR_END));
     fp=(*fret);  }
     ibig=0;  
     del=0.0;  /******************* ma3x *******************************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     for (i=1;i<=n;i++)  {
       printf(" %d %.12f",i, p[i]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     printf("\n");    double ***m;
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fptt=(*fret);    if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
       printf("fret=%lf \n",*fret);    m -= nrl;
 #endif  
       printf("%d",i);fflush(stdout);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       linmin(p,xit,n,fret,func);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (fabs(fptt-(*fret)) > del) {    m[nrl] += NR_END;
         del=fabs(fptt-(*fret));    m[nrl] -= ncl;
         ibig=i;  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for (j=1;j<=n;j++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m[nrl][ncl] += NR_END;
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++) 
       for(j=1;j<=n;j++)      m[nrl][j]=m[nrl][j-1]+nlay;
         printf(" p=%.12e",p[j]);    
       printf("\n");    for (i=nrl+1; i<=nrh; i++) {
 #endif      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }      for (j=ncl+1; j<=nch; j++) 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        m[i][j]=m[i][j-1]+nlay;
 #ifdef DEBUG    }
       int k[2],l;    return m; 
       k[0]=1;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       k[1]=-1;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       printf("Max: %.12e",(*func)(p));    */
       for (j=1;j<=n;j++)  }
         printf(" %.12e",p[j]);  
       printf("\n");  /*************************free ma3x ************************/
       for(l=0;l<=1;l++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         for (j=1;j<=n;j++) {  {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         }    free((FREE_ARG)(m+nrl-NR_END));
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
       }  
 #endif  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
   {
       free_vector(xit,1,n);    /* Caution optionfilefiname is hidden */
       free_vector(xits,1,n);    strcpy(tmpout,optionfilefiname);
       free_vector(ptt,1,n);    strcat(tmpout,"/"); /* Add to the right */
       free_vector(pt,1,n);    strcat(tmpout,fileres);
       return;    return tmpout;
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /*************** function subdirf2 ***********/
       ptt[j]=2.0*p[j]-pt[j];  char *subdirf2(char fileres[], char *preop)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    
     }    /* Caution optionfilefiname is hidden */
     fptt=(*func)(ptt);    strcpy(tmpout,optionfilefiname);
     if (fptt < fp) {    strcat(tmpout,"/");
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    strcat(tmpout,preop);
       if (t < 0.0) {    strcat(tmpout,fileres);
         linmin(p,xit,n,fret,func);    return tmpout;
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /*************** function subdirf3 ***********/
         }  char *subdirf3(char fileres[], char *preop, char *preop2)
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    
         for(j=1;j<=n;j++)    /* Caution optionfilefiname is hidden */
           printf(" %.12e",xit[j]);    strcpy(tmpout,optionfilefiname);
         printf("\n");    strcat(tmpout,"/");
 #endif    strcat(tmpout,preop);
       }    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
   }    return tmpout;
 }  }
   
 /**** Prevalence limit ****************/  /***************** f1dim *************************/
   extern int ncom; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  extern double *pcom,*xicom;
 {  extern double (*nrfunc)(double []); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit   
      matrix by transitions matrix until convergence is reached */  double f1dim(double x) 
   { 
   int i, ii,j,k;    int j; 
   double min, max, maxmin, maxmax,sumnew=0.;    double f;
   double **matprod2();    double *xt; 
   double **out, cov[NCOVMAX], **pmij();   
   double **newm;    xt=vector(1,ncom); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    free_vector(xt,1,ncom); 
     for (j=1;j<=nlstate+ndeath;j++){    return f; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  } 
     }  
   /*****************brent *************************/
    cov[1]=1.;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
    { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int iter; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    double a,b,d,etemp;
     newm=savm;    double fu,fv,fw,fx;
     /* Covariates have to be included here again */    double ftemp;
      cov[2]=agefin;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      double e=0.0; 
       for (k=1; k<=cptcovn;k++) {   
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    a=(ax < cx ? ax : cx); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    b=(ax > cx ? ax : cx); 
       }    x=w=v=bx; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    fw=fv=fx=(*f)(x); 
       for (k=1; k<=cptcovprod;k++)    for (iter=1;iter<=ITMAX;iter++) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      printf(".");fflush(stdout);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      fprintf(ficlog,".");fflush(ficlog);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     savm=oldm;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     oldm=newm;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     maxmax=0.;  #endif
     for(j=1;j<=nlstate;j++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       min=1.;        *xmin=x; 
       max=0.;        return fx; 
       for(i=1; i<=nlstate; i++) {      } 
         sumnew=0;      ftemp=fu;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      if (fabs(e) > tol1) { 
         prlim[i][j]= newm[i][j]/(1-sumnew);        r=(x-w)*(fx-fv); 
         max=FMAX(max,prlim[i][j]);        q=(x-v)*(fx-fw); 
         min=FMIN(min,prlim[i][j]);        p=(x-v)*q-(x-w)*r; 
       }        q=2.0*(q-r); 
       maxmin=max-min;        if (q > 0.0) p = -p; 
       maxmax=FMAX(maxmax,maxmin);        q=fabs(q); 
     }        etemp=e; 
     if(maxmax < ftolpl){        e=d; 
       return prlim;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   }        else { 
 }          d=p/q; 
           u=x+d; 
 /*************** transition probabilities ***************/          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        } 
 {      } else { 
   double s1, s2;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /*double t34;*/      } 
   int i,j,j1, nc, ii, jj;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
     for(i=1; i<= nlstate; i++){      if (fu <= fx) { 
     for(j=1; j<i;j++){        if (u >= x) a=x; else b=x; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        SHFT(v,w,x,u) 
         /*s2 += param[i][j][nc]*cov[nc];*/          SHFT(fv,fw,fx,fu) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          } else { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
       ps[i][j]=s2;              v=w; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/              w=u; 
     }              fv=fw; 
     for(j=i+1; j<=nlstate+ndeath;j++){              fw=fu; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            } else if (fu <= fv || v == x || v == w) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];              v=u; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/              fv=fu; 
       }            } 
       ps[i][j]=s2;          } 
     }    } 
   }    nrerror("Too many iterations in brent"); 
     /*ps[3][2]=1;*/    *xmin=x; 
     return fx; 
   for(i=1; i<= nlstate; i++){  } 
      s1=0;  
     for(j=1; j<i; j++)  /****************** mnbrak ***********************/
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       s1+=exp(ps[i][j]);              double (*func)(double)) 
     ps[i][i]=1./(s1+1.);  { 
     for(j=1; j<i; j++)    double ulim,u,r,q, dum;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double fu; 
     for(j=i+1; j<=nlstate+ndeath; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fa=(*func)(*ax); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    *fb=(*func)(*bx); 
   } /* end i */    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        SHFT(dum,*fb,*fa,dum) 
     for(jj=1; jj<= nlstate+ndeath; jj++){        } 
       ps[ii][jj]=0;    *cx=(*bx)+GOLD*(*bx-*ax); 
       ps[ii][ii]=1;    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
   }      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
      printf("%lf ",ps[ii][jj]);      if ((*bx-u)*(u-*cx) > 0.0) { 
    }        fu=(*func)(u); 
     printf("\n ");      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     }        fu=(*func)(u); 
     printf("\n ");printf("%lf ",cov[2]);*/        if (fu < *fc) { 
 /*          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);            SHFT(*fb,*fc,fu,(*func)(u)) 
   goto end;*/            } 
     return ps;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 }        u=ulim; 
         fu=(*func)(u); 
 /**************** Product of 2 matrices ******************/      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        fu=(*func)(u); 
 {      } 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      SHFT(*ax,*bx,*cx,u) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        SHFT(*fa,*fb,*fc,fu) 
   /* in, b, out are matrice of pointers which should have been initialized        } 
      before: only the contents of out is modified. The function returns  } 
      a pointer to pointers identical to out */  
   long i, j, k;  /*************** linmin ************************/
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  int ncom; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  double *pcom,*xicom;
         out[i][k] +=in[i][j]*b[j][k];  double (*nrfunc)(double []); 
    
   return out;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 }  { 
     double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 /************* Higher Matrix Product ***************/    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )                double *fc, double (*func)(double)); 
 {    int j; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    double xx,xmin,bx,ax; 
      duration (i.e. until    double fx,fb,fa;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.   
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    ncom=n; 
      (typically every 2 years instead of every month which is too big).    pcom=vector(1,n); 
      Model is determined by parameters x and covariates have to be    xicom=vector(1,n); 
      included manually here.    nrfunc=func; 
     for (j=1;j<=n;j++) { 
      */      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
   int i, j, d, h, k;    } 
   double **out, cov[NCOVMAX];    ax=0.0; 
   double **newm;    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   /* Hstepm could be zero and should return the unit matrix */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for (i=1;i<=nlstate+ndeath;i++)  #ifdef DEBUG
     for (j=1;j<=nlstate+ndeath;j++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       po[i][j][0]=(i==j ? 1.0 : 0.0);  #endif
     }    for (j=1;j<=n;j++) { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      xi[j] *= xmin; 
   for(h=1; h <=nhstepm; h++){      p[j] += xi[j]; 
     for(d=1; d <=hstepm; d++){    } 
       newm=savm;    free_vector(xicom,1,n); 
       /* Covariates have to be included here again */    free_vector(pcom,1,n); 
       cov[1]=1.;  } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char *asc_diff_time(long time_sec, char ascdiff[])
       for (k=1; k<=cptcovage;k++)  {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    long sec_left, days, hours, minutes;
       for (k=1; k<=cptcovprod;k++)    days = (time_sec) / (60*60*24);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    minutes = (sec_left) /60;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    sec_left = (sec_left) % (60);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    return ascdiff;
       savm=oldm;  }
       oldm=newm;  
     }  /*************** powell ************************/
     for(i=1; i<=nlstate+ndeath; i++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for(j=1;j<=nlstate+ndeath;j++) {              double (*func)(double [])) 
         po[i][j][h]=newm[i][j];  { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    void linmin(double p[], double xi[], int n, double *fret, 
          */                double (*func)(double [])); 
       }    int i,ibig,j; 
   } /* end h */    double del,t,*pt,*ptt,*xit;
   return po;    double fp,fptt;
 }    double *xits;
     int niterf, itmp;
   
