Diff for /imach/src/imach.c between versions 1.106 and 1.125

version 1.106, 2006/01/19 13:24:36 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   Some cleaning and links added in html output    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.105  2006/01/05 20:23:19  lievre  
   *** empty log message ***    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
   Revision 1.104  2005/09/30 16:11:43  lievre    The log-likelihood is printed in the log file
   (Module): sump fixed, loop imx fixed, and simplifications.  
   (Module): If the status is missing at the last wave but we know    Revision 1.123  2006/03/20 10:52:43  brouard
   that the person is alive, then we can code his/her status as -2    * imach.c (Module): <title> changed, corresponds to .htm file
   (instead of missing=-1 in earlier versions) and his/her    name. <head> headers where missing.
   contributions to the likelihood is 1 - Prob of dying from last  
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    * imach.c (Module): Weights can have a decimal point as for
   the healthy state at last known wave). Version is 0.98    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.103  2005/09/30 15:54:49  lievre    Modification of warning when the covariates values are not 0 or
   (Module): sump fixed, loop imx fixed, and simplifications.    1.
     Version 0.98g
   Revision 1.102  2004/09/15 17:31:30  brouard  
   Add the possibility to read data file including tab characters.    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   Revision 1.101  2004/09/15 10:38:38  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   Fix on curr_time    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.100  2004/07/12 18:29:06  brouard    1.
   Add version for Mac OS X. Just define UNIX in Makefile    Version 0.98g
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.121  2006/03/16 17:45:01  lievre
   *** empty log message ***    * imach.c (Module): Comments concerning covariates added
   
   Revision 1.98  2004/05/16 15:05:56  brouard    * imach.c (Module): refinements in the computation of lli if
   New version 0.97 . First attempt to estimate force of mortality    status=-2 in order to have more reliable computation if stepm is
   directly from the data i.e. without the need of knowing the health    not 1 month. Version 0.98f
   state at each age, but using a Gompertz model: log u =a + b*age .  
   This is the basic analysis of mortality and should be done before any    Revision 1.120  2006/03/16 15:10:38  lievre
   other analysis, in order to test if the mortality estimated from the    (Module): refinements in the computation of lli if
   cross-longitudinal survey is different from the mortality estimated    status=-2 in order to have more reliable computation if stepm is
   from other sources like vital statistic data.    not 1 month. Version 0.98f
   
   The same imach parameter file can be used but the option for mle should be -3.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Agnès, who wrote this part of the code, tried to keep most of the    computed as likelihood omitting the logarithm. Version O.98e
   former routines in order to include the new code within the former code.  
     Revision 1.118  2006/03/14 18:20:07  brouard
   The output is very simple: only an estimate of the intercept and of    (Module): varevsij Comments added explaining the second
   the slope with 95% confident intervals.    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Current limitations:    (Module): Function pstamp added
   A) Even if you enter covariates, i.e. with the    (Module): Version 0.98d
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.  
   B) There is no computation of Life Expectancy nor Life Table.    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
   Revision 1.97  2004/02/20 13:25:42  lievre    table of variances if popbased=1 .
   Version 0.96d. Population forecasting command line is (temporarily)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   suppressed.    (Module): Function pstamp added
     (Module): Version 0.98d
   Revision 1.96  2003/07/15 15:38:55  brouard  
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    Revision 1.116  2006/03/06 10:29:27  brouard
   rewritten within the same printf. Workaround: many printfs.    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   Revision 1.95  2003/07/08 07:54:34  brouard  
   * imach.c (Repository):    Revision 1.115  2006/02/27 12:17:45  brouard
   (Repository): Using imachwizard code to output a more meaningful covariance    (Module): One freematrix added in mlikeli! 0.98c
   matrix (cov(a12,c31) instead of numbers.  
     Revision 1.114  2006/02/26 12:57:58  brouard
   Revision 1.94  2003/06/27 13:00:02  brouard    (Module): Some improvements in processing parameter
   Just cleaning    filename with strsep.
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): Memory leaks checks with valgrind and:
   exist so I changed back to asctime which exists.    datafile was not closed, some imatrix were not freed and on matrix
   (Module): Version 0.96b    allocation too.
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   exist so I changed back to asctime which exists.  
     Revision 1.111  2006/01/25 20:38:18  brouard
   Revision 1.91  2003/06/25 15:30:29  brouard    (Module): Lots of cleaning and bugs added (Gompertz)
   * imach.c (Repository): Duplicated warning errors corrected.    (Module): Comments can be added in data file. Missing date values
   (Repository): Elapsed time after each iteration is now output. It    can be a simple dot '.'.
   helps to forecast when convergence will be reached. Elapsed time  
   is stamped in powell.  We created a new html file for the graphs    Revision 1.110  2006/01/25 00:51:50  brouard
   concerning matrix of covariance. It has extension -cov.htm.    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Comments (lines starting with a #) are allowed in data.
   mle=-1 a template is output in file "or"mypar.txt with the design  
   of the covariance matrix to be input.    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
   Revision 1.89  2003/06/24 12:30:52  brouard    To be fixed
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.107  2006/01/19 16:20:37  brouard
   of the covariance matrix to be input.    Test existence of gnuplot in imach path
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    Some cleaning and links added in html output
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.105  2006/01/05 20:23:19  lievre
   Version 0.96    *** empty log message ***
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): Change position of html and gnuplot routines and added    (Module): sump fixed, loop imx fixed, and simplifications.
   routine fileappend.    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   Revision 1.85  2003/06/17 13:12:43  brouard    (instead of missing=-1 in earlier versions) and his/her
   * imach.c (Repository): Check when date of death was earlier that    contributions to the likelihood is 1 - Prob of dying from last
   current date of interview. It may happen when the death was just    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   prior to the death. In this case, dh was negative and likelihood    the healthy state at last known wave). Version is 0.98
   was wrong (infinity). We still send an "Error" but patch by  
   assuming that the date of death was just one stepm after the    Revision 1.103  2005/09/30 15:54:49  lievre
   interview.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Repository): Because some people have very long ID (first column)  
   we changed int to long in num[] and we added a new lvector for    Revision 1.102  2004/09/15 17:31:30  brouard
   memory allocation. But we also truncated to 8 characters (left    Add the possibility to read data file including tab characters.
   truncation)  
   (Repository): No more line truncation errors.    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   Revision 1.84  2003/06/13 21:44:43  brouard  
   * imach.c (Repository): Replace "freqsummary" at a correct    Revision 1.100  2004/07/12 18:29:06  brouard
   place. It differs from routine "prevalence" which may be called    Add version for Mac OS X. Just define UNIX in Makefile
   many times. Probs is memory consuming and must be used with  
   parcimony.    Revision 1.99  2004/06/05 08:57:40  brouard
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    *** empty log message ***
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.98  2004/05/16 15:05:56  brouard
   *** empty log message ***    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
   Revision 1.82  2003/06/05 15:57:20  brouard    state at each age, but using a Gompertz model: log u =a + b*age .
   Add log in  imach.c and  fullversion number is now printed.    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 */    cross-longitudinal survey is different from the mortality estimated
 /*    from other sources like vital statistic data.
    Interpolated Markov Chain  
     The same imach parameter file can be used but the option for mle should be -3.
   Short summary of the programme:  
       Agnès, who wrote this part of the code, tried to keep most of the
   This program computes Healthy Life Expectancies from    former routines in order to include the new code within the former code.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    The output is very simple: only an estimate of the intercept and of
   interviewed on their health status or degree of disability (in the    the slope with 95% confident intervals.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Current limitations:
   (if any) in individual health status.  Health expectancies are    A) Even if you enter covariates, i.e. with the
   computed from the time spent in each health state according to a    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   model. More health states you consider, more time is necessary to reach the    B) There is no computation of Life Expectancy nor Life Table.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.97  2004/02/20 13:25:42  lievre
   probability to be observed in state j at the second wave    Version 0.96d. Population forecasting command line is (temporarily)
   conditional to be observed in state i at the first wave. Therefore    suppressed.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.96  2003/07/15 15:38:55  brouard
   complex model than "constant and age", you should modify the program    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   where the markup *Covariates have to be included here again* invites    rewritten within the same printf. Workaround: many printfs.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
   The advantage of this computer programme, compared to a simple    (Repository): Using imachwizard code to output a more meaningful covariance
   multinomial logistic model, is clear when the delay between waves is not    matrix (cov(a12,c31) instead of numbers.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.94  2003/06/27 13:00:02  brouard
   account using an interpolation or extrapolation.      Just cleaning
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.93  2003/06/25 16:33:55  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): On windows (cygwin) function asctime_r doesn't
   split into an exact number (nh*stepm) of unobserved intermediate    exist so I changed back to asctime which exists.
   states. This elementary transition (by month, quarter,    (Module): Version 0.96b
   semester or year) is modelled as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.92  2003/06/25 16:30:45  brouard
   and the contribution of each individual to the likelihood is simply    (Module): On windows (cygwin) function asctime_r doesn't
   hPijx.    exist so I changed back to asctime which exists.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.91  2003/06/25 15:30:29  brouard
   of the life expectancies. It also computes the stable prevalence.     * imach.c (Repository): Duplicated warning errors corrected.
       (Repository): Elapsed time after each iteration is now output. It
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    helps to forecast when convergence will be reached. Elapsed time
            Institut national d'études démographiques, Paris.    is stamped in powell.  We created a new html file for the graphs
   This software have been partly granted by Euro-REVES, a concerted action    concerning matrix of covariance. It has extension -cov.htm.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.90  2003/06/24 12:34:15  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): Some bugs corrected for windows. Also, when
   can be accessed at http://euroreves.ined.fr/imach .    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach  
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    Revision 1.89  2003/06/24 12:30:52  brouard
       (Module): Some bugs corrected for windows. Also, when
   **********************************************************************/    mle=-1 a template is output in file "or"mypar.txt with the design
 /*    of the covariance matrix to be input.
   main  
   read parameterfile    Revision 1.88  2003/06/23 17:54:56  brouard
   read datafile    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   concatwav  
   freqsummary    Revision 1.87  2003/06/18 12:26:01  brouard
   if (mle >= 1)    Version 0.96
     mlikeli  
   print results files    Revision 1.86  2003/06/17 20:04:08  brouard
   if mle==1     (Module): Change position of html and gnuplot routines and added
      computes hessian    routine fileappend.
   read end of parameter file: agemin, agemax, bage, fage, estepm  
       begin-prev-date,...    Revision 1.85  2003/06/17 13:12:43  brouard
   open gnuplot file    * imach.c (Repository): Check when date of death was earlier that
   open html file    current date of interview. It may happen when the death was just
   stable prevalence    prior to the death. In this case, dh was negative and likelihood
    for age prevalim()    was wrong (infinity). We still send an "Error" but patch by
   h Pij x    assuming that the date of death was just one stepm after the
   variance of p varprob    interview.
   forecasting if prevfcast==1 prevforecast call prevalence()    (Repository): Because some people have very long ID (first column)
   health expectancies    we changed int to long in num[] and we added a new lvector for
   Variance-covariance of DFLE    memory allocation. But we also truncated to 8 characters (left
   prevalence()    truncation)
    movingaverage()    (Repository): No more line truncation errors.
   varevsij()   
   if popbased==1 varevsij(,popbased)    Revision 1.84  2003/06/13 21:44:43  brouard
   total life expectancies    * imach.c (Repository): Replace "freqsummary" at a correct
   Variance of stable prevalence    place. It differs from routine "prevalence" which may be called
  end    many times. Probs is memory consuming and must be used with
 */    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
     Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.82  2003/06/05 15:57:20  brouard
 #include <stdlib.h>    Add log in  imach.c and  fullversion number is now printed.
 #include <string.h>  
 #include <unistd.h>  */
   /*
 /* #include <sys/time.h> */     Interpolated Markov Chain
 #include <time.h>  
 #include "timeval.h"    Short summary of the programme:
    
 /* #include <libintl.h> */    This program computes Healthy Life Expectancies from
 /* #define _(String) gettext (String) */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 #define MAXLINE 256    interviewed on their health status or degree of disability (in the
 #define GNUPLOTPROGRAM "gnuplot"    case of a health survey which is our main interest) -2- at least a
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    second wave of interviews ("longitudinal") which measure each change
 #define FILENAMELENGTH 132    (if any) in individual health status.  Health expectancies are
 /*#define DEBUG*/    computed from the time spent in each health state according to a
 /*#define windows*/    model. More health states you consider, more time is necessary to reach the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Maximum Likelihood of the parameters involved in the model.  The
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    conditional to be observed in state i at the first wave. Therefore
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define NINTERVMAX 8    complex model than "constant and age", you should modify the program
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    where the markup *Covariates have to be included here again* invites
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    you to do it.  More covariates you add, slower the
 #define NCOVMAX 8 /* Maximum number of covariates */    convergence.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    The advantage of this computer programme, compared to a simple
 #define AGESUP 130    multinomial logistic model, is clear when the delay between waves is not
 #define AGEBASE 40    identical for each individual. Also, if a individual missed an
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */    intermediate interview, the information is lost, but taken into
 #ifdef UNIX    account using an interpolation or extrapolation.  
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    hPijx is the probability to be observed in state i at age x+h
 #else    conditional to the observed state i at age x. The delay 'h' can be
 #define DIRSEPARATOR '\\'    split into an exact number (nh*stepm) of unobserved intermediate
 #define ODIRSEPARATOR '/'    states. This elementary transition (by month, quarter,
 #endif    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 /* $Id$ */    and the contribution of each individual to the likelihood is simply
 /* $State$ */    hPijx.
   
 char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";    Also this programme outputs the covariance matrix of the parameters but also
 char fullversion[]="$Revision$ $Date$";     of the life expectancies. It also computes the period (stable) prevalence.
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */   
 int nvar;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;             Institut national d'études démographiques, Paris.
 int npar=NPARMAX;    This software have been partly granted by Euro-REVES, a concerted action
 int nlstate=2; /* Number of live states */    from the European Union.
 int ndeath=1; /* Number of dead states */    It is copyrighted identically to a GNU software product, ie programme and
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    software can be distributed freely for non commercial use. Latest version
 int popbased=0;    can be accessed at http://euroreves.ined.fr/imach .
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int maxwav; /* Maxim number of waves */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int jmin, jmax; /* min, max spacing between 2 waves */   
 int gipmx, gsw; /* Global variables on the number of contributions     **********************************************************************/
                    to the likelihood and the sum of weights (done by funcone)*/  /*
 int mle, weightopt;    main
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    read parameterfile
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    read datafile
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    concatwav
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    freqsummary
 double jmean; /* Mean space between 2 waves */    if (mle >= 1)
 double **oldm, **newm, **savm; /* Working pointers to matrices */      mlikeli
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    print results files
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    if mle==1
 FILE *ficlog, *ficrespow;       computes hessian
 int globpr; /* Global variable for printing or not */    read end of parameter file: agemin, agemax, bage, fage, estepm
 double fretone; /* Only one call to likelihood */        begin-prev-date,...
 long ipmx; /* Number of contributions */    open gnuplot file
 double sw; /* Sum of weights */    open html file
 char filerespow[FILENAMELENGTH];    period (stable) prevalence
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */     for age prevalim()
 FILE *ficresilk;    h Pij x
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    variance of p varprob
 FILE *ficresprobmorprev;    forecasting if prevfcast==1 prevforecast call prevalence()
 FILE *fichtm, *fichtmcov; /* Html File */    health expectancies
 FILE *ficreseij;    Variance-covariance of DFLE
 char filerese[FILENAMELENGTH];    prevalence()
 FILE  *ficresvij;     movingaverage()
 char fileresv[FILENAMELENGTH];    varevsij()
 FILE  *ficresvpl;    if popbased==1 varevsij(,popbased)
 char fileresvpl[FILENAMELENGTH];    total life expectancies
 char title[MAXLINE];    Variance of period (stable) prevalence
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];   end
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  */
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   
 char command[FILENAMELENGTH];  
 int  outcmd=0;  
    
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  #include <math.h>
   #include <stdio.h>
 char filelog[FILENAMELENGTH]; /* Log file */  #include <stdlib.h>
 char filerest[FILENAMELENGTH];  #include <string.h>
 char fileregp[FILENAMELENGTH];  #include <unistd.h>
 char popfile[FILENAMELENGTH];  
   #include <limits.h>
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  #include <sys/types.h>
   #include <sys/stat.h>
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  #include <errno.h>
 struct timezone tzp;  extern int errno;
 extern int gettimeofday();  
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  /* #include <sys/time.h> */
 long time_value;  #include <time.h>
 extern long time();  #include "timeval.h"
 char strcurr[80], strfor[80];  
   /* #include <libintl.h> */
 #define NR_END 1  /* #define _(String) gettext (String) */
 #define FREE_ARG char*  
 #define FTOL 1.0e-10  #define MAXLINE 256
   
 #define NRANSI   #define GNUPLOTPROGRAM "gnuplot"
 #define ITMAX 200   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 #define TOL 2.0e-4   
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define CGOLD 0.3819660   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define ZEPS 1.0e-10   
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define GOLD 1.618034   
 #define GLIMIT 100.0   #define NINTERVMAX 8
 #define TINY 1.0e-20   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 static double maxarg1,maxarg2;  #define NCOVMAX 8 /* Maximum number of covariates */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define MAXN 20000
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define YEARM 12. /* Number of months per year */
     #define AGESUP 130
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define AGEBASE 40
 #define rint(a) floor(a+0.5)  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 static double sqrarg;  #define DIRSEPARATOR '/'
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define CHARSEPARATOR "/"
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   #define ODIRSEPARATOR '\\'
 int agegomp= AGEGOMP;  #else
   #define DIRSEPARATOR '\\'
 int imx;   #define CHARSEPARATOR "\\"
 int stepm=1;  #define ODIRSEPARATOR '/'
 /* Stepm, step in month: minimum step interpolation*/  #endif
   
 int estepm;  /* $Id$ */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /* $State$ */
   
 int m,nb;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 long *num;  char fullversion[]="$Revision$ $Date$";
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  char strstart[80];
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 double **pmmij, ***probs;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 double *ageexmed,*agecens;  int nvar;
 double dateintmean=0;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 double *weight;  int nlstate=2; /* Number of live states */
 int **s; /* Status */  int ndeath=1; /* Number of dead states */
 double *agedc, **covar, idx;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int popbased=0;
 double *lsurv, *lpop, *tpop;  
   int *wav; /* Number of waves for this individuual 0 is possible */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int maxwav; /* Maxim number of waves */
 double ftolhess; /* Tolerance for computing hessian */  int jmin, jmax; /* min, max spacing between 2 waves */
   int ijmin, ijmax; /* Individuals having jmin and jmax */
 /**************** split *************************/  int gipmx, gsw; /* Global variables on the number of contributions
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle, weightopt;
   /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   */   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   char  *ss;                            /* pointer */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int   l1, l2;                         /* length counters */  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
   l1 = strlen(path );                   /* length of path */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  FILE *ficlog, *ficrespow;
   if ( ss == NULL ) {                   /* no directory, so use current */  int globpr; /* Global variable for printing or not */
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  double fretone; /* Only one call to likelihood */
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  long ipmx; /* Number of contributions */
     /* get current working directory */  double sw; /* Sum of weights */
     /*    extern  char* getcwd ( char *buf , int len);*/  char filerespow[FILENAMELENGTH];
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       return( GLOCK_ERROR_GETCWD );  FILE *ficresilk;
     }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     strcpy( name, path );               /* we've got it */  FILE *ficresprobmorprev;
   } else {                              /* strip direcotry from path */  FILE *fichtm, *fichtmcov; /* Html File */
     ss++;                               /* after this, the filename */  FILE *ficreseij;
     l2 = strlen( ss );                  /* length of filename */  char filerese[FILENAMELENGTH];
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE *ficresstdeij;
     strcpy( name, ss );         /* save file name */  char fileresstde[FILENAMELENGTH];
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  FILE *ficrescveij;
     dirc[l1-l2] = 0;                    /* add zero */  char filerescve[FILENAMELENGTH];
   }  FILE  *ficresvij;
   l1 = strlen( dirc );                  /* length of directory */  char fileresv[FILENAMELENGTH];
   /*#ifdef windows  FILE  *ficresvpl;
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char fileresvpl[FILENAMELENGTH];
 #else  char title[MAXLINE];
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #endif  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   */  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   ss = strrchr( name, '.' );            /* find last / */  char command[FILENAMELENGTH];
   if (ss >0){  int  outcmd=0;
     ss++;  
     strcpy(ext,ss);                     /* save extension */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     l1= strlen( name);  
     l2= strlen(ss)+1;  char filelog[FILENAMELENGTH]; /* Log file */
     strncpy( finame, name, l1-l2);  char filerest[FILENAMELENGTH];
     finame[l1-l2]= 0;  char fileregp[FILENAMELENGTH];
   }  char popfile[FILENAMELENGTH];
   return( 0 );                          /* we're done */  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /******************************************/  struct timezone tzp;
   extern int gettimeofday();
 void replace_back_to_slash(char *s, char*t)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   int i;  extern long time();
   int lg=0;  char strcurr[80], strfor[80];
   i=0;  
   lg=strlen(t);  char *endptr;
   for(i=0; i<= lg; i++) {  long lval;
     (s[i] = t[i]);  double dval;
     if (t[i]== '\\') s[i]='/';  
   }  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 int nbocc(char *s, char occ)  
 {  #define NRANSI
   int i,j=0;  #define ITMAX 200
   int lg=20;  
   i=0;  #define TOL 2.0e-4
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define CGOLD 0.3819660
   if  (s[i] == occ ) j++;  #define ZEPS 1.0e-10
   }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   return j;  
 }  #define GOLD 1.618034
   #define GLIMIT 100.0
 void cutv(char *u,char *v, char*t, char occ)  #define TINY 1.0e-20
 {  
   /* cuts string t into u and v where u ends before first occurence of char 'occ'   static double maxarg1,maxarg2;
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
      gives u="abcedf" and v="ghi2j" */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   int i,lg,j,p=0;   
   i=0;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for(j=0; j<=strlen(t)-1; j++) {  #define rint(a) floor(a+0.5)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   lg=strlen(t);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   for(j=0; j<p; j++) {  int agegomp= AGEGOMP;
     (u[j] = t[j]);  
   }  int imx;
      u[p]='\0';  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  int estepm;
   }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /********************** nrerror ********************/  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 void nrerror(char error_text[])  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   fprintf(stderr,"ERREUR ...\n");  double *ageexmed,*agecens;
   fprintf(stderr,"%s\n",error_text);  double dateintmean=0;
   exit(EXIT_FAILURE);  
 }  double *weight;
 /*********************** vector *******************/  int **s; /* Status */
 double *vector(int nl, int nh)  double *agedc, **covar, idx;
 {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *v;  double *lsurv, *lpop, *tpop;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   return v-nl+NR_END;  double ftolhess; /* Tolerance for computing hessian */
 }  
   /**************** split *************************/
 /************************ free vector ******************/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 void free_vector(double*v, int nl, int nh)  {
 {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   free((FREE_ARG)(v+nl-NR_END));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */
     char  *ss;                            /* pointer */
 /************************ivector *******************************/    int   l1, l2;                         /* length counters */
 int *ivector(long nl,long nh)  
 {    l1 = strlen(path );                   /* length of path */
   int *v;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   if (!v) nrerror("allocation failure in ivector");    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   return v-nl+NR_END;      strcpy( name, path );               /* we got the fullname name because no directory */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /******************free ivector **************************/      /* get current working directory */
 void free_ivector(int *v, long nl, long nh)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   free((FREE_ARG)(v+nl-NR_END));        return( GLOCK_ERROR_GETCWD );
 }      }
       /* got dirc from getcwd*/
 /************************lvector *******************************/      printf(" DIRC = %s \n",dirc);
 long *lvector(long nl,long nh)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   long *v;      l2 = strlen( ss );                  /* length of filename */
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!v) nrerror("allocation failure in ivector");      strcpy( name, ss );         /* save file name */
   return v-nl+NR_END;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
 /******************free lvector **************************/    }
 void free_lvector(long *v, long nl, long nh)    /* We add a separator at the end of dirc if not exists */
 {    l1 = strlen( dirc );                  /* length of directory */
   free((FREE_ARG)(v+nl-NR_END));    if( dirc[l1-1] != DIRSEPARATOR ){
 }      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0;
 /******************* imatrix *******************************/      printf(" DIRC3 = %s \n",dirc);
 int **imatrix(long nrl, long nrh, long ncl, long nch)     }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     ss = strrchr( name, '.' );            /* find last / */
 {     if (ss >0){
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;       ss++;
   int **m;       strcpy(ext,ss);                     /* save extension */
         l1= strlen( name);
   /* allocate pointers to rows */       l2= strlen(ss)+1;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));       strncpy( finame, name, l1-l2);
   if (!m) nrerror("allocation failure 1 in matrix()");       finame[l1-l2]= 0;
   m += NR_END;     }
   m -= nrl;   
       return( 0 );                          /* we're done */
     }
   /* allocate rows and set pointers to them */   
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   /******************************************/
   m[nrl] += NR_END;   
   m[nrl] -= ncl;   void replace_back_to_slash(char *s, char*t)
     {
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     int i;
       int lg=0;
   /* return pointer to array of pointers to rows */     i=0;
   return m;     lg=strlen(t);
 }     for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 /****************** free_imatrix *************************/      if (t[i]== '\\') s[i]='/';
 void free_imatrix(m,nrl,nrh,ncl,nch)    }
       int **m;  }
       long nch,ncl,nrh,nrl;   
      /* free an int matrix allocated by imatrix() */   int nbocc(char *s, char occ)
 {   {
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     int i,j=0;
   free((FREE_ARG) (m+nrl-NR_END));     int lg=20;
 }     i=0;
     lg=strlen(s);
 /******************* matrix *******************************/    for(i=0; i<= lg; i++) {
 double **matrix(long nrl, long nrh, long ncl, long nch)    if  (s[i] == occ ) j++;
 {    }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    return j;
   double **m;  }
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  void cutv(char *u,char *v, char*t, char occ)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    /* cuts string t into u and v where u ends before first occurence of char 'occ'
   m -= nrl;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
        gives u="abcedf" and v="ghi2j" */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int i,lg,j,p=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    i=0;
   m[nrl] += NR_END;    for(j=0; j<=strlen(t)-1; j++) {
   m[nrl] -= ncl;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    lg=strlen(t);
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])     for(j=0; j<p; j++) {
    */      (u[j] = t[j]);
 }    }
        u[p]='\0';
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)     for(j=0; j<= lg; j++) {
 {      if (j>=(p+1))(v[j-p-1] = t[j]);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   /********************** nrerror ********************/
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  void nrerror(char error_text[])
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    fprintf(stderr,"ERREUR ...\n");
   double ***m;    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  /*********************** vector *******************/
   m += NR_END;  double *vector(int nl, int nh)
   m -= nrl;  {
     double *v;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!v) nrerror("allocation failure in vector");
   m[nrl] += NR_END;    return v-nl+NR_END;
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    free((FREE_ARG)(v+nl-NR_END));
   m[nrl][ncl] += NR_END;  }
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)   /************************ivector *******************************/
     m[nrl][j]=m[nrl][j-1]+nlay;  int *ivector(long nl,long nh)
     {
   for (i=nrl+1; i<=nrh; i++) {    int *v;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for (j=ncl+1; j<=nch; j++)     if (!v) nrerror("allocation failure in ivector");
       m[i][j]=m[i][j-1]+nlay;    return v-nl+NR_END;
   }  }
   return m;   
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  /******************free ivector **************************/
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  void free_ivector(int *v, long nl, long nh)
   */  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /************************lvector *******************************/
 {  long *lvector(long nl,long nh)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    long *v;
   free((FREE_ARG)(m+nrl-NR_END));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /*************** function subdirf ***********/  }
 char *subdirf(char fileres[])  
 {  /******************free lvector **************************/
   /* Caution optionfilefiname is hidden */  void free_lvector(long *v, long nl, long nh)
   strcpy(tmpout,optionfilefiname);  {
   strcat(tmpout,"/"); /* Add to the right */    free((FREE_ARG)(v+nl-NR_END));
   strcat(tmpout,fileres);  }
   return tmpout;  
 }  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch)
 /*************** function subdirf2 ***********/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
 char *subdirf2(char fileres[], char *preop)  {
 {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
       int **m;
   /* Caution optionfilefiname is hidden */   
   strcpy(tmpout,optionfilefiname);    /* allocate pointers to rows */
   strcat(tmpout,"/");    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   strcat(tmpout,preop);    if (!m) nrerror("allocation failure 1 in matrix()");
   strcat(tmpout,fileres);    m += NR_END;
   return tmpout;    m -= nrl;
 }   
    
