Diff for /imach/src/imach.c between versions 1.35 and 1.108

version 1.35, 2002/03/26 17:08:39 version 1.108, 2006/01/19 18:05:42
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.108  2006/01/19 18:05:42  lievre
      Gnuplot problem appeared...
   This program computes Healthy Life Expectancies from    To be fixed
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.107  2006/01/19 16:20:37  brouard
   interviewed on their health status or degree of disability (in the    Test existence of gnuplot in imach path
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.106  2006/01/19 13:24:36  brouard
   (if any) in individual health status.  Health expectancies are    Some cleaning and links added in html output
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.105  2006/01/05 20:23:19  lievre
   Maximum Likelihood of the parameters involved in the model.  The    *** empty log message ***
   simplest model is the multinomial logistic model where pij is the  
   probabibility to be observed in state j at the second wave    Revision 1.104  2005/09/30 16:11:43  lievre
   conditional to be observed in state i at the first wave. Therefore    (Module): sump fixed, loop imx fixed, and simplifications.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): If the status is missing at the last wave but we know
   'age' is age and 'sex' is a covariate. If you want to have a more    that the person is alive, then we can code his/her status as -2
   complex model than "constant and age", you should modify the program    (instead of missing=-1 in earlier versions) and his/her
   where the markup *Covariates have to be included here again* invites    contributions to the likelihood is 1 - Prob of dying from last
   you to do it.  More covariates you add, slower the    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   convergence.    the healthy state at last known wave). Version is 0.98
   
   The advantage of this computer programme, compared to a simple    Revision 1.103  2005/09/30 15:54:49  lievre
   multinomial logistic model, is clear when the delay between waves is not    (Module): sump fixed, loop imx fixed, and simplifications.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.102  2004/09/15 17:31:30  brouard
   account using an interpolation or extrapolation.      Add the possibility to read data file including tab characters.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.101  2004/09/15 10:38:38  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Fix on curr_time
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.100  2004/07/12 18:29:06  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Add version for Mac OS X. Just define UNIX in Makefile
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.99  2004/06/05 08:57:40  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.98  2004/05/16 15:05:56  brouard
   of the life expectancies. It also computes the prevalence limits.    New version 0.97 . First attempt to estimate force of mortality
      directly from the data i.e. without the need of knowing the health
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    state at each age, but using a Gompertz model: log u =a + b*age .
            Institut national d'études démographiques, Paris.    This is the basic analysis of mortality and should be done before any
   This software have been partly granted by Euro-REVES, a concerted action    other analysis, in order to test if the mortality estimated from the
   from the European Union.    cross-longitudinal survey is different from the mortality estimated
   It is copyrighted identically to a GNU software product, ie programme and    from other sources like vital statistic data.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    The same imach parameter file can be used but the option for mle should be -3.
   **********************************************************************/  
      Agnès, who wrote this part of the code, tried to keep most of the
 #include <math.h>    former routines in order to include the new code within the former code.
 #include <stdio.h>  
 #include <stdlib.h>    The output is very simple: only an estimate of the intercept and of
 #include <unistd.h>    the slope with 95% confident intervals.
   
 #define MAXLINE 256    Current limitations:
 #define GNUPLOTPROGRAM "wgnuplot"    A) Even if you enter covariates, i.e. with the
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define FILENAMELENGTH 80    B) There is no computation of Life Expectancy nor Life Table.
 /*#define DEBUG*/  
 #define windows    Revision 1.97  2004/02/20 13:25:42  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Version 0.96d. Population forecasting command line is (temporarily)
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    suppressed.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Repository):
 #define NCOVMAX 8 /* Maximum number of covariates */    (Repository): Using imachwizard code to output a more meaningful covariance
 #define MAXN 20000    matrix (cov(a12,c31) instead of numbers.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.94  2003/06/27 13:00:02  brouard
 #define AGEBASE 40    Just cleaning
   
     Revision 1.93  2003/06/25 16:33:55  brouard
 int erreur; /* Error number */    (Module): On windows (cygwin) function asctime_r doesn't
 int nvar;    exist so I changed back to asctime which exists.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Version 0.96b
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.92  2003/06/25 16:30:45  brouard
 int ndeath=1; /* Number of dead states */    (Module): On windows (cygwin) function asctime_r doesn't
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    exist so I changed back to asctime which exists.
 int popbased=0;  
     Revision 1.91  2003/06/25 15:30:29  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    * imach.c (Repository): Duplicated warning errors corrected.
 int maxwav; /* Maxim number of waves */    (Repository): Elapsed time after each iteration is now output. It
 int jmin, jmax; /* min, max spacing between 2 waves */    helps to forecast when convergence will be reached. Elapsed time
 int mle, weightopt;    is stamped in powell.  We created a new html file for the graphs
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    concerning matrix of covariance. It has extension -cov.htm.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.90  2003/06/24 12:34:15  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Some bugs corrected for windows. Also, when
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    of the covariance matrix to be input.