 /*************** log-likelihood *************/    pt=vector(1,n); 
 double func( double *x)    ptt=vector(1,n); 
 {    xit=vector(1,n); 
   int i, ii, j, k, mi, d, kk;    xits=vector(1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    *fret=(*func)(p); 
   double **out;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double sw; /* Sum of weights */    for (*iter=1;;++(*iter)) { 
   double lli; /* Individual log likelihood */      fp=(*fret); 
   int s1, s2;      ibig=0; 
   long ipmx;      del=0.0; 
   /*extern weight */      last_time=curr_time;
   /* We are differentiating ll according to initial status */      (void) gettimeofday(&curr_time,&tzp);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   /*for(i=1;i<imx;i++)      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     printf(" %d\n",s[4][i]);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   */      */
   cov[1]=1.;     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        fprintf(ficlog," %d %.12lf",i, p[i]);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fprintf(ficrespow," %.12lf", p[i]);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
     for(mi=1; mi<= wav[i]-1; mi++){      printf("\n");
       for (ii=1;ii<=nlstate+ndeath;ii++)      fprintf(ficlog,"\n");
         for (j=1;j<=nlstate+ndeath;j++){      fprintf(ficrespow,"\n");fflush(ficrespow);
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if(*iter <=3){
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        tm = *localtime(&curr_time.tv_sec);
         }        strcpy(strcurr,asctime(&tm));
       for(d=0; d<dh[mi][i]; d++){  /*       asctime_r(&tm,strcurr); */
         newm=savm;        forecast_time=curr_time; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        itmp = strlen(strcurr);
         for (kk=1; kk<=cptcovage;kk++) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          strcurr[itmp-1]='\0';
         }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(niterf=10;niterf<=30;niterf+=10){
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         savm=oldm;          tmf = *localtime(&forecast_time.tv_sec);
         oldm=newm;  /*      asctime_r(&tmf,strfor); */
                  strcpy(strfor,asctime(&tmf));
                  itmp = strlen(strfor);
       } /* end mult */          if(strfor[itmp-1]=='\n')
                strfor[itmp-1]='\0';
       s1=s[mw[mi][i]][i];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       s2=s[mw[mi+1][i]][i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       if( s2 > nlstate){        }
         /* i.e. if s2 is a death state and if the date of death is known then the contribution      }
            to the likelihood is the probability to die between last step unit time and current      for (i=1;i<=n;i++) { 
            step unit time, which is also the differences between probability to die before dh        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
            and probability to die before dh-stepm .        fptt=(*fret); 
            In version up to 0.92 likelihood was computed  #ifdef DEBUG
            as if date of death was unknown. Death was treated as any other        printf("fret=%lf \n",*fret);
            health state: the date of the interview describes the actual state        fprintf(ficlog,"fret=%lf \n",*fret);
            and not the date of a change in health state. The former idea was  #endif
            to consider that at each interview the state was recorded        printf("%d",i);fflush(stdout);
            (healthy, disable or death) and IMaCh was corrected; but when we        fprintf(ficlog,"%d",i);fflush(ficlog);
            introduced the exact date of death then we should have modified        linmin(p,xit,n,fret,func); 
            the contribution of an exact death to the likelihood. This new        if (fabs(fptt-(*fret)) > del) { 
            contribution is smaller and very dependent of the step unit          del=fabs(fptt-(*fret)); 
            stepm. It is no more the probability to die between last interview          ibig=i; 
            and month of death but the probability to survive from last        } 
            interview up to one month before death multiplied by the  #ifdef DEBUG
            probability to die within a month. Thanks to Chris        printf("%d %.12e",i,(*fret));
            Jackson for correcting this bug.  Former versions increased        fprintf(ficlog,"%d %.12e",i,(*fret));
            mortality artificially. The bad side is that we add another loop        for (j=1;j<=n;j++) {
            which slows down the processing. The difference can be up to 10%          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
            lower mortality.          printf(" x(%d)=%.12e",j,xit[j]);
         */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         lli=log(out[s1][s2] - savm[s1][s2]);        }
       }else{        for(j=1;j<=n;j++) {
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */          printf(" p=%.12e",p[j]);
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          fprintf(ficlog," p=%.12e",p[j]);
       }        }
       ipmx +=1;        printf("\n");
       sw += weight[i];        fprintf(ficlog,"\n");
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #endif
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/      } 
     } /* end of wave */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   } /* end of individual */  #ifdef DEBUG
         int k[2],l;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        k[0]=1;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        k[1]=-1;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        printf("Max: %.12e",(*func)(p));
   /*exit(0);*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
   return -l;        for (j=1;j<=n;j++) {
 }          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
         }
 /*********** Maximum Likelihood Estimation ***************/        printf("\n");
         fprintf(ficlog,"\n");
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        for(l=0;l<=1;l++) {
 {          for (j=1;j<=n;j++) {
   int i,j, iter;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double **xi,*delti;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double fret;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   xi=matrix(1,npar,1,npar);          }
   for (i=1;i<=npar;i++)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       xi[i][j]=(i==j ? 1.0 : 0.0);        }
   printf("Powell\n");  #endif
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        free_vector(xit,1,n); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
 }        free_vector(pt,1,n); 
         return; 
 /**** Computes Hessian and covariance matrix ***/      } 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 {      for (j=1;j<=n;j++) { 
   double  **a,**y,*x,pd;        ptt[j]=2.0*p[j]-pt[j]; 
   double **hess;        xit[j]=p[j]-pt[j]; 
   int i, j,jk;        pt[j]=p[j]; 
   int *indx;      } 
       fptt=(*func)(ptt); 
   double hessii(double p[], double delta, int theta, double delti[]);      if (fptt < fp) { 
   double hessij(double p[], double delti[], int i, int j);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        if (t < 0.0) { 
   void ludcmp(double **a, int npar, int *indx, double *d) ;          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   hess=matrix(1,npar,1,npar);            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
   printf("\nCalculation of the hessian matrix. Wait...\n");          }
   for (i=1;i<=npar;i++){  #ifdef DEBUG
     printf("%d",i);fflush(stdout);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     hess[i][i]=hessii(p,ftolhess,i,delti);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     /*printf(" %f ",p[i]);*/          for(j=1;j<=n;j++){
     /*printf(" %lf ",hess[i][i]);*/            printf(" %.12e",xit[j]);
   }            fprintf(ficlog," %.12e",xit[j]);
            }
   for (i=1;i<=npar;i++) {          printf("\n");
     for (j=1;j<=npar;j++)  {          fprintf(ficlog,"\n");
       if (j>i) {  #endif
         printf(".%d%d",i,j);fflush(stdout);        }
         hess[i][j]=hessij(p,delti,i,j);      } 
         hess[j][i]=hess[i][j];        } 
         /*printf(" %lf ",hess[i][j]);*/  } 
       }  
     }  /**** Prevalence limit (stable prevalence)  ****************/
   }  
   printf("\n");  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         matrix by transitions matrix until convergence is reached */
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);    int i, ii,j,k;
   x=vector(1,npar);    double min, max, maxmin, maxmax,sumnew=0.;
   indx=ivector(1,npar);    double **matprod2();
   for (i=1;i<=npar;i++)    double **out, cov[NCOVMAX], **pmij();
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double **newm;
   ludcmp(a,npar,indx,&pd);    double agefin, delaymax=50 ; /* Max number of years to converge */
   
   for (j=1;j<=npar;j++) {    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1;i<=npar;i++) x[i]=0;      for (j=1;j<=nlstate+ndeath;j++){
     x[j]=1;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     lubksb(a,npar,indx,x);      }
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];     cov[1]=1.;
     }   
   }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   printf("\n#Hessian matrix#\n");      newm=savm;
   for (i=1;i<=npar;i++) {      /* Covariates have to be included here again */
     for (j=1;j<=npar;j++) {       cov[2]=agefin;
       printf("%.3e ",hess[i][j]);    
     }        for (k=1; k<=cptcovn;k++) {
     printf("\n");          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
   /* Recompute Inverse */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (i=1;i<=npar;i++)        for (k=1; k<=cptcovprod;k++)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   ludcmp(a,npar,indx,&pd);  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   /*  printf("\n#Hessian matrix recomputed#\n");        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for (j=1;j<=npar;j++) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;      savm=oldm;
     lubksb(a,npar,indx,x);      oldm=newm;
     for (i=1;i<=npar;i++){      maxmax=0.;
       y[i][j]=x[i];      for(j=1;j<=nlstate;j++){
       printf("%.3e ",y[i][j]);        min=1.;
     }        max=0.;
     printf("\n");        for(i=1; i<=nlstate; i++) {
   }          sumnew=0;
   */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   free_matrix(a,1,npar,1,npar);          max=FMAX(max,prlim[i][j]);
   free_matrix(y,1,npar,1,npar);          min=FMIN(min,prlim[i][j]);
   free_vector(x,1,npar);        }
   free_ivector(indx,1,npar);        maxmin=max-min;
   free_matrix(hess,1,npar,1,npar);        maxmax=FMAX(maxmax,maxmin);
       }
       if(maxmax < ftolpl){
 }        return prlim;
       }
 /*************** hessian matrix ****************/    }
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  
   int i;  /*************** transition probabilities ***************/ 
   int l=1, lmax=20;  
   double k1,k2;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double p2[NPARMAX+1];  {
   double res;    double s1, s2;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    /*double t34;*/
   double fx;    int i,j,j1, nc, ii, jj;
   int k=0,kmax=10;  
   double l1;      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
   fx=func(x);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=npar;i++) p2[i]=x[i];            /*s2 += param[i][j][nc]*cov[nc];*/
   for(l=0 ; l <=lmax; l++){            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     l1=pow(10,l);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     delts=delt;          }
     for(k=1 ; k <kmax; k=k+1){          ps[i][j]=s2;
       delt = delta*(l1*k);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       p2[theta]=x[theta] +delt;        }
       k1=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath;j++){
       p2[theta]=x[theta]-delt;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       k2=func(p2)-fx;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          }
                ps[i][j]=s2;
 #ifdef DEBUG        }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      }
 #endif      /*ps[3][2]=1;*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for(i=1; i<= nlstate; i++){
         k=kmax;        s1=0;
       }        for(j=1; j<i; j++)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          s1+=exp(ps[i][j]);
         k=kmax; l=lmax*10.;        for(j=i+1; j<=nlstate+ndeath; j++)
       }          s1+=exp(ps[i][j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        ps[i][i]=1./(s1+1.);
         delts=delt;        for(j=1; j<i; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        for(j=i+1; j<=nlstate+ndeath; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   delti[theta]=delts;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   return res;      } /* end i */
        
 }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
 double hessij( double x[], double delti[], int thetai,int thetaj)          ps[ii][jj]=0;
 {          ps[ii][ii]=1;
   int i;        }
   int l=1, l1, lmax=20;      }
   double k1,k2,k3,k4,res,fx;      
   double p2[NPARMAX+1];  
   int k;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   fx=func(x);  /*         printf("ddd %lf ",ps[ii][jj]); */
   for (k=1; k<=2; k++) {  /*       } */
     for (i=1;i<=npar;i++) p2[i]=x[i];  /*       printf("\n "); */
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*        } */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*        printf("\n ");printf("%lf ",cov[2]); */
     k1=func(p2)-fx;         /*
          for(i=1; i<= npar; i++) printf("%f ",x[i]);
     p2[thetai]=x[thetai]+delti[thetai]/k;        goto end;*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      return ps;
     k2=func(p2)-fx;  }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /**************** Product of 2 matrices ******************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     k4=func(p2)-fx;    /* in, b, out are matrice of pointers which should have been initialized 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */       before: only the contents of out is modified. The function returns
 #ifdef DEBUG       a pointer to pointers identical to out */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    long i, j, k;
 #endif    for(i=nrl; i<= nrh; i++)
   }      for(k=ncolol; k<=ncoloh; k++)
   return res;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
 }          out[i][k] +=in[i][j]*b[j][k];
   