 /*************** function subdirf3 ***********/    /* allocate rows and set pointers to them */
 char *subdirf3(char fileres[], char *preop, char *preop2)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       m[nrl] += NR_END;
   /* Caution optionfilefiname is hidden */    m[nrl] -= ncl;
   strcpy(tmpout,optionfilefiname);   
   strcat(tmpout,"/");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   strcat(tmpout,preop);   
   strcat(tmpout,preop2);    /* return pointer to array of pointers to rows */
   strcat(tmpout,fileres);    return m;
   return tmpout;  }
 }  
   /****************** free_imatrix *************************/
 /***************** f1dim *************************/  void free_imatrix(m,nrl,nrh,ncl,nch)
 extern int ncom;         int **m;
 extern double *pcom,*xicom;        long nch,ncl,nrh,nrl;
 extern double (*nrfunc)(double []);        /* free an int matrix allocated by imatrix() */
    {
 double f1dim(double x)     free((FREE_ARG) (m[nrl]+ncl-NR_END));
 {     free((FREE_ARG) (m+nrl-NR_END));
   int j;   }
   double f;  
   double *xt;   /******************* matrix *******************************/
    double **matrix(long nrl, long nrh, long ncl, long nch)
   xt=vector(1,ncom);   {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   f=(*nrfunc)(xt);     double **m;
   free_vector(xt,1,ncom);   
   return f;     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 }     if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /*****************brent *************************/    m -= nrl;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   
 {     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   int iter;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double a,b,d,etemp;    m[nrl] += NR_END;
   double fu,fv,fw,fx;    m[nrl] -= ncl;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double e=0.0;     return m;
      /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   a=(ax < cx ? ax : cx);      */
   b=(ax > cx ? ax : cx);   }
   x=w=v=bx;   
   fw=fv=fx=(*f)(x);   /*************************free matrix ************************/
   for (iter=1;iter<=ITMAX;iter++) {   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     xm=0.5*(a+b);   {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    free((FREE_ARG)(m+nrl-NR_END));
     printf(".");fflush(stdout);  }
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG  /******************* ma3x *******************************/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #endif    double ***m;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){   
       *xmin=x;     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       return fx;     if (!m) nrerror("allocation failure 1 in matrix()");
     }     m += NR_END;
     ftemp=fu;    m -= nrl;
     if (fabs(e) > tol1) {   
       r=(x-w)*(fx-fv);     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       q=(x-v)*(fx-fw);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       p=(x-v)*q-(x-w)*r;     m[nrl] += NR_END;
       q=2.0*(q-r);     m[nrl] -= ncl;
       if (q > 0.0) p = -p;   
       q=fabs(q);     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       etemp=e;   
       e=d;     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     m[nrl][ncl] += NR_END;
       else {     m[nrl][ncl] -= nll;
         d=p/q;     for (j=ncl+1; j<=nch; j++)
         u=x+d;       m[nrl][j]=m[nrl][j-1]+nlay;
         if (u-a < tol2 || b-u < tol2)    
           d=SIGN(tol1,xm-x);     for (i=nrl+1; i<=nrh; i++) {
       }       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     } else {       for (j=ncl+1; j<=nch; j++)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));         m[i][j]=m[i][j-1]+nlay;
     }     }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     return m;
     fu=(*f)(u);     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     if (fu <= fx) {              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       if (u >= x) a=x; else b=x;     */
       SHFT(v,w,x,u)   }
         SHFT(fv,fw,fx,fu)   
         } else {   /*************************free ma3x ************************/
           if (u < x) a=u; else b=u;   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           if (fu <= fw || w == x) {   {
             v=w;     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
             w=u;     free((FREE_ARG)(m[nrl]+ncl-NR_END));
             fv=fw;     free((FREE_ARG)(m+nrl-NR_END));
             fw=fu;   }
           } else if (fu <= fv || v == x || v == w) {   
             v=u;   /*************** function subdirf ***********/
             fv=fu;   char *subdirf(char fileres[])
           }   {
         }     /* Caution optionfilefiname is hidden */
   }     strcpy(tmpout,optionfilefiname);
   nrerror("Too many iterations in brent");     strcat(tmpout,"/"); /* Add to the right */
   *xmin=x;     strcat(tmpout,fileres);
   return fx;     return tmpout;
 }   }
   
 /****************** mnbrak ***********************/  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   {
             double (*func)(double))    
 {     /* Caution optionfilefiname is hidden */
   double ulim,u,r,q, dum;    strcpy(tmpout,optionfilefiname);
   double fu;     strcat(tmpout,"/");
      strcat(tmpout,preop);
   *fa=(*func)(*ax);     strcat(tmpout,fileres);
   *fb=(*func)(*bx);     return tmpout;
   if (*fb > *fa) {   }
     SHFT(dum,*ax,*bx,dum)   
       SHFT(dum,*fb,*fa,dum)   /*************** function subdirf3 ***********/
       }   char *subdirf3(char fileres[], char *preop, char *preop2)
   *cx=(*bx)+GOLD*(*bx-*ax);   {
   *fc=(*func)(*cx);    
   while (*fb > *fc) {     /* Caution optionfilefiname is hidden */
     r=(*bx-*ax)*(*fb-*fc);     strcpy(tmpout,optionfilefiname);
     q=(*bx-*cx)*(*fb-*fa);     strcat(tmpout,"/");
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     strcat(tmpout,preop);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     strcat(tmpout,preop2);
     ulim=(*bx)+GLIMIT*(*cx-*bx);     strcat(tmpout,fileres);
     if ((*bx-u)*(u-*cx) > 0.0) {     return tmpout;
       fu=(*func)(u);   }
     } else if ((*cx-u)*(u-ulim) > 0.0) {   
       fu=(*func)(u);   /***************** f1dim *************************/
       if (fu < *fc) {   extern int ncom;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   extern double *pcom,*xicom;
           SHFT(*fb,*fc,fu,(*func)(u))   extern double (*nrfunc)(double []);
           }    
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   double f1dim(double x)
       u=ulim;   {
       fu=(*func)(u);     int j;
     } else {     double f;
       u=(*cx)+GOLD*(*cx-*bx);     double *xt;
       fu=(*func)(u);    
     }     xt=vector(1,ncom);
     SHFT(*ax,*bx,*cx,u)     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
       SHFT(*fa,*fb,*fc,fu)     f=(*nrfunc)(xt);
       }     free_vector(xt,1,ncom);
 }     return f;
   }
 /*************** linmin ************************/  
   /*****************brent *************************/
 int ncom;   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);     int iter;
      double a,b,d,etemp;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     double fu,fv,fw,fx;
 {     double ftemp;
   double brent(double ax, double bx, double cx,     double p,q,r,tol1,tol2,u,v,w,x,xm;
                double (*f)(double), double tol, double *xmin);     double e=0.0;
   double f1dim(double x);    
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     a=(ax < cx ? ax : cx);
               double *fc, double (*func)(double));     b=(ax > cx ? ax : cx);
   int j;     x=w=v=bx;
   double xx,xmin,bx,ax;     fw=fv=fx=(*f)(x);
   double fx,fb,fa;    for (iter=1;iter<=ITMAX;iter++) {
        xm=0.5*(a+b);
   ncom=n;       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
   pcom=vector(1,n);       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   xicom=vector(1,n);       printf(".");fflush(stdout);
   nrfunc=func;       fprintf(ficlog,".");fflush(ficlog);
   for (j=1;j<=n;j++) {   #ifdef DEBUG
     pcom[j]=p[j];       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     xicom[j]=xi[j];       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   ax=0.0;   #endif
   xx=1.0;       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);         *xmin=x;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);         return fx;
 #ifdef DEBUG      }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      ftemp=fu;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      if (fabs(e) > tol1) {
 #endif        r=(x-w)*(fx-fv);
   for (j=1;j<=n;j++) {         q=(x-v)*(fx-fw);
     xi[j] *= xmin;         p=(x-v)*q-(x-w)*r;
     p[j] += xi[j];         q=2.0*(q-r);
   }         if (q > 0.0) p = -p;
   free_vector(xicom,1,n);         q=fabs(q);
   free_vector(pcom,1,n);         etemp=e;
 }         e=d;
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
 char *asc_diff_time(long time_sec, char ascdiff[])          d=CGOLD*(e=(x >= xm ? a-x : b-x));
 {        else {
   long sec_left, days, hours, minutes;          d=p/q;
   days = (time_sec) / (60*60*24);          u=x+d;
   sec_left = (time_sec) % (60*60*24);          if (u-a < tol2 || b-u < tol2)
   hours = (sec_left) / (60*60) ;            d=SIGN(tol1,xm-x);
   sec_left = (sec_left) %(60*60);        }
   minutes = (sec_left) /60;      } else {
   sec_left = (sec_left) % (60);        d=CGOLD*(e=(x >= xm ? a-x : b-x));
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);        }
   return ascdiff;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
 }      fu=(*f)(u);
       if (fu <= fx) {
 /*************** powell ************************/        if (u >= x) a=x; else b=x;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,         SHFT(v,w,x,u)
             double (*func)(double []))           SHFT(fv,fw,fx,fu)
 {           } else {
   void linmin(double p[], double xi[], int n, double *fret,             if (u < x) a=u; else b=u;
               double (*func)(double []));             if (fu <= fw || w == x) {
   int i,ibig,j;               v=w;
   double del,t,*pt,*ptt,*xit;              w=u;
   double fp,fptt;              fv=fw;
   double *xits;              fw=fu;
   int niterf, itmp;            } else if (fu <= fv || v == x || v == w) {
               v=u;
   pt=vector(1,n);               fv=fu;
   ptt=vector(1,n);             }
   xit=vector(1,n);           }
   xits=vector(1,n);     }
   *fret=(*func)(p);     nrerror("Too many iterations in brent");
   for (j=1;j<=n;j++) pt[j]=p[j];     *xmin=x;
   for (*iter=1;;++(*iter)) {     return fx;
     fp=(*fret);   }
     ibig=0;   
     del=0.0;   /****************** mnbrak ***********************/
     last_time=curr_time;  
     (void) gettimeofday(&curr_time,&tzp);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);              double (*func)(double))
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);  {
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);    double ulim,u,r,q, dum;
     */    double fu;
    for (i=1;i<=n;i++) {   
       printf(" %d %.12f",i, p[i]);    *fa=(*func)(*ax);
       fprintf(ficlog," %d %.12lf",i, p[i]);    *fb=(*func)(*bx);
       fprintf(ficrespow," %.12lf", p[i]);    if (*fb > *fa) {
     }      SHFT(dum,*ax,*bx,dum)
     printf("\n");        SHFT(dum,*fb,*fa,dum)
     fprintf(ficlog,"\n");        }
     fprintf(ficrespow,"\n");fflush(ficrespow);    *cx=(*bx)+GOLD*(*bx-*ax);
     if(*iter <=3){    *fc=(*func)(*cx);
       tm = *localtime(&curr_time.tv_sec);    while (*fb > *fc) {
       strcpy(strcurr,asctime(&tm));      r=(*bx-*ax)*(*fb-*fc);
 /*       asctime_r(&tm,strcurr); */      q=(*bx-*cx)*(*fb-*fa);
       forecast_time=curr_time;       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
       itmp = strlen(strcurr);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */      ulim=(*bx)+GLIMIT*(*cx-*bx);
         strcurr[itmp-1]='\0';      if ((*bx-u)*(u-*cx) > 0.0) {
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        fu=(*func)(u);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);      } else if ((*cx-u)*(u-ulim) > 0.0) {
       for(niterf=10;niterf<=30;niterf+=10){        fu=(*func)(u);
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);        if (fu < *fc) {
         tmf = *localtime(&forecast_time.tv_sec);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
 /*      asctime_r(&tmf,strfor); */            SHFT(*fb,*fc,fu,(*func)(u))
         strcpy(strfor,asctime(&tmf));            }
         itmp = strlen(strfor);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
         if(strfor[itmp-1]=='\n')        u=ulim;
         strfor[itmp-1]='\0';        fu=(*func)(u);
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);      } else {
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);        u=(*cx)+GOLD*(*cx-*bx);
       }        fu=(*func)(u);
     }      }
     for (i=1;i<=n;i++) {       SHFT(*ax,*bx,*cx,u)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];         SHFT(*fa,*fb,*fc,fu)
       fptt=(*fret);         }
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);  /*************** linmin ************************/
 #endif  
       printf("%d",i);fflush(stdout);  int ncom;
       fprintf(ficlog,"%d",i);fflush(ficlog);  double *pcom,*xicom;
       linmin(p,xit,n,fret,func);   double (*nrfunc)(double []);
       if (fabs(fptt-(*fret)) > del) {    
         del=fabs(fptt-(*fret));   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
         ibig=i;   {
       }     double brent(double ax, double bx, double cx,
 #ifdef DEBUG                 double (*f)(double), double tol, double *xmin);
       printf("%d %.12e",i,(*fret));    double f1dim(double x);
       fprintf(ficlog,"%d %.12e",i,(*fret));    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       for (j=1;j<=n;j++) {                double *fc, double (*func)(double));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    int j;
         printf(" x(%d)=%.12e",j,xit[j]);    double xx,xmin,bx,ax;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    double fx,fb,fa;
       }   
       for(j=1;j<=n;j++) {    ncom=n;
         printf(" p=%.12e",p[j]);    pcom=vector(1,n);
         fprintf(ficlog," p=%.12e",p[j]);    xicom=vector(1,n);
       }    nrfunc=func;
       printf("\n");    for (j=1;j<=n;j++) {
       fprintf(ficlog,"\n");      pcom[j]=p[j];
 #endif      xicom[j]=xi[j];
     }     }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    ax=0.0;
 #ifdef DEBUG    xx=1.0;
       int k[2],l;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       k[0]=1;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
       k[1]=-1;  #ifdef DEBUG
       printf("Max: %.12e",(*func)(p));    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       fprintf(ficlog,"Max: %.12e",(*func)(p));    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (j=1;j<=n;j++) {  #endif
         printf(" %.12e",p[j]);    for (j=1;j<=n;j++) {
         fprintf(ficlog," %.12e",p[j]);      xi[j] *= xmin;
       }      p[j] += xi[j];
       printf("\n");    }
       fprintf(ficlog,"\n");    free_vector(xicom,1,n);
       for(l=0;l<=1;l++) {    free_vector(pcom,1,n);
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  char *asc_diff_time(long time_sec, char ascdiff[])
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
         }    long sec_left, days, hours, minutes;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    days = (time_sec) / (60*60*24);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    sec_left = (time_sec) % (60*60*24);
       }    hours = (sec_left) / (60*60) ;
 #endif    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
       free_vector(xit,1,n);     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       free_vector(xits,1,n);     return ascdiff;
       free_vector(ptt,1,n);   }
       free_vector(pt,1,n);   
       return;   /*************** powell ************************/
     }   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");               double (*func)(double []))
     for (j=1;j<=n;j++) {   {
       ptt[j]=2.0*p[j]-pt[j];     void linmin(double p[], double xi[], int n, double *fret,
       xit[j]=p[j]-pt[j];                 double (*func)(double []));
       pt[j]=p[j];     int i,ibig,j;
     }     double del,t,*pt,*ptt,*xit;
     fptt=(*func)(ptt);     double fp,fptt;
     if (fptt < fp) {     double *xits;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);     int niterf, itmp;
       if (t < 0.0) {   
         linmin(p,xit,n,fret,func);     pt=vector(1,n);
         for (j=1;j<=n;j++) {     ptt=vector(1,n);
           xi[j][ibig]=xi[j][n];     xit=vector(1,n);
           xi[j][n]=xit[j];     xits=vector(1,n);
         }    *fret=(*func)(p);
 #ifdef DEBUG    for (j=1;j<=n;j++) pt[j]=p[j];
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    for (*iter=1;;++(*iter)) {
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      fp=(*fret);
         for(j=1;j<=n;j++){      ibig=0;
           printf(" %.12e",xit[j]);      del=0.0;
           fprintf(ficlog," %.12e",xit[j]);      last_time=curr_time;
         }      (void) gettimeofday(&curr_time,&tzp);
         printf("\n");      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         fprintf(ficlog,"\n");      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 #endif  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       }     for (i=1;i<=n;i++) {
     }         printf(" %d %.12f",i, p[i]);
   }         fprintf(ficlog," %d %.12lf",i, p[i]);
 }         fprintf(ficrespow," %.12lf", p[i]);
       }
 /**** Prevalence limit (stable prevalence)  ****************/      printf("\n");
       fprintf(ficlog,"\n");
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      fprintf(ficrespow,"\n");fflush(ficrespow);
 {      if(*iter <=3){
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        tm = *localtime(&curr_time.tv_sec);
      matrix by transitions matrix until convergence is reached */        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
   int i, ii,j,k;        forecast_time=curr_time;
   double min, max, maxmin, maxmax,sumnew=0.;        itmp = strlen(strcurr);
   double **matprod2();        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double **out, cov[NCOVMAX], **pmij();          strcurr[itmp-1]='\0';
   double **newm;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double agefin, delaymax=50 ; /* Max number of years to converge */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
   for (ii=1;ii<=nlstate+ndeath;ii++)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for (j=1;j<=nlstate+ndeath;j++){          tmf = *localtime(&forecast_time.tv_sec);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*      asctime_r(&tmf,strfor); */
     }          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
    cov[1]=1.;          if(strfor[itmp-1]=='\n')
            strfor[itmp-1]='\0';
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     newm=savm;        }
     /* Covariates have to be included here again */      }
      cov[2]=agefin;      for (i=1;i<=n;i++) {
           for (j=1;j<=n;j++) xit[j]=xi[j][i];
       for (k=1; k<=cptcovn;k++) {        fptt=(*fret);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #ifdef DEBUG
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        printf("fret=%lf \n",*fret);
       }        fprintf(ficlog,"fret=%lf \n",*fret);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #endif
       for (k=1; k<=cptcovprod;k++)        printf("%d",i);fflush(stdout);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        if (fabs(fptt-(*fret)) > del) {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          del=fabs(fptt-(*fret));
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          ibig=i;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        }
   #ifdef DEBUG
     savm=oldm;        printf("%d %.12e",i,(*fret));
     oldm=newm;        fprintf(ficlog,"%d %.12e",i,(*fret));
     maxmax=0.;        for (j=1;j<=n;j++) {
     for(j=1;j<=nlstate;j++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       min=1.;          printf(" x(%d)=%.12e",j,xit[j]);
       max=0.;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for(i=1; i<=nlstate; i++) {        }
         sumnew=0;        for(j=1;j<=n;j++) {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          printf(" p=%.12e",p[j]);
         prlim[i][j]= newm[i][j]/(1-sumnew);          fprintf(ficlog," p=%.12e",p[j]);
         max=FMAX(max,prlim[i][j]);        }
         min=FMIN(min,prlim[i][j]);        printf("\n");
       }        fprintf(ficlog,"\n");
       maxmin=max-min;  #endif
       maxmax=FMAX(maxmax,maxmin);      }
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     if(maxmax < ftolpl){  #ifdef DEBUG
       return prlim;        int k[2],l;
     }        k[0]=1;
   }        k[1]=-1;
 }        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
 /*************** transition probabilities ***************/         for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          fprintf(ficlog," %.12e",p[j]);
 {        }
   double s1, s2;        printf("\n");
   /*double t34;*/        fprintf(ficlog,"\n");
   int i,j,j1, nc, ii, jj;        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
     for(i=1; i<= nlstate; i++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for(j=1; j<i;j++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           /*s2 += param[i][j][nc]*cov[nc];*/          }
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }        }
         ps[i][j]=s2;  #endif
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */  
       }  
       for(j=i+1; j<=nlstate+ndeath;j++){        free_vector(xit,1,n);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){        free_vector(xits,1,n);
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        free_vector(ptt,1,n);
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */        free_vector(pt,1,n);
         }        return;
         ps[i][j]=s2;      }
       }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
     }      for (j=1;j<=n;j++) {
     /*ps[3][2]=1;*/        ptt[j]=2.0*p[j]-pt[j];
             xit[j]=p[j]-pt[j];
     for(i=1; i<= nlstate; i++){        pt[j]=p[j];
       s1=0;      }
       for(j=1; j<i; j++)      fptt=(*func)(ptt);
         s1+=exp(ps[i][j]);      if (fptt < fp) {
       for(j=i+1; j<=nlstate+ndeath; j++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         s1+=exp(ps[i][j]);        if (t < 0.0) {
       ps[i][i]=1./(s1+1.);          linmin(p,xit,n,fret,func);
       for(j=1; j<i; j++)          for (j=1;j<=n;j++) {
         ps[i][j]= exp(ps[i][j])*ps[i][i];            xi[j][ibig]=xi[j][n];
       for(j=i+1; j<=nlstate+ndeath; j++)            xi[j][n]=xit[j];
         ps[i][j]= exp(ps[i][j])*ps[i][i];          }
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #ifdef DEBUG
     } /* end i */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
               fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          for(j=1;j<=n;j++){
       for(jj=1; jj<= nlstate+ndeath; jj++){            printf(" %.12e",xit[j]);
         ps[ii][jj]=0;            fprintf(ficlog," %.12e",xit[j]);
         ps[ii][ii]=1;          }
       }          printf("\n");
     }          fprintf(ficlog,"\n");
       #endif
         }
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */      }
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */    }
 /*         printf("ddd %lf ",ps[ii][jj]); */  }
 /*       } */  
 /*       printf("\n "); */  /**** Prevalence limit (stable or period prevalence)  ****************/
 /*        } */  
 /*        printf("\n ");printf("%lf ",cov[2]); */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
        /*  {
       for(i=1; i<= npar; i++) printf("%f ",x[i]);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       goto end;*/       matrix by transitions matrix until convergence is reached */
     return ps;  
 }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
 /**************** Product of 2 matrices ******************/    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double **newm;
 {    double agefin, delaymax=50 ; /* Max number of years to converge */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    for (ii=1;ii<=nlstate+ndeath;ii++)
   /* in, b, out are matrice of pointers which should have been initialized       for (j=1;j<=nlstate+ndeath;j++){
      before: only the contents of out is modified. The function returns        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      a pointer to pointers identical to out */      }
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)     cov[1]=1.;
     for(k=ncolol; k<=ncoloh; k++)   
       for(j=ncl,out[i][k]=0.; j<=nch; j++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         out[i][k] +=in[i][j]*b[j][k];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   return out;      /* Covariates have to be included here again */
 }       cov[2]=agefin;
    