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.89  2003/06/24 12:30:52  brouard
   char filerese[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
  FILE  *ficresvij;    mle=-1 a template is output in file "or"mypar.txt with the design
   char fileresv[FILENAMELENGTH];    of the covariance matrix to be input.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.87  2003/06/18 12:26:01  brouard
 #define FTOL 1.0e-10    Version 0.96
   
 #define NRANSI    Revision 1.86  2003/06/17 20:04:08  brouard
 #define ITMAX 200    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 #define TOL 2.0e-4  
     Revision 1.85  2003/06/17 13:12:43  brouard
 #define CGOLD 0.3819660    * imach.c (Repository): Check when date of death was earlier that
 #define ZEPS 1.0e-10    current date of interview. It may happen when the death was just
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 #define GOLD 1.618034    assuming that the date of death was just one stepm after the
 #define GLIMIT 100.0    interview.
 #define TINY 1.0e-20    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 static double maxarg1,maxarg2;    memory allocation. But we also truncated to 8 characters (left
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    truncation)
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Repository): No more line truncation errors.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.84  2003/06/13 21:44:43  brouard
 #define rint(a) floor(a+0.5)    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 static double sqrarg;    many times. Probs is memory consuming and must be used with
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    parcimony.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 int imx;    Revision 1.83  2003/06/10 13:39:11  lievre
 int stepm;    *** empty log message ***
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.82  2003/06/05 15:57:20  brouard
 int m,nb;    Add log in  imach.c and  fullversion number is now printed.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  */
 double **pmmij, ***probs, ***mobaverage;  /*
 double dateintmean=0;     Interpolated Markov Chain
   
 double *weight;    Short summary of the programme:
 int **s; /* Status */    
 double *agedc, **covar, idx;    This program computes Healthy Life Expectancies from
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    interviewed on their health status or degree of disability (in the
 double ftolhess; /* Tolerance for computing hessian */    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 /**************** split *************************/    (if any) in individual health status.  Health expectancies are
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    computed from the time spent in each health state according to a
 {    model. More health states you consider, more time is necessary to reach the
    char *s;                             /* pointer */    Maximum Likelihood of the parameters involved in the model.  The
    int  l1, l2;                         /* length counters */    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
    l1 = strlen( path );                 /* length of path */    conditional to be observed in state i at the first wave. Therefore
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #ifdef windows    'age' is age and 'sex' is a covariate. If you want to have a more
    s = strrchr( path, '\\' );           /* find last / */    complex model than "constant and age", you should modify the program
 #else    where the markup *Covariates have to be included here again* invites
    s = strrchr( path, '/' );            /* find last / */    you to do it.  More covariates you add, slower the
 #endif    convergence.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    The advantage of this computer programme, compared to a simple
       extern char       *getwd( );    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
       if ( getwd( dirc ) == NULL ) {    intermediate interview, the information is lost, but taken into
 #else    account using an interpolation or extrapolation.  
       extern char       *getcwd( );  
     hPijx is the probability to be observed in state i at age x+h
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    conditional to the observed state i at age x. The delay 'h' can be
 #endif    split into an exact number (nh*stepm) of unobserved intermediate
          return( GLOCK_ERROR_GETCWD );    states. This elementary transition (by month, quarter,
       }    semester or year) is modelled as a multinomial logistic.  The hPx
       strcpy( name, path );             /* we've got it */    matrix is simply the matrix product of nh*stepm elementary matrices
    } else {                             /* strip direcotry from path */    and the contribution of each individual to the likelihood is simply
       s++;                              /* after this, the filename */    hPijx.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Also this programme outputs the covariance matrix of the parameters but also
       strcpy( name, s );                /* save file name */    of the life expectancies. It also computes the stable prevalence. 
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    
       dirc[l1-l2] = 0;                  /* add zero */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    }             Institut national d'études démographiques, Paris.
    l1 = strlen( dirc );                 /* length of directory */    This software have been partly granted by Euro-REVES, a concerted action
 #ifdef windows    from the European Union.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    It is copyrighted identically to a GNU software product, ie programme and
 #else    software can be distributed freely for non commercial use. Latest version
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    can be accessed at http://euroreves.ined.fr/imach .