 /************** Inverse of matrix **************/    return out;
 void ludcmp(double **a, int n, int *indx, double *d)  }
 {  
   int i,imax,j,k;  
   double big,dum,sum,temp;  /************* Higher Matrix Product ***************/
   double *vv;  
    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   vv=vector(1,n);  {
   *d=1.0;    /* Computes the transition matrix starting at age 'age' over 
   for (i=1;i<=n;i++) {       'nhstepm*hstepm*stepm' months (i.e. until
     big=0.0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     for (j=1;j<=n;j++)       nhstepm*hstepm matrices. 
       if ((temp=fabs(a[i][j])) > big) big=temp;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       (typically every 2 years instead of every month which is too big 
     vv[i]=1.0/big;       for the memory).
   }       Model is determined by parameters x and covariates have to be 
   for (j=1;j<=n;j++) {       included manually here. 
     for (i=1;i<j;i++) {  
       sum=a[i][j];       */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;    int i, j, d, h, k;
     }    double **out, cov[NCOVMAX];
     big=0.0;    double **newm;
     for (i=j;i<=n;i++) {  
       sum=a[i][j];    /* Hstepm could be zero and should return the unit matrix */
       for (k=1;k<j;k++)    for (i=1;i<=nlstate+ndeath;i++)
         sum -= a[i][k]*a[k][j];      for (j=1;j<=nlstate+ndeath;j++){
       a[i][j]=sum;        oldm[i][j]=(i==j ? 1.0 : 0.0);
       if ( (dum=vv[i]*fabs(sum)) >= big) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
         big=dum;      }
         imax=i;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(h=1; h <=nhstepm; h++){
     }      for(d=1; d <=hstepm; d++){
     if (j != imax) {        newm=savm;
       for (k=1;k<=n;k++) {        /* Covariates have to be included here again */
         dum=a[imax][k];        cov[1]=1.;
         a[imax][k]=a[j][k];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         a[j][k]=dum;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }        for (k=1; k<=cptcovage;k++)
       *d = -(*d);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       vv[imax]=vv[j];        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       dum=1.0/(a[j][j]);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   }        savm=oldm;
   free_vector(vv,1,n);  /* Doesn't work */        oldm=newm;
 ;      }
 }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
 void lubksb(double **a, int n, int *indx, double b[])          po[i][j][h]=newm[i][j];
 {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   int i,ii=0,ip,j;           */
   double sum;        }
      } /* end h */
   for (i=1;i<=n;i++) {    return po;
     ip=indx[i];  }
     sum=b[ip];  
     b[ip]=b[i];  
     if (ii)  /*************** log-likelihood *************/
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  double func( double *x)
     else if (sum) ii=i;  {
     b[i]=sum;    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (i=n;i>=1;i--) {    double **out;
     sum=b[i];    double sw; /* Sum of weights */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    double lli; /* Individual log likelihood */
     b[i]=sum/a[i][i];    int s1, s2;
   }    double bbh, survp;
 }    long ipmx;
     /*extern weight */
 /************ Frequencies ********************/    /* We are differentiating ll according to initial status */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 {  /* Some frequencies */    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    */
   double ***freq; /* Frequencies */    cov[1]=1.;
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];    if(mle==1){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   pp=vector(1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(mi=1; mi<= wav[i]-1; mi++){
   strcpy(fileresp,"p");          for (ii=1;ii<=nlstate+ndeath;ii++)
   strcat(fileresp,fileres);            for (j=1;j<=nlstate+ndeath;j++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("Problem with prevalence resultfile: %s\n", fileresp);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     exit(0);            }
   }          for(d=0; d<dh[mi][i]; d++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            newm=savm;
   j1=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   j=cptcoveff;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(k1=1; k1<=j;k1++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i1=1; i1<=ncodemax[k1];i1++){            savm=oldm;
       j1++;            oldm=newm;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          } /* end mult */
         scanf("%d", i);*/        
       for (i=-1; i<=nlstate+ndeath; i++)            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for (jk=-1; jk<=nlstate+ndeath; jk++)            /* But now since version 0.9 we anticipate for bias at large stepm.
           for(m=agemin; m <= agemax+3; m++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             freq[i][jk][m]=0;           * (in months) between two waves is not a multiple of stepm, we rounded to 
                 * the nearest (and in case of equal distance, to the lowest) interval but now
       dateintsum=0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       k2cpt=0;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       for (i=1; i<=imx; i++) {           * probability in order to take into account the bias as a fraction of the way
         bool=1;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         if  (cptcovn>0) {           * -stepm/2 to stepm/2 .
           for (z1=1; z1<=cptcoveff; z1++)           * For stepm=1 the results are the same as for previous versions of Imach.
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           * For stepm > 1 the results are less biased than in previous versions. 
               bool=0;           */
         }          s1=s[mw[mi][i]][i];
         if (bool==1) {          s2=s[mw[mi+1][i]][i];
           for(m=firstpass; m<=lastpass; m++){          bbh=(double)bh[mi][i]/(double)stepm; 
             k2=anint[m][i]+(mint[m][i]/12.);          /* bias bh is positive if real duration
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           * is higher than the multiple of stepm and negative otherwise.
               if(agev[m][i]==0) agev[m][i]=agemax+1;           */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
               if (m<lastpass) {          if( s2 > nlstate){ 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];               to the likelihood is the probability to die between last step unit time and current 
               }               step unit time, which is also equal to probability to die before dh 
                             minus probability to die before dh-stepm . 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {               In version up to 0.92 likelihood was computed
                 dateintsum=dateintsum+k2;          as if date of death was unknown. Death was treated as any other
                 k2cpt++;          health state: the date of the interview describes the actual state
               }          and not the date of a change in health state. The former idea was
             }          to consider that at each interview the state was recorded
           }          (healthy, disable or death) and IMaCh was corrected; but when we
         }          introduced the exact date of death then we should have modified
       }          the contribution of an exact death to the likelihood. This new
                  contribution is smaller and very dependent of the step unit
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
       if  (cptcovn>0) {          interview up to one month before death multiplied by the
         fprintf(ficresp, "\n#********** Variable ");          probability to die within a month. Thanks to Chris
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          Jackson for correcting this bug.  Former versions increased
         fprintf(ficresp, "**********\n#");          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
       for(i=1; i<=nlstate;i++)          lower mortality.
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            */
       fprintf(ficresp, "\n");            lli=log(out[s1][s2] - savm[s1][s2]);
                }else{
       for(i=(int)agemin; i <= (int)agemax+3; i++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         if(i==(int)agemax+3)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           printf("Total");          } 
         else          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           printf("Age %d", i);          /*if(lli ==000.0)*/
         for(jk=1; jk <=nlstate ; jk++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ipmx +=1;
             pp[jk] += freq[jk][m][i];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1; jk <=nlstate ; jk++){        } /* end of wave */
           for(m=-1, pos=0; m <=0 ; m++)      } /* end of individual */
             pos += freq[jk][m][i];    }  else if(mle==2){
           if(pp[jk]>=1.e-10)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           else        for(mi=1; mi<= wav[i]-1; mi++){
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            }
             pp[jk] += freq[jk][m][i];          for(d=0; d<=dh[mi][i]; d++){
         }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1,pos=0; jk <=nlstate ; jk++)            for (kk=1; kk<=cptcovage;kk++) {
           pos += pp[jk];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){            }
           if(pos>=1.e-5)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           else            savm=oldm;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            oldm=newm;
           if( i <= (int) agemax){          } /* end mult */
             if(pos>=1.e-5){        
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          s1=s[mw[mi][i]][i];
               probs[i][jk][j1]= pp[jk]/pos;          s2=s[mw[mi+1][i]][i];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          bbh=(double)bh[mi][i]/(double)stepm; 
             }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             else          ipmx +=1;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
              } /* end of individual */
         for(jk=-1; jk <=nlstate+ndeath; jk++)    }  else if(mle==3){  /* exponential inter-extrapolation */
           for(m=-1; m <=nlstate+ndeath; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(i <= (int) agemax)        for(mi=1; mi<= wav[i]-1; mi++){
           fprintf(ficresp,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
         printf("\n");            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   dateintmean=dateintsum/k2cpt;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   fclose(ficresp);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   free_vector(pp,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   /* End of Freq */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************ Prevalence ********************/            oldm=newm;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          } /* end mult */
 {  /* Some frequencies */        
            s1=s[mw[mi][i]][i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          s2=s[mw[mi+1][i]][i];
   double ***freq; /* Frequencies */          bbh=(double)bh[mi][i]/(double)stepm; 
   double *pp;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double pos, k2;          ipmx +=1;
           sw += weight[i];
   pp=vector(1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        } /* end of wave */
        } /* end of individual */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   j1=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   j=cptcoveff;        for(mi=1; mi<= wav[i]-1; mi++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
  for(k1=1; k1<=j;k1++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       j1++;            }
            for(d=0; d<dh[mi][i]; d++){
       for (i=-1; i<=nlstate+ndeath; i++)              newm=savm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(m=agemin; m <= agemax+3; m++)            for (kk=1; kk<=cptcovage;kk++) {
             freq[i][jk][m]=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
       for (i=1; i<=imx; i++) {          
         bool=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if  (cptcovn>0) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for (z1=1; z1<=cptcoveff; z1++)            savm=oldm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            oldm=newm;
               bool=0;          } /* end mult */
         }        
         if (bool==1) {          s1=s[mw[mi][i]][i];
           for(m=firstpass; m<=lastpass; m++){          s2=s[mw[mi+1][i]][i];
             k2=anint[m][i]+(mint[m][i]/12.);          if( s2 > nlstate){ 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            lli=log(out[s1][s2] - savm[s1][s2]);
               if(agev[m][i]==0) agev[m][i]=agemax+1;          }else{
               if(agev[m][i]==1) agev[m][i]=agemax+2;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               if (m<lastpass)          }
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          ipmx +=1;
               else          sw += weight[i];
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             }        } /* end of wave */
           }      } /* end of individual */
         }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(i=(int)agemin; i <= (int)agemax+3; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
               pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              pp[jk] += freq[jk][m][i];            }
          }          
                      out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
          for(jk=1; jk <=nlstate ; jk++){                      oldm=newm;
            if( i <= (int) agemax){          } /* end mult */
              if(pos>=1.e-5){        
                probs[i][jk][j1]= pp[jk]/pos;          s1=s[mw[mi][i]][i];
              }          s2=s[mw[mi+1][i]][i];
            }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
          }          ipmx +=1;
                    sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   }        } /* end of wave */
       } /* end of individual */
      } /* End of if */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   free_vector(pp,1,nlstate);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 }  /* End of Freq */    return -l;
   }
 /************* Waves Concatenation ***************/  
   /*************** log-likelihood *************/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  double funcone( double *x)
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /* Same as likeli but slower because of a lot of printf and if */
      Death is a valid wave (if date is known).    int i, ii, j, k, mi, d, kk;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double **out;
      and mw[mi+1][i]. dh depends on stepm.    double lli; /* Individual log likelihood */
      */    double llt;
     int s1, s2;
   int i, mi, m;    double bbh, survp;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /*extern weight */
      double sum=0., jmean=0.;*/    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int j, k=0,jk, ju, jl;    /*for(i=1;i<imx;i++) 
   double sum=0.;      printf(" %d\n",s[4][i]);
   jmin=1e+5;    */
   jmax=-1;    cov[1]=1.;
   jmean=0.;  
   for(i=1; i<=imx; i++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
     mi=0;  
     m=firstpass;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     while(s[m][i] <= nlstate){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(s[m][i]>=1)      for(mi=1; mi<= wav[i]-1; mi++){
         mw[++mi][i]=m;        for (ii=1;ii<=nlstate+ndeath;ii++)
       if(m >=lastpass)          for (j=1;j<=nlstate+ndeath;j++){
         break;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         m++;          }
     }/* end while */        for(d=0; d<dh[mi][i]; d++){
     if (s[m][i] > nlstate){          newm=savm;
       mi++;     /* Death is another wave */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /* if(mi==0)  never been interviewed correctly before death */          for (kk=1; kk<=cptcovage;kk++) {
          /* Only death is a correct wave */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       mw[mi][i]=m;          }
     }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     wav[i]=mi;          savm=oldm;
     if(mi==0)          oldm=newm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        } /* end mult */
   }        
         s1=s[mw[mi][i]][i];
   for(i=1; i<=imx; i++){        s2=s[mw[mi+1][i]][i];
     for(mi=1; mi<wav[i];mi++){        bbh=(double)bh[mi][i]/(double)stepm; 
       if (stepm <=0)        /* bias is positive if real duration
         dh[mi][i]=1;         * is higher than the multiple of stepm and negative otherwise.
       else{         */
         if (s[mw[mi+1][i]][i] > nlstate) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           if (agedc[i] < 2*AGESUP) {          lli=log(out[s1][s2] - savm[s1][s2]);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        } else if (mle==1){
           if(j==0) j=1;  /* Survives at least one month after exam */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           k=k+1;        } else if(mle==2){
           if (j >= jmax) jmax=j;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           if (j <= jmin) jmin=j;        } else if(mle==3){  /* exponential inter-extrapolation */
           sum=sum+j;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           }          lli=log(out[s1][s2]); /* Original formula */
         }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         else{          lli=log(out[s1][s2]); /* Original formula */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        } /* End of if */
           k=k+1;        ipmx +=1;
           if (j >= jmax) jmax=j;        sw += weight[i];
           else if (j <= jmin)jmin=j;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           sum=sum+j;        if(globpr){
         }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         jk= j/stepm;   %10.6f %10.6f %10.6f ", \
         jl= j -jk*stepm;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         ju= j -(jk+1)*stepm;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         if(jl <= -ju)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           dh[mi][i]=jk;            llt +=ll[k]*gipmx/gsw;
         else            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           dh[mi][i]=jk+1;          }
         if(dh[mi][i]==0)          fprintf(ficresilk," %10.6f\n", -llt);
           dh[mi][i]=1; /* At least one step */        }
       }      } /* end of wave */
     }    } /* end of individual */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   jmean=sum/k;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  }    if(globpr==0){ /* First time we count the contributions and weights */
 /*********** Tricode ****************************/      gipmx=ipmx;
 void tricode(int *Tvar, int **nbcode, int imx)      gsw=sw;
 {    }
   int Ndum[20],ij=1, k, j, i;    return -l;
   int cptcode=0;  }
   cptcoveff=0;  
    
   for (k=0; k<19; k++) Ndum[k]=0;  /*************** function likelione ***********/
   for (k=1; k<=7; k++) ncodemax[k]=0;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /* This routine should help understanding what is done with 
     for (i=1; i<=imx; i++) {       the selection of individuals/waves and
       ij=(int)(covar[Tvar[j]][i]);       to check the exact contribution to the likelihood.
       Ndum[ij]++;       Plotting could be done.
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/     */
       if (ij > cptcode) cptcode=ij;    int k;
     }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
     for (i=0; i<=cptcode; i++) {      strcpy(fileresilk,"ilk"); 
       if(Ndum[i]!=0) ncodemax[j]++;      strcat(fileresilk,fileres);
     }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     ij=1;        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
     for (i=1; i<=ncodemax[j]; i++) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       for (k=0; k<=19; k++) {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         if (Ndum[k] != 0) {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           nbcode[Tvar[j]][ij]=k;      for(k=1; k<=nlstate; k++) 
                  fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           ij++;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         }    }
         if (ij > ncodemax[j]) break;  
       }      *fretone=(*funcone)(p);
     }    if(*globpri !=0){
   }        fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
  for (k=0; k<19; k++) Ndum[k]=0;      fflush(fichtm); 
     } 
  for (i=1; i<=ncovmodel-2; i++) {    return;
       ij=Tvar[i];  }
       Ndum[ij]++;  
     }  
   /*********** Maximum Likelihood Estimation ***************/
  ij=1;  
  for (i=1; i<=10; i++) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    if((Ndum[i]!=0) && (i<=ncovcol)){  {
      Tvaraff[ij]=i;    int i,j, iter;
      ij++;    double **xi;
    }    double fret;
  }    double fretone; /* Only one call to likelihood */
      /*  char filerespow[FILENAMELENGTH];*/
     cptcoveff=ij-1;    xi=matrix(1,npar,1,npar);
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
 /*********** Health Expectancies ****************/        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
 {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   /* Health expectancies */      printf("Problem with resultfile: %s\n", filerespow);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double age, agelim, hf;    }
   double ***p3mat,***varhe;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   double **dnewm,**doldm;    for (i=1;i<=nlstate;i++)
   double *xp;      for(j=1;j<=nlstate+ndeath;j++)
   double **gp, **gm;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double ***gradg, ***trgradg;    fprintf(ficrespow,"\n");
   int theta;  
     powell(p,xi,npar,ftol,&iter,&fret,func);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);    fclose(ficrespow);
   dnewm=matrix(1,nlstate*2,1,npar);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   doldm=matrix(1,nlstate*2,1,nlstate*2);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  /**** Computes Hessian and covariance matrix ***/
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   fprintf(ficreseij,"\n");  {
     double  **a,**y,*x,pd;
   if(estepm < stepm){    double **hess;
     printf ("Problem %d lower than %d\n",estepm, stepm);    int i, j,jk;
   }    int *indx;
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
    * This is mainly to measure the difference between two models: for example    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
    * if stepm=24 months pijx are given only every 2 years and by summing them    void lubksb(double **a, int npar, int *indx, double b[]) ;
    * we are calculating an estimate of the Life Expectancy assuming a linear    void ludcmp(double **a, int npar, int *indx, double *d) ;
    * progression inbetween and thus overestimating or underestimating according    double gompertz(double p[]);
    * to the curvature of the survival function. If, for the same date, we    hess=matrix(1,npar,1,npar);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear    printf("\nCalculation of the hessian matrix. Wait...\n");
    * hypothesis. A more precise result, taking into account a more precise    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
    * curvature will be obtained if estepm is as small as stepm. */    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   /* For example we decided to compute the life expectancy with the smallest unit */      fprintf(ficlog,"%d",i);fflush(ficlog);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     
      nhstepm is the number of hstepm from age to agelim       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
      nstepm is the number of stepm from age to agelin.      
      Look at hpijx to understand the reason of that which relies in memory size      /*  printf(" %f ",p[i]);
      and note for a fixed period like estepm months */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it    
      means that if the survival funtion is printed only each two years of age and if    for (i=1;i<=npar;i++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (j=1;j<=npar;j++)  {
      results. So we changed our mind and took the option of the best precision.        if (j>i) { 
   */          printf(".%d%d",i,j);fflush(stdout);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
   agelim=AGESUP;          
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          hess[j][i]=hess[i][j];    
     /* nhstepm age range expressed in number of stepm */          /*printf(" %lf ",hess[i][j]);*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      }
     /* if (stepm >= YEARM) hstepm=1;*/    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    printf("\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  
     gp=matrix(0,nhstepm,1,nlstate*2);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     gm=matrix(0,nhstepm,1,nlstate*2);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    a=matrix(1,npar,1,npar);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    y=matrix(1,npar,1,npar);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      x=vector(1,npar);
      indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     /* Computing Variances of health expectancies */  
     for (j=1;j<=npar;j++) {
      for(theta=1; theta <=npar; theta++){      for (i=1;i<=npar;i++) x[i]=0;
       for(i=1; i<=npar; i++){      x[j]=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          matcov[i][j]=x[i];
        }
       cptj=0;    }
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){    printf("\n#Hessian matrix#\n");
           cptj=cptj+1;    fprintf(ficlog,"\n#Hessian matrix#\n");
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    for (i=1;i<=npar;i++) { 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for (j=1;j<=npar;j++) { 
           }        printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }      }
            printf("\n");
            fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++)    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* Recompute Inverse */
          for (i=1;i<=npar;i++)
       cptj=0;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(j=1; j<= nlstate; j++){    ludcmp(a,npar,indx,&pd);
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;    /*  printf("\n#Hessian matrix recomputed#\n");
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (j=1;j<=npar;j++) {
           }      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
       }      lubksb(a,npar,indx,x);
            for (i=1;i<=npar;i++){ 
            y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
       for(j=1; j<= nlstate*2; j++)        fprintf(ficlog,"%.3e ",y[i][j]);
         for(h=0; h<=nhstepm-1; h++){      }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      printf("\n");
         }      fprintf(ficlog,"\n");
     }
      }    */
      