         for (k=1; k<=cptcovn;k++) {
 /************* Higher Matrix Product ***************/          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        }
 {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /* Computes the transition matrix starting at age 'age' over         for (k=1; k<=cptcovprod;k++)
      'nhstepm*hstepm*stepm' months (i.e. until          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying   
      nhstepm*hstepm matrices.         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      (typically every 2 years instead of every month which is too big         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
      for the memory).      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
      Model is determined by parameters x and covariates have to be   
      included manually here.       savm=oldm;
       oldm=newm;
      */      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   int i, j, d, h, k;        min=1.;
   double **out, cov[NCOVMAX];        max=0.;
   double **newm;        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   /* Hstepm could be zero and should return the unit matrix */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for (i=1;i<=nlstate+ndeath;i++)          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (j=1;j<=nlstate+ndeath;j++){          max=FMAX(max,prlim[i][j]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);          min=FMIN(min,prlim[i][j]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        }
     }        maxmin=max-min;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        maxmax=FMAX(maxmax,maxmin);
   for(h=1; h <=nhstepm; h++){      }
     for(d=1; d <=hstepm; d++){      if(maxmax < ftolpl){
       newm=savm;        return prlim;
       /* Covariates have to be included here again */      }
       cov[1]=1.;    }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /*************** transition probabilities ***************/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     double s1, s2;
     /*double t34;*/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    int i,j,j1, nc, ii, jj;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,       for(i=1; i<= nlstate; i++){
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        for(j=1; j<i;j++){
       savm=oldm;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       oldm=newm;            /*s2 += param[i][j][nc]*cov[nc];*/
     }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for(i=1; i<=nlstate+ndeath; i++)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for(j=1;j<=nlstate+ndeath;j++) {          }
         po[i][j][h]=newm[i][j];          ps[i][j]=s2;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
          */        }
       }        for(j=i+1; j<=nlstate+ndeath;j++){
   } /* end h */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   return po;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           }
           ps[i][j]=s2;
 /*************** log-likelihood *************/        }
 double func( double *x)      }
 {      /*ps[3][2]=1;*/
   int i, ii, j, k, mi, d, kk;     
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for(i=1; i<= nlstate; i++){
   double **out;        s1=0;
   double sw; /* Sum of weights */        for(j=1; j<i; j++)
   double lli; /* Individual log likelihood */          s1+=exp(ps[i][j]);
   int s1, s2;        for(j=i+1; j<=nlstate+ndeath; j++)
   double bbh, survp;          s1+=exp(ps[i][j]);
   long ipmx;        ps[i][i]=1./(s1+1.);
   /*extern weight */        for(j=1; j<i; j++)
   /* We are differentiating ll according to initial status */          ps[i][j]= exp(ps[i][j])*ps[i][i];
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        for(j=i+1; j<=nlstate+ndeath; j++)
   /*for(i=1;i<imx;i++)           ps[i][j]= exp(ps[i][j])*ps[i][i];
     printf(" %d\n",s[4][i]);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   */      } /* end i */
   cov[1]=1.;     
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for(k=1; k<=nlstate; k++) ll[k]=0.;        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
   if(mle==1){          ps[ii][ii]=1;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
       for(mi=1; mi<= wav[i]-1; mi++){     
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  /*         printf("ddd %lf ",ps[ii][jj]); */
           }  /*       } */
         for(d=0; d<dh[mi][i]; d++){  /*       printf("\n "); */
           newm=savm;  /*        } */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*        printf("\n ");printf("%lf ",cov[2]); */
           for (kk=1; kk<=cptcovage;kk++) {         /*
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           }        goto end;*/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      return ps;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  }
           savm=oldm;  
           oldm=newm;  /**************** Product of 2 matrices ******************/
         } /* end mult */  
         double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  {
         /* But now since version 0.9 we anticipate for bias at large stepm.    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
          * If stepm is larger than one month (smallest stepm) and if the exact delay        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
          * (in months) between two waves is not a multiple of stepm, we rounded to     /* in, b, out are matrice of pointers which should have been initialized
          * the nearest (and in case of equal distance, to the lowest) interval but now       before: only the contents of out is modified. The function returns
          * we keep into memory the bias bh[mi][i] and also the previous matrix product       a pointer to pointers identical to out */
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the    long i, j, k;
          * probability in order to take into account the bias as a fraction of the way    for(i=nrl; i<= nrh; i++)
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies      for(k=ncolol; k<=ncoloh; k++)
          * -stepm/2 to stepm/2 .        for(j=ncl,out[i][k]=0.; j<=nch; j++)
          * For stepm=1 the results are the same as for previous versions of Imach.          out[i][k] +=in[i][j]*b[j][k];
          * For stepm > 1 the results are less biased than in previous versions.   
          */    return out;
         s1=s[mw[mi][i]][i];  }
         s2=s[mw[mi+1][i]][i];  
         bbh=(double)bh[mi][i]/(double)stepm;   
         /* bias bh is positive if real duration  /************* Higher Matrix Product ***************/
          * is higher than the multiple of stepm and negative otherwise.  
          */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  {
         if( s2 > nlstate){     /* Computes the transition matrix starting at age 'age' over
           /* i.e. if s2 is a death state and if the date of death is known        'nhstepm*hstepm*stepm' months (i.e. until
              then the contribution to the likelihood is the probability to        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
              die between last step unit time and current  step unit time,        nhstepm*hstepm matrices.
              which is also equal to probability to die before dh        Output is stored in matrix po[i][j][h] for h every 'hstepm' step
              minus probability to die before dh-stepm .        (typically every 2 years instead of every month which is too big
              In version up to 0.92 likelihood was computed       for the memory).
         as if date of death was unknown. Death was treated as any other       Model is determined by parameters x and covariates have to be
         health state: the date of the interview describes the actual state       included manually here.
         and not the date of a change in health state. The former idea was  
         to consider that at each interview the state was recorded       */
         (healthy, disable or death) and IMaCh was corrected; but when we  
         introduced the exact date of death then we should have modified    int i, j, d, h, k;
         the contribution of an exact death to the likelihood. This new    double **out, cov[NCOVMAX];
         contribution is smaller and very dependent of the step unit    double **newm;
         stepm. It is no more the probability to die between last interview  
         and month of death but the probability to survive from last    /* Hstepm could be zero and should return the unit matrix */
         interview up to one month before death multiplied by the    for (i=1;i<=nlstate+ndeath;i++)
         probability to die within a month. Thanks to Chris      for (j=1;j<=nlstate+ndeath;j++){
         Jackson for correcting this bug.  Former versions increased        oldm[i][j]=(i==j ? 1.0 : 0.0);
         mortality artificially. The bad side is that we add another loop        po[i][j][0]=(i==j ? 1.0 : 0.0);
         which slows down the processing. The difference can be up to 10%      }
         lower mortality.    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           */    for(h=1; h <=nhstepm; h++){
           lli=log(out[s1][s2] - savm[s1][s2]);      for(d=1; d <=hstepm; d++){
         newm=savm;
         /* Covariates have to be included here again */
         } else if  (s2==-2) {        cov[1]=1.;
           for (j=1,survp=0. ; j<=nlstate; j++)         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
             survp += out[s1][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           lli= survp;        for (k=1; k<=cptcovage;k++)
         }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                 for (k=1; k<=cptcovprod;k++)
         else if  (s2==-4) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for (j=3,survp=0. ; j<=nlstate; j++)   
             survp += out[s1][j];  
           lli= survp;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                 out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
         else if  (s2==-5) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           for (j=1,survp=0. ; j<=2; j++)         savm=oldm;
             survp += out[s1][j];        oldm=newm;
           lli= survp;      }
         }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
         else{          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */           */
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        }
         }     } /* end h */
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/    return po;
         /*if(lli ==000.0)*/  }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */  
         ipmx +=1;  
         sw += weight[i];  /*************** log-likelihood *************/
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  double func( double *x)
       } /* end of wave */  {
     } /* end of individual */    int i, ii, j, k, mi, d, kk;
   }  else if(mle==2){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double **out;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double sw; /* Sum of weights */
       for(mi=1; mi<= wav[i]-1; mi++){    double lli; /* Individual log likelihood */
         for (ii=1;ii<=nlstate+ndeath;ii++)    int s1, s2;
           for (j=1;j<=nlstate+ndeath;j++){    double bbh, survp;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    long ipmx;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    /*extern weight */
           }    /* We are differentiating ll according to initial status */
         for(d=0; d<=dh[mi][i]; d++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           newm=savm;    /*for(i=1;i<imx;i++)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      printf(" %d\n",s[4][i]);
           for (kk=1; kk<=cptcovage;kk++) {    */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    cov[1]=1.;
           }  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for(k=1; k<=nlstate; k++) ll[k]=0.;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;    if(mle==1){
           oldm=newm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         } /* end mult */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               for(mi=1; mi<= wav[i]-1; mi++){
         s1=s[mw[mi][i]][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         s2=s[mw[mi+1][i]][i];            for (j=1;j<=nlstate+ndeath;j++){
         bbh=(double)bh[mi][i]/(double)stepm;               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         ipmx +=1;            }
         sw += weight[i];          for(d=0; d<dh[mi][i]; d++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            newm=savm;
       } /* end of wave */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     } /* end of individual */            for (kk=1; kk<=cptcovage;kk++) {
   }  else if(mle==3){  /* exponential inter-extrapolation */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(mi=1; mi<= wav[i]-1; mi++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (ii=1;ii<=nlstate+ndeath;ii++)            savm=oldm;
           for (j=1;j<=nlstate+ndeath;j++){            oldm=newm;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          } /* end mult */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);       
           }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for(d=0; d<dh[mi][i]; d++){          /* But now since version 0.9 we anticipate for bias at large stepm.
           newm=savm;           * If stepm is larger than one month (smallest stepm) and if the exact delay
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;           * (in months) between two waves is not a multiple of stepm, we rounded to
           for (kk=1; kk<=cptcovage;kk++) {           * the nearest (and in case of equal distance, to the lowest) interval but now
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,           * probability in order to take into account the bias as a fraction of the way
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           savm=oldm;           * -stepm/2 to stepm/2 .
           oldm=newm;           * For stepm=1 the results are the same as for previous versions of Imach.
         } /* end mult */           * For stepm > 1 the results are less biased than in previous versions.
                  */
         s1=s[mw[mi][i]][i];          s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];          s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;           bbh=(double)bh[mi][i]/(double)stepm;
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          /* bias bh is positive if real duration
         ipmx +=1;           * is higher than the multiple of stepm and negative otherwise.
         sw += weight[i];           */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       } /* end of wave */          if( s2 > nlstate){
     } /* end of individual */            /* i.e. if s2 is a death state and if the date of death is known
   }else if (mle==4){  /* ml=4 no inter-extrapolation */               then the contribution to the likelihood is the probability to
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){               die between last step unit time and current  step unit time,
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];               which is also equal to probability to die before dh
       for(mi=1; mi<= wav[i]-1; mi++){               minus probability to die before dh-stepm .
         for (ii=1;ii<=nlstate+ndeath;ii++)               In version up to 0.92 likelihood was computed
           for (j=1;j<=nlstate+ndeath;j++){          as if date of death was unknown. Death was treated as any other
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          health state: the date of the interview describes the actual state
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          and not the date of a change in health state. The former idea was
           }          to consider that at each interview the state was recorded
         for(d=0; d<dh[mi][i]; d++){          (healthy, disable or death) and IMaCh was corrected; but when we
           newm=savm;          introduced the exact date of death then we should have modified
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          the contribution of an exact death to the likelihood. This new
           for (kk=1; kk<=cptcovage;kk++) {          contribution is smaller and very dependent of the step unit
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          stepm. It is no more the probability to die between last interview
           }          and month of death but the probability to survive from last
                   interview up to one month before death multiplied by the
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          probability to die within a month. Thanks to Chris
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          Jackson for correcting this bug.  Former versions increased
           savm=oldm;          mortality artificially. The bad side is that we add another loop
           oldm=newm;          which slows down the processing. The difference can be up to 10%
         } /* end mult */          lower mortality.
                   */
         s1=s[mw[mi][i]][i];            lli=log(out[s1][s2] - savm[s1][s2]);
         s2=s[mw[mi+1][i]][i];  
         if( s2 > nlstate){   
           lli=log(out[s1][s2] - savm[s1][s2]);          } else if  (s2==-2) {
         }else{            for (j=1,survp=0. ; j<=nlstate; j++)
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            /*survp += out[s1][j]; */
         ipmx +=1;            lli= log(survp);
         sw += weight[i];          }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;         
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          else if  (s2==-4) {
       } /* end of wave */            for (j=3,survp=0. ; j<=nlstate; j++)  
     } /* end of individual */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */            lli= log(survp);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){          else if  (s2==-5) {
         for (ii=1;ii<=nlstate+ndeath;ii++)            for (j=1,survp=0. ; j<=2; j++)  
           for (j=1;j<=nlstate+ndeath;j++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            lli= log(survp);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          }
           }         
         for(d=0; d<dh[mi][i]; d++){          else{
           newm=savm;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           for (kk=1; kk<=cptcovage;kk++) {          }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           }          /*if(lli ==000.0)*/
                   /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          ipmx +=1;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          sw += weight[i];
           savm=oldm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           oldm=newm;        } /* end of wave */
         } /* end mult */      } /* end of individual */
           }  else if(mle==2){
         s1=s[mw[mi][i]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         s2=s[mw[mi+1][i]][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        for(mi=1; mi<= wav[i]-1; mi++){
         ipmx +=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
         sw += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       } /* end of wave */            }
     } /* end of individual */          for(d=0; d<=dh[mi][i]; d++){
   } /* End of if */            newm=savm;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            for (kk=1; kk<=cptcovage;kk++) {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   return -l;            }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*************** log-likelihood *************/            savm=oldm;
 double funcone( double *x)            oldm=newm;
 {          } /* end mult */
   /* Same as likeli but slower because of a lot of printf and if */       
   int i, ii, j, k, mi, d, kk;          s1=s[mw[mi][i]][i];
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          s2=s[mw[mi+1][i]][i];
   double **out;          bbh=(double)bh[mi][i]/(double)stepm;
   double lli; /* Individual log likelihood */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double llt;          ipmx +=1;
   int s1, s2;          sw += weight[i];
   double bbh, survp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*extern weight */        } /* end of wave */
   /* We are differentiating ll according to initial status */      } /* end of individual */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    }  else if(mle==3){  /* exponential inter-extrapolation */
   /*for(i=1;i<imx;i++)       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     printf(" %d\n",s[4][i]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   */        for(mi=1; mi<= wav[i]-1; mi++){
   cov[1]=1.;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   for(k=1; k<=nlstate; k++) ll[k]=0.;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          for(d=0; d<dh[mi][i]; d++){
     for(mi=1; mi<= wav[i]-1; mi++){            newm=savm;
       for (ii=1;ii<=nlstate+ndeath;ii++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (j=1;j<=nlstate+ndeath;j++){            for (kk=1; kk<=cptcovage;kk++) {
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           savm[ii][j]=(ii==j ? 1.0 : 0.0);            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(d=0; d<dh[mi][i]; d++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         newm=savm;            savm=oldm;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            oldm=newm;
         for (kk=1; kk<=cptcovage;kk++) {          } /* end mult */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       
         }          s1=s[mw[mi][i]][i];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          s2=s[mw[mi+1][i]][i];
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          bbh=(double)bh[mi][i]/(double)stepm;
         savm=oldm;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         oldm=newm;          ipmx +=1;
       } /* end mult */          sw += weight[i];
                 ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       s1=s[mw[mi][i]][i];        } /* end of wave */
       s2=s[mw[mi+1][i]][i];      } /* end of individual */
       bbh=(double)bh[mi][i]/(double)stepm;     }else if (mle==4){  /* ml=4 no inter-extrapolation */
       /* bias is positive if real duration      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        * is higher than the multiple of stepm and negative otherwise.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        */        for(mi=1; mi<= wav[i]-1; mi++){
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          for (ii=1;ii<=nlstate+ndeath;ii++)
         lli=log(out[s1][s2] - savm[s1][s2]);            for (j=1;j<=nlstate+ndeath;j++){
       } else if (mle==1){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       } else if(mle==2){            }
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          for(d=0; d<dh[mi][i]; d++){
       } else if(mle==3){  /* exponential inter-extrapolation */            newm=savm;
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       } else if (mle==4){  /* mle=4 no inter-extrapolation */            for (kk=1; kk<=cptcovage;kk++) {
         lli=log(out[s1][s2]); /* Original formula */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */            }
         lli=log(out[s1][s2]); /* Original formula */         
       } /* End of if */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       ipmx +=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       sw += weight[i];            savm=oldm;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            oldm=newm;
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          } /* end mult */
       if(globpr){       
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\          s1=s[mw[mi][i]][i];
  %10.6f %10.6f %10.6f ", \          s2=s[mw[mi+1][i]][i];
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          if( s2 > nlstate){
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);            lli=log(out[s1][s2] - savm[s1][s2]);
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          }else{
           llt +=ll[k]*gipmx/gsw;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);          }
         }          ipmx +=1;
         fprintf(ficresilk," %10.6f\n", -llt);          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     } /* end of wave */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   } /* end of individual */        } /* end of wave */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      } /* end of individual */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if(globpr==0){ /* First time we count the contributions and weights */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gipmx=ipmx;        for(mi=1; mi<= wav[i]-1; mi++){
     gsw=sw;          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   return -l;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
           for(d=0; d<dh[mi][i]; d++){
 /*************** function likelione ***********/            newm=savm;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   /* This routine should help understanding what is done with               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      the selection of individuals/waves and            }
      to check the exact contribution to the likelihood.         
      Plotting could be done.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int k;            savm=oldm;
             oldm=newm;
   if(*globpri !=0){ /* Just counts and sums, no printings */          } /* end mult */
     strcpy(fileresilk,"ilk");        
     strcat(fileresilk,fileres);          s1=s[mw[mi][i]][i];
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {          s2=s[mw[mi+1][i]][i];
       printf("Problem with resultfile: %s\n", fileresilk);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);          ipmx +=1;
     }          sw += weight[i];
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */        } /* end of wave */
     for(k=1; k<=nlstate; k++)       } /* end of individual */
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);    } /* End of if */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   *fretone=(*funcone)(p);    return -l;
   if(*globpri !=0){  }
     fclose(ficresilk);  
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));  /*************** log-likelihood *************/
     fflush(fichtm);   double funcone( double *x)
   }   {
   return;    /* Same as likeli but slower because of a lot of printf and if */
 }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
 /*********** Maximum Likelihood Estimation ***************/    double lli; /* Individual log likelihood */
     double llt;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    int s1, s2;
 {    double bbh, survp;
   int i,j, iter;    /*extern weight */
   double **xi;    /* We are differentiating ll according to initial status */
   double fret;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double fretone; /* Only one call to likelihood */    /*for(i=1;i<imx;i++)
   /*  char filerespow[FILENAMELENGTH];*/      printf(" %d\n",s[4][i]);
   xi=matrix(1,npar,1,npar);    */
   for (i=1;i<=npar;i++)    cov[1]=1.;
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  
   strcpy(filerespow,"pow");     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   strcat(filerespow,fileres);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if((ficrespow=fopen(filerespow,"w"))==NULL) {      for(mi=1; mi<= wav[i]-1; mi++){
     printf("Problem with resultfile: %s\n", filerespow);        for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          for (j=1;j<=nlstate+ndeath;j++){
   }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficrespow,"# Powell\n# iter -2*LL");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=nlstate;i++)          }
     for(j=1;j<=nlstate+ndeath;j++)        for(d=0; d<dh[mi][i]; d++){
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          newm=savm;
   fprintf(ficrespow,"\n");          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
   powell(p,xi,npar,ftol,&iter,&fret,func);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
   fclose(ficrespow);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          savm=oldm;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          oldm=newm;
         } /* end mult */
 }       
         s1=s[mw[mi][i]][i];
 /**** Computes Hessian and covariance matrix ***/        s2=s[mw[mi+1][i]][i];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        bbh=(double)bh[mi][i]/(double)stepm;
 {        /* bias is positive if real duration
   double  **a,**y,*x,pd;         * is higher than the multiple of stepm and negative otherwise.
   double **hess;         */
   int i, j,jk;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   int *indx;          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);          for (j=1,survp=0. ; j<=nlstate; j++)
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   void lubksb(double **a, int npar, int *indx, double b[]) ;          lli= log(survp);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        }else if (mle==1){
   double gompertz(double p[]);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   hess=matrix(1,npar,1,npar);        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   printf("\nCalculation of the hessian matrix. Wait...\n");        } else if(mle==3){  /* exponential inter-extrapolation */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for (i=1;i<=npar;i++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     printf("%d",i);fflush(stdout);          lli=log(out[s1][s2]); /* Original formula */
     fprintf(ficlog,"%d",i);fflush(ficlog);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
              lli=log(out[s1][s2]); /* Original formula */
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);        } /* End of if */
             ipmx +=1;
     /*  printf(" %f ",p[i]);        sw += weight[i];
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           if(globpr){
   for (i=1;i<=npar;i++) {          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     for (j=1;j<=npar;j++)  {   %11.6f %11.6f %11.6f ", \
       if (j>i) {                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         printf(".%d%d",i,j);fflush(stdout);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         hess[i][j]=hessij(p,delti,i,j,func,npar);            llt +=ll[k]*gipmx/gsw;
                     fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         hess[j][i]=hess[i][j];              }
         /*printf(" %lf ",hess[i][j]);*/          fprintf(ficresilk," %10.6f\n", -llt);
       }        }
     }      } /* end of wave */
   }    } /* end of individual */
   printf("\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(ficlog,"\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    if(globpr==0){ /* First time we count the contributions and weights */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      gipmx=ipmx;
         gsw=sw;
   a=matrix(1,npar,1,npar);    }
   y=matrix(1,npar,1,npar);    return -l;
   x=vector(1,npar);  }
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /*************** function likelione ***********/
   ludcmp(a,npar,indx,&pd);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
   for (j=1;j<=npar;j++) {    /* This routine should help understanding what is done with
     for (i=1;i<=npar;i++) x[i]=0;       the selection of individuals/waves and
     x[j]=1;       to check the exact contribution to the likelihood.
     lubksb(a,npar,indx,x);       Plotting could be done.
     for (i=1;i<=npar;i++){      */
       matcov[i][j]=x[i];    int k;
     }  
   }    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk");
   printf("\n#Hessian matrix#\n");      strcat(fileresilk,fileres);
   fprintf(ficlog,"\n#Hessian matrix#\n");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   for (i=1;i<=npar;i++) {         printf("Problem with resultfile: %s\n", fileresilk);
     for (j=1;j<=npar;j++) {         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       printf("%.3e ",hess[i][j]);      }
       fprintf(ficlog,"%.3e ",hess[i][j]);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     printf("\n");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     fprintf(ficlog,"\n");      for(k=1; k<=nlstate; k++)
   }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   /* Recompute Inverse */    }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    *fretone=(*funcone)(p);
   ludcmp(a,npar,indx,&pd);    if(*globpri !=0){
       fclose(ficresilk);
   /*  printf("\n#Hessian matrix recomputed#\n");      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm);
   for (j=1;j<=npar;j++) {    }
     for (i=1;i<=npar;i++) x[i]=0;    return;
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){   
       y[i][j]=x[i];  /*********** Maximum Likelihood Estimation ***************/
       printf("%.3e ",y[i][j]);  
       fprintf(ficlog,"%.3e ",y[i][j]);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     }  {
     printf("\n");    int i,j, iter;
     fprintf(ficlog,"\n");    double **xi;
   }    double fret;
   */    double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
   free_matrix(a,1,npar,1,npar);    xi=matrix(1,npar,1,npar);
   free_matrix(y,1,npar,1,npar);    for (i=1;i<=npar;i++)
   free_vector(x,1,npar);      for (j=1;j<=npar;j++)
   free_ivector(indx,1,npar);        xi[i][j]=(i==j ? 1.0 : 0.0);
   free_matrix(hess,1,npar,1,npar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow");
     strcat(filerespow,fileres);
 }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
 /*************** hessian matrix ****************/      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)    }
 {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int i;    for (i=1;i<=nlstate;i++)
   int l=1, lmax=20;      for(j=1;j<=nlstate+ndeath;j++)
   double k1,k2;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double p2[NPARMAX+1];    fprintf(ficrespow,"\n");
   double res;  
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double fx;  
   int k=0,kmax=10;    free_matrix(xi,1,npar,1,npar);
   double l1;    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   fx=func(x);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (i=1;i<=npar;i++) p2[i]=x[i];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  }
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  /**** Computes Hessian and covariance matrix ***/
       delt = delta*(l1*k);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       p2[theta]=x[theta] +delt;  {
       k1=func(p2)-fx;    double  **a,**y,*x,pd;
       p2[theta]=x[theta]-delt;    double **hess;
       k2=func(p2)-fx;    int i, j,jk;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    int *indx;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
           double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 #ifdef DEBUG    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    void ludcmp(double **a, int npar, int *indx, double *d) ;
 #endif    double gompertz(double p[]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    hess=matrix(1,npar,1,npar);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    printf("\nCalculation of the hessian matrix. Wait...\n");
       }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    for (i=1;i<=npar;i++){
         k=kmax; l=lmax*10.;      printf("%d",i);fflush(stdout);
       }      fprintf(ficlog,"%d",i);fflush(ficlog);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      
         delts=delt;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       }     
     }      /*  printf(" %f ",p[i]);
   }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   delti[theta]=delts;    }
   return res;    
       for (i=1;i<=npar;i++) {
 }      for (j=1;j<=npar;j++)  {
         if (j>i) {
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)          printf(".%d%d",i,j);fflush(stdout);
 {          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int i;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   int l=1, l1, lmax=20;         
   double k1,k2,k3,k4,res,fx;          hess[j][i]=hess[i][j];    
   double p2[NPARMAX+1];          /*printf(" %lf ",hess[i][j]);*/
   int k;        }
       }
   fx=func(x);    }
   for (k=1; k<=2; k++) {    printf("\n");
     for (i=1;i<=npar;i++) p2[i]=x[i];    fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     k1=func(p2)-fx;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
     p2[thetai]=x[thetai]+delti[thetai]/k;    a=matrix(1,npar,1,npar);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    y=matrix(1,npar,1,npar);
     k2=func(p2)-fx;    x=vector(1,npar);
       indx=ivector(1,npar);
     p2[thetai]=x[thetai]-delti[thetai]/k;    for (i=1;i<=npar;i++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     k3=func(p2)-fx;    ludcmp(a,npar,indx,&pd);
     
     p2[thetai]=x[thetai]-delti[thetai]/k;    for (j=1;j<=npar;j++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for (i=1;i<=npar;i++) x[i]=0;
     k4=func(p2)-fx;      x[j]=1;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      lubksb(a,npar,indx,x);
 #ifdef DEBUG      for (i=1;i<=npar;i++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        matcov[i][j]=x[i];
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      }
 #endif    }
   }  
   return res;    printf("\n#Hessian matrix#\n");
 }    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) {
 /************** Inverse of matrix **************/      for (j=1;j<=npar;j++) {
 void ludcmp(double **a, int n, int *indx, double *d)         printf("%.3e ",hess[i][j]);
 {         fprintf(ficlog,"%.3e ",hess[i][j]);
   int i,imax,j,k;       }
   double big,dum,sum,temp;       printf("\n");
   double *vv;       fprintf(ficlog,"\n");
      }
   vv=vector(1,n);   
   *d=1.0;     /* Recompute Inverse */
   for (i=1;i<=n;i++) {     for (i=1;i<=npar;i++)
     big=0.0;       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     for (j=1;j<=n;j++)     ludcmp(a,npar,indx,&pd);
       if ((temp=fabs(a[i][j])) > big) big=temp;   
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     /*  printf("\n#Hessian matrix recomputed#\n");
     vv[i]=1.0/big;   
   }     for (j=1;j<=npar;j++) {
   for (j=1;j<=n;j++) {       for (i=1;i<=npar;i++) x[i]=0;
     for (i=1;i<j;i++) {       x[j]=1;
       sum=a[i][j];       lubksb(a,npar,indx,x);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];       for (i=1;i<=npar;i++){
       a[i][j]=sum;         y[i][j]=x[i];
     }         printf("%.3e ",y[i][j]);
     big=0.0;         fprintf(ficlog,"%.3e ",y[i][j]);
     for (i=j;i<=n;i++) {       }
       sum=a[i][j];       printf("\n");
       for (k=1;k<j;k++)       fprintf(ficlog,"\n");
         sum -= a[i][k]*a[k][j];     }
       a[i][j]=sum;     */
       if ( (dum=vv[i]*fabs(sum)) >= big) {   
         big=dum;     free_matrix(a,1,npar,1,npar);
         imax=i;     free_matrix(y,1,npar,1,npar);
       }     free_vector(x,1,npar);
     }     free_ivector(indx,1,npar);
     if (j != imax) {     free_matrix(hess,1,npar,1,npar);
       for (k=1;k<=n;k++) {   
         dum=a[imax][k];   
         a[imax][k]=a[j][k];   }
         a[j][k]=dum;   
       }   /*************** hessian matrix ****************/
       *d = -(*d);   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       vv[imax]=vv[j];   {
     }     int i;
     indx[j]=imax;     int l=1, lmax=20;
     if (a[j][j] == 0.0) a[j][j]=TINY;     double k1,k2;
     if (j != n) {     double p2[NPARMAX+1];
       dum=1.0/(a[j][j]);     double res;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     }     double fx;
   }     int k=0,kmax=10;
   free_vector(vv,1,n);  /* Doesn't work */    double l1;
 ;  
 }     fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
 void lubksb(double **a, int n, int *indx, double b[])     for(l=0 ; l <=lmax; l++){
 {       l1=pow(10,l);
   int i,ii=0,ip,j;       delts=delt;
   double sum;       for(k=1 ; k <kmax; k=k+1){
          delt = delta*(l1*k);
   for (i=1;i<=n;i++) {         p2[theta]=x[theta] +delt;
     ip=indx[i];         k1=func(p2)-fx;
     sum=b[ip];         p2[theta]=x[theta]-delt;
     b[ip]=b[i];         k2=func(p2)-fx;
     if (ii)         /*res= (k1-2.0*fx+k2)/delt/delt; */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     else if (sum) ii=i;        
     b[i]=sum;   #ifdef DEBUG
   }         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   for (i=n;i>=1;i--) {         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     sum=b[i];   #endif
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     b[i]=sum/a[i][i];         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   }           k=kmax;
 }         }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 /************ Frequencies ********************/          k=kmax; l=lmax*10.;
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])        }
 {  /* Some frequencies */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
             delts=delt;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        }
   int first;      }
   double ***freq; /* Frequencies */    }
   double *pp, **prop;    delti[theta]=delts;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    return res;
   FILE *ficresp;   
   char fileresp[FILENAMELENGTH];  }
     
   pp=vector(1,nlstate);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   prop=matrix(1,nlstate,iagemin,iagemax+3);  {
   strcpy(fileresp,"p");    int i;
   strcat(fileresp,fileres);    int l=1, l1, lmax=20;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double k1,k2,k3,k4,res,fx;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double p2[NPARMAX+1];
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    int k;
     exit(0);  
   }    fx=func(x);
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);    for (k=1; k<=2; k++) {
   j1=0;      for (i=1;i<=npar;i++) p2[i]=x[i];
         p2[thetai]=x[thetai]+delti[thetai]/k;
   j=cptcoveff;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      k1=func(p2)-fx;
    