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    s++;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    strcpy(ext,s);                       /* save extension */    
    l1= strlen( name);    **********************************************************************/
    l2= strlen( s)+1;  /*
    strncpy( finame, name, l1-l2);    main
    finame[l1-l2]= 0;    read parameterfile
    return( 0 );                         /* we're done */    read datafile
 }    concatwav
     freqsummary
     if (mle >= 1)
 /******************************************/      mlikeli
     print results files
 void replace(char *s, char*t)    if mle==1 
 {       computes hessian
   int i;    read end of parameter file: agemin, agemax, bage, fage, estepm
   int lg=20;        begin-prev-date,...
   i=0;    open gnuplot file
   lg=strlen(t);    open html file
   for(i=0; i<= lg; i++) {    stable prevalence
     (s[i] = t[i]);     for age prevalim()
     if (t[i]== '\\') s[i]='/';    h Pij x
   }    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 int nbocc(char *s, char occ)    Variance-covariance of DFLE
 {    prevalence()
   int i,j=0;     movingaverage()
   int lg=20;    varevsij() 
   i=0;    if popbased==1 varevsij(,popbased)
   lg=strlen(s);    total life expectancies
   for(i=0; i<= lg; i++) {    Variance of stable prevalence
   if  (s[i] == occ ) j++;   end
   }  */
   return j;  
 }  
   
 void cutv(char *u,char *v, char*t, char occ)   
 {  #include <math.h>
   int i,lg,j,p=0;  #include <stdio.h>
   i=0;  #include <stdlib.h>
   for(j=0; j<=strlen(t)-1; j++) {  #include <string.h>
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #include <unistd.h>
   }  
   #include <sys/types.h>
   lg=strlen(t);  #include <sys/stat.h>
   for(j=0; j<p; j++) {  #include <errno.h>
     (u[j] = t[j]);  extern int errno;
   }  
      u[p]='\0';  /* #include <sys/time.h> */
   #include <time.h>
    for(j=0; j<= lg; j++) {  #include "timeval.h"
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /********************** nrerror ********************/  #define MAXLINE 256
   
 void nrerror(char error_text[])  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   fprintf(stderr,"ERREUR ...\n");  #define FILENAMELENGTH 132
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define NINTERVMAX 8
   if (!v) nrerror("allocation failure in vector");  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   return v-nl+NR_END;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /************************ free vector ******************/  #define YEARM 12. /* Number of months per year */
 void free_vector(double*v, int nl, int nh)  #define AGESUP 130
 {  #define AGEBASE 40
   free((FREE_ARG)(v+nl-NR_END));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef UNIX
   #define DIRSEPARATOR '/'
 /************************ivector *******************************/  #define CHARSEPARATOR "/"
 int *ivector(long nl,long nh)  #define ODIRSEPARATOR '\\'
 {  #else
   int *v;  #define DIRSEPARATOR '\\'
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define CHARSEPARATOR "\\"
   if (!v) nrerror("allocation failure in ivector");  #define ODIRSEPARATOR '/'
   return v-nl+NR_END;  #endif
 }  
   /* $Id$ */
 /******************free ivector **************************/  /* $State$ */
 void free_ivector(int *v, long nl, long nh)  
 {  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
   free((FREE_ARG)(v+nl-NR_END));  char fullversion[]="$Revision$ $Date$"; 
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 /******************* imatrix *******************************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int npar=NPARMAX;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int **m;  int popbased=0;
    
   /* allocate pointers to rows */  int *wav; /* Number of waves for this individuual 0 is possible */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int maxwav; /* Maxim number of waves */
   if (!m) nrerror("allocation failure 1 in matrix()");  int jmin, jmax; /* min, max spacing between 2 waves */
   m += NR_END;  int gipmx, gsw; /* Global variables on the number of contributions 
   m -= nrl;                     to the likelihood and the sum of weights (done by funcone)*/
    int mle, weightopt;
    int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   /* allocate rows and set pointers to them */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m[nrl] += NR_END;  double jmean; /* Mean space between 2 waves */
   m[nrl] -= ncl;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
   /* return pointer to array of pointers to rows */  int globpr; /* Global variable for printing or not */
   return m;  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 /****************** free_imatrix *************************/  char filerespow[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       int **m;  FILE *ficresilk;
       long nch,ncl,nrh,nrl;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
      /* free an int matrix allocated by imatrix() */  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  FILE *ficreseij;
   free((FREE_ARG) (m+nrl-NR_END));  char filerese[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /******************* matrix *******************************/  FILE  *ficresvpl;
 double **matrix(long nrl, long nrh, long ncl, long nch)  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double **m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char command[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  int  outcmd=0;
   m += NR_END;  