 /* End theta */    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
      for(h=0; h<=nhstepm-1; h++)    free_matrix(hess,1,npar,1,npar);
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)  
         trgradg[h][j][theta]=gradg[h][theta][j];  }
   
   /*************** hessian matrix ****************/
      for(i=1;i<=nlstate*2;i++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       for(j=1;j<=nlstate*2;j++)  {
         varhe[i][j][(int)age] =0.;    int i;
     int l=1, lmax=20;
     for(h=0;h<=nhstepm-1;h++){    double k1,k2;
       for(k=0;k<=nhstepm-1;k++){    double p2[NPARMAX+1];
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    double res;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         for(i=1;i<=nlstate*2;i++)    double fx;
           for(j=1;j<=nlstate*2;j++)    int k=0,kmax=10;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double l1;
       }  
     }    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
          for(l=0 ; l <=lmax; l++){
     /* Computing expectancies */      l1=pow(10,l);
     for(i=1; i<=nlstate;i++)      delts=delt;
       for(j=1; j<=nlstate;j++)      for(k=1 ; k <kmax; k=k+1){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        delt = delta*(l1*k);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        p2[theta]=x[theta] +delt;
                  k1=func(p2)-fx;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
         }        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     fprintf(ficreseij,"%3.0f",age );        
     cptj=0;  #ifdef DEBUG
     for(i=1; i<=nlstate;i++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(j=1; j<=nlstate;j++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         cptj++;  #endif
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     fprintf(ficreseij,"\n");          k=kmax;
            }
     free_matrix(gm,0,nhstepm,1,nlstate*2);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     free_matrix(gp,0,nhstepm,1,nlstate*2);          k=kmax; l=lmax*10.;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          delts=delt;
   }        }
   free_vector(xp,1,npar);      }
   free_matrix(dnewm,1,nlstate*2,1,npar);    }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    delti[theta]=delts;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    return res; 
 }    
   }
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 {  {
   /* Variance of health expectancies */    int i;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int l=1, l1, lmax=20;
   double **newm;    double k1,k2,k3,k4,res,fx;
   double **dnewm,**doldm;    double p2[NPARMAX+1];
   int i, j, nhstepm, hstepm, h, nstepm ;    int k;
   int k, cptcode;  
   double *xp;    fx=func(x);
   double **gp, **gm;    for (k=1; k<=2; k++) {
   double ***gradg, ***trgradg;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double ***p3mat;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double age,agelim, hf;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int theta;      k1=func(p2)-fx;
     
    fprintf(ficresvij,"# Covariances of life expectancies\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
   fprintf(ficresvij,"# Age");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   for(i=1; i<=nlstate;i++)      k2=func(p2)-fx;
     for(j=1; j<=nlstate;j++)    
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresvij,"\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
   xp=vector(1,npar);    
   dnewm=matrix(1,nlstate,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   doldm=matrix(1,nlstate,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k4=func(p2)-fx;
   if(estepm < stepm){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     printf ("Problem %d lower than %d\n",estepm, stepm);  #ifdef DEBUG
   }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   else  hstepm=estepm;        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   /* For example we decided to compute the life expectancy with the smallest unit */  #endif
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    }
      nhstepm is the number of hstepm from age to agelim    return res;
      nstepm is the number of stepm from age to agelin.  }
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */  /************** Inverse of matrix **************/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  void ludcmp(double **a, int n, int *indx, double *d) 
      survival function given by stepm (the optimization length). Unfortunately it  { 
      means that if the survival funtion is printed only each two years of age and if    int i,imax,j,k; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double big,dum,sum,temp; 
      results. So we changed our mind and took the option of the best precision.    double *vv; 
   */   
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    vv=vector(1,n); 
   agelim = AGESUP;    *d=1.0; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1;i<=n;i++) { 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      big=0.0; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for (j=1;j<=n;j++) 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     gp=matrix(0,nhstepm,1,nlstate);      vv[i]=1.0/big; 
     gm=matrix(0,nhstepm,1,nlstate);    } 
     for (j=1;j<=n;j++) { 
     for(theta=1; theta <=npar; theta++){      for (i=1;i<j;i++) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */        sum=a[i][j]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       }        a[i][j]=sum; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      big=0.0; 
       for (i=j;i<=n;i++) { 
       if (popbased==1) {        sum=a[i][j]; 
         for(i=1; i<=nlstate;i++)        for (k=1;k<j;k++) 
           prlim[i][i]=probs[(int)age][i][ij];          sum -= a[i][k]*a[k][j]; 
       }        a[i][j]=sum; 
          if ( (dum=vv[i]*fabs(sum)) >= big) { 
       for(j=1; j<= nlstate; j++){          big=dum; 
         for(h=0; h<=nhstepm; h++){          imax=i; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        } 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      } 
         }      if (j != imax) { 
       }        for (k=1;k<=n;k++) { 
              dum=a[imax][k]; 
       for(i=1; i<=npar; i++) /* Computes gradient */          a[imax][k]=a[j][k]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          a[j][k]=dum; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        *d = -(*d); 
          vv[imax]=vv[j]; 
       if (popbased==1) {      } 
         for(i=1; i<=nlstate;i++)      indx[j]=imax; 
           prlim[i][i]=probs[(int)age][i][ij];      if (a[j][j] == 0.0) a[j][j]=TINY; 
       }      if (j != n) { 
         dum=1.0/(a[j][j]); 
       for(j=1; j<= nlstate; j++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         for(h=0; h<=nhstepm; h++){      } 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    } 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    free_vector(vv,1,n);  /* Doesn't work */
         }  ;
       }  } 
   
       for(j=1; j<= nlstate; j++)  void lubksb(double **a, int n, int *indx, double b[]) 
         for(h=0; h<=nhstepm; h++){  { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int i,ii=0,ip,j; 
         }    double sum; 
     } /* End theta */   
     for (i=1;i<=n;i++) { 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      ip=indx[i]; 
       sum=b[ip]; 
     for(h=0; h<=nhstepm; h++)      b[ip]=b[i]; 
       for(j=1; j<=nlstate;j++)      if (ii) 
         for(theta=1; theta <=npar; theta++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           trgradg[h][j][theta]=gradg[h][theta][j];      else if (sum) ii=i; 
       b[i]=sum; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    } 
     for(i=1;i<=nlstate;i++)    for (i=n;i>=1;i--) { 
       for(j=1;j<=nlstate;j++)      sum=b[i]; 
         vareij[i][j][(int)age] =0.;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     for(h=0;h<=nhstepm;h++){    } 
       for(k=0;k<=nhstepm;k++){  } 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  /************ Frequencies ********************/
         for(i=1;i<=nlstate;i++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
           for(j=1;j<=nlstate;j++)  {  /* Some frequencies */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    
       }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     }    int first;
     double ***freq; /* Frequencies */
     fprintf(ficresvij,"%.0f ",age );    double *pp, **prop;
     for(i=1; i<=nlstate;i++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(j=1; j<=nlstate;j++){    FILE *ficresp;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    char fileresp[FILENAMELENGTH];
       }    
     fprintf(ficresvij,"\n");    pp=vector(1,nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     free_matrix(gm,0,nhstepm,1,nlstate);    strcpy(fileresp,"p");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    strcat(fileresp,fileres);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   } /* End age */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        exit(0);
   free_vector(xp,1,npar);    }
   free_matrix(doldm,1,nlstate,1,npar);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   free_matrix(dnewm,1,nlstate,1,nlstate);    j1=0;
     
 }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    first=1;
 {  
   /* Variance of prevalence limit */    for(k1=1; k1<=j;k1++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(i1=1; i1<=ncodemax[k1];i1++){
   double **newm;        j1++;
   double **dnewm,**doldm;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   int i, j, nhstepm, hstepm;          scanf("%d", i);*/
   int k, cptcode;        for (i=-1; i<=nlstate+ndeath; i++)  
   double *xp;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   double *gp, *gm;            for(m=iagemin; m <= iagemax+3; m++)
   double **gradg, **trgradg;              freq[i][jk][m]=0;
   double age,agelim;  
   int theta;      for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          prop[i][m]=0;
   fprintf(ficresvpl,"# Age");        
   for(i=1; i<=nlstate;i++)        dateintsum=0;
       fprintf(ficresvpl," %1d-%1d",i,i);        k2cpt=0;
   fprintf(ficresvpl,"\n");        for (i=1; i<=imx; i++) {
           bool=1;
   xp=vector(1,npar);          if  (cptcovn>0) {
   dnewm=matrix(1,nlstate,1,npar);            for (z1=1; z1<=cptcoveff; z1++) 
   doldm=matrix(1,nlstate,1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   hstepm=1*YEARM; /* Every year of age */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          if (bool==1){
   agelim = AGESUP;            for(m=firstpass; m<=lastpass; m++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              k2=anint[m][i]+(mint[m][i]/12.);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     if (stepm >= YEARM) hstepm=1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     gradg=matrix(1,npar,1,nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     gp=vector(1,nlstate);                if (m<lastpass) {
     gm=vector(1,nlstate);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for(theta=1; theta <=npar; theta++){                }
       for(i=1; i<=npar; i++){ /* Computes gradient */                
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       }                  dateintsum=dateintsum+k2;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  k2cpt++;
       for(i=1;i<=nlstate;i++)                }
         gp[i] = prlim[i][i];                /*}*/
                }
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);         
       for(i=1;i<=nlstate;i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         gm[i] = prlim[i][i];  
         if  (cptcovn>0) {
       for(i=1;i<=nlstate;i++)          fprintf(ficresp, "\n#********** Variable "); 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     } /* End theta */          fprintf(ficresp, "**********\n#");
         }
     trgradg =matrix(1,nlstate,1,npar);        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for(j=1; j<=nlstate;j++)        fprintf(ficresp, "\n");
       for(theta=1; theta <=npar; theta++)        
         trgradg[j][theta]=gradg[theta][j];        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
     for(i=1;i<=nlstate;i++)            fprintf(ficlog,"Total");
       varpl[i][(int)age] =0.;          }else{
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            if(first==1){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              first=0;
     for(i=1;i<=nlstate;i++)              printf("See log file for details...\n");
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            }
             fprintf(ficlog,"Age %d", i);
     fprintf(ficresvpl,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     fprintf(ficresvpl,"\n");              pp[jk] += freq[jk][m][i]; 
     free_vector(gp,1,nlstate);          }
     free_vector(gm,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     free_matrix(gradg,1,npar,1,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
     free_matrix(trgradg,1,nlstate,1,npar);              pos += freq[jk][m][i];
   } /* End age */            if(pp[jk]>=1.e-10){
               if(first==1){
   free_vector(xp,1,npar);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_matrix(doldm,1,nlstate,1,npar);              }
   free_matrix(dnewm,1,nlstate,1,nlstate);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
 }              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 /************ Variance of one-step probabilities  ******************/              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            }
 {          }
   int i, j, i1, k1, j1, z1;  
   int k=0, cptcode;          for(jk=1; jk <=nlstate ; jk++){
   double **dnewm,**doldm;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double *xp;              pp[jk] += freq[jk][m][i];
   double *gp, *gm;          }       
   double **gradg, **trgradg;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double age,agelim, cov[NCOVMAX];            pos += pp[jk];
   int theta;            posprop += prop[jk][i];
   char fileresprob[FILENAMELENGTH];          }
           for(jk=1; jk <=nlstate ; jk++){
   strcpy(fileresprob,"prob");            if(pos>=1.e-5){
   strcat(fileresprob,fileres);              if(first==1)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     printf("Problem with resultfile: %s\n", fileresprob);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }            }else{
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficresprob,"# Age");            }
   for(i=1; i<=nlstate;i++)            if( i <= iagemax){
     for(j=1; j<=(nlstate+ndeath);j++)              if(pos>=1.e-5){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   fprintf(ficresprob,"\n");              }
               else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   xp=vector(1,npar);            }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          
            for(jk=-1; jk <=nlstate+ndeath; jk++)
   cov[1]=1;            for(m=-1; m <=nlstate+ndeath; m++)
   j=cptcoveff;              if(freq[jk][m][i] !=0 ) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              if(first==1)
   j1=0;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   for(k1=1; k1<=1;k1++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(i1=1; i1<=ncodemax[k1];i1++){              }
     j1++;          if(i <= iagemax)
             fprintf(ficresp,"\n");
     if  (cptcovn>0) {          if(first==1)
       fprintf(ficresprob, "\n#********** Variable ");            printf("Others in log...\n");
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficlog,"\n");
       fprintf(ficresprob, "**********\n#");        }
     }      }
        }
       for (age=bage; age<=fage; age ++){    dateintmean=dateintsum/k2cpt; 
         cov[2]=age;   
         for (k=1; k<=cptcovn;k++) {    fclose(ficresp);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
              free_vector(pp,1,nlstate);
         }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* End of Freq */
         for (k=1; k<=cptcovprod;k++)  }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
          /************ Prevalence ********************/
         gradg=matrix(1,npar,1,9);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         trgradg=matrix(1,9,1,npar);  {  
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));       in each health status at the date of interview (if between dateprev1 and dateprev2).
           We still use firstpass and lastpass as another selection.
         for(theta=1; theta <=npar; theta++){    */
           for(i=1; i<=npar; i++)   
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
              double ***freq; /* Frequencies */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double *pp, **prop;
              double pos,posprop; 
           k=0;    double  y2; /* in fractional years */
           for(i=1; i<= (nlstate+ndeath); i++){    int iagemin, iagemax;
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    iagemin= (int) agemin;
               gp[k]=pmmij[i][j];    iagemax= (int) agemax;
             }    /*pp=vector(1,nlstate);*/
           }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
              /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           for(i=1; i<=npar; i++)    j1=0;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    
        j=cptcoveff;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           k=0;    
           for(i=1; i<=(nlstate+ndeath); i++){    for(k1=1; k1<=j;k1++){
             for(j=1; j<=(nlstate+ndeath);j++){      for(i1=1; i1<=ncodemax[k1];i1++){
               k=k+1;        j1++;
               gm[k]=pmmij[i][j];        
             }        for (i=1; i<=nlstate; i++)  
           }          for(m=iagemin; m <= iagemax+3; m++)
                  prop[i][m]=0.0;
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)       
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          for (i=1; i<=imx; i++) { /* Each individual */
         }          bool=1;
           if  (cptcovn>0) {
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            for (z1=1; z1<=cptcoveff; z1++) 
           for(theta=1; theta <=npar; theta++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             trgradg[j][theta]=gradg[theta][j];                bool=0;
                  } 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          if (bool==1) { 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                      y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         pmij(pmmij,cov,ncovmodel,x,nlstate);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                        if(agev[m][i]==0) agev[m][i]=iagemax+1;
         k=0;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for(i=1; i<=(nlstate+ndeath); i++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           for(j=1; j<=(nlstate+ndeath);j++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             k=k+1;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             gm[k]=pmmij[i][j];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                  prop[s[m][i]][iagemax+3] += weight[i]; 
         }                } 
                    }
      /*printf("\n%d ",(int)age);            } /* end selection of waves */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        }
      }*/        for(i=iagemin; i <= iagemax+3; i++){  
           