   first=1;      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   for(k1=1; k1<=j;k1++){      k2=func(p2)-fx;
     for(i1=1; i1<=ncodemax[k1];i1++){   
       j1++;      p2[thetai]=x[thetai]-delti[thetai]/k;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         scanf("%d", i);*/      k3=func(p2)-fx;
       for (i=-5; i<=nlstate+ndeath; i++)     
         for (jk=-5; jk<=nlstate+ndeath; jk++)        p2[thetai]=x[thetai]-delti[thetai]/k;
           for(m=iagemin; m <= iagemax+3; m++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             freq[i][jk][m]=0;      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for (i=1; i<=nlstate; i++)    #ifdef DEBUG
       for(m=iagemin; m <= iagemax+3; m++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         prop[i][m]=0;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         #endif
       dateintsum=0;    }
       k2cpt=0;    return res;
       for (i=1; i<=imx; i++) {  }
         bool=1;  
         if  (cptcovn>0) {  /************** Inverse of matrix **************/
           for (z1=1; z1<=cptcoveff; z1++)   void ludcmp(double **a, int n, int *indx, double *d)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   {
               bool=0;    int i,imax,j,k;
         }    double big,dum,sum,temp;
         if (bool==1){    double *vv;
           for(m=firstpass; m<=lastpass; m++){   
             k2=anint[m][i]+(mint[m][i]/12.);    vv=vector(1,n);
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/    *d=1.0;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    for (i=1;i<=n;i++) {
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      big=0.0;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];      for (j=1;j<=n;j++)
               if (m<lastpass) {        if ((temp=fabs(a[i][j])) > big) big=temp;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      vv[i]=1.0/big;
               }    }
                   for (j=1;j<=n;j++) {
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {      for (i=1;i<j;i++) {
                 dateintsum=dateintsum+k2;        sum=a[i][j];
                 k2cpt++;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
               }        a[i][j]=sum;
               /*}*/      }
           }      big=0.0;
         }      for (i=j;i<=n;i++) {
       }        sum=a[i][j];
                for (k=1;k<j;k++)
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/          sum -= a[i][k]*a[k][j];
 fprintf(ficresp, "#Local time at start: %s", strstart);        a[i][j]=sum;
       if  (cptcovn>0) {        if ( (dum=vv[i]*fabs(sum)) >= big) {
         fprintf(ficresp, "\n#********** Variable ");           big=dum;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          imax=i;
         fprintf(ficresp, "**********\n#");        }
       }      }
       for(i=1; i<=nlstate;i++)       if (j != imax) {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for (k=1;k<=n;k++) {
       fprintf(ficresp, "\n");          dum=a[imax][k];
                 a[imax][k]=a[j][k];
       for(i=iagemin; i <= iagemax+3; i++){          a[j][k]=dum;
         if(i==iagemax+3){        }
           fprintf(ficlog,"Total");        *d = -(*d);
         }else{        vv[imax]=vv[j];
           if(first==1){      }
             first=0;      indx[j]=imax;
             printf("See log file for details...\n");      if (a[j][j] == 0.0) a[j][j]=TINY;
           }      if (j != n) {
           fprintf(ficlog,"Age %d", i);        dum=1.0/(a[j][j]);
         }        for (i=j+1;i<=n;i++) a[i][j] *= dum;
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    }
             pp[jk] += freq[jk][m][i];     free_vector(vv,1,n);  /* Doesn't work */
         }  ;
         for(jk=1; jk <=nlstate ; jk++){  }
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  void lubksb(double **a, int n, int *indx, double b[])
           if(pp[jk]>=1.e-10){  {
             if(first==1){    int i,ii=0,ip,j;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double sum;
             }   
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for (i=1;i<=n;i++) {
           }else{      ip=indx[i];
             if(first==1)      sum=b[ip];
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      b[ip]=b[i];
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      if (ii)
           }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
         }      else if (sum) ii=i;
       b[i]=sum;
         for(jk=1; jk <=nlstate ; jk++){    }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    for (i=n;i>=1;i--) {
             pp[jk] += freq[jk][m][i];      sum=b[i];
         }             for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){      b[i]=sum/a[i][i];
           pos += pp[jk];    }
           posprop += prop[jk][i];  }
         }  
         for(jk=1; jk <=nlstate ; jk++){  void pstamp(FILE *fichier)
           if(pos>=1.e-5){  {
             if(first==1)    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           }else{  /************ Frequencies ********************/
             if(first==1)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  {  /* Some frequencies */
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);   
           }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           if( i <= iagemax){    int first;
             if(pos>=1.e-5){    double ***freq; /* Frequencies */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);    double *pp, **prop;
               /*probs[i][jk][j1]= pp[jk]/pos;*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    char fileresp[FILENAMELENGTH];
             }   
             else    pp=vector(1,nlstate);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);    prop=matrix(1,nlstate,iagemin,iagemax+3);
           }    strcpy(fileresp,"p");
         }    strcat(fileresp,fileres);
             if((ficresp=fopen(fileresp,"w"))==NULL) {
         for(jk=-1; jk <=nlstate+ndeath; jk++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
           for(m=-1; m <=nlstate+ndeath; m++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
             if(freq[jk][m][i] !=0 ) {      exit(0);
             if(first==1)    }
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    j1=0;
             }   
         if(i <= iagemax)    j=cptcoveff;
           fprintf(ficresp,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         if(first==1)  
           printf("Others in log...\n");    first=1;
         fprintf(ficlog,"\n");  
       }    for(k1=1; k1<=j;k1++){
     }      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
   dateintmean=dateintsum/k2cpt;         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            scanf("%d", i);*/
   fclose(ficresp);        for (i=-5; i<=nlstate+ndeath; i++)  
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   free_vector(pp,1,nlstate);            for(m=iagemin; m <= iagemax+3; m++)
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);              freq[i][jk][m]=0;
   /* End of Freq */  
 }      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
 /************ Prevalence ********************/          prop[i][m]=0;
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)       
 {          dateintsum=0;
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people        k2cpt=0;
      in each health status at the date of interview (if between dateprev1 and dateprev2).        for (i=1; i<=imx; i++) {
      We still use firstpass and lastpass as another selection.          bool=1;
   */          if  (cptcovn>0) {
              for (z1=1; z1<=cptcoveff; z1++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   double ***freq; /* Frequencies */                bool=0;
   double *pp, **prop;          }
   double pos,posprop;           if (bool==1){
   double  y2; /* in fractional years */            for(m=firstpass; m<=lastpass; m++){
   int iagemin, iagemax;              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   iagemin= (int) agemin;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   iagemax= (int) agemax;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /*pp=vector(1,nlstate);*/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   prop=matrix(1,nlstate,iagemin,iagemax+3);                 if (m<lastpass) {
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   j1=0;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                   }
   j=cptcoveff;               
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                     dateintsum=dateintsum+k2;
   for(k1=1; k1<=j;k1++){                  k2cpt++;
     for(i1=1; i1<=ncodemax[k1];i1++){                }
       j1++;                /*}*/
                   }
       for (i=1; i<=nlstate; i++)            }
         for(m=iagemin; m <= iagemax+3; m++)        }
           prop[i][m]=0.0;         
              /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       for (i=1; i<=imx; i++) { /* Each individual */        pstamp(ficresp);
         bool=1;        if  (cptcovn>0) {
         if  (cptcovn>0) {          fprintf(ficresp, "\n#********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++)           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           fprintf(ficresp, "**********\n#");
               bool=0;        }
         }         for(i=1; i<=nlstate;i++)
         if (bool==1) {           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/        fprintf(ficresp, "\n");
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */       
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */        for(i=iagemin; i <= iagemax+3; i++){
               if(agev[m][i]==0) agev[m][i]=iagemax+1;          if(i==iagemax+3){
               if(agev[m][i]==1) agev[m][i]=iagemax+2;            fprintf(ficlog,"Total");
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);           }else{
               if (s[m][i]>0 && s[m][i]<=nlstate) {             if(first==1){
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/              first=0;
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];              printf("See log file for details...\n");
                 prop[s[m][i]][iagemax+3] += weight[i];             }
               }             fprintf(ficlog,"Age %d", i);
             }          }
           } /* end selection of waves */          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       }              pp[jk] += freq[jk][m][i];
       for(i=iagemin; i <= iagemax+3; i++){            }
                   for(jk=1; jk <=nlstate ; jk++){
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {             for(m=-1, pos=0; m <=0 ; m++)
           posprop += prop[jk][i];               pos += freq[jk][m][i];
         }             if(pp[jk]>=1.e-10){
               if(first==1){
         for(jk=1; jk <=nlstate ; jk++){                   printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           if( i <=  iagemax){               }
             if(posprop>=1.e-5){               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               probs[i][jk][j1]= prop[jk][i]/posprop;            }else{
             }               if(first==1)
           }                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }/* end jk */               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }/* end i */             }
     } /* end i1 */          }
   } /* end k1 */  
             for(jk=1; jk <=nlstate ; jk++){
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   /*free_vector(pp,1,nlstate);*/              pp[jk] += freq[jk][m][i];
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);          }      
 }  /* End of prevalence */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
 /************* Waves Concatenation ***************/            posprop += prop[jk][i];
           }
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          for(jk=1; jk <=nlstate ; jk++){
 {            if(pos>=1.e-5){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              if(first==1)
      Death is a valid wave (if date is known).                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]            }else{
      and mw[mi+1][i]. dh depends on stepm.              if(first==1)
      */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, mi, m;            }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            if( i <= iagemax){
      double sum=0., jmean=0.;*/              if(pos>=1.e-5){
   int first;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   int j, k=0,jk, ju, jl;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   double sum=0.;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   first=0;              }
   jmin=1e+5;              else
   jmax=-1;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   jmean=0.;            }
   for(i=1; i<=imx; i++){          }
     mi=0;         
     m=firstpass;          for(jk=-1; jk <=nlstate+ndeath; jk++)
     while(s[m][i] <= nlstate){            for(m=-1; m <=nlstate+ndeath; m++)
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)              if(freq[jk][m][i] !=0 ) {
         mw[++mi][i]=m;              if(first==1)
       if(m >=lastpass)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         break;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       else              }
         m++;          if(i <= iagemax)
     }/* end while */            fprintf(ficresp,"\n");
     if (s[m][i] > nlstate){          if(first==1)
       mi++;     /* Death is another wave */            printf("Others in log...\n");
       /* if(mi==0)  never been interviewed correctly before death */          fprintf(ficlog,"\n");
          /* Only death is a correct wave */        }
       mw[mi][i]=m;      }
     }    }
     dateintmean=dateintsum/k2cpt;
     wav[i]=mi;   
     if(mi==0){    fclose(ficresp);
       nbwarn++;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       if(first==0){    free_vector(pp,1,nlstate);
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         first=1;    /* End of Freq */
       }  }
       if(first==1){  
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);  /************ Prevalence ********************/
       }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     } /* end mi==0 */  {  
   } /* End individuals */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
   for(i=1; i<=imx; i++){       We still use firstpass and lastpass as another selection.
     for(mi=1; mi<wav[i];mi++){    */
       if (stepm <=0)   
         dh[mi][i]=1;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       else{    double ***freq; /* Frequencies */
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */    double *pp, **prop;
           if (agedc[i] < 2*AGESUP) {    double pos,posprop;
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);     double  y2; /* in fractional years */
             if(j==0) j=1;  /* Survives at least one month after exam */    int iagemin, iagemax;
             else if(j<0){  
               nberr++;    iagemin= (int) agemin;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    iagemax= (int) agemax;
               j=1; /* Temporary Dangerous patch */    /*pp=vector(1,nlstate);*/
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    prop=matrix(1,nlstate,iagemin,iagemax+3);
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    j1=0;
             }   
             k=k+1;    j=cptcoveff;
             if (j >= jmax) jmax=j;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             if (j <= jmin) jmin=j;   
             sum=sum+j;    for(k1=1; k1<=j;k1++){
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/      for(i1=1; i1<=ncodemax[k1];i1++){
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/        j1++;
           }       
         }        for (i=1; i<=nlstate; i++)  
         else{          for(m=iagemin; m <= iagemax+3; m++)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            prop[i][m]=0.0;
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */       
         for (i=1; i<=imx; i++) { /* Each individual */
           k=k+1;          bool=1;
           if (j >= jmax) jmax=j;          if  (cptcovn>0) {
           else if (j <= jmin)jmin=j;            for (z1=1; z1<=cptcoveff; z1++)
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/                bool=0;
           if(j<0){          }
             nberr++;          if (bool==1) {
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           sum=sum+j;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         jk= j/stepm;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
         jl= j -jk*stepm;                if (s[m][i]>0 && s[m][i]<=nlstate) {
         ju= j -(jk+1)*stepm;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           if(jl==0){                  prop[s[m][i]][iagemax+3] += weight[i];
             dh[mi][i]=jk;                }
             bh[mi][i]=0;              }
           }else{ /* We want a negative bias in order to only have interpolation ie            } /* end selection of waves */
                   * at the price of an extra matrix product in likelihood */          }
             dh[mi][i]=jk+1;        }
             bh[mi][i]=ju;        for(i=iagemin; i <= iagemax+3; i++){  
           }         
         }else{          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
           if(jl <= -ju){            posprop += prop[jk][i];
             dh[mi][i]=jk;          }
             bh[mi][i]=jl;       /* bias is positive if real duration  
                                  * is higher than the multiple of stepm and negative otherwise.          for(jk=1; jk <=nlstate ; jk++){    
                                  */            if( i <=  iagemax){
           }              if(posprop>=1.e-5){
           else{                probs[i][jk][j1]= prop[jk][i]/posprop;
             dh[mi][i]=jk+1;              }
             bh[mi][i]=ju;            }
           }          }/* end jk */
           if(dh[mi][i]==0){        }/* end i */
             dh[mi][i]=1; /* At least one step */      } /* end i1 */
             bh[mi][i]=ju; /* At least one step */    } /* end k1 */
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/   
           }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         } /* end if mle */    /*free_vector(pp,1,nlstate);*/
       }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     } /* end wave */  }  /* End of prevalence */
   }  
   jmean=sum/k;  /************* Waves Concatenation ***************/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  }  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 /*********** Tricode ****************************/       Death is a valid wave (if date is known).
 void tricode(int *Tvar, int **nbcode, int imx)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
          and mw[mi+1][i]. dh depends on stepm.
   int Ndum[20],ij=1, k, j, i, maxncov=19;       */
   int cptcode=0;  
   cptcoveff=0;     int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   for (k=0; k<maxncov; k++) Ndum[k]=0;       double sum=0., jmean=0.;*/
   for (k=1; k<=7; k++) ncodemax[k]=0;    int first;
     int j, k=0,jk, ju, jl;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double sum=0.;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum     first=0;
                                modality*/     jmin=1e+5;
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/    jmax=-1;
       Ndum[ij]++; /*store the modality */    jmean=0.;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    for(i=1; i<=imx; i++){
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable       mi=0;
                                        Tvar[j]. If V=sex and male is 0 and       m=firstpass;
                                        female is 1, then  cptcode=1.*/      while(s[m][i] <= nlstate){
     }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
     for (i=0; i<=cptcode; i++) {        if(m >=lastpass)
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */          break;
     }        else
           m++;
     ij=1;       }/* end while */
     for (i=1; i<=ncodemax[j]; i++) {      if (s[m][i] > nlstate){
       for (k=0; k<= maxncov; k++) {        mi++;     /* Death is another wave */
         if (Ndum[k] != 0) {        /* if(mi==0)  never been interviewed correctly before death */
           nbcode[Tvar[j]][ij]=k;            /* Only death is a correct wave */
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */        mw[mi][i]=m;
                 }
           ij++;  
         }      wav[i]=mi;
         if (ij > ncodemax[j]) break;       if(mi==0){
       }          nbwarn++;
     }         if(first==0){
   }            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
  for (k=0; k< maxncov; k++) Ndum[k]=0;        }
         if(first==1){
  for (i=1; i<=ncovmodel-2; i++) {           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/        }
    ij=Tvar[i];      } /* end mi==0 */
    Ndum[ij]++;    } /* End individuals */
  }  
     for(i=1; i<=imx; i++){
  ij=1;      for(mi=1; mi<wav[i];mi++){
  for (i=1; i<= maxncov; i++) {        if (stepm <=0)
    if((Ndum[i]!=0) && (i<=ncovcol)){          dh[mi][i]=1;
      Tvaraff[ij]=i; /*For printing */        else{
      ij++;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    }            if (agedc[i] < 2*AGESUP) {
  }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
                if(j==0) j=1;  /* Survives at least one month after exam */
  cptcoveff=ij-1; /*Number of simple covariates*/              else if(j<0){
 }                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 /*********** Health Expectancies ****************/                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 {              }
   /* Health expectancies */              k=k+1;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;              if (j >= jmax){
   double age, agelim, hf;                jmax=j;
   double ***p3mat,***varhe;                ijmax=i;
   double **dnewm,**doldm;              }
   double *xp;              if (j <= jmin){
   double **gp, **gm;                jmin=j;
   double ***gradg, ***trgradg;                ijmin=i;
   int theta;              }
               sum=sum+j;
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   xp=vector(1,npar);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   dnewm=matrix(1,nlstate*nlstate,1,npar);            }
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);          }
             else{
   fprintf(ficreseij,"# Local time at start: %s", strstart);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   fprintf(ficreseij,"# Health expectancies\n");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)            k=k+1;
     for(j=1; j<=nlstate;j++)            if (j >= jmax) {
       fprintf(ficreseij," %1d-%1d (SE)",i,j);              jmax=j;
   fprintf(ficreseij,"\n");              ijmax=i;
             }
   if(estepm < stepm){            else if (j <= jmin){
     printf ("Problem %d lower than %d\n",estepm, stepm);              jmin=j;
   }              ijmin=i;
   else  hstepm=estepm;               }
   /* We compute the life expectancy from trapezoids spaced every estepm months            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
    * This is mainly to measure the difference between two models: for example            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
    * if stepm=24 months pijx are given only every 2 years and by summing them            if(j<0){
    * we are calculating an estimate of the Life Expectancy assuming a linear               nberr++;
    * progression in between and thus overestimating or underestimating according              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    * to the curvature of the survival function. If, for the same date, we               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            }
    * to compare the new estimate of Life expectancy with the same linear             sum=sum+j;
    * hypothesis. A more precise result, taking into account a more precise          }
    * curvature will be obtained if estepm is as small as stepm. */          jk= j/stepm;
           jl= j -jk*stepm;
   /* For example we decided to compute the life expectancy with the smallest unit */          ju= j -(jk+1)*stepm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
      nhstepm is the number of hstepm from age to agelim             if(jl==0){
      nstepm is the number of stepm from age to agelin.               dh[mi][i]=jk;
      Look at hpijx to understand the reason of that which relies in memory size              bh[mi][i]=0;
      and note for a fixed period like estepm months */            }else{ /* We want a negative bias in order to only have interpolation ie
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                    * at the price of an extra matrix product in likelihood */
      survival function given by stepm (the optimization length). Unfortunately it              dh[mi][i]=jk+1;
      means that if the survival funtion is printed only each two years of age and if              bh[mi][i]=ju;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same             }
      results. So we changed our mind and took the option of the best precision.          }else{
   */            if(jl <= -ju){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */               dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   agelim=AGESUP;                                   * is higher than the multiple of stepm and negative otherwise.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                                   */
     /* nhstepm age range expressed in number of stepm */            }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);             else{
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */               dh[mi][i]=jk+1;
     /* if (stepm >= YEARM) hstepm=1;*/              bh[mi][i]=ju;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(dh[mi][i]==0){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);              dh[mi][i]=1; /* At least one step */
     gp=matrix(0,nhstepm,1,nlstate*nlstate);              bh[mi][i]=ju; /* At least one step */
     gm=matrix(0,nhstepm,1,nlstate*nlstate);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          } /* end if mle */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        } /* end wave */
      }
     jmean=sum/k;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     /* Computing  Variances of health expectancies */   }
   
      for(theta=1; theta <=npar; theta++){  /*********** Tricode ****************************/
       for(i=1; i<=npar; i++){   void tricode(int *Tvar, int **nbcode, int imx)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  {
       }   
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int Ndum[20],ij=1, k, j, i, maxncov=19;
       int cptcode=0;
       cptj=0;    cptcoveff=0;
       for(j=1; j<= nlstate; j++){   
         for(i=1; i<=nlstate; i++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
           cptj=cptj+1;    for (k=1; k<=7; k++) ncodemax[k]=0;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
         }                                 modality*/
       }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
              Ndum[ij]++; /*store the modality */
              /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       for(i=1; i<=npar; i++)         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                                         Tvar[j]. If V=sex and male is 0 and
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                                           female is 1, then  cptcode=1.*/
             }
       cptj=0;  
       for(j=1; j<= nlstate; j++){      for (i=0; i<=cptcode; i++) {
         for(i=1;i<=nlstate;i++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           cptj=cptj+1;      }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
       ij=1;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for (i=1; i<=ncodemax[j]; i++) {
           }        for (k=0; k<= maxncov; k++) {
         }          if (Ndum[k] != 0) {
       }            nbcode[Tvar[j]][ij]=k;
       for(j=1; j<= nlstate*nlstate; j++)            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         for(h=0; h<=nhstepm-1; h++){           
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            ij++;
         }          }
      }           if (ij > ncodemax[j]) break;
            }  
 /* End theta */      }
     }  
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*nlstate;j++)   for (i=1; i<=ncovmodel-2; i++) {
         for(theta=1; theta <=npar; theta++)     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           trgradg[h][j][theta]=gradg[h][theta][j];     ij=Tvar[i];
           Ndum[ij]++;
    }
      for(i=1;i<=nlstate*nlstate;i++)  
       for(j=1;j<=nlstate*nlstate;j++)   ij=1;
         varhe[i][j][(int)age] =0.;   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
      printf("%d|",(int)age);fflush(stdout);       Tvaraff[ij]=i; /*For printing */
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);       ij++;
      for(h=0;h<=nhstepm-1;h++){     }
       for(k=0;k<=nhstepm-1;k++){   }
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);   cptcoveff=ij-1; /*Number of simple covariates*/
         for(i=1;i<=nlstate*nlstate;i++)  }
           for(j=1;j<=nlstate*nlstate;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  /*********** Health Expectancies ****************/
       }  
     }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)  {
       for(j=1; j<=nlstate;j++)    /* Health expectancies, no variances */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double age, agelim, hf;
               double ***p3mat;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double eip;
   
         }    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"%3.0f",age );    fprintf(ficreseij,"# Age");
     cptj=0;    for(i=1; i<=nlstate;i++){
     for(i=1; i<=nlstate;i++)      for(j=1; j<=nlstate;j++){
       for(j=1; j<=nlstate;j++){        fprintf(ficreseij," e%1d%1d ",i,j);
         cptj++;      }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      fprintf(ficreseij," e%1d. ",i);
       }    }
     fprintf(ficreseij,"\n");    fprintf(ficreseij,"\n");
      
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);   
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);    if(estepm < stepm){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);      printf ("Problem %d lower than %d\n",estepm, stepm);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    else  hstepm=estepm;  
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
   printf("\n");     * This is mainly to measure the difference between two models: for example
   fprintf(ficlog,"\n");     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear
   free_vector(xp,1,npar);     * progression in between and thus overestimating or underestimating according
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);     * to the curvature of the survival function. If, for the same date, we
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);     * to compare the new estimate of Life expectancy with the same linear
 }     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
 /************ Variance ******************/  
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])    /* For example we decided to compute the life expectancy with the smallest unit */
 {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   /* Variance of health expectancies */       nhstepm is the number of hstepm from age to agelim
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/       nstepm is the number of stepm from age to agelin.
   /* double **newm;*/       Look at hpijx to understand the reason of that which relies in memory size
   double **dnewm,**doldm;       and note for a fixed period like estepm months */
   double **dnewmp,**doldmp;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   int i, j, nhstepm, hstepm, h, nstepm ;       survival function given by stepm (the optimization length). Unfortunately it
   int k, cptcode;       means that if the survival funtion is printed only each two years of age and if
   double *xp;       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   double **gp, **gm;  /* for var eij */       results. So we changed our mind and took the option of the best precision.
   double ***gradg, ***trgradg; /*for var eij */    */
   double **gradgp, **trgradgp; /* for var p point j */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   double *gpp, *gmp; /* for var p point j */  
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    agelim=AGESUP;
   double ***p3mat;    /* If stepm=6 months */
   double age,agelim, hf;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   double ***mobaverage;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   int theta;     
   char digit[4];  /* nhstepm age range expressed in number of stepm */
   char digitp[25];    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   char fileresprobmorprev[FILENAMELENGTH];    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if(popbased==1){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if(mobilav!=0)  
       strcpy(digitp,"-populbased-mobilav-");    for (age=bage; age<=fage; age ++){
     else strcpy(digitp,"-populbased-nomobil-");  
   }  
   else       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     strcpy(digitp,"-stablbased-");     
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (mobilav!=0) {     
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("%d|",(int)age);fflush(stdout);
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }      /* Computing expectancies */
   }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   strcpy(fileresprobmorprev,"prmorprev");           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   sprintf(digit,"%-d",ij);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/           
   strcat(fileresprobmorprev,digit); /* Tvar to be done */            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */  
   strcat(fileresprobmorprev,fileres);          }
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {     
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      fprintf(ficreseij,"%3.0f",age );
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      for(i=1; i<=nlstate;i++){
   }        eip=0;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        for(j=1; j<=nlstate;j++){
            eip +=eij[i][j][(int)age];
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);        }
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);        fprintf(ficreseij,"%9.4f", eip );
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      fprintf(ficreseij,"\n");
     fprintf(ficresprobmorprev," p.%-d SE",j);     
     for(i=1; i<=nlstate;i++)    }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      printf("\n");
   fprintf(ficresprobmorprev,"\n");    fprintf(ficlog,"\n");
   fprintf(ficgp,"\n# Routine varevsij");   
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/  }
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");  
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 /*   } */  
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  {
  fprintf(ficresvij, "#Local time at start: %s", strstart);    /* Covariances of health expectancies eij and of total life expectancies according
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");     to initial status i, ei. .
   fprintf(ficresvij,"# Age");    */
   for(i=1; i<=nlstate;i++)    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     for(j=1; j<=nlstate;j++)    double age, agelim, hf;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double ***p3matp, ***p3matm, ***varhe;
   fprintf(ficresvij,"\n");    double **dnewm,**doldm;
     double *xp, *xm;
   xp=vector(1,npar);    double **gp, **gm;
   dnewm=matrix(1,nlstate,1,npar);    double ***gradg, ***trgradg;
   doldm=matrix(1,nlstate,1,nlstate);    int theta;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double eip, vip;
   
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   gpp=vector(nlstate+1,nlstate+ndeath);    xp=vector(1,npar);
   gmp=vector(nlstate+1,nlstate+ndeath);    xm=vector(1,npar);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    dnewm=matrix(1,nlstate*nlstate,1,npar);
       doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if(estepm < stepm){   
     printf ("Problem %d lower than %d\n",estepm, stepm);    pstamp(ficresstdeij);
   }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   else  hstepm=estepm;       fprintf(ficresstdeij,"# Age");
   /* For example we decided to compute the life expectancy with the smallest unit */    for(i=1; i<=nlstate;i++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       for(j=1; j<=nlstate;j++)
      nhstepm is the number of hstepm from age to agelim         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
      nstepm is the number of stepm from age to agelin.       fprintf(ficresstdeij," e%1d. ",i);
      Look at hpijx to understand the reason of that which relies in memory size    }
      and note for a fixed period like k years */    fprintf(ficresstdeij,"\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    pstamp(ficrescveij);
      means that if the survival funtion is printed every two years of age and if    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     fprintf(ficrescveij,"# Age");
      results. So we changed our mind and took the option of the best precision.    for(i=1; i<=nlstate;i++)
   */      for(j=1; j<=nlstate;j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */         cptj= (j-1)*nlstate+i;
   agelim = AGESUP;        for(i2=1; i2<=nlstate;i2++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for(j2=1; j2<=nlstate;j2++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */             cptj2= (j2-1)*nlstate+i2;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            if(cptj2 <= cptj)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          }
     gp=matrix(0,nhstepm,1,nlstate);      }
     gm=matrix(0,nhstepm,1,nlstate);    fprintf(ficrescveij,"\n");
    
     if(estepm < stepm){
     for(theta=1; theta <=npar; theta++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    else  hstepm=estepm;  
       }    /* We compute the life expectancy from trapezoids spaced every estepm months
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       * This is mainly to measure the difference between two models: for example
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear
       if (popbased==1) {     * progression in between and thus overestimating or underestimating according
         if(mobilav ==0){     * to the curvature of the survival function. If, for the same date, we
           for(i=1; i<=nlstate;i++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             prlim[i][i]=probs[(int)age][i][ij];     * to compare the new estimate of Life expectancy with the same linear
         }else{ /* mobilav */      * hypothesis. A more precise result, taking into account a more precise
           for(i=1; i<=nlstate;i++)     * curvature will be obtained if estepm is as small as stepm. */
             prlim[i][i]=mobaverage[(int)age][i][ij];  
         }    /* For example we decided to compute the life expectancy with the smallest unit */
       }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
          nhstepm is the number of hstepm from age to agelim
       for(j=1; j<= nlstate; j++){       nstepm is the number of stepm from age to agelin.
         for(h=0; h<=nhstepm; h++){       Look at hpijx to understand the reason of that which relies in memory size
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)       and note for a fixed period like estepm months */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
       /* This for computing probability of death (h=1 means       you sum them up and add 1 year (area under the trapezoids) you won't get the same
          computed over hstepm matrices product = hstepm*stepm months)        results. So we changed our mind and took the option of the best precision.
          as a weighted average of prlim.    */
       */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  
         for(i=1,gpp[j]=0.; i<= nlstate; i++)    /* If stepm=6 months */
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    /* nhstepm age range expressed in number of stepm */
       }        agelim=AGESUP;
       /* end probability of death */    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */    /* if (stepm >= YEARM) hstepm=1;*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if (popbased==1) {    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         if(mobilav ==0){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           for(i=1; i<=nlstate;i++)    gp=matrix(0,nhstepm,1,nlstate*nlstate);
             prlim[i][i]=probs[(int)age][i][ij];    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         }else{ /* mobilav */   
           for(i=1; i<=nlstate;i++)    for (age=bage; age<=fage; age ++){
             prlim[i][i]=mobaverage[(int)age][i][ij];  
         }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
       for(j=1; j<= nlstate; j++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      /* Computing  Variances of health expectancies */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         }         decrease memory allocation */
       }      for(theta=1; theta <=npar; theta++){
       /* This for computing probability of death (h=1 means        for(i=1; i<=npar; i++){
          computed over hstepm matrices product = hstepm*stepm months)           xp[i] = x[i] + (i==theta ?delti[theta]:0);
          as a weighted average of prlim.          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       */        }
       for(j=nlstate+1;j<=nlstate+ndeath;j++){        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         for(i=1,gmp[j]=0.; i<= nlstate; i++)        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
          gmp[j] += prlim[i][i]*p3mat[i][j][1];   
       }            for(j=1; j<= nlstate; j++){
       /* end probability of death */          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
       for(j=1; j<= nlstate; j++) /* vareij */              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         for(h=0; h<=nhstepm; h++){              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            }
         }          }
         }
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */       
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        for(ij=1; ij<= nlstate*nlstate; ij++)
       }          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     } /* End theta */          }
       }/* End theta */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */     
      
     for(h=0; h<=nhstepm; h++) /* veij */      for(h=0; h<=nhstepm-1; h++)
       for(j=1; j<=nlstate;j++)        for(j=1; j<=nlstate*nlstate;j++)
         for(theta=1; theta <=npar; theta++)          for(theta=1; theta <=npar; theta++)
           trgradg[h][j][theta]=gradg[h][theta][j];            trgradg[h][j][theta]=gradg[h][theta][j];
      