   m -= nrl;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filelog[FILENAMELENGTH]; /* Log file */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char filerest[FILENAMELENGTH];
   m[nrl] += NR_END;  char fileregp[FILENAMELENGTH];
   m[nrl] -= ncl;  char popfile[FILENAMELENGTH];
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   return m;  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /*************************free matrix ************************/  extern int gettimeofday();
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  extern long time();
   free((FREE_ARG)(m+nrl-NR_END));  char strcurr[80], strfor[80];
 }  
   #define NR_END 1
 /******************* ma3x *******************************/  #define FREE_ARG char*
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define FTOL 1.0e-10
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define NRANSI 
   double ***m;  #define ITMAX 200 
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define TOL 2.0e-4 
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define CGOLD 0.3819660 
   m -= nrl;  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GOLD 1.618034 
   m[nrl] += NR_END;  #define GLIMIT 100.0 
   m[nrl] -= ncl;  #define TINY 1.0e-20 
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    
   m[nrl][ncl] += NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m[nrl][ncl] -= nll;  #define rint(a) floor(a+0.5)
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  static double sqrarg;
    #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (i=nrl+1; i<=nrh; i++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int agegomp= AGEGOMP;
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  int imx; 
   }  int stepm=1;
   return m;  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /*************************free ma3x ************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  int m,nb;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  long *num;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   free((FREE_ARG)(m+nrl-NR_END));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 /***************** f1dim *************************/  double dateintmean=0;
 extern int ncom;  
 extern double *pcom,*xicom;  double *weight;
 extern double (*nrfunc)(double []);  int **s; /* Status */
    double *agedc, **covar, idx;
 double f1dim(double x)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  double *lsurv, *lpop, *tpop;
   int j;  
   double f;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double *xt;  double ftolhess; /* Tolerance for computing hessian */
    
   xt=vector(1,ncom);  /**************** split *************************/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   f=(*nrfunc)(xt);  {
   free_vector(xt,1,ncom);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   return f;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
 /*****************brent *************************/    int   l1, l2;                         /* length counters */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    l1 = strlen(path );                   /* length of path */
   int iter;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double a,b,d,etemp;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double fu,fv,fw,fx;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double ftemp;      strcpy( name, path );               /* we got the fullname name because no directory */
   double p,q,r,tol1,tol2,u,v,w,x,xm;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double e=0.0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
        /* get current working directory */
   a=(ax < cx ? ax : cx);      /*    extern  char* getcwd ( char *buf , int len);*/
   b=(ax > cx ? ax : cx);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   x=w=v=bx;        return( GLOCK_ERROR_GETCWD );
   fw=fv=fx=(*f)(x);      }
   for (iter=1;iter<=ITMAX;iter++) {      /* got dirc from getcwd*/
     xm=0.5*(a+b);      printf(" DIRC = %s \n",dirc);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    } else {                              /* strip direcotry from path */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      ss++;                               /* after this, the filename */
     printf(".");fflush(stdout);      l2 = strlen( ss );                  /* length of filename */
 #ifdef DEBUG      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      strcpy( name, ss );         /* save file name */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 #endif      dirc[l1-l2] = 0;                    /* add zero */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      printf(" DIRC2 = %s \n",dirc);
       *xmin=x;    }
       return fx;    /* We add a separator at the end of dirc if not exists */
     }    l1 = strlen( dirc );                  /* length of directory */
     ftemp=fu;    if( dirc[l1-1] != DIRSEPARATOR ){
     if (fabs(e) > tol1) {      dirc[l1] =  DIRSEPARATOR;
       r=(x-w)*(fx-fv);      dirc[l1+1] = 0; 
       q=(x-v)*(fx-fw);      printf(" DIRC3 = %s \n",dirc);
       p=(x-v)*q-(x-w)*r;    }
       q=2.0*(q-r);    ss = strrchr( name, '.' );            /* find last / */
       if (q > 0.0) p = -p;    if (ss >0){
       q=fabs(q);      ss++;
       etemp=e;      strcpy(ext,ss);                     /* save extension */
       e=d;      l1= strlen( name);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      l2= strlen(ss)+1;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      strncpy( finame, name, l1-l2);
       else {      finame[l1-l2]= 0;
         d=p/q;    }
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    return( 0 );                          /* we're done */