         fprintf(ficresprob,"\n%d ",(int)age);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          } 
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));  
            for(jk=1; jk <=nlstate ; jk++){     
       }            if( i <=  iagemax){ 
     }              if(posprop>=1.e-5){ 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                probs[i][jk][j1]= prop[jk][i]/posprop;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              } 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            } 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }/* end jk */ 
   }        }/* end i */ 
   free_vector(xp,1,npar);      } /* end i1 */
   fclose(ficresprob);    } /* end k1 */
      
 }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
 /******************* Printing html file ***********/    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  }  /* End of prevalence */
  int lastpass, int stepm, int weightopt, char model[],\  
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  /************* Waves Concatenation ***************/
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  
  char version[], int popforecast, int estepm ){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   int jj1, k1, i1, cpt;  {
   FILE *fichtm;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   /*char optionfilehtm[FILENAMELENGTH];*/       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   strcpy(optionfilehtm,optionfile);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   strcat(optionfilehtm,".htm");       and mw[mi+1][i]. dh depends on stepm.
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {       */
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n       double sum=0., jmean=0.;*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    int first;
 \n    int j, k=0,jk, ju, jl;
 Total number of observations=%d <br>\n    double sum=0.;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    first=0;
 <hr  size=\"2\" color=\"#EC5E5E\">    jmin=1e+5;
  <ul><li>Outputs files<br>\n    jmax=-1;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    jmean=0.;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    for(i=1; i<=imx; i++){
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      mi=0;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      m=firstpass;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      while(s[m][i] <= nlstate){
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        if(s[m][i]>=1)
           mw[++mi][i]=m;
  fprintf(fichtm,"\n        if(m >=lastpass)
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n          break;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        else
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          m++;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      }/* end while */
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
  if(popforecast==1) fprintf(fichtm,"\n        /* if(mi==0)  never been interviewed correctly before death */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n           /* Only death is a correct wave */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        mw[mi][i]=m;
         <br>",fileres,fileres,fileres,fileres);      }
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      wav[i]=mi;
 fprintf(fichtm," <li>Graphs</li><p>");      if(mi==0){
         nbwarn++;
  m=cptcoveff;        if(first==0){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
  jj1=0;        }
  for(k1=1; k1<=m;k1++){        if(first==1){
    for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
        jj1++;        }
        if (cptcovn > 0) {      } /* end mi==0 */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    } /* End individuals */
          for (cpt=1; cpt<=cptcoveff;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    for(i=1; i<=imx; i++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for(mi=1; mi<wav[i];mi++){
        }        if (stepm <=0)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          dh[mi][i]=1;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            else{
        for(cpt=1; cpt<nlstate;cpt++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            if (agedc[i] < 2*AGESUP) {
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
        }              if(j==0) j=1;  /* Survives at least one month after exam */
     for(cpt=1; cpt<=nlstate;cpt++) {              else if(j<0){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                nberr++;
 interval) in state (%d): v%s%d%d.gif <br>                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  j=1; /* Temporary Dangerous patch */
      }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
      for(cpt=1; cpt<=nlstate;cpt++) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              }
      }              k=k+1;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              if (j >= jmax) jmax=j;
 health expectancies in states (1) and (2): e%s%d.gif<br>              if (j <= jmin) jmin=j;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              sum=sum+j;
 fprintf(fichtm,"\n</body>");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    }            }
 fclose(fichtm);          }
 }          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 /******************* Gnuplot file **************/            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            k=k+1;
             if (j >= jmax) jmax=j;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   strcpy(optionfilegnuplot,optionfilefiname);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   strcat(optionfilegnuplot,".gp.txt");            if(j<0){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              nberr++;
     printf("Problem with file %s",optionfilegnuplot);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
 #ifdef windows            sum=sum+j;
     fprintf(ficgp,"cd \"%s\" \n",pathc);          }
 #endif          jk= j/stepm;
 m=pow(2,cptcoveff);          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
  /* 1eme*/          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   for (cpt=1; cpt<= nlstate ; cpt ++) {            if(jl==0){
    for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk;
               bh[mi][i]=0;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
 for (i=1; i<= nlstate ; i ++) {              dh[mi][i]=jk+1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=ju;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }          }else{
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            if(jl <= -ju){
     for (i=1; i<= nlstate ; i ++) {              dh[mi][i]=jk;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=jl;       /* bias is positive if real duration
   else fprintf(ficgp," \%%*lf (\%%*lf)");                                   * is higher than the multiple of stepm and negative otherwise.
 }                                   */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
      for (i=1; i<= nlstate ; i ++) {            else{
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              dh[mi][i]=jk+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              bh[mi][i]=ju;
 }              }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              bh[mi][i]=ju; /* At least one step */
    }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   }            }
   /*2 eme*/          } /* end if mle */
         }
   for (k1=1; k1<= m ; k1 ++) {      } /* end wave */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    }
        jmean=sum/k;
     for (i=1; i<= nlstate+1 ; i ++) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       k=2*i;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);   }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /*********** Tricode ****************************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  void tricode(int *Tvar, int **nbcode, int imx)
 }    {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    int cptcode=0;
       for (j=1; j<= nlstate+1 ; j ++) {    cptcoveff=0; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for (k=0; k<maxncov; k++) Ndum[k]=0;
 }      for (k=1; k<=7; k++) ncodemax[k]=0;
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (j=1; j<= nlstate+1 ; j ++) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                                 modality*/ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 }          Ndum[ij]++; /*store the modality */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       else fprintf(ficgp,"\" t\"\" w l 0,");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     }                                         Tvar[j]. If V=sex and male is 0 and 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);                                         female is 1, then  cptcode=1.*/
   }      }
    
   /*3eme*/      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   for (k1=1; k1<= m ; k1 ++) {      }
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);      ij=1; 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      for (i=1; i<=ncodemax[j]; i++) {
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for (k=0; k<= maxncov; k++) {
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          if (Ndum[k] != 0) {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            nbcode[Tvar[j]][ij]=k; 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            ij++;
           }
 */          if (ij > ncodemax[j]) break; 
       for (i=1; i< nlstate ; i ++) {        }  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      } 
     }  
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
     }  
     }   for (i=1; i<=ncovmodel-2; i++) { 
       /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   /* CV preval stat */     ij=Tvar[i];
     for (k1=1; k1<= m ; k1 ++) {     Ndum[ij]++;
     for (cpt=1; cpt<nlstate ; cpt ++) {   }
       k=3;  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);   ij=1;
    for (i=1; i<= maxncov; i++) {
       for (i=1; i< nlstate ; i ++)     if((Ndum[i]!=0) && (i<=ncovcol)){
         fprintf(ficgp,"+$%d",k+i+1);       Tvaraff[ij]=i; /*For printing */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       ij++;
           }
       l=3+(nlstate+ndeath)*cpt;   }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);   
       for (i=1; i< nlstate ; i ++) {   cptcoveff=ij-1; /*Number of simple covariates*/
         l=3+(nlstate+ndeath)*cpt;  }
         fprintf(ficgp,"+$%d",l+i+1);  
       }  /*********** Health Expectancies ****************/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     }  
   }    {
      /* Health expectancies */
   /* proba elementaires */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
    for(i=1,jk=1; i <=nlstate; i++){    double age, agelim, hf;
     for(k=1; k <=(nlstate+ndeath); k++){    double ***p3mat,***varhe;
       if (k != i) {    double **dnewm,**doldm;
         for(j=1; j <=ncovmodel; j++){    double *xp;
            double **gp, **gm;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    double ***gradg, ***trgradg;
           jk++;    int theta;
           fprintf(ficgp,"\n");  
         }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       }    xp=vector(1,npar);
     }    dnewm=matrix(1,nlstate*nlstate,1,npar);
     }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     for(jk=1; jk <=m; jk++) {    fprintf(ficreseij,"# Health expectancies\n");
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    fprintf(ficreseij,"# Age");
    i=1;    for(i=1; i<=nlstate;i++)
    for(k2=1; k2<=nlstate; k2++) {      for(j=1; j<=nlstate;j++)
      k3=i;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
      for(k=1; k<=(nlstate+ndeath); k++) {    fprintf(ficreseij,"\n");
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    if(estepm < stepm){
 ij=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
         for(j=3; j <=ncovmodel; j++) {    }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    else  hstepm=estepm;   
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* We compute the life expectancy from trapezoids spaced every estepm months
             ij++;     * This is mainly to measure the difference between two models: for example
           }     * if stepm=24 months pijx are given only every 2 years and by summing them
           else     * we are calculating an estimate of the Life Expectancy assuming a linear 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
           fprintf(ficgp,")/(1");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             * to compare the new estimate of Life expectancy with the same linear 
         for(k1=1; k1 <=nlstate; k1++){       * hypothesis. A more precise result, taking into account a more precise
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);     * curvature will be obtained if estepm is as small as stepm. */
 ij=1;  
           for(j=3; j <=ncovmodel; j++){    /* For example we decided to compute the life expectancy with the smallest unit */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       nhstepm is the number of hstepm from age to agelim 
             ij++;       nstepm is the number of stepm from age to agelin. 
           }       Look at hpijx to understand the reason of that which relies in memory size
           else       and note for a fixed period like estepm months */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
           fprintf(ficgp,")");       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);       results. So we changed our mind and took the option of the best precision.
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    */
         i=i+ncovmodel;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        }  
      }    agelim=AGESUP;
    }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      /* nhstepm age range expressed in number of stepm */
    }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
          /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fclose(ficgp);      /* if (stepm >= YEARM) hstepm=1;*/
 }  /* end gnuplot */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 /*************** Moving average **************/      gp=matrix(0,nhstepm,1,nlstate*nlstate);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   int i, cpt, cptcod;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for (i=1; i<=nlstate;i++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)   
           mobaverage[(int)agedeb][i][cptcod]=0.;  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){      /* Computing  Variances of health expectancies */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){       for(theta=1; theta <=npar; theta++){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        for(i=1; i<=npar; i++){ 
           }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        }
         }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }    
     }        cptj=0;
            for(j=1; j<= nlstate; j++){
 }          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 /************** Forecasting ******************/              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            }
            }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;       
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       
   double *popeffectif,*popcount;        for(i=1; i<=npar; i++) 
   double ***p3mat;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   char fileresf[FILENAMELENGTH];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         
  agelim=AGESUP;        cptj=0;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            cptj=cptj+1;
              for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    
   strcpy(fileresf,"f");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   strcat(fileresf,fileres);            }
   if((ficresf=fopen(fileresf,"w"))==NULL) {          }
     printf("Problem with forecast resultfile: %s\n", fileresf);        }
   }        for(j=1; j<= nlstate*nlstate; j++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          }
        } 
   if (mobilav==1) {     
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /* End theta */
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;       for(h=0; h<=nhstepm-1; h++)
   if (stepm<=12) stepsize=1;        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   agelim=AGESUP;            trgradg[h][j][theta]=gradg[h][theta][j];
         
   hstepm=1;  
   hstepm=hstepm/stepm;       for(i=1;i<=nlstate*nlstate;i++)
   yp1=modf(dateintmean,&yp);        for(j=1;j<=nlstate*nlstate;j++)
   anprojmean=yp;          varhe[i][j][(int)age] =0.;
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;       printf("%d|",(int)age);fflush(stdout);
   yp1=modf((yp2*30.5),&yp);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   jprojmean=yp;       for(h=0;h<=nhstepm-1;h++){
   if(jprojmean==0) jprojmean=1;        for(k=0;k<=nhstepm-1;k++){
   if(mprojmean==0) jprojmean=1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          for(i=1;i<=nlstate*nlstate;i++)
              for(j=1;j<=nlstate*nlstate;j++)
   for(cptcov=1;cptcov<=i2;cptcov++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;      }
       fprintf(ficresf,"\n#******");      /* Computing expectancies */
       for(j=1;j<=cptcoveff;j++) {      for(i=1; i<=nlstate;i++)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<=nlstate;j++)
       }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       fprintf(ficresf,"******\n");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       fprintf(ficresf,"# StartingAge FinalAge");            
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        
                }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");      fprintf(ficreseij,"%3.0f",age );
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        cptj=0;
       for(i=1; i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(j=1; j<=nlstate;j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          cptj++;
           nhstepm = nhstepm/hstepm;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficreseij,"\n");
           oldm=oldms;savm=savms;     
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
              free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           for (h=0; h<=nhstepm; h++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    }
             for(j=1; j<=nlstate+ndeath;j++) {    printf("\n");
               kk1=0.;kk2=0;    fprintf(ficlog,"\n");
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)    free_vector(xp,1,npar);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                 else {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                 }  }
                  