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  
       for(theta=1; theta <=npar; theta++)       for(ij=1;ij<=nlstate*nlstate;ij++)
         trgradgp[j][theta]=gradgp[theta][j];        for(ji=1;ji<=nlstate*nlstate;ji++)
             varhe[ij][ji][(int)age] =0.;
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */       printf("%d|",(int)age);fflush(stdout);
     for(i=1;i<=nlstate;i++)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(j=1;j<=nlstate;j++)       for(h=0;h<=nhstepm-1;h++){
         vareij[i][j][(int)age] =0.;        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     for(h=0;h<=nhstepm;h++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       for(k=0;k<=nhstepm;k++){          for(ij=1;ij<=nlstate*nlstate;ij++)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            for(ji=1;ji<=nlstate*nlstate;ji++)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         for(i=1;i<=nlstate;i++)        }
           for(j=1;j<=nlstate;j++)      }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }      /* Computing expectancies */
     }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         for(i=1; i<=nlstate;i++)
     /* pptj */        for(j=1; j<=nlstate;j++)
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)           
       for(i=nlstate+1;i<=nlstate+ndeath;i++)            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         varppt[j][i]=doldmp[j][i];  
     /* end ppptj */          }
     /*  x centered again */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        fprintf(ficresstdeij,"%3.0f",age );
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      for(i=1; i<=nlstate;i++){
          eip=0.;
     if (popbased==1) {        vip=0.;
       if(mobilav ==0){        for(j=1; j<=nlstate;j++){
         for(i=1; i<=nlstate;i++)          eip += eij[i][j][(int)age];
           prlim[i][i]=probs[(int)age][i][ij];          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       }else{ /* mobilav */             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         for(i=1; i<=nlstate;i++)          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           prlim[i][i]=mobaverage[(int)age][i][ij];        }
       }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     }      }
                    fprintf(ficresstdeij,"\n");
     /* This for computing probability of death (h=1 means  
        computed over hstepm (estepm) matrices product = hstepm*stepm months)       fprintf(ficrescveij,"%3.0f",age );
        as a weighted average of prlim.      for(i=1; i<=nlstate;i++)
     */        for(j=1; j<=nlstate;j++){
     for(j=nlstate+1;j<=nlstate+ndeath;j++){          cptj= (j-1)*nlstate+i;
       for(i=1,gmp[j]=0.;i<= nlstate; i++)           for(i2=1; i2<=nlstate;i2++)
         gmp[j] += prlim[i][i]*p3mat[i][j][1];             for(j2=1; j2<=nlstate;j2++){
     }                  cptj2= (j2-1)*nlstate+i2;
     /* end probability of death */              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);            }
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      fprintf(ficrescveij,"\n");
       for(i=1; i<=nlstate;i++){     
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    }
       }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     }     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     fprintf(ficresprobmorprev,"\n");    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     fprintf(ficresvij,"%.0f ",age );    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1; i<=nlstate;i++)    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1; j<=nlstate;j++){    printf("\n");
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    fprintf(ficlog,"\n");
       }  
     fprintf(ficresvij,"\n");    free_vector(xm,1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate);    free_vector(xp,1,npar);
     free_matrix(gm,0,nhstepm,1,nlstate);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);  /************ Variance ******************/
   free_vector(gmp,nlstate+1,nlstate+ndeath);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  {
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    /* Variance of health expectancies */
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    /* double **newm;*/
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    double **dnewm,**doldm;
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    double **dnewmp,**doldmp;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */    int i, j, nhstepm, hstepm, h, nstepm ;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    int k, cptcode;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));    double *xp;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    double **gp, **gm;  /* for var eij */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    double ***gradg, ***trgradg; /*for var eij */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));    double **gradgp, **trgradgp; /* for var p point j */
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    double *gpp, *gmp; /* for var p point j */
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 */    double ***p3mat;
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    double age,agelim, hf;
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    double ***mobaverage;
     int theta;
   free_vector(xp,1,npar);    char digit[4];
   free_matrix(doldm,1,nlstate,1,nlstate);    char digitp[25];
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    char fileresprobmorprev[FILENAMELENGTH];
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    if(popbased==1){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if(mobilav!=0)
   fclose(ficresprobmorprev);        strcpy(digitp,"-populbased-mobilav-");
   fflush(ficgp);      else strcpy(digitp,"-populbased-nomobil-");
   fflush(fichtm);     }
 }  /* end varevsij */    else
       strcpy(digitp,"-stablbased-");
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])    if (mobilav!=0) {
 {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* Variance of prevalence limit */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   double **newm;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   double **dnewm,**doldm;      }
   int i, j, nhstepm, hstepm;    }
   int k, cptcode;  
   double *xp;    strcpy(fileresprobmorprev,"prmorprev");
   double *gp, *gm;    sprintf(digit,"%-d",ij);
   double **gradg, **trgradg;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   double age,agelim;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   int theta;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   fprintf(ficresvpl, "#Local time at start: %s", strstart);     strcat(fileresprobmorprev,fileres);
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   fprintf(ficresvpl,"# Age");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
   xp=vector(1,npar);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   dnewm=matrix(1,nlstate,1,npar);    pstamp(ficresprobmorprev);
   doldm=matrix(1,nlstate,1,nlstate);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   hstepm=1*YEARM; /* Every year of age */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       fprintf(ficresprobmorprev," p.%-d SE",j);
   agelim = AGESUP;      for(i=1; i<=nlstate;i++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     }  
     if (stepm >= YEARM) hstepm=1;    fprintf(ficresprobmorprev,"\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficgp,"\n# Routine varevsij");
     gradg=matrix(1,npar,1,nlstate);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     gp=vector(1,nlstate);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     gm=vector(1,nlstate);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     for(theta=1; theta <=npar; theta++){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(i=1; i<=npar; i++){ /* Computes gradient */    pstamp(ficresvij);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       }    if(popbased==1)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
       for(i=1;i<=nlstate;i++)    else
         gp[i] = prlim[i][i];      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
         fprintf(ficresvij,"# Age");
       for(i=1; i<=npar; i++) /* Computes gradient */    for(i=1; i<=nlstate;i++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(j=1; j<=nlstate;j++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       for(i=1;i<=nlstate;i++)    fprintf(ficresvij,"\n");
         gm[i] = prlim[i][i];  
     xp=vector(1,npar);
       for(i=1;i<=nlstate;i++)    dnewm=matrix(1,nlstate,1,npar);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    doldm=matrix(1,nlstate,1,nlstate);
     } /* End theta */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     trgradg =matrix(1,nlstate,1,npar);  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     for(j=1; j<=nlstate;j++)    gpp=vector(nlstate+1,nlstate+ndeath);
       for(theta=1; theta <=npar; theta++)    gmp=vector(nlstate+1,nlstate+ndeath);
         trgradg[j][theta]=gradg[theta][j];    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
    
     for(i=1;i<=nlstate;i++)    if(estepm < stepm){
       varpl[i][(int)age] =0.;      printf ("Problem %d lower than %d\n",estepm, stepm);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    else  hstepm=estepm;  
     for(i=1;i<=nlstate;i++)    /* For example we decided to compute the life expectancy with the smallest unit */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
        nhstepm is the number of hstepm from age to agelim
     fprintf(ficresvpl,"%.0f ",age );       nstepm is the number of stepm from age to agelin.
     for(i=1; i<=nlstate;i++)       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));       and note for a fixed period like k years */
     fprintf(ficresvpl,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     free_vector(gp,1,nlstate);       survival function given by stepm (the optimization length). Unfortunately it
     free_vector(gm,1,nlstate);       means that if the survival funtion is printed every two years of age and if
     free_matrix(gradg,1,npar,1,nlstate);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     free_matrix(trgradg,1,nlstate,1,npar);       results. So we changed our mind and took the option of the best precision.
   } /* End age */    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   free_vector(xp,1,npar);    agelim = AGESUP;
   free_matrix(doldm,1,nlstate,1,npar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   free_matrix(dnewm,1,nlstate,1,nlstate);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 /************ Variance of one-step probabilities  ******************/      gp=matrix(0,nhstepm,1,nlstate);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])      gm=matrix(0,nhstepm,1,nlstate);
 {  
   int i, j=0,  i1, k1, l1, t, tj;  
   int k2, l2, j1,  z1;      for(theta=1; theta <=npar; theta++){
   int k=0,l, cptcode;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   int first=1, first1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        }
   double **dnewm,**doldm;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double *xp;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double *gp, *gm;  
   double **gradg, **trgradg;        if (popbased==1) {
   double **mu;          if(mobilav ==0){
   double age,agelim, cov[NCOVMAX];            for(i=1; i<=nlstate;i++)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              prlim[i][i]=probs[(int)age][i][ij];
   int theta;          }else{ /* mobilav */
   char fileresprob[FILENAMELENGTH];            for(i=1; i<=nlstate;i++)
   char fileresprobcov[FILENAMELENGTH];              prlim[i][i]=mobaverage[(int)age][i][ij];
   char fileresprobcor[FILENAMELENGTH];          }
         }
   double ***varpij;   
         for(j=1; j<= nlstate; j++){
   strcpy(fileresprob,"prob");           for(h=0; h<=nhstepm; h++){
   strcat(fileresprob,fileres);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     printf("Problem with resultfile: %s\n", fileresprob);          }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);        }
   }        /* This for computing probability of death (h=1 means
   strcpy(fileresprobcov,"probcov");            computed over hstepm matrices product = hstepm*stepm months)
   strcat(fileresprobcov,fileres);           as a weighted average of prlim.
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        */
     printf("Problem with resultfile: %s\n", fileresprobcov);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   strcpy(fileresprobcor,"probcor");         }    
   strcat(fileresprobcor,fileres);        /* end probability of death */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcor);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);   
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        if (popbased==1) {
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          if(mobilav ==0){
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            for(i=1; i<=nlstate;i++)
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              prlim[i][i]=probs[(int)age][i][ij];
   fprintf(ficresprob, "#Local time at start: %s", strstart);          }else{ /* mobilav */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            for(i=1; i<=nlstate;i++)
   fprintf(ficresprob,"# Age");              prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(ficresprobcov, "#Local time at start: %s", strstart);          }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        }
   fprintf(ficresprobcov,"# Age");  
   fprintf(ficresprobcor, "#Local time at start: %s", strstart);        for(j=1; j<= nlstate; j++){
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          for(h=0; h<=nhstepm; h++){
   fprintf(ficresprobcov,"# Age");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   for(i=1; i<=nlstate;i++)        }
     for(j=1; j<=(nlstate+ndeath);j++){        /* This for computing probability of death (h=1 means
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);           computed over hstepm matrices product = hstepm*stepm months)
       fprintf(ficresprobcov," p%1d-%1d ",i,j);           as a weighted average of prlim.
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        */
     }          for(j=nlstate+1;j<=nlstate+ndeath;j++){
  /* fprintf(ficresprob,"\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   fprintf(ficresprobcov,"\n");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   fprintf(ficresprobcor,"\n");        }    
  */        /* end probability of death */
  xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        for(j=1; j<= nlstate; j++) /* vareij */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          for(h=0; h<=nhstepm; h++){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          }
   first=1;  
   fprintf(ficgp,"\n# Routine varprob");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   fprintf(fichtm,"\n");        }
   
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);      } /* End theta */
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\  
   file %s<br>\n",optionfilehtmcov);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\  
 and drawn. It helps understanding how is the covariance between two incidences.\      for(h=0; h<=nhstepm; h++) /* veij */
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        for(j=1; j<=nlstate;j++)
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \          for(theta=1; theta <=npar; theta++)
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \            trgradg[h][j][theta]=gradg[h][theta][j];
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \  
 standard deviations wide on each axis. <br>\      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\        for(theta=1; theta <=npar; theta++)
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\          trgradgp[j][theta]=gradgp[theta][j];
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");   
   
   cov[1]=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   tj=cptcoveff;      for(i=1;i<=nlstate;i++)
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        for(j=1;j<=nlstate;j++)
   j1=0;          vareij[i][j][(int)age] =0.;
   for(t=1; t<=tj;t++){  
     for(i1=1; i1<=ncodemax[t];i1++){       for(h=0;h<=nhstepm;h++){
       j1++;        for(k=0;k<=nhstepm;k++){
       if  (cptcovn>0) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficresprob, "\n#********** Variable ");           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(i=1;i<=nlstate;i++)
         fprintf(ficresprob, "**********\n#\n");            for(j=1;j<=nlstate;j++)
         fprintf(ficresprobcov, "\n#********** Variable ");               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresprobcov, "**********\n#\n");      }
            
         fprintf(ficgp, "\n#********** Variable ");       /* pptj */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         fprintf(ficgp, "**********\n#\n");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
               for(j=nlstate+1;j<=nlstate+ndeath;j++)
                 for(i=nlstate+1;i<=nlstate+ndeath;i++)
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");           varppt[j][i]=doldmp[j][i];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      /* end ppptj */
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      /*  x centered again */
               hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficresprobcor, "\n#********** Variable ");          prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   
         fprintf(ficresprobcor, "**********\n#");          if (popbased==1) {
       }        if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
       for (age=bage; age<=fage; age ++){             prlim[i][i]=probs[(int)age][i][ij];
         cov[2]=age;        }else{ /* mobilav */
         for (k=1; k<=cptcovn;k++) {          for(i=1; i<=nlstate;i++)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            prlim[i][i]=mobaverage[(int)age][i][ij];
         }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
         for (k=1; k<=cptcovprod;k++)               
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      /* This for computing probability of death (h=1 means
                  computed over hstepm (estepm) matrices product = hstepm*stepm months)
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));         as a weighted average of prlim.
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      */
         gp=vector(1,(nlstate)*(nlstate+ndeath));      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         gm=vector(1,(nlstate)*(nlstate+ndeath));        for(i=1,gmp[j]=0.;i<= nlstate; i++)
               gmp[j] += prlim[i][i]*p3mat[i][j][1];
         for(theta=1; theta <=npar; theta++){      }    
           for(i=1; i<=npar; i++)      /* end probability of death */
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);  
                 fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           k=0;        for(i=1; i<=nlstate;i++){
           for(i=1; i<= (nlstate); i++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             for(j=1; j<=(nlstate+ndeath);j++){        }
               k=k+1;      }
               gp[k]=pmmij[i][j];      fprintf(ficresprobmorprev,"\n");
             }  
           }      fprintf(ficresvij,"%.0f ",age );
                 for(i=1; i<=nlstate;i++)
           for(i=1; i<=npar; i++)        for(j=1; j<=nlstate;j++){
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
             }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      fprintf(ficresvij,"\n");
           k=0;      free_matrix(gp,0,nhstepm,1,nlstate);
           for(i=1; i<=(nlstate); i++){      free_matrix(gm,0,nhstepm,1,nlstate);
             for(j=1; j<=(nlstate+ndeath);j++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
               k=k+1;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
               gm[k]=pmmij[i][j];      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    } /* End age */
           }    free_vector(gpp,nlstate+1,nlstate+ndeath);
          free_vector(gmp,nlstate+1,nlstate+ndeath);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           for(theta=1; theta <=npar; theta++)  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
             trgradg[j][theta]=gradg[theta][j];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
         pmij(pmmij,cov,ncovmodel,x,nlstate);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
             fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         k=0;  
         for(i=1; i<=(nlstate); i++){    free_vector(xp,1,npar);
           for(j=1; j<=(nlstate+ndeath);j++){    free_matrix(doldm,1,nlstate,1,nlstate);
             k=k+1;    free_matrix(dnewm,1,nlstate,1,npar);
             mu[k][(int) age]=pmmij[i][j];    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    fclose(ficresprobmorprev);
             varpij[i][j][(int)age] = doldm[i][j];    fflush(ficgp);
     fflush(fichtm);
         /*printf("\n%d ",(int)age);  }  /* end varevsij */
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /************ Variance of prevlim ******************/
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           }*/  {
     /* Variance of prevalence limit */
         fprintf(ficresprob,"\n%d ",(int)age);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         fprintf(ficresprobcov,"\n%d ",(int)age);    double **newm;
         fprintf(ficresprobcor,"\n%d ",(int)age);    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    int k, cptcode;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    double *xp;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double *gp, *gm;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    double **gradg, **trgradg;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    double age,agelim;
         }    int theta;
         i=0;   
         for (k=1; k<=(nlstate);k++){    pstamp(ficresvpl);
           for (l=1; l<=(nlstate+ndeath);l++){     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             i=i++;    fprintf(ficresvpl,"# Age");
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    for(i=1; i<=nlstate;i++)
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        fprintf(ficresvpl," %1d-%1d",i,i);
             for (j=1; j<=i;j++){    fprintf(ficresvpl,"\n");
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    xp=vector(1,npar);
             }    dnewm=matrix(1,nlstate,1,npar);
           }    doldm=matrix(1,nlstate,1,nlstate);
         }/* end of loop for state */   
       } /* end of loop for age */    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
       /* Confidence intervalle of pij  */    agelim = AGESUP;
       /*    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficgp,"\nset noparametric;unset label");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");      if (stepm >= YEARM) hstepm=1;
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);      gradg=matrix(1,npar,1,nlstate);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);      gp=vector(1,nlstate);
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);      gm=vector(1,nlstate);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       first1=1;        }
       for (k2=1; k2<=(nlstate);k2++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for (l2=1; l2<=(nlstate+ndeath);l2++){         for(i=1;i<=nlstate;i++)
           if(l2==k2) continue;          gp[i] = prlim[i][i];
           j=(k2-1)*(nlstate+ndeath)+l2;     
           for (k1=1; k1<=(nlstate);k1++){        for(i=1; i<=npar; i++) /* Computes gradient */
             for (l1=1; l1<=(nlstate+ndeath);l1++){           xp[i] = x[i] - (i==theta ?delti[theta]:0);
               if(l1==k1) continue;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               i=(k1-1)*(nlstate+ndeath)+l1;        for(i=1;i<=nlstate;i++)
               if(i<=j) continue;          gm[i] = prlim[i][i];
               for (age=bage; age<=fage; age ++){   
                 if ((int)age %5==0){        for(i=1;i<=nlstate;i++)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      } /* End theta */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;      trgradg =matrix(1,nlstate,1,npar);
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   c12=cv12/sqrt(v1*v2);      for(j=1; j<=nlstate;j++)
                   /* Computing eigen value of matrix of covariance */        for(theta=1; theta <=npar; theta++)
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          trgradg[j][theta]=gradg[theta][j];
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   /* Eigen vectors */      for(i=1;i<=nlstate;i++)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        varpl[i][(int)age] =0.;
                   /*v21=sqrt(1.-v11*v11); *//* error */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   v21=(lc1-v1)/cv12*v11;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                   v12=-v21;      for(i=1;i<=nlstate;i++)
                   v22=v11;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   tnalp=v21/v11;  
                   if(first1==1){      fprintf(ficresvpl,"%.0f ",age );
                     first1=0;      for(i=1; i<=nlstate;i++)
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                   }      fprintf(ficresvpl,"\n");
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      free_vector(gp,1,nlstate);
                   /*printf(fignu*/      free_vector(gm,1,nlstate);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      free_matrix(gradg,1,npar,1,nlstate);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      free_matrix(trgradg,1,nlstate,1,npar);
                   if(first==1){    } /* End age */
                     first=0;  
                     fprintf(ficgp,"\nset parametric;unset label");    free_vector(xp,1,npar);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    free_matrix(doldm,1,nlstate,1,npar);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    free_matrix(dnewm,1,nlstate,1,nlstate);
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\  
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\  }
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\  
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\  /************ Variance of one-step probabilities  ******************/
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  {
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    int i, j=0,  i1, k1, l1, t, tj;
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    int k2, l2, j1,  z1;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    int k=0,l, cptcode;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    int first=1, first1;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    double **dnewm,**doldm;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double *xp;
                   }else{    double *gp, *gm;
                     first=0;    double **gradg, **trgradg;
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    double **mu;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    double age,agelim, cov[NCOVMAX];
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    int theta;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    char fileresprob[FILENAMELENGTH];
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    char fileresprobcov[FILENAMELENGTH];
                   }/* if first */    char fileresprobcor[FILENAMELENGTH];
                 } /* age mod 5 */  
               } /* end loop age */    double ***varpij;
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  
               first=1;    strcpy(fileresprob,"prob");
             } /*l12 */    strcat(fileresprob,fileres);
           } /* k12 */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         } /*l1 */      printf("Problem with resultfile: %s\n", fileresprob);
       }/* k1 */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     } /* loop covariates */    }
   }    strcpy(fileresprobcov,"probcov");
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    strcat(fileresprobcov,fileres);
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   free_vector(xp,1,npar);      printf("Problem with resultfile: %s\n", fileresprobcov);
   fclose(ficresprob);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   fclose(ficresprobcov);    }
   fclose(ficresprobcor);    strcpy(fileresprobcor,"probcor");
   fflush(ficgp);    strcat(fileresprobcor,fileres);
   fflush(fichtmcov);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 }      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
 /******************* Printing html file ***********/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   int lastpass, int stepm, int weightopt, char model[],\    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   int popforecast, int estepm ,\    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   double jprev1, double mprev1,double anprev1, \    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   double jprev2, double mprev2,double anprev2){    pstamp(ficresprob);
   int jj1, k1, i1, cpt;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
    fprintf(fichtm,"<ul><li><a> href="#firstorder">Result files (first order: no variance)</a>\n \    pstamp(ficresprobcov);
    <li><a> href="#secondorder">Result files (second order (variance)</a>\n \    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 </ul>");    fprintf(ficresprobcov,"# Age");
    fprintf(fichtm,"<ul><li><h4><a name="firstorder">Result files (first order: no variance)</a></h4>\n \    pstamp(ficresprobcor);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    fprintf(ficresprobcor,"# Age");
    fprintf(fichtm,"\  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",  
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    for(i=1; i<=nlstate;i++)
    fprintf(fichtm,"\      for(j=1; j<=(nlstate+ndeath);j++){
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));        fprintf(ficresprobcov," p%1d-%1d ",i,j);
    fprintf(fichtm,"\        fprintf(ficresprobcor," p%1d-%1d ",i,j);
  - Life expectancies by age and initial health status (estepm=%2d months): \      }  
    <a href=\"%s\">%s</a> <br>\n</li>",   /* fprintf(ficresprob,"\n");
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");   */
    xp=vector(1,npar);
  m=cptcoveff;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
  jj1=0;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
  for(k1=1; k1<=m;k1++){    first=1;
    for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(ficgp,"\n# Routine varprob");
      jj1++;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      if (cptcovn > 0) {    fprintf(fichtm,"\n");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    file %s<br>\n",optionfilehtmcov);
      }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
      /* Pij */  and drawn. It helps understanding how is the covariance between two incidences.\
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);         fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
      /* Quasi-incidences */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \  standard deviations wide on each axis. <br>\
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
        /* Stable prevalence in each health state */   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
        for(cpt=1; cpt<nlstate;cpt++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \  
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    cov[1]=1;
        }    tj=cptcoveff;
      for(cpt=1; cpt<=nlstate;cpt++) {    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \    j1=0;
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);    for(t=1; t<=tj;t++){
      }      for(i1=1; i1<=ncodemax[t];i1++){
    } /* end i1 */        j1++;
  }/* End k1 */        if  (cptcovn>0) {
  fprintf(fichtm,"</ul>");          fprintf(ficresprob, "\n#********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
  fprintf(fichtm,"\          fprintf(ficresprobcov, "\n#********** Variable ");
 \n<br><li><h4> <a name="secondorder">Result files (second order: variances)</a></h4>\n\          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);          fprintf(ficresprobcov, "**********\n#\n");
          
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          fprintf(ficgp, "\n#********** Variable ");
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  fprintf(fichtm,"\          fprintf(ficgp, "**********\n#\n");
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",         
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));         
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
  fprintf(fichtm,"\          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));         
  fprintf(fichtm,"\          fprintf(ficresprobcor, "\n#********** Variable ");    
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));          fprintf(ficresprobcor, "**********\n#");    
  fprintf(fichtm,"\        }
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",       
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));        for (age=bage; age<=fage; age ++){
  fprintf(fichtm,"\          cov[2]=age;
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\          for (k=1; k<=cptcovn;k++) {
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
 /*  if(popforecast==1) fprintf(fichtm,"\n */          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */          for (k=1; k<=cptcovprod;k++)
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /*      <br>",fileres,fileres,fileres,fileres); */         
 /*  else  */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  fflush(fichtm);          gp=vector(1,(nlstate)*(nlstate+ndeath));
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          gm=vector(1,(nlstate)*(nlstate+ndeath));
      
  m=cptcoveff;          for(theta=1; theta <=npar; theta++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
  jj1=0;           
  for(k1=1; k1<=m;k1++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){           
      jj1++;            k=0;
      if (cptcovn > 0) {            for(i=1; i<= (nlstate); i++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              for(j=1; j<=(nlstate+ndeath);j++){
        for (cpt=1; cpt<=cptcoveff;cpt++)                 k=k+1;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                gp[k]=pmmij[i][j];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              }
      }            }
      for(cpt=1; cpt<=nlstate;cpt++) {           
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \            for(i=1; i<=npar; i++)
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);       
      }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \            k=0;
 health expectancies in states (1) and (2): %s%d.png<br>\            for(i=1; i<=(nlstate); i++){
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);              for(j=1; j<=(nlstate+ndeath);j++){
    } /* end i1 */                k=k+1;
  }/* End k1 */                gm[k]=pmmij[i][j];
  fprintf(fichtm,"</ul>");              }
  fflush(fichtm);            }
 }       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
 /******************* Gnuplot file **************/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          }
   
   char dirfileres[132],optfileres[132];          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            for(theta=1; theta <=npar; theta++)
   int ng;              trgradg[j][theta]=gradg[theta][j];
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */         
 /*     printf("Problem with file %s",optionfilegnuplot); */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 /*   } */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   /*#ifdef windows */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fprintf(ficgp,"cd \"%s\" \n",pathc);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     /*#endif */  
   m=pow(2,cptcoveff);          pmij(pmmij,cov,ncovmodel,x,nlstate);
          