           d=SIGN(tol1,xm-x);  }
       }  
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /******************************************/
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  void replace_back_to_slash(char *s, char*t)
     fu=(*f)(u);  {
     if (fu <= fx) {    int i;
       if (u >= x) a=x; else b=x;    int lg=0;
       SHFT(v,w,x,u)    i=0;
         SHFT(fv,fw,fx,fu)    lg=strlen(t);
         } else {    for(i=0; i<= lg; i++) {
           if (u < x) a=u; else b=u;      (s[i] = t[i]);
           if (fu <= fw || w == x) {      if (t[i]== '\\') s[i]='/';
             v=w;    }
             w=u;  }
             fv=fw;  
             fw=fu;  int nbocc(char *s, char occ)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    int i,j=0;
             fv=fu;    int lg=20;
           }    i=0;
         }    lg=strlen(s);
   }    for(i=0; i<= lg; i++) {
   nrerror("Too many iterations in brent");    if  (s[i] == occ ) j++;
   *xmin=x;    }
   return fx;    return j;
 }  }
   
 /****************** mnbrak ***********************/  void cutv(char *u,char *v, char*t, char occ)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
             double (*func)(double))       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 {       gives u="abcedf" and v="ghi2j" */
   double ulim,u,r,q, dum;    int i,lg,j,p=0;
   double fu;    i=0;
      for(j=0; j<=strlen(t)-1; j++) {
   *fa=(*func)(*ax);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   *fb=(*func)(*bx);    }
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    lg=strlen(t);
       SHFT(dum,*fb,*fa,dum)    for(j=0; j<p; j++) {
       }      (u[j] = t[j]);
   *cx=(*bx)+GOLD*(*bx-*ax);    }
   *fc=(*func)(*cx);       u[p]='\0';
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);     for(j=0; j<= lg; j++) {
     q=(*bx-*cx)*(*fb-*fa);      if (j>=(p+1))(v[j-p-1] = t[j]);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  /********************** nrerror ********************/
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  void nrerror(char error_text[])
       fu=(*func)(u);  {
       if (fu < *fc) {    fprintf(stderr,"ERREUR ...\n");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    fprintf(stderr,"%s\n",error_text);
           SHFT(*fb,*fc,fu,(*func)(u))    exit(EXIT_FAILURE);
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /*********************** vector *******************/
       u=ulim;  double *vector(int nl, int nh)
       fu=(*func)(u);  {
     } else {    double *v;
       u=(*cx)+GOLD*(*cx-*bx);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
 /*************** linmin ************************/    free((FREE_ARG)(v+nl-NR_END));
   }
 int ncom;  
 double *pcom,*xicom;  /************************ivector *******************************/
 double (*nrfunc)(double []);  int *ivector(long nl,long nh)
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double brent(double ax, double bx, double cx,    if (!v) nrerror("allocation failure in ivector");
                double (*f)(double), double tol, double *xmin);    return v-nl+NR_END;
   double f1dim(double x);  }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  /******************free ivector **************************/
   int j;  void free_ivector(int *v, long nl, long nh)
   double xx,xmin,bx,ax;  {
   double fx,fb,fa;    free((FREE_ARG)(v+nl-NR_END));
    }
   ncom=n;  
   pcom=vector(1,n);  /************************lvector *******************************/
   xicom=vector(1,n);  long *lvector(long nl,long nh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    long *v;
     pcom[j]=p[j];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     xicom[j]=xi[j];    if (!v) nrerror("allocation failure in ivector");
   }    return v-nl+NR_END;
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /******************free lvector **************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  void free_lvector(long *v, long nl, long nh)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /******************* imatrix *******************************/
     p[j] += xi[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free_vector(xicom,1,n);  { 
   free_vector(pcom,1,n);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 }    int **m; 
     
 /*************** powell ************************/    /* allocate pointers to rows */ 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
             double (*func)(double []))    if (!m) nrerror("allocation failure 1 in matrix()"); 
 {    m += NR_END; 
   void linmin(double p[], double xi[], int n, double *fret,    m -= nrl; 
               double (*func)(double []));    
   int i,ibig,j;    
   double del,t,*pt,*ptt,*xit;    /* allocate rows and set pointers to them */ 
   double fp,fptt;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double *xits;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   pt=vector(1,n);    m[nrl] += NR_END; 
   ptt=vector(1,n);    m[nrl] -= ncl; 
   xit=vector(1,n);    
   xits=vector(1,n);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   *fret=(*func)(p);    
   for (j=1;j<=n;j++) pt[j]=p[j];    /* return pointer to array of pointers to rows */ 
   for (*iter=1;;++(*iter)) {    return m; 
     fp=(*fret);  } 
     ibig=0;  
     del=0.0;  /****************** free_imatrix *************************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  void free_imatrix(m,nrl,nrh,ncl,nch)
     for (i=1;i<=n;i++)        int **m;
       printf(" %d %.12f",i, p[i]);        long nch,ncl,nrh,nrl; 
     printf("\n");       /* free an int matrix allocated by imatrix() */ 