               }  /************ Variance ******************/
               if (h==(int)(calagedate+12*cpt)){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                 fprintf(ficresf," %.3f", kk1);  {
                            /* Variance of health expectancies */
               }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
             }    /* double **newm;*/
           }    double **dnewm,**doldm;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **dnewmp,**doldmp;
         }    int i, j, nhstepm, hstepm, h, nstepm ;
       }    int k, cptcode;
     }    double *xp;
   }    double **gp, **gm;  /* for var eij */
            double ***gradg, ***trgradg; /*for var eij */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
   fclose(ficresf);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 }    double ***p3mat;
 /************** Forecasting ******************/    double age,agelim, hf;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    double ***mobaverage;
      int theta;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    char digit[4];
   int *popage;    char digitp[25];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    char fileresprobmorprev[FILENAMELENGTH];
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];    if(popbased==1){
       if(mobilav!=0)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        strcpy(digitp,"-populbased-mobilav-");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      else strcpy(digitp,"-populbased-nomobil-");
   agelim=AGESUP;    }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    else 
        strcpy(digitp,"-stablbased-");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(filerespop,"pop");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   strcat(filerespop,fileres);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with forecast resultfile: %s\n", filerespop);      }
   }    }
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
     strcpy(fileresprobmorprev,"prmorprev"); 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   if (mobilav==1) {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    strcat(fileresprobmorprev,fileres);
   }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   if (stepm<=12) stepsize=1;    }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   agelim=AGESUP;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   hstepm=1;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   hstepm=hstepm/stepm;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
   if (popforecast==1) {      for(i=1; i<=nlstate;i++)
     if((ficpop=fopen(popfile,"r"))==NULL) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       printf("Problem with population file : %s\n",popfile);exit(0);    }  
     }    fprintf(ficresprobmorprev,"\n");
     popage=ivector(0,AGESUP);    fprintf(ficgp,"\n# Routine varevsij");
     popeffectif=vector(0,AGESUP);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     popcount=vector(0,AGESUP);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      /*   } */
     i=1;      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
        fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     imx=i;    fprintf(ficresvij,"# Age");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficresvij,"\n");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    xp=vector(1,npar);
       fprintf(ficrespop,"\n#******");    dnewm=matrix(1,nlstate,1,npar);
       for(j=1;j<=cptcoveff;j++) {    doldm=matrix(1,nlstate,1,nlstate);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    gpp=vector(nlstate+1,nlstate+ndeath);
       if (popforecast==1)  fprintf(ficrespop," [Population]");    gmp=vector(nlstate+1,nlstate+ndeath);
          trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for (cpt=0; cpt<=0;cpt++) {    
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      if(estepm < stepm){
              printf ("Problem %d lower than %d\n",estepm, stepm);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    else  hstepm=estepm;   
           nhstepm = nhstepm/hstepm;    /* For example we decided to compute the life expectancy with the smallest unit */
              /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       nhstepm is the number of hstepm from age to agelim 
           oldm=oldms;savm=savms;       nstepm is the number of stepm from age to agelin. 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         Look at hpijx to understand the reason of that which relies in memory size
               and note for a fixed period like k years */
           for (h=0; h<=nhstepm; h++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             if (h==(int) (calagedate+YEARM*cpt)) {       survival function given by stepm (the optimization length). Unfortunately it
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       means that if the survival funtion is printed every two years of age and if
             }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             for(j=1; j<=nlstate+ndeath;j++) {       results. So we changed our mind and took the option of the best precision.
               kk1=0.;kk2=0;    */
               for(i=1; i<=nlstate;i++) {                  hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                 if (mobilav==1)    agelim = AGESUP;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                 else {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                 }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
               if (h==(int)(calagedate+12*cpt)){      gp=matrix(0,nhstepm,1,nlstate);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      gm=matrix(0,nhstepm,1,nlstate);
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }      for(theta=1; theta <=npar; theta++){
             }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
             for(i=1; i<=nlstate;i++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               kk1=0.;        }
                 for(j=1; j<=nlstate;j++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        if (popbased==1) {
             }          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)              prlim[i][i]=probs[(int)age][i][ij];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          }else{ /* mobilav */ 
           }            for(i=1; i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              prlim[i][i]=mobaverage[(int)age][i][ij];
         }          }
       }        }
      
   /******/        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }
           nhstepm = nhstepm/hstepm;        /* This for computing probability of death (h=1 means
                     computed over hstepm matrices product = hstepm*stepm months) 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           as a weighted average of prlim.
           oldm=oldms;savm=savms;        */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for (h=0; h<=nhstepm; h++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             if (h==(int) (calagedate+YEARM*cpt)) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }    
             }        /* end probability of death */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
               for(i=1; i<=nlstate;i++) {                        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);   
             }        if (popbased==1) {
           }          if(mobilav ==0){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=probs[(int)age][i][ij];
       }          }else{ /* mobilav */ 
    }            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   
   if (popforecast==1) {        for(j=1; j<= nlstate; j++){
     free_ivector(popage,0,AGESUP);          for(h=0; h<=nhstepm; h++){
     free_vector(popeffectif,0,AGESUP);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     free_vector(popcount,0,AGESUP);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* This for computing probability of death (h=1 means
   fclose(ficrespop);           computed over hstepm matrices product = hstepm*stepm months) 
 }           as a weighted average of prlim.
         */
 /***********************************************/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 /**************** Main Program *****************/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
 /***********************************************/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
 int main(int argc, char *argv[])        /* end probability of death */
 {  
         for(j=1; j<= nlstate; j++) /* vareij */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          for(h=0; h<=nhstepm; h++){
   double agedeb, agefin,hf;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          }
   
   double fret;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   double **xi,tmp,delta;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   double dum; /* Dummy variable */  
   double ***p3mat;      } /* End theta */
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      for(h=0; h<=nhstepm; h++) /* veij */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];            trgradg[h][j][theta]=gradg[h][theta][j];
   
   char filerest[FILENAMELENGTH];      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   char fileregp[FILENAMELENGTH];        for(theta=1; theta <=npar; theta++)
   char popfile[FILENAMELENGTH];          trgradgp[j][theta]=gradgp[theta][j];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   int c,  h , cpt,l;      for(i=1;i<=nlstate;i++)
   int ju,jl, mi;        for(j=1;j<=nlstate;j++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          vareij[i][j][(int)age] =0.;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;      for(h=0;h<=nhstepm;h++){
   int hstepm, nhstepm;        for(k=0;k<=nhstepm;k++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   double bage, fage, age, agelim, agebase;          for(i=1;i<=nlstate;i++)
   double ftolpl=FTOL;            for(j=1;j<=nlstate;j++)
   double **prlim;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   double *severity;        }
   double ***param; /* Matrix of parameters */      }
   double  *p;    
   double **matcov; /* Matrix of covariance */      /* pptj */
   double ***delti3; /* Scale */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   double *delti; /* Scale */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   double ***eij, ***vareij;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   double **varpl; /* Variances of prevalence limits by age */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   double *epj, vepp;          varppt[j][i]=doldmp[j][i];
   double kk1, kk2;      /* end ppptj */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      /*  x centered again */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";   
   char *alph[]={"a","a","b","c","d","e"}, str[4];      if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
   char z[1]="c", occ;            prlim[i][i]=probs[(int)age][i][ij];
 #include <sys/time.h>        }else{ /* mobilav */ 
 #include <time.h>          for(i=1; i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            prlim[i][i]=mobaverage[(int)age][i][ij];
          }
   /* long total_usecs;      }
   struct timeval start_time, end_time;               
        /* This for computing probability of death (h=1 means
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   getcwd(pathcd, size);         as a weighted average of prlim.
       */
   printf("\n%s",version);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if(argc <=1){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     printf("\nEnter the parameter file name: ");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     scanf("%s",pathtot);      }    
   }      /* end probability of death */
   else{  
     strcpy(pathtot,argv[1]);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   /*cygwin_split_path(pathtot,path,optionfile);        for(i=1; i<=nlstate;i++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   /* cutv(path,optionfile,pathtot,'\\');*/        }
       } 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      fprintf(ficresprobmorprev,"\n");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);      fprintf(ficresvij,"%.0f ",age );
   replace(pathc,path);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
 /*-------- arguments in the command line --------*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
   strcpy(fileres,"r");      fprintf(ficresvij,"\n");
   strcat(fileres, optionfilefiname);      free_matrix(gp,0,nhstepm,1,nlstate);
   strcat(fileres,".txt");    /* Other files have txt extension */      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   /*---------arguments file --------*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    } /* End age */
     printf("Problem with optionfile %s\n",optionfile);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     goto end;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   strcpy(filereso,"o");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   strcat(filereso,fileres);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   if((ficparo=fopen(filereso,"w"))==NULL) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /* Reads comments: lines beginning with '#' */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     ungetc(c,ficpar);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     puts(line);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fputs(line,ficparo);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   }  */
   ungetc(c,ficpar);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    free_vector(xp,1,npar);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    free_matrix(doldm,1,nlstate,1,nlstate);
 while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(dnewm,1,nlstate,1,npar);
     ungetc(c,ficpar);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     puts(line);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    fclose(ficresprobmorprev);
   ungetc(c,ficpar);    fflush(ficgp);
      fflush(fichtm); 
      }  /* end varevsij */
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;  /************ Variance of prevlim ******************/
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
   ncovmodel=2+cptcovn;    /* Variance of prevalence limit */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
      double **newm;
   /* Read guess parameters */    double **dnewm,**doldm;
   /* Reads comments: lines beginning with '#' */    int i, j, nhstepm, hstepm;
   while((c=getc(ficpar))=='#' && c!= EOF){    int k, cptcode;
     ungetc(c,ficpar);    double *xp;
     fgets(line, MAXLINE, ficpar);    double *gp, *gm;
     puts(line);    double **gradg, **trgradg;
     fputs(line,ficparo);    double age,agelim;
   }    int theta;
   ungetc(c,ficpar);     
      fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresvpl,"# Age");
     for(i=1; i <=nlstate; i++)    for(i=1; i<=nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){        fprintf(ficresvpl," %1d-%1d",i,i);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficresvpl,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);    xp=vector(1,npar);
       for(k=1; k<=ncovmodel;k++){    dnewm=matrix(1,nlstate,1,npar);
         fscanf(ficpar," %lf",&param[i][j][k]);    doldm=matrix(1,nlstate,1,nlstate);
         printf(" %lf",param[i][j][k]);    
         fprintf(ficparo," %lf",param[i][j][k]);    hstepm=1*YEARM; /* Every year of age */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       fscanf(ficpar,"\n");    agelim = AGESUP;
       printf("\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficparo,"\n");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   p=param[1][1];      gm=vector(1,nlstate);
    