   strcpy(dirfileres,optionfilefiname);          k=0;
   strcpy(optfileres,"vpl");          for(i=1; i<=(nlstate); i++){
  /* 1eme*/            for(j=1; j<=(nlstate+ndeath);j++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {              k=k+1;
    for (k1=1; k1<= m ; k1 ++) {              mu[k][(int) age]=pmmij[i][j];
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);            }
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);          }
      fprintf(ficgp,"set xlabel \"Age\" \n\          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 set ylabel \"Probability\" \n\            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 set ter png small\n\              varpij[i][j][(int)age] = doldm[i][j];
 set size 0.65,0.65\n\  
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      for (i=1; i<= nlstate ; i ++) {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        else fprintf(ficgp," \%%*lf (\%%*lf)");            }*/
      }  
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);          fprintf(ficresprob,"\n%d ",(int)age);
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficresprobcov,"\n%d ",(int)age);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresprobcor,"\n%d ",(int)age);
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
      for (i=1; i<= nlstate ; i ++) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
        else fprintf(ficgp," \%%*lf (\%%*lf)");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
      }            }
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));          i=0;
    }          for (k=1; k<=(nlstate);k++){
   }            for (l=1; l<=(nlstate+ndeath);l++){
   /*2 eme*/              i=i++;
                 fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   for (k1=1; k1<= m ; k1 ++) {               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);              for (j=1; j<=i;j++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                     fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     for (i=1; i<= nlstate+1 ; i ++) {              }
       k=2*i;            }
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          }/* end of loop for state */
       for (j=1; j<= nlstate+1 ; j ++) {        } /* end of loop for age */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");        /* Confidence intervalle of pij  */
       }           /*
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          fprintf(ficgp,"\nset noparametric;unset label");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       }             fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       fprintf(ficgp,"\" t\"\" w l 0,");        */
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        first1=1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for (k2=1; k2<=(nlstate);k2++){
       }             for (l2=1; l2<=(nlstate+ndeath);l2++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            if(l2==k2) continue;
       else fprintf(ficgp,"\" t\"\" w l 0,");            j=(k2-1)*(nlstate+ndeath)+l2;
     }            for (k1=1; k1<=(nlstate);k1++){
   }              for (l1=1; l1<=(nlstate+ndeath);l1++){
                   if(l1==k1) continue;
   /*3eme*/                i=(k1-1)*(nlstate+ndeath)+l1;
                   if(i<=j) continue;
   for (k1=1; k1<= m ; k1 ++) {                 for (age=bage; age<=fage; age ++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {                  if ((int)age %5==0){
       k=2+nlstate*(2*cpt-2);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficgp,"set ter png small\n\                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 set size 0.65,0.65\n\                    mu1=mu[i][(int) age]/stepm*YEARM ;
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);                    mu2=mu[j][(int) age]/stepm*YEARM;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                    c12=cv12/sqrt(v1*v2);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                    /* Computing eigen value of matrix of covariance */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                    /* Eigen vectors */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                             /*v21=sqrt(1.-v11*v11); *//* error */
       */                    v21=(lc1-v1)/cv12*v11;
       for (i=1; i< nlstate ; i ++) {                    v12=-v21;
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);                    v22=v11;
                             tnalp=v21/v11;
       }                     if(first1==1){
     }                      first1=0;
   }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                       }
   /* CV preval stable (period) */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   for (k1=1; k1<= m ; k1 ++) {                     /*printf(fignu*/
     for (cpt=1; cpt<=nlstate ; cpt ++) {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       k=3;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);                    if(first==1){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\                      first=0;
 set ter png small\nset size 0.65,0.65\n\                      fprintf(ficgp,"\nset parametric;unset label");
 unset log y\n\                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                             fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       for (i=1; i< nlstate ; i ++)   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         fprintf(ficgp,"+$%d",k+i+1);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                     subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       l=3+(nlstate+ndeath)*cpt;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       for (i=1; i< nlstate ; i ++) {                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         l=3+(nlstate+ndeath)*cpt;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         fprintf(ficgp,"+$%d",l+i+1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                                 mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   }                      }else{
                         first=0;
   /* proba elementaires */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   for(i=1,jk=1; i <=nlstate; i++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     for(k=1; k <=(nlstate+ndeath); k++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       if (k != i) {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         for(j=1; j <=ncovmodel; j++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           jk++;                     }/* if first */
           fprintf(ficgp,"\n");                  } /* age mod 5 */
         }                } /* end loop age */
       }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                first=1;
    }              } /*l12 */
             } /* k12 */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          } /*l1 */
      for(jk=1; jk <=m; jk++) {        }/* k1 */
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);       } /* loop covariates */
        if (ng==2)    }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
        else    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
          fprintf(ficgp,"\nset title \"Probability\"\n");    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
        i=1;    free_vector(xp,1,npar);
        for(k2=1; k2<=nlstate; k2++) {    fclose(ficresprob);
          k3=i;    fclose(ficresprobcov);
          for(k=1; k<=(nlstate+ndeath); k++) {    fclose(ficresprobcor);
            if (k != k2){    fflush(ficgp);
              if(ng==2)    fflush(fichtmcov);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  }
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;  /******************* Printing html file ***********/
              for(j=3; j <=ncovmodel; j++) {  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                    int lastpass, int stepm, int weightopt, char model[],\
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                  ij++;                    int popforecast, int estepm ,\
                }                    double jprev1, double mprev1,double anprev1, \
                else                    double jprev2, double mprev2,double anprev2){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int jj1, k1, i1, cpt;
              }  
              fprintf(ficgp,")/(1");     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                   <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
              for(k1=1; k1 <=nlstate; k1++){     </ul>");
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
                ij=1;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                for(j=3; j <=ncovmodel; j++){             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     fprintf(fichtm,"\
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                    ij++;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
                  }     fprintf(fichtm,"\
                  else   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
                }     fprintf(fichtm,"\
                fprintf(ficgp,")");   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
              }     <a href=\"%s\">%s</a> <br>\n",
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");     fprintf(fichtm,"\
              i=i+ncovmodel;   - Population projections by age and states: \
            }     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
          } /* end k */  
        } /* end k2 */  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      } /* end jk */  
    } /* end ng */   m=cptcoveff;
    fflush(ficgp);    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 }  /* end gnuplot */  
    jj1=0;
    for(k1=1; k1<=m;k1++){
 /*************** Moving average **************/     for(i1=1; i1<=ncodemax[k1];i1++){
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){       jj1++;
        if (cptcovn > 0) {
   int i, cpt, cptcod;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   int modcovmax =1;         for (cpt=1; cpt<=cptcoveff;cpt++)
   int mobilavrange, mob;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   double age;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose        /* Pij */
                            a covariate has 2 modalities */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
        /* Quasi-incidences */
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     if(mobilav==1) mobilavrange=5; /* default */   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
     else mobilavrange=mobilav;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
     for (age=bage; age<=fage; age++)         /* Period (stable) prevalence in each health state */
       for (i=1; i<=nlstate;i++)         for(cpt=1; cpt<nlstate;cpt++){
         for (cptcod=1;cptcod<=modcovmax;cptcod++)           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     /* We keep the original values on the extreme ages bage, fage and for          }
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2       for(cpt=1; cpt<=nlstate;cpt++) {
        we use a 5 terms etc. until the borders are no more concerned.           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
     */   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     for (mob=3;mob <=mobilavrange;mob=mob+2){       }
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){     } /* end i1 */
         for (i=1; i<=nlstate;i++){   }/* End k1 */
           for (cptcod=1;cptcod<=modcovmax;cptcod++){   fprintf(fichtm,"</ul>");
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];  
               for (cpt=1;cpt<=(mob-1)/2;cpt++){  
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];   fprintf(fichtm,"\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
               }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;  
           }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       }/* end age */   fprintf(fichtm,"\
     }/* end mob */   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }else return -1;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   return 0;  
 }/* End movingaverage */   fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 /************** Forecasting ******************/   fprintf(fichtm,"\
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   /* proj1, year, month, day of starting projection      <a href=\"%s\">%s</a> <br>\n</li>",
      agemin, agemax range of age             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
      dateprev1 dateprev2 range of dates during which prevalence is computed   fprintf(fichtm,"\
      anproj2 year of en of projection (same day and month as proj1).   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   */     <a href=\"%s\">%s</a> <br>\n</li>",
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   int *popage;   fprintf(fichtm,"\
   double agec; /* generic age */   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   double *popeffectif,*popcount;   fprintf(fichtm,"\
   double ***p3mat;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   double ***mobaverage;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   char fileresf[FILENAMELENGTH];   fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   agelim=AGESUP;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
    /*  if(popforecast==1) fprintf(fichtm,"\n */
   strcpy(fileresf,"f");   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   strcat(fileresf,fileres);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   if((ficresf=fopen(fileresf,"w"))==NULL) {  /*      <br>",fileres,fileres,fileres,fileres); */
     printf("Problem with forecast resultfile: %s\n", fileresf);  /*  else  */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   }   fflush(fichtm);
   printf("Computing forecasting: result on file '%s' \n", fileresf);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  
    m=cptcoveff;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   if (mobilav!=0) {   jj1=0;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   for(k1=1; k1<=m;k1++){
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);       jj1++;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);       if (cptcovn > 0) {
     }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   stepsize=(int) (stepm+YEARM-1)/YEARM;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   if (stepm<=12) stepsize=1;       }
   if(estepm < stepm){       for(cpt=1; cpt<=nlstate;cpt++) {
     printf ("Problem %d lower than %d\n",estepm, stepm);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   else  hstepm=estepm;     <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
   hstepm=hstepm/stepm;        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and  health expectancies in states (1) and (2): %s%d.png<br>\
                                fractional in yp1 */  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   anprojmean=yp;     } /* end i1 */
   yp2=modf((yp1*12),&yp);   }/* End k1 */
   mprojmean=yp;   fprintf(fichtm,"</ul>");
   yp1=modf((yp2*30.5),&yp);   fflush(fichtm);
   jprojmean=yp;  }
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;  /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}    char dirfileres[132],optfileres[132];
       int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     int ng;
     /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   fprintf(ficresf,"#****** Routine prevforecast **\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 /*            if (h==(int)(YEARM*yearp)){ */  /*   } */
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /*#ifdef windows */
       k=k+1;    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fprintf(ficresf,"\n#******");      /*#endif */
       for(j=1;j<=cptcoveff;j++) {    m=pow(2,cptcoveff);
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    strcpy(dirfileres,optionfilefiname);
       fprintf(ficresf,"******\n");    strcpy(optfileres,"vpl");
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");   /* 1eme*/
       for(j=1; j<=nlstate+ndeath;j++){     for (cpt=1; cpt<= nlstate ; cpt ++) {
         for(i=1; i<=nlstate;i++)                   for (k1=1; k1<= m ; k1 ++) {
           fprintf(ficresf," p%d%d",i,j);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficresf," p.%d",j);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       }       fprintf(ficgp,"set xlabel \"Age\" \n\
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {   set ylabel \"Probability\" \n\
         fprintf(ficresf,"\n");  set ter png small\n\
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);     set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
         for (agec=fage; agec>=(ageminpar-1); agec--){   
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);        for (i=1; i<= nlstate ; i ++) {
           nhstepm = nhstepm/hstepm;          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         else fprintf(ficgp," \%%*lf (\%%*lf)");
           oldm=oldms;savm=savms;       }
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);         fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
                for (i=1; i<= nlstate ; i ++) {
           for (h=0; h<=nhstepm; h++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             if (h*hstepm/YEARM*stepm ==yearp) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
               fprintf(ficresf,"\n");       }
               for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for (i=1; i<= nlstate ; i ++) {
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             }          else fprintf(ficgp," \%%*lf (\%%*lf)");
             for(j=1; j<=nlstate+ndeath;j++) {       }  
               ppij=0.;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
               for(i=1; i<=nlstate;i++) {     }
                 if (mobilav==1)     }
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];    /*2 eme*/
                 else {   
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    for (k1=1; k1<= m ; k1 ++) {
                 }      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
                 if (h*hstepm/YEARM*stepm== yearp) {      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);     
                 }      for (i=1; i<= nlstate+1 ; i ++) {
               } /* end i */        k=2*i;
               if (h*hstepm/YEARM*stepm==yearp) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                 fprintf(ficresf," %.3f", ppij);        for (j=1; j<= nlstate+1 ; j ++) {
               }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             }/* end j */          else fprintf(ficgp," \%%*lf (\%%*lf)");
           } /* end h */        }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         } /* end agec */        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       } /* end yearp */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     } /* end cptcod */        for (j=1; j<= nlstate+1 ; j ++) {
   } /* end  cptcov */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                  else fprintf(ficgp," \%%*lf (\%%*lf)");
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }  
         fprintf(ficgp,"\" t\"\" w l 0,");
   fclose(ficresf);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 }        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 /************** Forecasting *****not tested NB*************/          else fprintf(ficgp," \%%*lf (\%%*lf)");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        }  
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        else fprintf(ficgp,"\" t\"\" w l 0,");
   int *popage;      }
   double calagedatem, agelim, kk1, kk2;    }
   double *popeffectif,*popcount;   
   double ***p3mat,***tabpop,***tabpopprev;    /*3eme*/
   double ***mobaverage;   
   char filerespop[FILENAMELENGTH];    for (k1=1; k1<= m ; k1 ++) {
       for (cpt=1; cpt<= nlstate ; cpt ++) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*       k=2+nlstate*(2*cpt-2); */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        k=2+(nlstate+1)*(cpt-1);
   agelim=AGESUP;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        fprintf(ficgp,"set ter png small\n\
     set size 0.65,0.65\n\
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   strcpy(filerespop,"pop");           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   strcat(filerespop,fileres);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     printf("Problem with forecast resultfile: %s\n", filerespop);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);         
   }        */
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for (i=1; i< nlstate ; i ++) {
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;         
         }
   if (mobilav!=0) {        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);   
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    /* CV preval stable (period) */
     }    for (k1=1; k1<= m ; k1 ++) {
   }      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
   stepsize=(int) (stepm+YEARM-1)/YEARM;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   if (stepm<=12) stepsize=1;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     set ter png small\nset size 0.65,0.65\n\
   agelim=AGESUP;  unset log y\n\
     plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   hstepm=1;       
   hstepm=hstepm/stepm;         for (i=1; i< nlstate ; i ++)
             fprintf(ficgp,"+$%d",k+i+1);
   if (popforecast==1) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     if((ficpop=fopen(popfile,"r"))==NULL) {       
       printf("Problem with population file : %s\n",popfile);exit(0);        l=3+(nlstate+ndeath)*cpt;
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     }         for (i=1; i< nlstate ; i ++) {
     popage=ivector(0,AGESUP);          l=3+(nlstate+ndeath)*cpt;
     popeffectif=vector(0,AGESUP);          fprintf(ficgp,"+$%d",l+i+1);
     popcount=vector(0,AGESUP);        }
             fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
     i=1;         }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    }  
       
     imx=i;    /* proba elementaires */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    for(i=1,jk=1; i <=nlstate; i++){
   }      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){          for(j=1; j <=ncovmodel; j++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       k=k+1;            jk++;
       fprintf(ficrespop,"\n#******");            fprintf(ficgp,"\n");
       for(j=1;j<=cptcoveff;j++) {          }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       }      }
       fprintf(ficrespop,"******\n");     }
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       if (popforecast==1)  fprintf(ficrespop," [Population]");       for(jk=1; jk <=m; jk++) {
                fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
       for (cpt=0; cpt<=0;cpt++) {          if (ng==2)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                  else
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){            fprintf(ficgp,"\nset title \"Probability\"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           nhstepm = nhstepm/hstepm;          i=1;
                    for(k2=1; k2<=nlstate; k2++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           k3=i;
           oldm=oldms;savm=savms;           for(k=1; k<=(nlstate+ndeath); k++) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);               if (k != k2){
                        if(ng==2)
           for (h=0; h<=nhstepm; h++){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
             if (h==(int) (calagedatem+YEARM*cpt)) {               else
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
             }                ij=1;
             for(j=1; j<=nlstate+ndeath;j++) {               for(j=3; j <=ncovmodel; j++) {
               kk1=0.;kk2=0;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
               for(i=1; i<=nlstate;i++) {                                 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                 if (mobilav==1)                    ij++;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                 }
                 else {                 else
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                 }               }
               }               fprintf(ficgp,")/(1");
               if (h==(int)(calagedatem+12*cpt)){               
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;               for(k1=1; k1 <=nlstate; k1++){  
                   /*fprintf(ficrespop," %.3f", kk1);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                 ij=1;
               }                 for(j=3; j <=ncovmodel; j++){
             }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
             for(i=1; i<=nlstate;i++){                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
               kk1=0.;                     ij++;
                 for(j=1; j<=nlstate;j++){                   }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                    else
                 }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];                 }
             }                 fprintf(ficgp,")");
                }
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           }               i=i+ncovmodel;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);             }
         }           } /* end k */
       }         } /* end k2 */
         } /* end jk */
   /******/     } /* end ng */
      fflush(ficgp);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {   }  /* end gnuplot */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   /*************** Moving average **************/
           nhstepm = nhstepm/hstepm;   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
             
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, cpt, cptcod;
           oldm=oldms;savm=savms;    int modcovmax =1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int mobilavrange, mob;
           for (h=0; h<=nhstepm; h++){    double age;
             if (h==(int) (calagedatem+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
             }                              a covariate has 2 modalities */
             for(j=1; j<=nlstate+ndeath;j++) {    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          if(mobilav==1) mobilavrange=5; /* default */
               }      else mobilavrange=mobilav;
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);              for (age=bage; age<=fage; age++)
             }        for (i=1; i<=nlstate;i++)
           }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         }      /* We keep the original values on the extreme ages bage, fage and for
       }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
    }          we use a 5 terms etc. until the borders are no more concerned.
   }      */
        for (mob=3;mob <=mobilavrange;mob=mob+2){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
   if (popforecast==1) {            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     free_ivector(popage,0,AGESUP);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     free_vector(popeffectif,0,AGESUP);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     free_vector(popcount,0,AGESUP);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   fclose(ficrespop);            }
 } /* End of popforecast */          }
         }/* end age */
 int fileappend(FILE *fichier, char *optionfich)      }/* end mob */
 {    }else return -1;
   if((fichier=fopen(optionfich,"a"))==NULL) {    return 0;
     printf("Problem with file: %s\n", optionfich);  }/* End movingaverage */
     fprintf(ficlog,"Problem with file: %s\n", optionfich);  
     return (0);  
   }  /************** Forecasting ******************/
   fflush(fichier);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   return (1);    /* proj1, year, month, day of starting projection
 }       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
 /**************** function prwizard **********************/    */
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 {    int *popage;
     double agec; /* generic age */
   /* Wizard to print covariance matrix template */    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
   char ca[32], cb[32], cc[32];    double ***p3mat;
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    double ***mobaverage;
   int numlinepar;    char fileresf[FILENAMELENGTH];
   
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    agelim=AGESUP;
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   for(i=1; i <=nlstate; i++){   
     jj=0;    strcpy(fileresf,"f");
     for(j=1; j <=nlstate+ndeath; j++){    strcat(fileresf,fileres);
       if(j==i) continue;    if((ficresf=fopen(fileresf,"w"))==NULL) {
       jj++;      printf("Problem with forecast resultfile: %s\n", fileresf);
       /*ca[0]= k+'a'-1;ca[1]='\0';*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       printf("%1d%1d",i,j);    }
       fprintf(ficparo,"%1d%1d",i,j);    printf("Computing forecasting: result on file '%s' \n", fileresf);
       for(k=1; k<=ncovmodel;k++){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         /*        printf(" %lf",param[i][j][k]); */  
         /*        fprintf(ficparo," %lf",param[i][j][k]); */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         printf(" 0.");  
         fprintf(ficparo," 0.");    if (mobilav!=0) {
       }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       fprintf(ficparo,"\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
   printf("# Scales (for hessian or gradient estimation)\n");    }
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");  
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/     stepsize=(int) (stepm+YEARM-1)/YEARM;
   for(i=1; i <=nlstate; i++){    if (stepm<=12) stepsize=1;
     jj=0;    if(estepm < stepm){
     for(j=1; j <=nlstate+ndeath; j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       if(j==i) continue;    }
       jj++;    else  hstepm=estepm;  
       fprintf(ficparo,"%1d%1d",i,j);  
       printf("%1d%1d",i,j);    hstepm=hstepm/stepm;
       fflush(stdout);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       for(k=1; k<=ncovmodel;k++){                                 fractional in yp1 */
         /*      printf(" %le",delti3[i][j][k]); */    anprojmean=yp;
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */    yp2=modf((yp1*12),&yp);
         printf(" 0.");    mprojmean=yp;
         fprintf(ficparo," 0.");    yp1=modf((yp2*30.5),&yp);
       }    jprojmean=yp;
       numlinepar++;    if(jprojmean==0) jprojmean=1;
       printf("\n");    if(mprojmean==0) jprojmean=1;
       fprintf(ficparo,"\n");  
     }    i1=cptcoveff;
   }    if (cptcovn < 1){i1=1;}
   printf("# Covariance matrix\n");   
 /* # 121 Var(a12)\n\ */    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
 /* # 122 Cov(b12,a12) Var(b12)\n\ */   
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    fprintf(ficresf,"#****** Routine prevforecast **\n");
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */  
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */  /*            if (h==(int)(YEARM*yearp)){ */
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        k=k+1;
   fflush(stdout);        fprintf(ficresf,"\n#******");
   fprintf(ficparo,"# Covariance matrix\n");        for(j=1;j<=cptcoveff;j++) {
   /* # 121 Var(a12)\n\ */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /* # 122 Cov(b12,a12) Var(b12)\n\ */        }
   /* #   ...\n\ */        fprintf(ficresf,"******\n");
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           for(j=1; j<=nlstate+ndeath;j++){
   for(itimes=1;itimes<=2;itimes++){          for(i=1; i<=nlstate;i++)              
     jj=0;            fprintf(ficresf," p%d%d",i,j);
     for(i=1; i <=nlstate; i++){          fprintf(ficresf," p.%d",j);
       for(j=1; j <=nlstate+ndeath; j++){        }
         if(j==i) continue;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
         for(k=1; k<=ncovmodel;k++){          fprintf(ficresf,"\n");
           jj++;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
           ca[0]= k+'a'-1;ca[1]='\0';  
           if(itimes==1){          for (agec=fage; agec>=(ageminpar-1); agec--){
             printf("#%1d%1d%d",i,j,k);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
             fprintf(ficparo,"#%1d%1d%d",i,j,k);            nhstepm = nhstepm/hstepm;
           }else{            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             printf("%1d%1d%d",i,j,k);            oldm=oldms;savm=savms;
             fprintf(ficparo,"%1d%1d%d",i,j,k);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
             /*  printf(" %.5le",matcov[i][j]); */         
           }            for (h=0; h<=nhstepm; h++){
           ll=0;              if (h*hstepm/YEARM*stepm ==yearp) {
           for(li=1;li <=nlstate; li++){                fprintf(ficresf,"\n");
             for(lj=1;lj <=nlstate+ndeath; lj++){                for(j=1;j<=cptcoveff;j++)
               if(lj==li) continue;                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               for(lk=1;lk<=ncovmodel;lk++){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
                 ll++;              }
                 if(ll<=jj){              for(j=1; j<=nlstate+ndeath;j++) {
                   cb[0]= lk +'a'-1;cb[1]='\0';                ppij=0.;
                   if(ll<jj){                for(i=1; i<=nlstate;i++) {
                     if(itimes==1){                  if (mobilav==1)
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                  else {
                     }else{                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                       printf(" 0.");                  }
                       fprintf(ficparo," 0.");                  if (h*hstepm/YEARM*stepm== yearp) {
                     }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }else{                  }
                     if(itimes==1){                } /* end i */
                       printf(" Var(%s%1d%1d)",ca,i,j);                if (h*hstepm/YEARM*stepm==yearp) {
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);                  fprintf(ficresf," %.3f", ppij);
                     }else{                }
                       printf(" 0.");              }/* end j */
                       fprintf(ficparo," 0.");            } /* end h */
                     }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   }          } /* end agec */
                 }        } /* end yearp */
               } /* end lk */      } /* end cptcod */
             } /* end lj */    } /* end  cptcov */
           } /* end li */         
           printf("\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficparo,"\n");  
           numlinepar++;    fclose(ficresf);
         } /* end k*/  }
       } /*end j */  
     } /* end i */  /************** Forecasting *****not tested NB*************/
   } /* end itimes */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
    
 } /* end of prwizard */    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 /******************* Gompertz Likelihood ******************************/    int *popage;
 double gompertz(double x[])    double calagedatem, agelim, kk1, kk2;
 {     double *popeffectif,*popcount;
   double A,B,L=0.0,sump=0.,num=0.;    double ***p3mat,***tabpop,***tabpopprev;
   int i,n=0; /* n is the size of the sample */    double ***mobaverage;
   for (i=0;i<=imx-1 ; i++) {    char filerespop[FILENAMELENGTH];
     sump=sump+weight[i];  
     /*    sump=sump+1;*/    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     num=num+1;    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    agelim=AGESUP;
      calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
   /* for (i=0; i<=imx; i++)     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/   
    
   for (i=1;i<=imx ; i++)    strcpy(filerespop,"pop");
     {    strcat(filerespop,fileres);
       if (cens[i]==1 & wav[i]>1)    if((ficrespop=fopen(filerespop,"w"))==NULL) {
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));      printf("Problem with forecast resultfile: %s\n", filerespop);
             fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       if (cens[i]==0 & wav[i]>1)    }
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))    printf("Computing forecasting: result on file '%s' \n", filerespop);
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
         
       if (wav[i]>1 & agecens[i]>15) {    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         L=L+A*weight[i];  
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/    if (mobilav!=0) {
       }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
   return -2*L*num/sump;    }
 }  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
 /******************* Printing html file ***********/    if (stepm<=12) stepsize=1;
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \   
                   int lastpass, int stepm, int weightopt, char model[],\    agelim=AGESUP;
                   int imx,  double p[],double **matcov,double agemortsup){   
   int i,k;    hstepm=1;
     hstepm=hstepm/stepm;
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");   
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);    if (popforecast==1) {
   for (i=1;i<=2;i++)       if((ficpop=fopen(popfile,"r"))==NULL) {
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        printf("Problem with population file : %s\n",popfile);exit(0);
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   fprintf(fichtm,"</ul>");      }
       popage=ivector(0,AGESUP);
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");      popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");     
       i=1;  
  for (k=agegomp;k<(agemortsup-2);k++)       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);     
       imx=i;
        for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   fflush(fichtm);    }
 }  
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 /******************* Gnuplot file **************/     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        k=k+1;
         fprintf(ficrespop,"\n#******");
   char dirfileres[132],optfileres[132];        for(j=1;j<=cptcoveff;j++) {
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   int ng;        }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
   /*#ifdef windows */        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   fprintf(ficgp,"cd \"%s\" \n",pathc);        if (popforecast==1)  fprintf(ficrespop," [Population]");
     /*#endif */       
         for (cpt=0; cpt<=0;cpt++) {
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   strcpy(dirfileres,optionfilefiname);         
   strcpy(optfileres,"vpl");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   fprintf(ficgp,"set out \"graphmort.png\"\n ");             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");             nhstepm = nhstepm/hstepm;
   fprintf(ficgp, "set ter png small\n set log y\n");            
   fprintf(ficgp, "set size 0.65,0.65\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 }          
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               }
 /***********************************************/              for(j=1; j<=nlstate+ndeath;j++) {
 /**************** Main Program *****************/                kk1=0.;kk2=0;
 /***********************************************/                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1)
 int main(int argc, char *argv[])                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 {                  else {
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;                  }
   int jj, ll, li, lj, lk, imk;                }
   int numlinepar=0; /* Current linenumber of parameter file */                if (h==(int)(calagedatem+12*cpt)){
   int itimes;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   int NDIM=2;                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   char ca[32], cb[32], cc[32];                }
   /*  FILE *fichtm; *//* Html File */              }
   /* FILE *ficgp;*/ /*Gnuplot File */              for(i=1; i<=nlstate;i++){
   double agedeb, agefin,hf;                kk1=0.;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   double fret;                  }
   double **xi,tmp,delta;                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   double dum; /* Dummy variable */  
   double ***p3mat;              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
   double ***mobaverage;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   int *indx;            }
   char line[MAXLINE], linepar[MAXLINE];            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];          }
   char pathr[MAXLINE], pathimach[MAXLINE];         }
   int firstobs=1, lastobs=10;   
   int sdeb, sfin; /* Status at beginning and end */    /******/
   int c,  h , cpt,l;  
   int ju,jl, mi;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   int mobilav=0,popforecast=0;            nhstepm = nhstepm/hstepm;
   int hstepm, nhstepm;           
   int agemortsup;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   float  sumlpop=0.;            oldm=oldms;savm=savms;
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   double bage, fage, age, agelim, agebase;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   double ftolpl=FTOL;              }
   double **prlim;              for(j=1; j<=nlstate+ndeath;j++) {
   double *severity;                kk1=0.;kk2=0;
   double ***param; /* Matrix of parameters */                for(i=1; i<=nlstate;i++) {              
   double  *p;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   double **matcov; /* Matrix of covariance */                }
   double ***delti3; /* Scale */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   double *delti; /* Scale */              }
   double ***eij, ***vareij;            }
   double **varpl; /* Variances of prevalence limits by age */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double *epj, vepp;          }
   double kk1, kk2;        }
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;     }
   double **ximort;    }
   char *alph[]={"a","a","b","c","d","e"}, str[4];   
   int *dcwave;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
   char z[1]="c", occ;    if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      free_vector(popeffectif,0,AGESUP);
   char strstart[80], *strt, strtend[80];      free_vector(popcount,0,AGESUP);
   char *stratrunc;    }
   int lstra;    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   long total_usecs;    fclose(ficrespop);
    } /* End of popforecast */
 /*   setlocale (LC_ALL, ""); */  
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */  int fileappend(FILE *fichier, char *optionfich)
 /*   textdomain (PACKAGE); */  {
 /*   setlocale (LC_CTYPE, ""); */    if((fichier=fopen(optionfich,"a"))==NULL) {
 /*   setlocale (LC_MESSAGES, ""); */      printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      return (0);
   (void) gettimeofday(&start_time,&tzp);    }
   curr_time=start_time;    fflush(fichier);
   tm = *localtime(&start_time.tv_sec);    return (1);
   tmg = *gmtime(&start_time.tv_sec);  }
   strcpy(strstart,asctime(&tm));  
   
 /*  printf("Localtime (at start)=%s",strstart); */  /**************** function prwizard **********************/
 /*  tp.tv_sec = tp.tv_sec +86400; */  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 /*  tm = *localtime(&start_time.tv_sec); */  {
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */  
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */    /* Wizard to print covariance matrix template */
 /*   tmg.tm_hour=tmg.tm_hour + 1; */  
 /*   tp.tv_sec = mktime(&tmg); */    char ca[32], cb[32], cc[32];
 /*   strt=asctime(&tmg); */    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 /*   printf("Time(after) =%s",strstart);  */    int numlinepar;
 /*  (void) time (&time_value);  
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 *  tm = *localtime(&time_value);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 *  strstart=asctime(&tm);    for(i=1; i <=nlstate; i++){
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);       jj=0;
 */      for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
   nberr=0; /* Number of errors and warnings */        jj++;
   nbwarn=0;        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   getcwd(pathcd, size);        printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
   printf("\n%s\n%s",version,fullversion);        for(k=1; k<=ncovmodel;k++){
   if(argc <=1){          /*        printf(" %lf",param[i][j][k]); */
     printf("\nEnter the parameter file name: ");          /*        fprintf(ficparo," %lf",param[i][j][k]); */
     scanf("%s",pathtot);          printf(" 0.");
   }          fprintf(ficparo," 0.");
   else{        }
     strcpy(pathtot,argv[1]);        printf("\n");
   }        fprintf(ficparo,"\n");
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/      }
   /*cygwin_split_path(pathtot,path,optionfile);    }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    printf("# Scales (for hessian or gradient estimation)\n");
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    for(i=1; i <=nlstate; i++){
  /*   strcpy(pathimach,argv[0]); */      jj=0;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      for(j=1; j <=nlstate+ndeath; j++){
   printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);        if(j==i) continue;
   chdir(path);        jj++;
   strcpy(command,"mkdir ");        fprintf(ficparo,"%1d%1d",i,j);
   strcat(command,optionfilefiname);        printf("%1d%1d",i,j);
   if((outcmd=system(command)) != 0){        fflush(stdout);
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);        for(k=1; k<=ncovmodel;k++){
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */          /*      printf(" %le",delti3[i][j][k]); */
     /* fclose(ficlog); */          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
 /*     exit(1); */          printf(" 0.");
   }          fprintf(ficparo," 0.");
 /*   if((imk=mkdir(optionfilefiname))<0){ */        }
 /*     perror("mkdir"); */        numlinepar++;
 /*   } */        printf("\n");
         fprintf(ficparo,"\n");
   /*-------- arguments in the command line --------*/      }
     }
   /* Log file */    printf("# Covariance matrix\n");
   strcat(filelog, optionfilefiname);  /* # 121 Var(a12)\n\ */
   strcat(filelog,".log");    /* */  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   if((ficlog=fopen(filelog,"w"))==NULL)    {  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     printf("Problem with logfile %s\n",filelog);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     goto end;  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   }  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   fprintf(ficlog,"Log filename:%s\n",filelog);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   fprintf(ficlog,"\n%s\n%s",version,fullversion);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   fprintf(ficlog,"\nEnter the parameter file name: \n");    fflush(stdout);
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\    fprintf(ficparo,"# Covariance matrix\n");
  path=%s \n\    /* # 121 Var(a12)\n\ */
  optionfile=%s\n\    /* # 122 Cov(b12,a12) Var(b12)\n\ */
  optionfilext=%s\n\    /* #   ...\n\ */
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
    
   printf("Local time (at start):%s",strstart);    for(itimes=1;itimes<=2;itimes++){
   fprintf(ficlog,"Local time (at start): %s",strstart);      jj=0;
   fflush(ficlog);      for(i=1; i <=nlstate; i++){
 /*   (void) gettimeofday(&curr_time,&tzp); */        for(j=1; j <=nlstate+ndeath; j++){
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */          if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
   /* */            jj++;
   strcpy(fileres,"r");            ca[0]= k+'a'-1;ca[1]='\0';
   strcat(fileres, optionfilefiname);            if(itimes==1){
   strcat(fileres,".txt");    /* Other files have txt extension */              printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
   /*---------arguments file --------*/            }else{
               printf("%1d%1d%d",i,j,k);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              fprintf(ficparo,"%1d%1d%d",i,j,k);
     printf("Problem with optionfile %s\n",optionfile);              /*  printf(" %.5le",matcov[i][j]); */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);            }
     fflush(ficlog);            ll=0;
     goto end;            for(li=1;li <=nlstate; li++){
   }              for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
   strcpy(filereso,"o");                  if(ll<=jj){
   strcat(filereso,fileres);                    cb[0]= lk +'a'-1;cb[1]='\0';
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */                    if(ll<jj){
     printf("Problem with Output resultfile: %s\n", filereso);                      if(itimes==1){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     fflush(ficlog);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     goto end;                      }else{
   }                        printf(" 0.");
                         fprintf(ficparo," 0.");
   /* Reads comments: lines beginning with '#' */                      }
   numlinepar=0;                    }else{
   while((c=getc(ficpar))=='#' && c!= EOF){                      if(itimes==1){
     ungetc(c,ficpar);                        printf(" Var(%s%1d%1d)",ca,i,j);
     fgets(line, MAXLINE, ficpar);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     numlinepar++;                      }else{
     puts(line);                        printf(" 0.");
     fputs(line,ficparo);                        fprintf(ficparo," 0.");
     fputs(line,ficlog);                      }
   }                    }
   ungetc(c,ficpar);                  }
                 } /* end lk */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);              } /* end lj */
   numlinepar++;            } /* end li */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);            printf("\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            fprintf(ficparo,"\n");
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            numlinepar++;
   fflush(ficlog);          } /* end k*/
   while((c=getc(ficpar))=='#' && c!= EOF){        } /*end j */
     ungetc(c,ficpar);      } /* end i */
     fgets(line, MAXLINE, ficpar);    } /* end itimes */
     numlinepar++;  
     puts(line);  } /* end of prwizard */
     fputs(line,ficparo);  /******************* Gompertz Likelihood ******************************/
     fputs(line,ficlog);  double gompertz(double x[])
   }  {
   ungetc(c,ficpar);    double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
      
   covar=matrix(0,NCOVMAX,1,n);     for (i=0;i<=imx-1 ; i++) {
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/      sump=sump+weight[i];
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      /*    sump=sump+1;*/
       num=num+1;
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/   
     /* for (i=0; i<=imx; i++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   delti=delti3[1][1];  
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    for (i=1;i<=imx ; i++)
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */      {
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);        if (cens[i] == 1 && wav[i]>1)
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);       
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);         if (cens[i] == 0 && wav[i]>1)
     fclose (ficparo);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
     fclose (ficlog);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
     exit(0);       
   }        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   else if(mle==-3) {        if (wav[i] > 1 ) { /* ??? */
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);          L=L+A*weight[i];
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);        }
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      }
     matcov=matrix(1,npar,1,npar);  
   }   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   else{   
     /* Read guess parameters */    return -2*L*num/sump;
     /* Reads comments: lines beginning with '#' */  }
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  /******************* Printing html file ***********/
       fgets(line, MAXLINE, ficpar);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
       numlinepar++;                    int lastpass, int stepm, int weightopt, char model[],\
       puts(line);                    int imx,  double p[],double **matcov,double agemortsup){
       fputs(line,ficparo);    int i,k;
       fputs(line,ficlog);  
     }    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     ungetc(c,ficpar);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
         for (i=1;i<=2;i++)
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     for(i=1; i <=nlstate; i++){    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
       j=0;    fprintf(fichtm,"</ul>");
       for(jj=1; jj <=nlstate+ndeath; jj++){  
         if(jj==i) continue;  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
         j++;  
         fscanf(ficpar,"%1d%1d",&i1,&j1);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
         if ((i1 != i) && (j1 != j)){  
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);   for (k=agegomp;k<(agemortsup-2);k++)
           exit(1);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
         }  
         fprintf(ficparo,"%1d%1d",i1,j1);   
         if(mle==1)    fflush(fichtm);
           printf("%1d%1d",i,j);  }
         fprintf(ficlog,"%1d%1d",i,j);  
         for(k=1; k<=ncovmodel;k++){  /******************* Gnuplot file **************/
           fscanf(ficpar," %lf",&param[i][j][k]);  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           if(mle==1){  
             printf(" %lf",param[i][j][k]);    char dirfileres[132],optfileres[132];
             fprintf(ficlog," %lf",param[i][j][k]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
           }    int ng;
           else  
             fprintf(ficlog," %lf",param[i][j][k]);  
           fprintf(ficparo," %lf",param[i][j][k]);    /*#ifdef windows */
         }    fprintf(ficgp,"cd \"%s\" \n",pathc);
         fscanf(ficpar,"\n");      /*#endif */
         numlinepar++;  
         if(mle==1)  
           printf("\n");    strcpy(dirfileres,optionfilefiname);
         fprintf(ficlog,"\n");    strcpy(optfileres,"vpl");
         fprintf(ficparo,"\n");    fprintf(ficgp,"set out \"graphmort.png\"\n ");
       }    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     }      fprintf(ficgp, "set ter png small\n set log y\n");
     fflush(ficlog);    fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
     p=param[1][1];  }
       