     for (i=1;i<=n;i++) {  { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       fptt=(*fret);    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
       printf("fret=%lf \n",*fret);  
 #endif  /******************* matrix *******************************/
       printf("%d",i);fflush(stdout);  double **matrix(long nrl, long nrh, long ncl, long nch)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         del=fabs(fptt-(*fret));    double **m;
         ibig=i;  
       }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("%d %.12e",i,(*fret));    m += NR_END;
       for (j=1;j<=n;j++) {    m -= nrl;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for(j=1;j<=n;j++)    m[nrl] += NR_END;
         printf(" p=%.12e",p[j]);    m[nrl] -= ncl;
       printf("\n");  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #ifdef DEBUG     */
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /*************************free matrix ************************/
       printf("Max: %.12e",(*func)(p));  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("\n");    free((FREE_ARG)(m+nrl-NR_END));
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /******************* ma3x *******************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       }    double ***m;
 #endif  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
       free_vector(xit,1,n);    m += NR_END;
       free_vector(xits,1,n);    m -= nrl;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       return;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m[nrl] -= ncl;
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     fptt=(*func)(ptt);    m[nrl][ncl] += NR_END;
     if (fptt < fp) {    m[nrl][ncl] -= nll;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    for (j=ncl+1; j<=nch; j++) 
       if (t < 0.0) {      m[nrl][j]=m[nrl][j-1]+nlay;
         linmin(p,xit,n,fret,func);    
         for (j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) {
           xi[j][ibig]=xi[j][n];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
           xi[j][n]=xit[j];      for (j=ncl+1; j<=nch; j++) 
         }        m[i][j]=m[i][j-1]+nlay;
 #ifdef DEBUG    }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return m; 
         for(j=1;j<=n;j++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
           printf(" %.12e",xit[j]);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         printf("\n");    */
 #endif  }
       }  
     }  /*************************free ma3x ************************/
   }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 }  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 /**** Prevalence limit ****************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*************** function subdirf ***********/
      matrix by transitions matrix until convergence is reached */  char *subdirf(char fileres[])
   {
   int i, ii,j,k;    /* Caution optionfilefiname is hidden */
   double min, max, maxmin, maxmax,sumnew=0.;    strcpy(tmpout,optionfilefiname);
   double **matprod2();    strcat(tmpout,"/"); /* Add to the right */
   double **out, cov[NCOVMAX], **pmij();    strcat(tmpout,fileres);
   double **newm;    return tmpout;
   double agefin, delaymax=50 ; /* Max number of years to converge */  }
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*************** function subdirf2 ***********/
     for (j=1;j<=nlstate+ndeath;j++){  char *subdirf2(char fileres[], char *preop)
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
     }    
     /* Caution optionfilefiname is hidden */
    cov[1]=1.;    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,preop);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcat(tmpout,fileres);
     newm=savm;    return tmpout;
     /* Covariates have to be included here again */  }
      cov[2]=agefin;  
    /*************** function subdirf3 ***********/
       for (k=1; k<=cptcovn;k++) {  char *subdirf3(char fileres[], char *preop, char *preop2)
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    
       }    /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovprod;k++)    strcat(tmpout,"/");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,preop);
     strcat(tmpout,preop2);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcat(tmpout,fileres);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    return tmpout;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /***************** f1dim *************************/
     savm=oldm;  extern int ncom; 
     oldm=newm;  extern double *pcom,*xicom;
     maxmax=0.;  extern double (*nrfunc)(double []); 
     for(j=1;j<=nlstate;j++){   
       min=1.;  double f1dim(double x) 
       max=0.;  { 
       for(i=1; i<=nlstate; i++) {    int j; 
         sumnew=0;    double f;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double *xt; 
         prlim[i][j]= newm[i][j]/(1-sumnew);   
         max=FMAX(max,prlim[i][j]);    xt=vector(1,ncom); 
         min=FMIN(min,prlim[i][j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       }    f=(*nrfunc)(xt); 
       maxmin=max-min;    free_vector(xt,1,ncom); 
       maxmax=FMAX(maxmax,maxmin);    return f; 
     }  } 
     if(maxmax < ftolpl){  
       return prlim;  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   }  { 
 }    int iter; 
     double a,b,d,etemp;
 /*************** transition probabilities ***************/    double fu,fv,fw,fx;
     double ftemp;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 {    double e=0.0; 
   double s1, s2;   
   /*double t34;*/    a=(ax < cx ? ax : cx); 