   /* Reads comments: lines beginning with '#' */      for(theta=1; theta <=npar; theta++){
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=npar; i++){ /* Computes gradient */
     ungetc(c,ficpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fputs(line,ficparo);        for(i=1;i<=nlstate;i++)
   }          gp[i] = prlim[i][i];
   ungetc(c,ficpar);      
         for(i=1; i<=npar; i++) /* Computes gradient */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   for(i=1; i <=nlstate; i++){        for(i=1;i<=nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){          gm[i] = prlim[i][i];
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);        for(i=1;i<=nlstate;i++)
       fprintf(ficparo,"%1d%1d",i1,j1);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       for(k=1; k<=ncovmodel;k++){      } /* End theta */
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);      trgradg =matrix(1,nlstate,1,npar);
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }      for(j=1; j<=nlstate;j++)
       fscanf(ficpar,"\n");        for(theta=1; theta <=npar; theta++)
       printf("\n");          trgradg[j][theta]=gradg[theta][j];
       fprintf(ficparo,"\n");  
     }      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] =0.;
   delti=delti3[1][1];      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   /* Reads comments: lines beginning with '#' */      for(i=1;i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficresvpl,"%.0f ",age );
     puts(line);      for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   }      fprintf(ficresvpl,"\n");
   ungetc(c,ficpar);      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
   matcov=matrix(1,npar,1,npar);      free_matrix(gradg,1,npar,1,nlstate);
   for(i=1; i <=npar; i++){      free_matrix(trgradg,1,nlstate,1,npar);
     fscanf(ficpar,"%s",&str);    } /* End age */
     printf("%s",str);  
     fprintf(ficparo,"%s",str);    free_vector(xp,1,npar);
     for(j=1; j <=i; j++){    free_matrix(doldm,1,nlstate,1,npar);
       fscanf(ficpar," %le",&matcov[i][j]);    free_matrix(dnewm,1,nlstate,1,nlstate);
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);  }
     }  
     fscanf(ficpar,"\n");  /************ Variance of one-step probabilities  ******************/
     printf("\n");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     fprintf(ficparo,"\n");  {
   }    int i, j=0,  i1, k1, l1, t, tj;
   for(i=1; i <=npar; i++)    int k2, l2, j1,  z1;
     for(j=i+1;j<=npar;j++)    int k=0,l, cptcode;
       matcov[i][j]=matcov[j][i];    int first=1, first1;
        double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   printf("\n");    double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     /*-------- Rewriting paramater file ----------*/    double **gradg, **trgradg;
      strcpy(rfileres,"r");    /* "Rparameterfile */    double **mu;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    double age,agelim, cov[NCOVMAX];
      strcat(rfileres,".");    /* */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    int theta;
     if((ficres =fopen(rfileres,"w"))==NULL) {    char fileresprob[FILENAMELENGTH];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    char fileresprobcov[FILENAMELENGTH];
     }    char fileresprobcor[FILENAMELENGTH];
     fprintf(ficres,"#%s\n",version);  
        double ***varpij;
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {    strcpy(fileresprob,"prob"); 
       printf("Problem with datafile: %s\n", datafile);goto end;    strcat(fileresprob,fileres);
     }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
     n= lastobs;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     severity = vector(1,maxwav);    }
     outcome=imatrix(1,maxwav+1,1,n);    strcpy(fileresprobcov,"probcov"); 
     num=ivector(1,n);    strcat(fileresprobcov,fileres);
     moisnais=vector(1,n);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     annais=vector(1,n);      printf("Problem with resultfile: %s\n", fileresprobcov);
     moisdc=vector(1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     andc=vector(1,n);    }
     agedc=vector(1,n);    strcpy(fileresprobcor,"probcor"); 
     cod=ivector(1,n);    strcat(fileresprobcor,fileres);
     weight=vector(1,n);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      printf("Problem with resultfile: %s\n", fileresprobcor);
     mint=matrix(1,maxwav,1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     anint=matrix(1,maxwav,1,n);    }
     s=imatrix(1,maxwav+1,1,n);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     adl=imatrix(1,maxwav+1,1,n);        fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     tab=ivector(1,NCOVMAX);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     ncodemax=ivector(1,8);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     i=1;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     while (fgets(line, MAXLINE, fic) != NULL)    {    
       if ((i >= firstobs) && (i <=lastobs)) {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
            fprintf(ficresprob,"# Age");
         for (j=maxwav;j>=1;j--){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    fprintf(ficresprobcov,"# Age");
           strcpy(line,stra);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobcov,"# Age");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }  
            for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=1; j<=(nlstate+ndeath);j++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      }  
    /* fprintf(ficresprob,"\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobcov,"\n");
         for (j=ncovcol;j>=1;j--){    fprintf(ficresprobcor,"\n");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   */
         }   xp=vector(1,npar);
         num[i]=atol(stra);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
         i=i+1;    fprintf(ficgp,"\n# Routine varprob");
       }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     }    fprintf(fichtm,"\n");
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   imx=i-1; /* Number of individuals */    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
   /* for (i=1; i<=imx; i++){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  and drawn. It helps understanding how is the covariance between two incidences.\
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     }*/  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    /*  for (i=1; i<=imx; i++){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
      if (s[4][i]==9)  s[4][i]=-1;  standard deviations wide on each axis. <br>\
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
    To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);    cov[1]=1;
   Tprod=ivector(1,15);    tj=cptcoveff;
   Tvaraff=ivector(1,15);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   Tvard=imatrix(1,15,1,2);    j1=0;
   Tage=ivector(1,15);          for(t=1; t<=tj;t++){
          for(i1=1; i1<=ncodemax[t];i1++){ 
   if (strlen(model) >1){        j1++;
     j=0, j1=0, k1=1, k2=1;        if  (cptcovn>0) {
     j=nbocc(model,'+');          fprintf(ficresprob, "\n#********** Variable "); 
     j1=nbocc(model,'*');          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     cptcovn=j+1;          fprintf(ficresprob, "**********\n#\n");
     cptcovprod=j1;          fprintf(ficresprobcov, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     strcpy(modelsav,model);          fprintf(ficresprobcov, "**********\n#\n");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          
       printf("Error. Non available option model=%s ",model);          fprintf(ficgp, "\n#********** Variable "); 
       goto end;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficgp, "**********\n#\n");
              
     for(i=(j+1); i>=1;i--){          
       cutv(stra,strb,modelsav,'+');          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       /*scanf("%d",i);*/          
       if (strchr(strb,'*')) {          fprintf(ficresprobcor, "\n#********** Variable ");    
         cutv(strd,strc,strb,'*');          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if (strcmp(strc,"age")==0) {          fprintf(ficresprobcor, "**********\n#");    
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');        
           Tvar[i]=atoi(stre);        for (age=bage; age<=fage; age ++){ 
           cptcovage++;          cov[2]=age;
             Tage[cptcovage]=i;          for (k=1; k<=cptcovn;k++) {
             /*printf("stre=%s ", stre);*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         }          }
         else if (strcmp(strd,"age")==0) {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           cptcovprod--;          for (k=1; k<=cptcovprod;k++)
           cutv(strb,stre,strc,'V');            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           Tvar[i]=atoi(stre);          
           cptcovage++;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           Tage[cptcovage]=i;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         }          gp=vector(1,(nlstate)*(nlstate+ndeath));
         else {          gm=vector(1,(nlstate)*(nlstate+ndeath));
           cutv(strb,stre,strc,'V');      
           Tvar[i]=ncovcol+k1;          for(theta=1; theta <=npar; theta++){
           cutv(strb,strc,strd,'V');            for(i=1; i<=npar; i++)
           Tprod[k1]=i;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           Tvard[k1][1]=atoi(strc);            
           Tvard[k1][2]=atoi(stre);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           Tvar[cptcovn+k2]=Tvard[k1][1];            
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            k=0;
           for (k=1; k<=lastobs;k++)            for(i=1; i<= (nlstate); i++){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];              for(j=1; j<=(nlstate+ndeath);j++){
           k1++;                k=k+1;
           k2=k2+2;                gp[k]=pmmij[i][j];
         }              }
       }            }
       else {            
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            for(i=1; i<=npar; i++)
        /*  scanf("%d",i);*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       cutv(strd,strc,strb,'V');      
       Tvar[i]=atoi(strc);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       }            k=0;
       strcpy(modelsav,stra);              for(i=1; i<=(nlstate); i++){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              for(j=1; j<=(nlstate+ndeath);j++){
         scanf("%d",i);*/                k=k+1;
     }                gm[k]=pmmij[i][j];
 }              }
              }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);       
   printf("cptcovprod=%d ", cptcovprod);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   scanf("%d ",i);*/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     fclose(fic);          }
   
     /*  if(mle==1){*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     if (weightopt != 1) { /* Maximisation without weights*/            for(theta=1; theta <=npar; theta++)
       for(i=1;i<=n;i++) weight[i]=1.0;              trgradg[j][theta]=gradg[theta][j];
     }          
     /*-calculation of age at interview from date of interview and age at death -*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     agev=matrix(1,maxwav,1,imx);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     for (i=1; i<=imx; i++) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       for(m=2; (m<= maxwav); m++) {          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
          anint[m][i]=9999;  
          s[m][i]=-1;          pmij(pmmij,cov,ncovmodel,x,nlstate);
        }          
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          k=0;
       }          for(i=1; i<=(nlstate); i++){
     }            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
     for (i=1; i<=imx; i++)  {              mu[k][(int) age]=pmmij[i][j];
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            }
       for(m=1; (m<= maxwav); m++){          }
         if(s[m][i] >0){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           if (s[m][i] >= nlstate+1) {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
             if(agedc[i]>0)              varpij[i][j][(int)age] = doldm[i][j];
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];          /*printf("\n%d ",(int)age);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            else {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               if (andc[i]!=9999){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            }*/
               agev[m][i]=-1;  
               }          fprintf(ficresprob,"\n%d ",(int)age);
             }          fprintf(ficresprobcov,"\n%d ",(int)age);
           }          fprintf(ficresprobcor,"\n%d ",(int)age);
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             if(mint[m][i]==99 || anint[m][i]==9999)            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
               agev[m][i]=1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             else if(agev[m][i] <agemin){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
               agemin=agev[m][i];            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          }
             }          i=0;
             else if(agev[m][i] >agemax){          for (k=1; k<=(nlstate);k++){
               agemax=agev[m][i];            for (l=1; l<=(nlstate+ndeath);l++){ 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              i=i++;
             }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
             /*agev[m][i]=anint[m][i]-annais[i];*/              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
             /*   agev[m][i] = age[i]+2*m;*/              for (j=1; j<=i;j++){
           }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           else { /* =9 */                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
             agev[m][i]=1;              }
             s[m][i]=-1;            }
           }          }/* end of loop for state */
         }        } /* end of loop for age */
         else /*= 0 Unknown */  
           agev[m][i]=1;        /* Confidence intervalle of pij  */
       }        /*
              fprintf(ficgp,"\nset noparametric;unset label");
     }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     for (i=1; i<=imx; i++)  {          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       for(m=1; (m<= maxwav); m++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         if (s[m][i] > (nlstate+ndeath)) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           printf("Error: Wrong value in nlstate or ndeath\n");            fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           goto end;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         }        */
       }  
     }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     free_vector(severity,1,maxwav);            if(l2==k2) continue;
     free_imatrix(outcome,1,maxwav+1,1,n);            j=(k2-1)*(nlstate+ndeath)+l2;
     free_vector(moisnais,1,n);            for (k1=1; k1<=(nlstate);k1++){
     free_vector(annais,1,n);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     /* free_matrix(mint,1,maxwav,1,n);                if(l1==k1) continue;
        free_matrix(anint,1,maxwav,1,n);*/                i=(k1-1)*(nlstate+ndeath)+l1;
     free_vector(moisdc,1,n);                if(i<=j) continue;
     free_vector(andc,1,n);                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                        v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     wav=ivector(1,imx);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                        mu2=mu[j][(int) age]/stepm*YEARM;
     /* Concatenates waves */                    c12=cv12/sqrt(v1*v2);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       Tcode=ivector(1,100);                    /* Eigen vectors */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       ncodemax[1]=1;                    /*v21=sqrt(1.-v11*v11); *//* error */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                    v21=(lc1-v1)/cv12*v11;
                          v12=-v21;
    codtab=imatrix(1,100,1,10);                    v22=v11;
    h=0;                    tnalp=v21/v11;
    m=pow(2,cptcoveff);                    if(first1==1){
                        first1=0;
    for(k=1;k<=cptcoveff; k++){                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
      for(i=1; i <=(m/pow(2,k));i++){                    }
        for(j=1; j <= ncodemax[k]; j++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                    /*printf(fignu*/
            h++;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                    if(first==1){
          }                      first=0;
        }                      fprintf(ficgp,"\nset parametric;unset label");
      }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
    }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       codtab[1][2]=1;codtab[2][2]=2; */   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
    /* for(i=1; i <=m ;i++){  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       for(k=1; k <=cptcovn; k++){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       printf("\n");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       scanf("%d",i);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                          fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
    /* Calculates basic frequencies. Computes observed prevalence at single age                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
        and prints on file fileres'p'. */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                        }else{
                          first=0;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     /* For Powell, parameters are in a vector p[] starting at p[1]                    }/* if first */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                  } /* age mod 5 */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     if(mle==1){                first=1;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              } /*l12 */
     }            } /* k12 */
              } /*l1 */
     /*--------- results files --------------*/        }/* k1 */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      } /* loop covariates */
      }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
    jk=1;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    free_vector(xp,1,npar);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fclose(ficresprob);
    for(i=1,jk=1; i <=nlstate; i++){    fclose(ficresprobcov);
      for(k=1; k <=(nlstate+ndeath); k++){    fclose(ficresprobcor);
        if (k != i)    fflush(ficgp);
          {    fflush(fichtmcov);
            printf("%d%d ",i,k);  }
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);  /******************* Printing html file ***********/
              fprintf(ficres,"%f ",p[jk]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
              jk++;                    int lastpass, int stepm, int weightopt, char model[],\
            }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
            printf("\n");                    int popforecast, int estepm ,\
            fprintf(ficres,"\n");                    double jprev1, double mprev1,double anprev1, \
          }                    double jprev2, double mprev2,double anprev2){
      }    int jj1, k1, i1, cpt;
    }  
  if(mle==1){     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     /* Computing hessian and covariance matrix */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     ftolhess=ftol; /* Usually correct */             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     hesscov(matcov, p, npar, delti, ftolhess, func);     fprintf(fichtm,"\
  }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     printf("# Scales (for hessian or gradient estimation)\n");     fprintf(fichtm,"\
      for(i=1,jk=1; i <=nlstate; i++){   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       for(j=1; j <=nlstate+ndeath; j++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
         if (j!=i) {     fprintf(fichtm,"\
           fprintf(ficres,"%1d%1d",i,j);   - Life expectancies by age and initial health status (estepm=%2d months): \
           printf("%1d%1d",i,j);     <a href=\"%s\">%s</a> <br>\n</li>",
           for(k=1; k<=ncovmodel;k++){             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
             jk++;  
           }   m=cptcoveff;
           printf("\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           fprintf(ficres,"\n");  
         }   jj1=0;
       }   for(k1=1; k1<=m;k1++){
      }     for(i1=1; i1<=ncodemax[k1];i1++){
           jj1++;
     k=1;       if (cptcovn > 0) {
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
     for(i=1;i<=npar;i++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       /*  if (k>nlstate) k=1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       i1=(i-1)/(ncovmodel*nlstate)+1;       }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       /* Pij */
       printf("%s%d%d",alph[k],i1,tab[i]);*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       fprintf(ficres,"%3d",i);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       printf("%3d",i);       /* Quasi-incidences */
       for(j=1; j<=i;j++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         fprintf(ficres," %.5e",matcov[i][j]);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
         printf(" %.5e",matcov[i][j]);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       }         /* Stable prevalence in each health state */
       fprintf(ficres,"\n");         for(cpt=1; cpt<nlstate;cpt++){
       printf("\n");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
       k++;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     }         }
           for(cpt=1; cpt<=nlstate;cpt++) {
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
       ungetc(c,ficpar);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       fgets(line, MAXLINE, ficpar);       }
       puts(line);     } /* end i1 */
       fputs(line,ficparo);   }/* End k1 */
     }   fprintf(fichtm,"</ul>");
     ungetc(c,ficpar);  
     estepm=0;  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   fprintf(fichtm,"\
     if (estepm==0 || estepm < stepm) estepm=stepm;  \n<br><li><h4> Result files (second order: variances)</h4>\n\
     if (fage <= 2) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       bage = ageminpar;  
       fage = agemaxpar;   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       fprintf(fichtm,"\
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
     fprintf(fichtm,"\
     while((c=getc(ficpar))=='#' && c!= EOF){   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     ungetc(c,ficpar);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"\
     puts(line);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     fputs(line,ficparo);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   }   fprintf(fichtm,"\
   ungetc(c,ficpar);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);   fprintf(fichtm,"\
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
        