     /* Reads comments: lines beginning with '#' */  
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);  
       numlinepar++;  /***********************************************/
       puts(line);  /**************** Main Program *****************/
       fputs(line,ficparo);  /***********************************************/
       fputs(line,ficlog);  
     }  int main(int argc, char *argv[])
     ungetc(c,ficpar);  {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     for(i=1; i <=nlstate; i++){    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
       for(j=1; j <=nlstate+ndeath-1; j++){    int linei, month, year,iout;
         fscanf(ficpar,"%1d%1d",&i1,&j1);    int jj, ll, li, lj, lk, imk;
         if ((i1-i)*(j1-j)!=0){    int numlinepar=0; /* Current linenumber of parameter file */
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    int itimes;
           exit(1);    int NDIM=2;
         }  
         printf("%1d%1d",i,j);    char ca[32], cb[32], cc[32];
         fprintf(ficparo,"%1d%1d",i1,j1);    char dummy[]="                         ";
         fprintf(ficlog,"%1d%1d",i1,j1);    /*  FILE *fichtm; *//* Html File */
         for(k=1; k<=ncovmodel;k++){    /* FILE *ficgp;*/ /*Gnuplot File */
           fscanf(ficpar,"%le",&delti3[i][j][k]);    struct stat info;
           printf(" %le",delti3[i][j][k]);    double agedeb, agefin,hf;
           fprintf(ficparo," %le",delti3[i][j][k]);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
           fprintf(ficlog," %le",delti3[i][j][k]);  
         }    double fret;
         fscanf(ficpar,"\n");    double **xi,tmp,delta;
         numlinepar++;  
         printf("\n");    double dum; /* Dummy variable */
         fprintf(ficparo,"\n");    double ***p3mat;
         fprintf(ficlog,"\n");    double ***mobaverage;
       }    int *indx;
     }    char line[MAXLINE], linepar[MAXLINE];
     fflush(ficlog);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE];
     delti=delti3[1][1];    char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */    int c,  h , cpt,l;
       int ju,jl, mi;
     /* Reads comments: lines beginning with '#' */    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     while((c=getc(ficpar))=='#' && c!= EOF){    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
       ungetc(c,ficpar);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
       fgets(line, MAXLINE, ficpar);    int mobilav=0,popforecast=0;
       numlinepar++;    int hstepm, nhstepm;
       puts(line);    int agemortsup;
       fputs(line,ficparo);    float  sumlpop=0.;
       fputs(line,ficlog);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     }    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
     ungetc(c,ficpar);  
       double bage, fage, age, agelim, agebase;
     matcov=matrix(1,npar,1,npar);    double ftolpl=FTOL;
     for(i=1; i <=npar; i++){    double **prlim;
       fscanf(ficpar,"%s",&str);    double *severity;
       if(mle==1)    double ***param; /* Matrix of parameters */
         printf("%s",str);    double  *p;
       fprintf(ficlog,"%s",str);    double **matcov; /* Matrix of covariance */
       fprintf(ficparo,"%s",str);    double ***delti3; /* Scale */
       for(j=1; j <=i; j++){    double *delti; /* Scale */
         fscanf(ficpar," %le",&matcov[i][j]);    double ***eij, ***vareij;
         if(mle==1){    double **varpl; /* Variances of prevalence limits by age */
           printf(" %.5le",matcov[i][j]);    double *epj, vepp;
         }    double kk1, kk2;
         fprintf(ficlog," %.5le",matcov[i][j]);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
         fprintf(ficparo," %.5le",matcov[i][j]);    double **ximort;
       }    char *alph[]={"a","a","b","c","d","e"}, str[4];
       fscanf(ficpar,"\n");    int *dcwave;
       numlinepar++;  
       if(mle==1)    char z[1]="c", occ;
         printf("\n");  
       fprintf(ficlog,"\n");    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
       fprintf(ficparo,"\n");    char  *strt, strtend[80];
     }    char *stratrunc;
     for(i=1; i <=npar; i++)    int lstra;
       for(j=i+1;j<=npar;j++)  
         matcov[i][j]=matcov[j][i];    long total_usecs;
        
     if(mle==1)  /*   setlocale (LC_ALL, ""); */
       printf("\n");  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
     fprintf(ficlog,"\n");  /*   textdomain (PACKAGE); */
       /*   setlocale (LC_CTYPE, ""); */
     fflush(ficlog);  /*   setlocale (LC_MESSAGES, ""); */
       
     /*-------- Rewriting parameter file ----------*/    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     strcpy(rfileres,"r");    /* "Rparameterfile */    (void) gettimeofday(&start_time,&tzp);
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    curr_time=start_time;
     strcat(rfileres,".");    /* */    tm = *localtime(&start_time.tv_sec);
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    tmg = *gmtime(&start_time.tv_sec);
     if((ficres =fopen(rfileres,"w"))==NULL) {    strcpy(strstart,asctime(&tm));
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  /*  printf("Localtime (at start)=%s",strstart); */
     }  /*  tp.tv_sec = tp.tv_sec +86400; */
     fprintf(ficres,"#%s\n",version);  /*  tm = *localtime(&start_time.tv_sec); */
   }    /* End of mle != -3 */  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*-------- data file ----------*/  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   if((fic=fopen(datafile,"r"))==NULL)    {  /*   tp.tv_sec = mktime(&tmg); */
     printf("Problem with datafile: %s\n", datafile);goto end;  /*   strt=asctime(&tmg); */
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  /*   printf("Time(after) =%s",strstart);  */
   }  /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   n= lastobs;  *  tm = *localtime(&time_value);
   severity = vector(1,maxwav);  *  strstart=asctime(&tm);
   outcome=imatrix(1,maxwav+1,1,n);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
   num=lvector(1,n);  */
   moisnais=vector(1,n);  
   annais=vector(1,n);    nberr=0; /* Number of errors and warnings */
   moisdc=vector(1,n);    nbwarn=0;
   andc=vector(1,n);    getcwd(pathcd, size);
   agedc=vector(1,n);  
   cod=ivector(1,n);    printf("\n%s\n%s",version,fullversion);
   weight=vector(1,n);    if(argc <=1){
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      printf("\nEnter the parameter file name: ");
   mint=matrix(1,maxwav,1,n);      fgets(pathr,FILENAMELENGTH,stdin);
   anint=matrix(1,maxwav,1,n);      i=strlen(pathr);
   s=imatrix(1,maxwav+1,1,n);      if(pathr[i-1]=='\n')
   tab=ivector(1,NCOVMAX);        pathr[i-1]='\0';
   ncodemax=ivector(1,8);     for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
   i=1;        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   while (fgets(line, MAXLINE, fic) != NULL)    {        printf("val= |%s| pathr=%s\n",val,pathr);
     if ((i >= firstobs) && (i <=lastobs)) {        strcpy (pathtot, val);
       for(j=0; line[j] != '\n';j++){  /* Untabifies line */        if(pathr[0] == '\0') break; /* Dirty */
         if(line[j] == '\t')      }
           line[j] = ' ';    }
       }    else{
       for (j=maxwav;j>=1;j--){      strcpy(pathtot,argv[1]);
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);     }
         strcpy(line,stra);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /*cygwin_split_path(pathtot,path,optionfile);
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
       }    /* cutv(path,optionfile,pathtot,'\\');*/
           
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    /* Split argv[0], imach program to get pathimach */
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);   /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
       for (j=ncovcol;j>=1;j--){    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    chdir(path); /* Can be a relative path */
       }     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       lstra=strlen(stra);      printf("Current directory %s!\n",pathcd);
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */    strcpy(command,"mkdir ");
         stratrunc = &(stra[lstra-9]);    strcat(command,optionfilefiname);
         num[i]=atol(stratrunc);    if((outcmd=system(command)) != 0){
       }      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       else      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
         num[i]=atol(stra);      /* fclose(ficlog); */
           /*     exit(1); */
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    }
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
       i=i+1;  /*   } */
     }  
   }    /*-------- arguments in the command line --------*/
   /* printf("ii=%d", ij);  
      scanf("%d",i);*/    /* Log file */
   imx=i-1; /* Number of individuals */    strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
   /* for (i=1; i<=imx; i++){    if((ficlog=fopen(filelog,"w"))==NULL)    {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      printf("Problem with logfile %s\n",filelog);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      goto end;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    }
     }*/    fprintf(ficlog,"Log filename:%s\n",filelog);
    /*  for (i=1; i<=imx; i++){    fprintf(ficlog,"\n%s\n%s",version,fullversion);
      if (s[4][i]==9)  s[4][i]=-1;     fprintf(ficlog,"\nEnter the parameter file name: \n");
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
      path=%s \n\
   /* for (i=1; i<=imx; i++) */   optionfile=%s\n\
     optionfilext=%s\n\
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
      else weight[i]=1;*/  
     printf("Local time (at start):%s",strstart);
   /* Calculation of the number of parameters from char model */    fprintf(ficlog,"Local time (at start): %s",strstart);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    fflush(ficlog);
   Tprod=ivector(1,15);   /*   (void) gettimeofday(&curr_time,&tzp); */
   Tvaraff=ivector(1,15);   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);          /* */
        strcpy(fileres,"r");
   if (strlen(model) >1){ /* If there is at least 1 covariate */    strcat(fileres, optionfilefiname);
     j=0, j1=0, k1=1, k2=1;    strcat(fileres,".txt");    /* Other files have txt extension */
     j=nbocc(model,'+'); /* j=Number of '+' */  
     j1=nbocc(model,'*'); /* j1=Number of '*' */    /*---------arguments file --------*/
     cptcovn=j+1;   
     cptcovprod=j1; /*Number of products */    if((ficpar=fopen(optionfile,"r"))==NULL)    {
           printf("Problem with optionfile %s\n",optionfile);
     strcpy(modelsav,model);       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      fflush(ficlog);
       printf("Error. Non available option model=%s ",model);      goto end;
       fprintf(ficlog,"Error. Non available option model=%s ",model);    }
       goto end;  
     }  
       
     /* This loop fills the array Tvar from the string 'model'.*/    strcpy(filereso,"o");
     strcat(filereso,fileres);
     for(i=(j+1); i>=1;i--){    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */       printf("Problem with Output resultfile: %s\n", filereso);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      fflush(ficlog);
       /*scanf("%d",i);*/      goto end;
       if (strchr(strb,'*')) {  /* Model includes a product */    }
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  
         if (strcmp(strc,"age")==0) { /* Vn*age */    /* Reads comments: lines beginning with '#' */
           cptcovprod--;    numlinepar=0;
           cutv(strb,stre,strd,'V');    while((c=getc(ficpar))=='#' && c!= EOF){
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      ungetc(c,ficpar);
           cptcovage++;      fgets(line, MAXLINE, ficpar);
             Tage[cptcovage]=i;      numlinepar++;
             /*printf("stre=%s ", stre);*/      puts(line);
         }      fputs(line,ficparo);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      fputs(line,ficlog);
           cptcovprod--;    }
           cutv(strb,stre,strc,'V');    ungetc(c,ficpar);
           Tvar[i]=atoi(stre);  
           cptcovage++;    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
           Tage[cptcovage]=i;    numlinepar++;
         }    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
         else {  /* Age is not in the model */    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
           Tvar[i]=ncovcol+k1;    fflush(ficlog);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    while((c=getc(ficpar))=='#' && c!= EOF){
           Tprod[k1]=i;      ungetc(c,ficpar);
           Tvard[k1][1]=atoi(strc); /* m*/      fgets(line, MAXLINE, ficpar);
           Tvard[k1][2]=atoi(stre); /* n */      numlinepar++;
           Tvar[cptcovn+k2]=Tvard[k1][1];      puts(line);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       fputs(line,ficparo);
           for (k=1; k<=lastobs;k++)       fputs(line,ficlog);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    }
           k1++;    ungetc(c,ficpar);
           k2=k2+2;  
         }     
       }    covar=matrix(0,NCOVMAX,1,n);
       else { /* no more sum */    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
       Tvar[i]=atoi(strc);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       }    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         scanf("%d",i);*/    delti=delti3[1][1];
     } /* end of loop + */    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
   } /* end model */    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
         prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      fclose (ficparo);
   printf("cptcovprod=%d ", cptcovprod);      fclose (ficlog);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);      goto end;
       exit(0);
   scanf("%d ",i);    }
   fclose(fic);*/    else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     /*  if(mle==1){*/      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
   if (weightopt != 1) { /* Maximisation without weights*/      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     for(i=1;i<=n;i++) weight[i]=1.0;      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   }      matcov=matrix(1,npar,1,npar);
     /*-calculation of age at interview from date of interview and age at death -*/    }
   agev=matrix(1,maxwav,1,imx);    else{
       /* Read guess parameters */
   for (i=1; i<=imx; i++) {      /* Reads comments: lines beginning with '#' */
     for(m=2; (m<= maxwav); m++) {      while((c=getc(ficpar))=='#' && c!= EOF){
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){        ungetc(c,ficpar);
         anint[m][i]=9999;        fgets(line, MAXLINE, ficpar);
         s[m][i]=-1;        numlinepar++;
       }        puts(line);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){        fputs(line,ficparo);
         nberr++;        fputs(line,ficlog);
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      }
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      ungetc(c,ficpar);
         s[m][i]=-1;     
       }      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){      for(i=1; i <=nlstate; i++){
         nberr++;        j=0;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);         for(jj=1; jj <=nlstate+ndeath; jj++){
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);           if(jj==i) continue;
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */          j++;
       }          fscanf(ficpar,"%1d%1d",&i1,&j1);
     }          if ((i1 != i) && (j1 != j)){
   }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   for (i=1; i<=imx; i++)  {  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            exit(1);
     for(m=firstpass; (m<= lastpass); m++){          }
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){          fprintf(ficparo,"%1d%1d",i1,j1);
         if (s[m][i] >= nlstate+1) {          if(mle==1)
           if(agedc[i]>0)            printf("%1d%1d",i,j);
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)          fprintf(ficlog,"%1d%1d",i,j);
               agev[m][i]=agedc[i];          for(k=1; k<=ncovmodel;k++){
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            fscanf(ficpar," %lf",&param[i][j][k]);
             else {            if(mle==1){
               if ((int)andc[i]!=9999){              printf(" %lf",param[i][j][k]);
                 nbwarn++;              fprintf(ficlog," %lf",param[i][j][k]);
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);            }
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);            else
                 agev[m][i]=-1;              fprintf(ficlog," %lf",param[i][j][k]);
               }            fprintf(ficparo," %lf",param[i][j][k]);
             }          }
         }          fscanf(ficpar,"\n");
         else if(s[m][i] !=9){ /* Standard case, age in fractional          numlinepar++;
                                  years but with the precision of a          if(mle==1)
                                  month */            printf("\n");
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          fprintf(ficlog,"\n");
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)          fprintf(ficparo,"\n");
             agev[m][i]=1;        }
           else if(agev[m][i] <agemin){       }  
             agemin=agev[m][i];      fflush(ficlog);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
           }      p=param[1][1];
           else if(agev[m][i] >agemax){     
             agemax=agev[m][i];      /* Reads comments: lines beginning with '#' */
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      while((c=getc(ficpar))=='#' && c!= EOF){
           }        ungetc(c,ficpar);
           /*agev[m][i]=anint[m][i]-annais[i];*/        fgets(line, MAXLINE, ficpar);
           /*     agev[m][i] = age[i]+2*m;*/        numlinepar++;
         }        puts(line);
         else { /* =9 */        fputs(line,ficparo);
           agev[m][i]=1;        fputs(line,ficlog);
           s[m][i]=-1;      }
         }      ungetc(c,ficpar);
       }  
       else /*= 0 Unknown */      for(i=1; i <=nlstate; i++){
         agev[m][i]=1;        for(j=1; j <=nlstate+ndeath-1; j++){
     }          fscanf(ficpar,"%1d%1d",&i1,&j1);
               if ((i1-i)*(j1-j)!=0){
   }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   for (i=1; i<=imx; i++)  {            exit(1);
     for(m=firstpass; (m<=lastpass); m++){          }
       if (s[m][i] > (nlstate+ndeath)) {          printf("%1d%1d",i,j);
         nberr++;          fprintf(ficparo,"%1d%1d",i1,j1);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);               fprintf(ficlog,"%1d%1d",i1,j1);
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);               for(k=1; k<=ncovmodel;k++){
         goto end;            fscanf(ficpar,"%le",&delti3[i][j][k]);
       }            printf(" %le",delti3[i][j][k]);
     }            fprintf(ficparo," %le",delti3[i][j][k]);
   }            fprintf(ficlog," %le",delti3[i][j][k]);
           }
   /*for (i=1; i<=imx; i++){          fscanf(ficpar,"\n");
   for (m=firstpass; (m<lastpass); m++){          numlinepar++;
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);          printf("\n");
 }          fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
 }*/        }
       }
       fflush(ficlog);
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       delti=delti3[1][1];
   
   agegomp=(int)agemin;  
   free_vector(severity,1,maxwav);      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   free_imatrix(outcome,1,maxwav+1,1,n);   
   free_vector(moisnais,1,n);      /* Reads comments: lines beginning with '#' */
   free_vector(annais,1,n);      while((c=getc(ficpar))=='#' && c!= EOF){
   /* free_matrix(mint,1,maxwav,1,n);        ungetc(c,ficpar);
      free_matrix(anint,1,maxwav,1,n);*/        fgets(line, MAXLINE, ficpar);
   free_vector(moisdc,1,n);        numlinepar++;
   free_vector(andc,1,n);        puts(line);
         fputs(line,ficparo);
            fputs(line,ficlog);
   wav=ivector(1,imx);      }
   dh=imatrix(1,lastpass-firstpass+1,1,imx);      ungetc(c,ficpar);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);   
   mw=imatrix(1,lastpass-firstpass+1,1,imx);      matcov=matrix(1,npar,1,npar);
          for(i=1; i <=npar; i++){
   /* Concatenates waves */        fscanf(ficpar,"%s",&str);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        if(mle==1)
           printf("%s",str);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */        fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
   Tcode=ivector(1,100);        for(j=1; j <=i; j++){
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);           fscanf(ficpar," %le",&matcov[i][j]);
   ncodemax[1]=1;          if(mle==1){
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);            printf(" %.5le",matcov[i][j]);
                 }
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of           fprintf(ficlog," %.5le",matcov[i][j]);
                                  the estimations*/          fprintf(ficparo," %.5le",matcov[i][j]);
   h=0;        }
   m=pow(2,cptcoveff);        fscanf(ficpar,"\n");
          numlinepar++;
   for(k=1;k<=cptcoveff; k++){        if(mle==1)
     for(i=1; i <=(m/pow(2,k));i++){          printf("\n");
       for(j=1; j <= ncodemax[k]; j++){        fprintf(ficlog,"\n");
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        fprintf(ficparo,"\n");
           h++;      }
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      for(i=1; i <=npar; i++)
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        for(j=i+1;j<=npar;j++)
         }           matcov[i][j]=matcov[j][i];
       }     
     }      if(mle==1)
   }         printf("\n");
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       fprintf(ficlog,"\n");
      codtab[1][2]=1;codtab[2][2]=2; */     
   /* for(i=1; i <=m ;i++){       fflush(ficlog);
      for(k=1; k <=cptcovn; k++){     
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      /*-------- Rewriting parameter file ----------*/
      }      strcpy(rfileres,"r");    /* "Rparameterfile */
      printf("\n");      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
      }      strcat(rfileres,".");    /* */
      scanf("%d",i);*/      strcat(rfileres,optionfilext);    /* Other files have txt extension */
           if((ficres =fopen(rfileres,"w"))==NULL) {
   /*------------ gnuplot -------------*/        printf("Problem writing new parameter file: %s\n", fileres);goto end;
   strcpy(optionfilegnuplot,optionfilefiname);        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
   if(mle==-3)      }
     strcat(optionfilegnuplot,"-mort");      fprintf(ficres,"#%s\n",version);
   strcat(optionfilegnuplot,".gp");    }    /* End of mle != -3 */
   
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    /*-------- data file ----------*/
     printf("Problem with file %s",optionfilegnuplot);    if((fic=fopen(datafile,"r"))==NULL)    {
   }      printf("Problem while opening datafile: %s\n", datafile);goto end;
   else{      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     fprintf(ficgp,"\n# %s\n", version);     }
     fprintf(ficgp,"# %s\n", optionfilegnuplot);   
     fprintf(ficgp,"set missing 'NaNq'\n");    n= lastobs;
   }    severity = vector(1,maxwav);
   /*  fclose(ficgp);*/    outcome=imatrix(1,maxwav+1,1,n);
   /*--------- index.htm --------*/    num=lvector(1,n);
     moisnais=vector(1,n);
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    annais=vector(1,n);
   if(mle==-3)    moisdc=vector(1,n);
     strcat(optionfilehtm,"-mort");    andc=vector(1,n);
   strcat(optionfilehtm,".htm");    agedc=vector(1,n);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    cod=ivector(1,n);
     printf("Problem with %s \n",optionfilehtm), exit(0);    weight=vector(1,n);
   }    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    anint=matrix(1,maxwav,1,n);
   strcat(optionfilehtmcov,"-cov.htm");    s=imatrix(1,maxwav+1,1,n);
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    tab=ivector(1,NCOVMAX);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    ncodemax=ivector(1,8);
   }  
   else{    i=1;
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \    linei=0;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\      linei=linei+1;
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
   }        if(line[j] == '\t')
           line[j] = ' ';
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \      }
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\        ;
 \n\      };
 <hr  size=\"2\" color=\"#EC5E5E\">\      line[j+1]=0;  /* Trims blanks at end of line */
  <ul><li><h4>Parameter files</h4>\n\      if(line[0]=='#'){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\        fprintf(ficlog,"Comment line\n%s\n",line);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\        printf("Comment line\n%s\n",line);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\        continue;
  - Date and time at start: %s</ul>\n",\      }
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\  
           fileres,fileres,\      for (j=maxwav;j>=1;j--){
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);        cutv(stra, strb,line,' ');
   fflush(fichtm);        errno=0;
         lval=strtol(strb,&endptr,10);
   strcpy(pathr,path);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
   strcat(pathr,optionfilefiname);        if( strb[0]=='\0' || (*endptr != '\0')){
   chdir(optionfilefiname); /* Move to directory named optionfile */          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             exit(1);
   /* Calculates basic frequencies. Computes observed prevalence at single age        }
      and prints on file fileres'p'. */        s[j][i]=lval;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);       
         strcpy(line,stra);
   fprintf(fichtm,"\n");        cutv(stra, strb,line,' ');
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\        }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\        else  if(iout=sscanf(strb,"%s.") != 0){
           imx,agemin,agemax,jmin,jmax,jmean);          month=99;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          year=9999;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }else{
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          exit(1);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        }
             anint[j][i]= (double) year;
            mint[j][i]= (double)month;
   /* For Powell, parameters are in a vector p[] starting at p[1]        strcpy(line,stra);
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      } /* ENd Waves */
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */     
       cutv(stra, strb,line,' ');
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   if (mle==-3){      }
     ximort=matrix(1,NDIM,1,NDIM);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
     cens=ivector(1,n);        month=99;
     ageexmed=vector(1,n);        year=9999;
     agecens=vector(1,n);      }else{
     dcwave=ivector(1,n);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
          exit(1);
     for (i=1; i<=imx; i++){      }
       dcwave[i]=-1;      andc[i]=(double) year;
       for (j=1; j<=lastpass; j++)      moisdc[i]=(double) month;
         if (s[j][i]>nlstate) {      strcpy(line,stra);
           dcwave[i]=j;     
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/      cutv(stra, strb,line,' ');
           break;      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }      }
     }      else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
     for (i=1; i<=imx; i++) {        year=9999;
       if (wav[i]>0){      }else{
         ageexmed[i]=agev[mw[1][i]][i];        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         j=wav[i];agecens[i]=1.;         exit(1);
         if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];      }
         cens[i]=1;      annais[i]=(double)(year);
               moisnais[i]=(double)(month);
         if (ageexmed[i]<1) cens[i]=-1;      strcpy(line,stra);
         if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;     
       }      cutv(stra, strb,line,' ');
       else cens[i]=-1;      errno=0;
     }      dval=strtod(strb,&endptr);
           if( strb[0]=='\0' || (*endptr != '\0')){
     for (i=1;i<=NDIM;i++) {        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
       for (j=1;j<=NDIM;j++)        exit(1);
         ximort[i][j]=(i == j ? 1.0 : 0.0);      }
     }      weight[i]=dval;
       strcpy(line,stra);
     p[1]=0.1; p[2]=0.1;     
     /*printf("%lf %lf", p[1], p[2]);*/      for (j=ncovcol;j>=1;j--){
             cutv(stra, strb,line,' ');
             errno=0;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        lval=strtol(strb,&endptr,10);
   strcpy(filerespow,"pow-mort");         if( strb[0]=='\0' || (*endptr != '\0')){
   strcat(filerespow,fileres);          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          exit(1);
     printf("Problem with resultfile: %s\n", filerespow);        }
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        if(lval <-1 || lval >1){
   }          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   fprintf(ficrespow,"# Powell\n# iter -2*LL");   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   /*  for (i=1;i<=nlstate;i++)   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     for(j=1;j<=nlstate+ndeath;j++)   For example, for multinomial values like 1, 2 and 3,\n \
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);   build V1=0 V2=0 for the reference value (1),\n \
   */          V1=1 V2=0 for (2) \n \
   fprintf(ficrespow,"\n");   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);   Exiting.\n",lval,linei, i,line,j);
     fclose(ficrespow);          exit(1);
             }
     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz);         covar[j][i]=(double)(lval);
         strcpy(line,stra);
     for(i=1; i <=NDIM; i++)      }
       for(j=i+1;j<=NDIM;j++)      lstra=strlen(stra);
         matcov[i][j]=matcov[j][i];     
           if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
     printf("\nCovariance matrix\n ");        stratrunc = &(stra[lstra-9]);
     for(i=1; i <=NDIM; i++) {        num[i]=atol(stratrunc);
       for(j=1;j<=NDIM;j++){       }
         printf("%f ",matcov[i][j]);      else
       }        num[i]=atol(stra);
       printf("\n ");      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
     }        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
          