   int i,j,j1, nc, ii, jj;    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
     for(i=1; i<= nlstate; i++){    fw=fv=fx=(*f)(x); 
     for(j=1; j<i;j++){    for (iter=1;iter<=ITMAX;iter++) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      xm=0.5*(a+b); 
         /*s2 += param[i][j][nc]*cov[nc];*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      printf(".");fflush(stdout);
       }      fprintf(ficlog,".");fflush(ficlog);
       ps[i][j]=s2;  #ifdef DEBUG
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=i+1; j<=nlstate+ndeath;j++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #endif
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        *xmin=x; 
       }        return fx; 
       ps[i][j]=s2;      } 
     }      ftemp=fu;
   }      if (fabs(e) > tol1) { 
     /*ps[3][2]=1;*/        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   for(i=1; i<= nlstate; i++){        p=(x-v)*q-(x-w)*r; 
      s1=0;        q=2.0*(q-r); 
     for(j=1; j<i; j++)        if (q > 0.0) p = -p; 
       s1+=exp(ps[i][j]);        q=fabs(q); 
     for(j=i+1; j<=nlstate+ndeath; j++)        etemp=e; 
       s1+=exp(ps[i][j]);        e=d; 
     ps[i][i]=1./(s1+1.);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(j=1; j<i; j++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        else { 
     for(j=i+1; j<=nlstate+ndeath; j++)          d=p/q; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          u=x+d; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          if (u-a < tol2 || b-u < tol2) 
   } /* end i */            d=SIGN(tol1,xm-x); 
         } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      } else { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ps[ii][jj]=0;      } 
       ps[ii][ii]=1;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
   }      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          SHFT(fv,fw,fx,fu) 
     for(jj=1; jj<= nlstate+ndeath; jj++){          } else { 
      printf("%lf ",ps[ii][jj]);            if (u < x) a=u; else b=u; 
    }            if (fu <= fw || w == x) { 
     printf("\n ");              v=w; 
     }              w=u; 
     printf("\n ");printf("%lf ",cov[2]);*/              fv=fw; 
 /*              fw=fu; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);            } else if (fu <= fv || v == x || v == w) { 
   goto end;*/              v=u; 
     return ps;              fv=fu; 
 }            } 
           } 
 /**************** Product of 2 matrices ******************/    } 
     nrerror("Too many iterations in brent"); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    *xmin=x; 
 {    return fx; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /****************** mnbrak ***********************/
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   long i, j, k;              double (*func)(double)) 
   for(i=nrl; i<= nrh; i++)  { 
     for(k=ncolol; k<=ncoloh; k++)    double ulim,u,r,q, dum;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double fu; 
         out[i][k] +=in[i][j]*b[j][k];   
     *fa=(*func)(*ax); 
   return out;    *fb=(*func)(*bx); 
 }    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
 /************* Higher Matrix Product ***************/        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    *fc=(*func)(*cx); 
 {    while (*fb > *fc) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      r=(*bx-*ax)*(*fb-*fc); 
      duration (i.e. until      q=(*bx-*cx)*(*fb-*fa); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      (typically every 2 years instead of every month which is too big).      ulim=(*bx)+GLIMIT*(*cx-*bx); 
      Model is determined by parameters x and covariates have to be      if ((*bx-u)*(u-*cx) > 0.0) { 
      included manually here.        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
      */        fu=(*func)(u); 
         if (fu < *fc) { 
   int i, j, d, h, k;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double **out, cov[NCOVMAX];            SHFT(*fb,*fc,fu,(*func)(u)) 
   double **newm;            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /* Hstepm could be zero and should return the unit matrix */        u=ulim; 
   for (i=1;i<=nlstate+ndeath;i++)        fu=(*func)(u); 
     for (j=1;j<=nlstate+ndeath;j++){      } else { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        u=(*cx)+GOLD*(*cx-*bx); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fu=(*func)(u); 
     }      } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      SHFT(*ax,*bx,*cx,u) 
   for(h=1; h <=nhstepm; h++){        SHFT(*fa,*fb,*fc,fu) 
     for(d=1; d <=hstepm; d++){        } 
       newm=savm;  } 
       /* Covariates have to be included here again */  
       cov[1]=1.;  /*************** linmin ************************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int ncom; 
       for (k=1; k<=cptcovage;k++)  double *pcom,*xicom;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  double (*nrfunc)(double []); 
       for (k=1; k<=cptcovprod;k++)   
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
     double brent(double ax, double bx, double cx, 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/                 double (*f)(double), double tol, double *xmin); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double f1dim(double x); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                double *fc, double (*func)(double)); 
       savm=oldm;    int j; 
       oldm=newm;    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
     for(i=1; i<=nlstate+ndeath; i++)   
       for(j=1;j<=nlstate+ndeath;j++) {    ncom=n; 