   while((c=getc(ficpar))=='#' && c!= EOF){  /*  if(popforecast==1) fprintf(fichtm,"\n */
     ungetc(c,ficpar);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     fgets(line, MAXLINE, ficpar);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     puts(line);  /*      <br>",fileres,fileres,fileres,fileres); */
     fputs(line,ficparo);  /*  else  */
   }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   ungetc(c,ficpar);   fflush(fichtm);
     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;   m=cptcoveff;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);   jj1=0;
   fprintf(ficparo,"pop_based=%d\n",popbased);     for(k1=1; k1<=m;k1++){
   fprintf(ficres,"pop_based=%d\n",popbased);       for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
   while((c=getc(ficpar))=='#' && c!= EOF){       if (cptcovn > 0) {
     ungetc(c,ficpar);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     fgets(line, MAXLINE, ficpar);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     puts(line);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     fputs(line,ficparo);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   }       }
   ungetc(c,ficpar);       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
 while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     ungetc(c,ficpar);     } /* end i1 */
     fgets(line, MAXLINE, ficpar);   }/* End k1 */
     puts(line);   fprintf(fichtm,"</ul>");
     fputs(line,ficparo);   fflush(fichtm);
   }  }
   ungetc(c,ficpar);  
   /******************* Gnuplot file **************/
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 /*------------ gnuplot -------------*/  /*     printf("Problem with file %s",optionfilegnuplot); */
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
    /*   } */
 /*------------ free_vector  -------------*/  
  chdir(path);    /*#ifdef windows */
      fprintf(ficgp,"cd \"%s\" \n",pathc);
  free_ivector(wav,1,imx);      /*#endif */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    m=pow(2,cptcoveff);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);    strcpy(dirfileres,optionfilefiname);
  free_vector(agedc,1,n);    strcpy(optfileres,"vpl");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/   /* 1eme*/
  fclose(ficparo);    for (cpt=1; cpt<= nlstate ; cpt ++) {
  fclose(ficres);     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 /*--------- index.htm --------*/       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  set ylabel \"Probability\" \n\
   set ter png small\n\
    set size 0.65,0.65\n\
   /*--------------- Prevalence limit --------------*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    
   strcpy(filerespl,"pl");       for (i=1; i<= nlstate ; i ++) {
   strcat(filerespl,fileres);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       }
   }       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);       for (i=1; i<= nlstate ; i ++) {
   fprintf(ficrespl,"#Prevalence limit\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fprintf(ficrespl,"#Age ");         else fprintf(ficgp," \%%*lf (\%%*lf)");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);       } 
   fprintf(ficrespl,"\n");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         for (i=1; i<= nlstate ; i ++) {
   prlim=matrix(1,nlstate,1,nlstate);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         else fprintf(ficgp," \%%*lf (\%%*lf)");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    }
   k=0;    /*2 eme*/
   agebase=ageminpar;    
   agelim=agemaxpar;    for (k1=1; k1<= m ; k1 ++) { 
   ftolpl=1.e-10;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   i1=cptcoveff;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if (cptcovn < 1){i1=1;}      
       for (i=1; i<= nlstate+1 ; i ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){        k=2*i;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         k=k+1;        for (j=1; j<= nlstate+1 ; j ++) {
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrespl,"\n#******");          else fprintf(ficgp," \%%*lf (\%%*lf)");
         for(j=1;j<=cptcoveff;j++)        }   
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         fprintf(ficrespl,"******\n");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
                fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (age=agebase; age<=agelim; age++){        for (j=1; j<= nlstate+1 ; j ++) {
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrespl,"%.0f",age );          else fprintf(ficgp," \%%*lf (\%%*lf)");
           for(i=1; i<=nlstate;i++)        }   
           fprintf(ficrespl," %.5f", prlim[i][i]);        fprintf(ficgp,"\" t\"\" w l 0,");
           fprintf(ficrespl,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         }        for (j=1; j<= nlstate+1 ; j ++) {
       }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fclose(ficrespl);        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   /*------------- h Pij x at various ages ------------*/        else fprintf(ficgp,"\" t\"\" w l 0,");
        }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /*3eme*/
   }    
   printf("Computing pij: result on file '%s' \n", filerespij);    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<= nlstate ; cpt ++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;        k=2+nlstate*(2*cpt-2);
   /*if (stepm<=24) stepsize=2;*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   agelim=AGESUP;  set size 0.65,0.65\n\
   hstepm=stepsize*YEARM; /* Every year of age */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   k=0;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       k=k+1;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         fprintf(ficrespij,"\n#****** ");          
         for(j=1;j<=cptcoveff;j++)        */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (i=1; i< nlstate ; i ++) {
         fprintf(ficrespij,"******\n");          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
                  
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        } 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    /* CV preval stable (period) */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for (k1=1; k1<= m ; k1 ++) { 
           fprintf(ficrespij,"# Age");      for (cpt=1; cpt<=nlstate ; cpt ++) {
           for(i=1; i<=nlstate;i++)        k=3;
             for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
               fprintf(ficrespij," %1d-%1d",i,j);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
           fprintf(ficrespij,"\n");  set ter png small\nset size 0.65,0.65\n\
            for (h=0; h<=nhstepm; h++){  unset log y\n\
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
             for(i=1; i<=nlstate;i++)        
               for(j=1; j<=nlstate+ndeath;j++)        for (i=1; i< nlstate ; i ++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          fprintf(ficgp,"+$%d",k+i+1);
             fprintf(ficrespij,"\n");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
              }        
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        l=3+(nlstate+ndeath)*cpt;
           fprintf(ficrespij,"\n");        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         }        for (i=1; i< nlstate ; i ++) {
     }          l=3+(nlstate+ndeath)*cpt;
   }          fprintf(ficgp,"+$%d",l+i+1);
         }
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
   fclose(ficrespij);    }  
     
     /* proba elementaires */
   /*---------- Forecasting ------------------*/    for(i=1,jk=1; i <=nlstate; i++){
   if((stepm == 1) && (strcmp(model,".")==0)){      for(k=1; k <=(nlstate+ndeath); k++){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        if (k != i) {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          for(j=1; j <=ncovmodel; j++){
   }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   else{            jk++; 
     erreur=108;            fprintf(ficgp,"\n");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          }
   }        }
        }
      }
   /*---------- Health expectancies and variances ------------*/  
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   strcpy(filerest,"t");       for(jk=1; jk <=m; jk++) {
   strcat(filerest,fileres);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   if((ficrest=fopen(filerest,"w"))==NULL) {         if (ng==2)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   }         else
   printf("Computing Total LEs with variances: file '%s' \n", filerest);           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
   strcpy(filerese,"e");         for(k2=1; k2<=nlstate; k2++) {
   strcat(filerese,fileres);           k3=i;
   if((ficreseij=fopen(filerese,"w"))==NULL) {           for(k=1; k<=(nlstate+ndeath); k++) {
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);             if (k != k2){
   }               if(ng==2)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
  strcpy(fileresv,"v");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   strcat(fileresv,fileres);               ij=1;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {               for(j=3; j <=ncovmodel; j++) {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                   ij++;
   calagedate=-1;                 }
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   k=0;               }
   for(cptcov=1;cptcov<=i1;cptcov++){               fprintf(ficgp,")/(1");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){               
       k=k+1;               for(k1=1; k1 <=nlstate; k1++){   
       fprintf(ficrest,"\n#****** ");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       for(j=1;j<=cptcoveff;j++)                 ij=1;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 for(j=3; j <=ncovmodel; j++){
       fprintf(ficrest,"******\n");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       fprintf(ficreseij,"\n#****** ");                     ij++;
       for(j=1;j<=cptcoveff;j++)                   }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   else
       fprintf(ficreseij,"******\n");                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
       fprintf(ficresvij,"\n#****** ");                 fprintf(ficgp,")");
       for(j=1;j<=cptcoveff;j++)               }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       fprintf(ficresvij,"******\n");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);             }
       oldm=oldms;savm=savms;           } /* end k */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);           } /* end k2 */
         } /* end jk */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     } /* end ng */
       oldm=oldms;savm=savms;     fflush(ficgp); 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  }  /* end gnuplot */
      
   
    /*************** Moving average **************/
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");    int i, cpt, cptcod;
     int modcovmax =1;
       epj=vector(1,nlstate+1);    int mobilavrange, mob;
       for(age=bage; age <=fage ;age++){    double age;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           for(i=1; i<=nlstate;i++)                             a covariate has 2 modalities */
             prlim[i][i]=probs[(int)age][i][k];    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
         }  
            if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
         fprintf(ficrest," %4.0f",age);      if(mobilav==1) mobilavrange=5; /* default */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      else mobilavrange=mobilav;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      for (age=bage; age<=fage; age++)
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        for (i=1; i<=nlstate;i++)
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           epj[nlstate+1] +=epj[j];      /* We keep the original values on the extreme ages bage, fage and for 
         }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
         for(i=1, vepp=0.;i <=nlstate;i++)      */ 
           for(j=1;j <=nlstate;j++)      for (mob=3;mob <=mobilavrange;mob=mob+2){
             vepp += vareij[i][j][(int)age];        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          for (i=1; i<=nlstate;i++){
         for(j=1;j <=nlstate;j++){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         fprintf(ficrest,"\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     }                }
   }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 free_matrix(mint,1,maxwav,1,n);            }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          }
     free_vector(weight,1,n);        }/* end age */
   fclose(ficreseij);      }/* end mob */
   fclose(ficresvij);    }else return -1;
   fclose(ficrest);    return 0;
   fclose(ficpar);  }/* End movingaverage */
   free_vector(epj,1,nlstate+1);  
    
   /*------- Variance limit prevalence------*/    /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   strcpy(fileresvpl,"vpl");    /* proj1, year, month, day of starting projection 
   strcat(fileresvpl,fileres);       agemin, agemax range of age
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {       dateprev1 dateprev2 range of dates during which prevalence is computed
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);       anproj2 year of en of projection (same day and month as proj1).
     exit(0);    */
   }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    int *popage;
     double agec; /* generic age */
   k=0;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   for(cptcov=1;cptcov<=i1;cptcov++){    double *popeffectif,*popcount;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ***p3mat;
       k=k+1;    double ***mobaverage;
       fprintf(ficresvpl,"\n#****** ");    char fileresf[FILENAMELENGTH];
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim=AGESUP;
       fprintf(ficresvpl,"******\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    strcpy(fileresf,"f"); 
       oldm=oldms;savm=savms;    strcat(fileresf,fileres);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    if((ficresf=fopen(fileresf,"w"))==NULL) {
     }      printf("Problem with forecast resultfile: %s\n", fileresf);
  }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
   fclose(ficresvpl);    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if (mobilav!=0) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
      stepsize=(int) (stepm+YEARM-1)/YEARM;
   free_matrix(matcov,1,npar,1,npar);    if (stepm<=12) stepsize=1;
   free_vector(delti,1,npar);    if(estepm < stepm){
   free_matrix(agev,1,maxwav,1,imx);      printf ("Problem %d lower than %d\n",estepm, stepm);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    }
     else  hstepm=estepm;   
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);    hstepm=hstepm/stepm; 
   else   printf("End of Imach\n");    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                                 fractional in yp1 */
      anprojmean=yp;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    yp2=modf((yp1*12),&yp);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    mprojmean=yp;
   /*------ End -----------*/    yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
  end:    if(mprojmean==0) jprojmean=1;
   /* chdir(pathcd);*/  
  /*system("wgnuplot graph.plt");*/    i1=cptcoveff;
  /*system("../gp37mgw/wgnuplot graph.plt");*/    if (cptcovn < 1){i1=1;}
  /*system("cd ../gp37mgw");*/    
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
  strcpy(plotcmd,GNUPLOTPROGRAM);    
  strcat(plotcmd," ");    fprintf(ficresf,"#****** Routine prevforecast **\n");
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);  /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
  /*#ifdef windows*/      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   while (z[0] != 'q') {        k=k+1;
     /* chdir(path); */        fprintf(ficresf,"\n#******");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        for(j=1;j<=cptcoveff;j++) {
     scanf("%s",z);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     if (z[0] == 'c') system("./imach");        }
     else if (z[0] == 'e') system(optionfilehtm);        fprintf(ficresf,"******\n");
     else if (z[0] == 'g') system(plotcmd);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     else if (z[0] == 'q') exit(0);        for(j=1; j<=nlstate+ndeath;j++){ 
   }          for(i=1; i<=nlstate;i++)              
   /*#endif */            fprintf(ficresf," p%d%d",i,j);
 }          fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.103


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>