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);      i=i+1;
     for (i=1;i<=NDIM;i++)     } /* End loop reading  data */
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));    fclose(fic);
     /* printf("ii=%d", ij);
 lsurv=vector(1,AGESUP);       scanf("%d",i);*/
     lpop=vector(1,AGESUP);    imx=i-1; /* Number of individuals */
     tpop=vector(1,AGESUP);  
     lsurv[agegomp]=100000;    /* for (i=1; i<=imx; i++){
          if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
      for (k=agegomp;k<=AGESUP;k++) {      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       agemortsup=k;      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;      }*/
     }     /*  for (i=1; i<=imx; i++){
           if (s[4][i]==9)  s[4][i]=-1;
       for (k=agegomp;k<agemortsup;k++)       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));   
     /* for (i=1; i<=imx; i++) */
     for (k=agegomp;k<agemortsup;k++){   
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
       sumlpop=sumlpop+lpop[k];       else weight[i]=1;*/
     }  
     /* Calculation of the number of parameters from char model */
  tpop[agegomp]=sumlpop;    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     for (k=agegomp;k<(agemortsup-3);k++){    Tprod=ivector(1,15);
       /*  tpop[k+1]=2;*/    Tvaraff=ivector(1,15);
       tpop[k+1]=tpop[k]-lpop[k];    Tvard=imatrix(1,15,1,2);
        }    Tage=ivector(1,15);      
         
        if (strlen(model) >1){ /* If there is at least 1 covariate */
        printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");      j=0, j1=0, k1=1, k2=1;
     for (k=agegomp;k<(agemortsup-2);k++)       j=nbocc(model,'+'); /* j=Number of '+' */
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);      j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */     
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      strcpy(modelsav,model);
           if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \        printf("Error. Non available option model=%s ",model);
                      stepm, weightopt,\        fprintf(ficlog,"Error. Non available option model=%s ",model);
                      model,imx,p,matcov,agemortsup);        goto end;
       }
     free_vector(lsurv,1,AGESUP);     
     free_vector(lpop,1,AGESUP);      /* This loop fills the array Tvar from the string 'model'.*/
     free_vector(tpop,1,AGESUP);  
   } /* Endof if mle==-3 */      for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
   else{ /* For mle >=1 */        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        /*scanf("%d",i);*/
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        if (strchr(strb,'*')) {  /* Model includes a product */
     for (k=1; k<=npar;k++)          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
       printf(" %d %8.5f",k,p[k]);          if (strcmp(strc,"age")==0) { /* Vn*age */
     printf("\n");            cptcovprod--;
     globpr=1; /* to print the contributions */            cutv(strb,stre,strd,'V');
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);            cptcovage++;
     for (k=1; k<=npar;k++)              Tage[cptcovage]=i;
       printf(" %d %8.5f",k,p[k]);              /*printf("stre=%s ", stre);*/
     printf("\n");          }
     if(mle>=1){ /* Could be 1 or 2 */          else if (strcmp(strd,"age")==0) { /* or age*Vn */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            cptcovprod--;
     }            cutv(strb,stre,strc,'V');
                 Tvar[i]=atoi(stre);
     /*--------- results files --------------*/            cptcovage++;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            Tage[cptcovage]=i;
               }
               else {  /* Age is not in the model */
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            Tvar[i]=ncovcol+k1;
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
     for(i=1,jk=1; i <=nlstate; i++){            Tprod[k1]=i;
       for(k=1; k <=(nlstate+ndeath); k++){            Tvard[k1][1]=atoi(strc); /* m*/
         if (k != i) {            Tvard[k1][2]=atoi(stre); /* n */
           printf("%d%d ",i,k);            Tvar[cptcovn+k2]=Tvard[k1][1];
           fprintf(ficlog,"%d%d ",i,k);            Tvar[cptcovn+k2+1]=Tvard[k1][2];
           fprintf(ficres,"%1d%1d ",i,k);            for (k=1; k<=lastobs;k++)
           for(j=1; j <=ncovmodel; j++){              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             printf("%f ",p[jk]);            k1++;
             fprintf(ficlog,"%f ",p[jk]);            k2=k2+2;
             fprintf(ficres,"%f ",p[jk]);          }
             jk++;         }
           }        else { /* no more sum */
           printf("\n");          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
           fprintf(ficlog,"\n");         /*  scanf("%d",i);*/
           fprintf(ficres,"\n");        cutv(strd,strc,strb,'V');
         }        Tvar[i]=atoi(strc);
       }        }
     }        strcpy(modelsav,stra);  
     if(mle!=0){        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
       /* Computing hessian and covariance matrix */          scanf("%d",i);*/
       ftolhess=ftol; /* Usually correct */      } /* end of loop + */
       hesscov(matcov, p, npar, delti, ftolhess, func);    } /* end model */
     }   
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
     printf("# Scales (for hessian or gradient estimation)\n");      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  
     for(i=1,jk=1; i <=nlstate; i++){    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
       for(j=1; j <=nlstate+ndeath; j++){    printf("cptcovprod=%d ", cptcovprod);
         if (j!=i) {    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);    scanf("%d ",i);*/
           fprintf(ficlog,"%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){      /*  if(mle==1){*/
             printf(" %.5e",delti[jk]);    if (weightopt != 1) { /* Maximisation without weights*/
             fprintf(ficlog," %.5e",delti[jk]);      for(i=1;i<=n;i++) weight[i]=1.0;
             fprintf(ficres," %.5e",delti[jk]);    }
             jk++;      /*-calculation of age at interview from date of interview and age at death -*/
           }    agev=matrix(1,maxwav,1,imx);
           printf("\n");  
           fprintf(ficlog,"\n");    for (i=1; i<=imx; i++) {
           fprintf(ficres,"\n");      for(m=2; (m<= maxwav); m++) {
         }        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
       }          anint[m][i]=9999;
     }          s[m][i]=-1;
             }
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     if(mle>=1)          nberr++;
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     /* # 121 Var(a12)\n\ */          s[m][i]=-1;
     /* # 122 Cov(b12,a12) Var(b12)\n\ */        }
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */          nberr++;
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        }
           }
         }
     /* Just to have a covariance matrix which will be more understandable  
        even is we still don't want to manage dictionary of variables    for (i=1; i<=imx; i++)  {
     */      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     for(itimes=1;itimes<=2;itimes++){      for(m=firstpass; (m<= lastpass); m++){
       jj=0;        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
       for(i=1; i <=nlstate; i++){          if (s[m][i] >= nlstate+1) {
         for(j=1; j <=nlstate+ndeath; j++){            if(agedc[i]>0)
           if(j==i) continue;              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
           for(k=1; k<=ncovmodel;k++){                agev[m][i]=agedc[i];
             jj++;            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
             ca[0]= k+'a'-1;ca[1]='\0';              else {
             if(itimes==1){                if ((int)andc[i]!=9999){
               if(mle>=1)                  nbwarn++;
                 printf("#%1d%1d%d",i,j,k);                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
               fprintf(ficres,"#%1d%1d%d",i,j,k);                  agev[m][i]=-1;
             }else{                }
               if(mle>=1)              }
                 printf("%1d%1d%d",i,j,k);          }
               fprintf(ficlog,"%1d%1d%d",i,j,k);          else if(s[m][i] !=9){ /* Standard case, age in fractional
               fprintf(ficres,"%1d%1d%d",i,j,k);                                   years but with the precision of a month */
             }            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             ll=0;            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
             for(li=1;li <=nlstate; li++){              agev[m][i]=1;
               for(lj=1;lj <=nlstate+ndeath; lj++){            else if(agev[m][i] <agemin){
                 if(lj==li) continue;              agemin=agev[m][i];
                 for(lk=1;lk<=ncovmodel;lk++){              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
                   ll++;            }
                   if(ll<=jj){            else if(agev[m][i] >agemax){
                     cb[0]= lk +'a'-1;cb[1]='\0';              agemax=agev[m][i];
                     if(ll<jj){              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
                       if(itimes==1){            }
                         if(mle>=1)            /*agev[m][i]=anint[m][i]-annais[i];*/
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            /*     agev[m][i] = age[i]+2*m;*/
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          }
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          else { /* =9 */
                       }else{            agev[m][i]=1;
                         if(mle>=1)            s[m][i]=-1;
                           printf(" %.5e",matcov[jj][ll]);           }
                         fprintf(ficlog," %.5e",matcov[jj][ll]);         }
                         fprintf(ficres," %.5e",matcov[jj][ll]);         else /*= 0 Unknown */
                       }          agev[m][i]=1;
                     }else{      }
                       if(itimes==1){     
                         if(mle>=1)    }
                           printf(" Var(%s%1d%1d)",ca,i,j);    for (i=1; i<=imx; i++)  {
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);      for(m=firstpass; (m<=lastpass); m++){
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);        if (s[m][i] > (nlstate+ndeath)) {
                       }else{          nberr++;
                         if(mle>=1)          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
                           printf(" %.5e",matcov[jj][ll]);           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
                         fprintf(ficlog," %.5e",matcov[jj][ll]);           goto end;
                         fprintf(ficres," %.5e",matcov[jj][ll]);         }
                       }      }
                     }    }
                   }  
                 } /* end lk */    /*for (i=1; i<=imx; i++){
               } /* end lj */    for (m=firstpass; (m<lastpass); m++){
             } /* end li */       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
             if(mle>=1)  }
               printf("\n");  
             fprintf(ficlog,"\n");  }*/
             fprintf(ficres,"\n");  
             numlinepar++;  
           } /* end k*/    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
         } /*end j */    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
       } /* end i */  
     } /* end itimes */    agegomp=(int)agemin;
         free_vector(severity,1,maxwav);
     fflush(ficlog);    free_imatrix(outcome,1,maxwav+1,1,n);
     fflush(ficres);    free_vector(moisnais,1,n);
         free_vector(annais,1,n);
     while((c=getc(ficpar))=='#' && c!= EOF){    /* free_matrix(mint,1,maxwav,1,n);
       ungetc(c,ficpar);       free_matrix(anint,1,maxwav,1,n);*/
       fgets(line, MAXLINE, ficpar);    free_vector(moisdc,1,n);
       puts(line);    free_vector(andc,1,n);
       fputs(line,ficparo);  
     }     
     ungetc(c,ficpar);    wav=ivector(1,imx);
         dh=imatrix(1,lastpass-firstpass+1,1,imx);
     estepm=0;    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
     if (estepm==0 || estepm < stepm) estepm=stepm;     
     if (fage <= 2) {    /* Concatenates waves */
       bage = ageminpar;    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
       fage = agemaxpar;  
     }    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
       
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    Tcode=ivector(1,100);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    ncodemax[1]=1;
         if (cptcovn > 0) tricode(Tvar,nbcode,imx);
     while((c=getc(ficpar))=='#' && c!= EOF){       
       ungetc(c,ficpar);    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
       fgets(line, MAXLINE, ficpar);                                   the estimations*/
       puts(line);    h=0;
       fputs(line,ficparo);    m=pow(2,cptcoveff);
     }   
     ungetc(c,ficpar);    for(k=1;k<=cptcoveff; k++){
           for(i=1; i <=(m/pow(2,k));i++){
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        for(j=1; j <= ncodemax[k]; j++){
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            h++;
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
               }
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);    }
       puts(line);    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
       fputs(line,ficparo);       codtab[1][2]=1;codtab[2][2]=2; */
     }    /* for(i=1; i <=m ;i++){
     ungetc(c,ficpar);       for(k=1; k <=cptcovn; k++){
            printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
            }
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;       printf("\n");
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;       }
            scanf("%d",i);*/
     fscanf(ficpar,"pop_based=%d\n",&popbased);     
     fprintf(ficparo,"pop_based=%d\n",popbased);       /*------------ gnuplot -------------*/
     fprintf(ficres,"pop_based=%d\n",popbased);       strcpy(optionfilegnuplot,optionfilefiname);
         if(mle==-3)
     while((c=getc(ficpar))=='#' && c!= EOF){      strcat(optionfilegnuplot,"-mort");
       ungetc(c,ficpar);    strcat(optionfilegnuplot,".gp");
       fgets(line, MAXLINE, ficpar);  
       puts(line);    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       fputs(line,ficparo);      printf("Problem with file %s",optionfilegnuplot);
     }    }
     ungetc(c,ficpar);    else{
           fprintf(ficgp,"\n# %s\n", version);
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      fprintf(ficgp,"# %s\n", optionfilegnuplot);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fprintf(ficgp,"set missing 'NaNq'\n");
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    }
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    /*  fclose(ficgp);*/
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    /*--------- index.htm --------*/
     /* day and month of proj2 are not used but only year anproj2.*/  
         strcpy(optionfilehtm,optionfilefiname); /* Main html file */
         if(mle==-3)
           strcat(optionfilehtm,"-mort");
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/    strcat(optionfilehtm,".htm");
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
           printf("Problem with %s \n",optionfilehtm), exit(0);
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */    }
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);  
         strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\    strcat(optionfilehtmcov,"-cov.htm");
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      printf("Problem with %s \n",optionfilehtmcov), exit(0);
           }
    /*------------ free_vector  -------------*/    else{
    /*  chdir(path); */    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
    <hr size=\"2\" color=\"#EC5E5E\"> \n\
     free_ivector(wav,1,imx);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);    }
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     
     free_lvector(num,1,n);    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     free_vector(agedc,1,n);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     /*free_matrix(covar,0,NCOVMAX,1,n);*/  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
     /*free_matrix(covar,1,NCOVMAX,1,n);*/  \n\
     fclose(ficparo);  <hr  size=\"2\" color=\"#EC5E5E\">\
     fclose(ficres);   <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     /*--------------- Prevalence limit  (stable prevalence) --------------*/   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
      - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
     strcpy(filerespl,"pl");   - Date and time at start: %s</ul>\n",\
     strcat(filerespl,fileres);            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
     if((ficrespl=fopen(filerespl,"w"))==NULL) {            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;            fileres,fileres,\
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     }    fflush(fichtm);
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);  
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);    strcpy(pathr,path);
     fprintf(ficrespl, "#Local time at start: %s", strstart);    strcat(pathr,optionfilefiname);
     fprintf(ficrespl,"#Stable prevalence \n");    chdir(optionfilefiname); /* Move to directory named optionfile */
     fprintf(ficrespl,"#Age ");   
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    /* Calculates basic frequencies. Computes observed prevalence at single age
     fprintf(ficrespl,"\n");       and prints on file fileres'p'. */
       freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
     prlim=matrix(1,nlstate,1,nlstate);  
     fprintf(fichtm,"\n");
     agebase=ageminpar;    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
     agelim=agemaxpar;  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
     ftolpl=1.e-10;  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
     i1=cptcoveff;            imx,agemin,agemax,jmin,jmax,jmean);
     if (cptcovn < 1){i1=1;}    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         k=k+1;      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     
         fprintf(ficrespl,"\n#******");     
         printf("\n#******");    /* For Powell, parameters are in a vector p[] starting at p[1]
         fprintf(ficlog,"\n#******");       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
         for(j=1;j<=cptcoveff;j++) {    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         }    if (mle==-3){
         fprintf(ficrespl,"******\n");      ximort=matrix(1,NDIM,1,NDIM);
         printf("******\n");      cens=ivector(1,n);
         fprintf(ficlog,"******\n");      ageexmed=vector(1,n);
               agecens=vector(1,n);
         for (age=agebase; age<=agelim; age++){      dcwave=ivector(1,n);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   
           fprintf(ficrespl,"%.0f ",age );      for (i=1; i<=imx; i++){
           for(j=1;j<=cptcoveff;j++)        dcwave[i]=-1;
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (m=firstpass; m<=lastpass; m++)
           for(i=1; i<=nlstate;i++)          if (s[m][i]>nlstate) {
             fprintf(ficrespl," %.5f", prlim[i][i]);            dcwave[i]=m;
           fprintf(ficrespl,"\n");            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
         }            break;
       }          }
     }      }
     fclose(ficrespl);  
       for (i=1; i<=imx; i++) {
     /*------------- h Pij x at various ages ------------*/        if (wav[i]>0){
             ageexmed[i]=agev[mw[1][i]][i];
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);          j=wav[i];
     if((ficrespij=fopen(filerespij,"w"))==NULL) {          agecens[i]=1.;
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          if (ageexmed[i]> 1 && wav[i] > 0){
     }            agecens[i]=agev[mw[j][i]][i];
     printf("Computing pij: result on file '%s' \n", filerespij);            cens[i]= 1;
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          }else if (ageexmed[i]< 1)
               cens[i]= -1;
     stepsize=(int) (stepm+YEARM-1)/YEARM;          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     /*if (stepm<=24) stepsize=2;*/            cens[i]=0 ;
         }
     agelim=AGESUP;        else cens[i]=-1;
     hstepm=stepsize*YEARM; /* Every year of age */      }
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      
       for (i=1;i<=NDIM;i++) {
     /* hstepm=1;   aff par mois*/        for (j=1;j<=NDIM;j++)
     fprintf(ficrespij, "#Local time at start: %s", strstart);          ximort[i][j]=(i == j ? 1.0 : 0.0);
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){     
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      p[1]=0.0268; p[NDIM]=0.083;
         k=k+1;      /*printf("%lf %lf", p[1], p[2]);*/
         fprintf(ficrespij,"\n#****** ");     
         for(j=1;j<=cptcoveff;j++)      
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
         fprintf(ficrespij,"******\n");      strcpy(filerespow,"pow-mort");
               strcat(filerespow,fileres);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      if((ficrespow=fopen(filerespow,"w"))==NULL) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         printf("Problem with resultfile: %s\n", filerespow);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(j=1;j<=nlstate+ndeath;j++)
           oldm=oldms;savm=savms;          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        */
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");      fprintf(ficrespow,"\n");
           for(i=1; i<=nlstate;i++)     
             for(j=1; j<=nlstate+ndeath;j++)      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
               fprintf(ficrespij," %1d-%1d",i,j);      fclose(ficrespow);
           fprintf(ficrespij,"\n");     
           for (h=0; h<=nhstepm; h++){      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)      for(i=1; i <=NDIM; i++)
               for(j=1; j<=nlstate+ndeath;j++)        for(j=i+1;j<=NDIM;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          matcov[i][j]=matcov[j][i];
             fprintf(ficrespij,"\n");     
           }      printf("\nCovariance matrix\n ");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i <=NDIM; i++) {
           fprintf(ficrespij,"\n");        for(j=1;j<=NDIM;j++){
         }          printf("%f ",matcov[i][j]);
       }        }
     }        printf("\n ");
       }
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);     
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     fclose(ficrespij);      for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     for(i=1;i<=AGESUP;i++)      lsurv=vector(1,AGESUP);
       for(j=1;j<=NCOVMAX;j++)      lpop=vector(1,AGESUP);
         for(k=1;k<=NCOVMAX;k++)      tpop=vector(1,AGESUP);
           probs[i][j][k]=0.;      lsurv[agegomp]=100000;
      
     /*---------- Forecasting ------------------*/      for (k=agegomp;k<=AGESUP;k++) {
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/        agemortsup=k;
     if(prevfcast==1){        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       /*    if(stepm ==1){*/      }
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);     
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      for (k=agegomp;k<agemortsup;k++)
       /*      }  */        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       /*      else{ */     
       /*        erreur=108; */      for (k=agegomp;k<agemortsup;k++){
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */        sumlpop=sumlpop+lpop[k];
       /*      } */      }
     }     
         tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
     /*---------- Health expectancies and variances ------------*/        /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
     strcpy(filerest,"t");      }
     strcat(filerest,fileres);     
     if((ficrest=fopen(filerest,"w"))==NULL) {     
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      for (k=agegomp;k<(agemortsup-2);k++)
     }        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     printf("Computing Total LEs with variances: file '%s' \n", filerest);      
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     strcpy(filerese,"e");     
     strcat(filerese,fileres);      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
     if((ficreseij=fopen(filerese,"w"))==NULL) {                       stepm, weightopt,\
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                       model,imx,p,matcov,agemortsup);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);     
     }      free_vector(lsurv,1,AGESUP);
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);      free_vector(lpop,1,AGESUP);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     strcpy(fileresv,"v");   
     strcat(fileresv,fileres);    else{ /* For mle >=1 */
     if((ficresvij=fopen(fileresv,"w"))==NULL) {   
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     }      for (k=1; k<=npar;k++)
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        printf(" %d %8.5f",k,p[k]);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      printf("\n");
       globpr=1; /* to print the contributions */
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      for (k=1; k<=npar;k++)
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);        printf(" %d %8.5f",k,p[k]);
     */      printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
     if (mobilav!=0) {        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){     
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      /*--------- results files --------------*/
         printf(" Error in movingaverage mobilav=%d\n",mobilav);      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       }     
     }     
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         k=k+1;       for(i=1,jk=1; i <=nlstate; i++){
         fprintf(ficrest,"\n#****** ");        for(k=1; k <=(nlstate+ndeath); k++){
         for(j=1;j<=cptcoveff;j++)           if (k != i) {
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            printf("%d%d ",i,k);
         fprintf(ficrest,"******\n");            fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
         fprintf(ficreseij,"\n#****** ");            for(j=1; j <=ncovmodel; j++){
         for(j=1;j<=cptcoveff;j++)               printf("%lf ",p[jk]);
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              fprintf(ficlog,"%lf ",p[jk]);
         fprintf(ficreseij,"******\n");              fprintf(ficres,"%lf ",p[jk]);
               jk++;
         fprintf(ficresvij,"\n#****** ");            }
         for(j=1;j<=cptcoveff;j++)             printf("\n");
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficlog,"\n");
         fprintf(ficresvij,"******\n");            fprintf(ficres,"\n");
           }
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
         oldm=oldms;savm=savms;      }
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);        if(mle!=0){
          /* Computing hessian and covariance matrix */
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        ftolhess=ftol; /* Usually correct */
         oldm=oldms;savm=savms;        hesscov(matcov, p, npar, delti, ftolhess, func);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);      }
         if(popbased==1){      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);      printf("# Scales (for hessian or gradient estimation)\n");
         }      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         fprintf(ficrest, "#Local time at start: %s", strstart);        for(j=1; j <=nlstate+ndeath; j++){
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          if (j!=i) {
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            fprintf(ficres,"%1d%1d",i,j);
         fprintf(ficrest,"\n");            printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
         epj=vector(1,nlstate+1);            for(k=1; k<=ncovmodel;k++){
         for(age=bage; age <=fage ;age++){              printf(" %.5e",delti[jk]);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              fprintf(ficlog," %.5e",delti[jk]);
           if (popbased==1) {              fprintf(ficres," %.5e",delti[jk]);
             if(mobilav ==0){              jk++;
               for(i=1; i<=nlstate;i++)            }
                 prlim[i][i]=probs[(int)age][i][k];            printf("\n");
             }else{ /* mobilav */             fprintf(ficlog,"\n");
               for(i=1; i<=nlstate;i++)            fprintf(ficres,"\n");
                 prlim[i][i]=mobaverage[(int)age][i][k];          }
             }        }
           }      }
              
           fprintf(ficrest," %4.0f",age);      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      if(mle>=1)
             for(i=1, epj[j]=0.;i <=nlstate;i++) {        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
               epj[j] += prlim[i][i]*eij[i][j][(int)age];      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      /* # 121 Var(a12)\n\ */
             }      /* # 122 Cov(b12,a12) Var(b12)\n\ */
             epj[nlstate+1] +=epj[j];      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
           }      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
           for(i=1, vepp=0.;i <=nlstate;i++)      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
             for(j=1;j <=nlstate;j++)      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
               vepp += vareij[i][j][(int)age];      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));     
           for(j=1;j <=nlstate;j++){     
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      /* Just to have a covariance matrix which will be more understandable
           }         even is we still don't want to manage dictionary of variables
           fprintf(ficrest,"\n");      */
         }      for(itimes=1;itimes<=2;itimes++){
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        jj=0;
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(i=1; i <=nlstate; i++){
         free_vector(epj,1,nlstate+1);          for(j=1; j <=nlstate+ndeath; j++){
       }            if(j==i) continue;
     }            for(k=1; k<=ncovmodel;k++){
     free_vector(weight,1,n);              jj++;
     free_imatrix(Tvard,1,15,1,2);              ca[0]= k+'a'-1;ca[1]='\0';
     free_imatrix(s,1,maxwav+1,1,n);              if(itimes==1){
     free_matrix(anint,1,maxwav,1,n);                 if(mle>=1)
     free_matrix(mint,1,maxwav,1,n);                  printf("#%1d%1d%d",i,j,k);
     free_ivector(cod,1,n);                fprintf(ficlog,"#%1d%1d%d",i,j,k);
     free_ivector(tab,1,NCOVMAX);                fprintf(ficres,"#%1d%1d%d",i,j,k);
     fclose(ficreseij);              }else{
     fclose(ficresvij);                if(mle>=1)
     fclose(ficrest);                  printf("%1d%1d%d",i,j,k);
     fclose(ficpar);                fprintf(ficlog,"%1d%1d%d",i,j,k);
                   fprintf(ficres,"%1d%1d%d",i,j,k);
     /*------- Variance of stable prevalence------*/                 }
               ll=0;
     strcpy(fileresvpl,"vpl");              for(li=1;li <=nlstate; li++){
     strcat(fileresvpl,fileres);                for(lj=1;lj <=nlstate+ndeath; lj++){
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                  if(lj==li) continue;
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);                  for(lk=1;lk<=ncovmodel;lk++){
       exit(0);                    ll++;
     }                    if(ll<=jj){
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);                      cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){                        if(itimes==1){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                          if(mle>=1)
         k=k+1;                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         fprintf(ficresvpl,"\n#****** ");                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         for(j=1;j<=cptcoveff;j++)                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                        }else{
         fprintf(ficresvpl,"******\n");                          if(mle>=1)
                                   printf(" %.5e",matcov[jj][ll]);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);                          fprintf(ficlog," %.5e",matcov[jj][ll]);
         oldm=oldms;savm=savms;                          fprintf(ficres," %.5e",matcov[jj][ll]);
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);                        }
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                      }else{
       }                        if(itimes==1){
     }                          if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
     fclose(ficresvpl);                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
     /*---------- End : free ----------------*/                        }else{
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                          if(mle>=1)
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);                            printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
   }  /* mle==-3 arrives here for freeing */                          fprintf(ficres," %.5e",matcov[jj][ll]);
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                        }
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                      }
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                    }
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                  } /* end lk */
                   } /* end lj */
     free_matrix(covar,0,NCOVMAX,1,n);              } /* end li */
     free_matrix(matcov,1,npar,1,npar);              if(mle>=1)
     /*free_vector(delti,1,npar);*/                printf("\n");
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);               fprintf(ficlog,"\n");
     free_matrix(agev,1,maxwav,1,imx);              fprintf(ficres,"\n");
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              numlinepar++;
             } /* end k*/
     free_ivector(ncodemax,1,8);          } /*end j */
     free_ivector(Tvar,1,15);        } /* end i */
     free_ivector(Tprod,1,15);      } /* end itimes */
     free_ivector(Tvaraff,1,15);     
     free_ivector(Tage,1,15);      fflush(ficlog);
     free_ivector(Tcode,1,100);      fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
   fflush(fichtm);        ungetc(c,ficpar);
   fflush(ficgp);        fgets(line, MAXLINE, ficpar);
           puts(line);
         fputs(line,ficparo);
   if((nberr >0) || (nbwarn>0)){      }
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      ungetc(c,ficpar);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);     
   }else{      estepm=0;
     printf("End of Imach\n");      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     fprintf(ficlog,"End of Imach\n");      if (estepm==0 || estepm < stepm) estepm=stepm;
   }      if (fage <= 2) {
   printf("See log file on %s\n",filelog);        bage = ageminpar;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        fage = agemaxpar;
   (void) gettimeofday(&end_time,&tzp);      }
   tm = *localtime(&end_time.tv_sec);     
   tmg = *gmtime(&end_time.tv_sec);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
   strcpy(strtend,asctime(&tm));      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);      
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);        fgets(line, MAXLINE, ficpar);
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));        puts(line);
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);        fputs(line,ficparo);
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      }
 /*   if(fileappend(fichtm,optionfilehtm)){ */      ungetc(c,ficpar);
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);     
   fclose(fichtm);      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
   fclose(fichtmcov);      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   fclose(ficgp);      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   fclose(ficlog);      printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   /*------ End -----------*/      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
   chdir(path);      while((c=getc(ficpar))=='#' && c!= EOF){
   strcpy(plotcmd,"\"");        ungetc(c,ficpar);
   strcat(plotcmd,pathimach);        fgets(line, MAXLINE, ficpar);
   strcat(plotcmd,GNUPLOTPROGRAM);        puts(line);
   strcat(plotcmd,"\"");        fputs(line,ficparo);
   strcat(plotcmd," ");      }
   strcat(plotcmd,optionfilegnuplot);      ungetc(c,ficpar);
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);     
   if((outcmd=system(plotcmd)) != 0){     
     printf(" Problem with gnuplot\n");      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
   }      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   printf(" Wait...");     
   while (z[0] != 'q') {      fscanf(ficpar,"pop_based=%d\n",&popbased);
     /* chdir(path); */      fprintf(ficparo,"pop_based=%d\n",popbased);  
     printf("\nType e to edit output files, g to graph again and q for exiting: ");      fprintf(ficres,"pop_based=%d\n",popbased);  
     scanf("%s",z);     
 /*     if (z[0] == 'c') system("./imach"); */      while((c=getc(ficpar))=='#' && c!= EOF){
     if (z[0] == 'e') {        ungetc(c,ficpar);
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);        fgets(line, MAXLINE, ficpar);
       system(optionfilehtm);        puts(line);
     }        fputs(line,ficparo);
     else if (z[0] == 'g') system(plotcmd);      }
     else if (z[0] == 'q') exit(0);      ungetc(c,ficpar);
   }     
   end:      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
   while (z[0] != 'q') {      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("\nType  q for exiting: ");      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     scanf("%s",z);      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
   }      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 }      /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.106  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>