         po[i][j][h]=newm[i][j];    pcom=vector(1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    xicom=vector(1,n); 
          */    nrfunc=func; 
       }    for (j=1;j<=n;j++) { 
   } /* end h */      pcom[j]=p[j]; 
   return po;      xicom[j]=xi[j]; 
 }    } 
     ax=0.0; 
     xx=1.0; 
 /*************** log-likelihood *************/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 double func( double *x)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 {  #ifdef DEBUG
   int i, ii, j, k, mi, d, kk;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **out;  #endif
   double sw; /* Sum of weights */    for (j=1;j<=n;j++) { 
   double lli; /* Individual log likelihood */      xi[j] *= xmin; 
   long ipmx;      p[j] += xi[j]; 
   /*extern weight */    } 
   /* We are differentiating ll according to initial status */    free_vector(xicom,1,n); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    free_vector(pcom,1,n); 
   /*for(i=1;i<imx;i++)  } 
     printf(" %d\n",s[4][i]);  
   */  char *asc_diff_time(long time_sec, char ascdiff[])
   cov[1]=1.;  {
     long sec_left, days, hours, minutes;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    days = (time_sec) / (60*60*24);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    sec_left = (time_sec) % (60*60*24);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    hours = (sec_left) / (60*60) ;
     for(mi=1; mi<= wav[i]-1; mi++){    sec_left = (sec_left) %(60*60);
       for (ii=1;ii<=nlstate+ndeath;ii++)    minutes = (sec_left) /60;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    sec_left = (sec_left) % (60);
       for(d=0; d<dh[mi][i]; d++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         newm=savm;    return ascdiff;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*************** powell ************************/
         }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                      double (*func)(double [])) 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    void linmin(double p[], double xi[], int n, double *fret, 
         savm=oldm;                double (*func)(double [])); 
         oldm=newm;    int i,ibig,j; 
            double del,t,*pt,*ptt,*xit;
            double fp,fptt;
       } /* end mult */    double *xits;
          int niterf, itmp;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    pt=vector(1,n); 
       ipmx +=1;    ptt=vector(1,n); 
       sw += weight[i];    xit=vector(1,n); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    xits=vector(1,n); 
     } /* end of wave */    *fret=(*func)(p); 
   } /* end of individual */    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      fp=(*fret); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      ibig=0; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      del=0.0; 
   return -l;      last_time=curr_time;
 }      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 /*********** Maximum Likelihood Estimation ***************/      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))     for (i=1;i<=n;i++) {
 {        printf(" %d %.12f",i, p[i]);
   int i,j, iter;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double **xi,*delti;        fprintf(ficrespow," %.12lf", p[i]);
   double fret;      }
   xi=matrix(1,npar,1,npar);      printf("\n");
   for (i=1;i<=npar;i++)      fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++)      fprintf(ficrespow,"\n");fflush(ficrespow);
       xi[i][j]=(i==j ? 1.0 : 0.0);      if(*iter <=3){
   printf("Powell\n");        tm = *localtime(&curr_time.tv_sec);
   powell(p,xi,npar,ftol,&iter,&fret,func);        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        forecast_time=curr_time; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 /**** Computes Hessian and covariance matrix ***/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        for(niterf=10;niterf<=30;niterf+=10){
 {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double  **a,**y,*x,pd;          tmf = *localtime(&forecast_time.tv_sec);
   double **hess;  /*      asctime_r(&tmf,strfor); */
   int i, j,jk;          strcpy(strfor,asctime(&tmf));
   int *indx;          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
   double hessii(double p[], double delta, int theta, double delti[]);          strfor[itmp-1]='\0';
   double hessij(double p[], double delti[], int i, int j);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        }
       }
   hess=matrix(1,npar,1,npar);      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   printf("\nCalculation of the hessian matrix. Wait...\n");        fptt=(*fret); 
   for (i=1;i<=npar;i++){  #ifdef DEBUG
     printf("%d",i);fflush(stdout);        printf("fret=%lf \n",*fret);
     hess[i][i]=hessii(p,ftolhess,i,delti);        fprintf(ficlog,"fret=%lf \n",*fret);
     /*printf(" %f ",p[i]);*/  #endif
     /*printf(" %lf ",hess[i][i]);*/        printf("%d",i);fflush(stdout);
   }        fprintf(ficlog,"%d",i);fflush(ficlog);
          linmin(p,xit,n,fret,func); 
   for (i=1;i<=npar;i++) {        if (fabs(fptt-(*fret)) > del) { 
     for (j=1;j<=npar;j++)  {          del=fabs(fptt-(*fret)); 
       if (j>i) {          ibig=i; 
         printf(".%d%d",i,j);fflush(stdout);        } 
         hess[i][j]=hessij(p,delti,i,j);  #ifdef DEBUG
         hess[j][i]=hess[i][j];            printf("%d %.12e",i,(*fret));
         /*printf(" %lf ",hess[i][j]);*/        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
   printf("\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for(j=1;j<=n;j++) {
            printf(" p=%.12e",p[j]);
   a=matrix(1,npar,1,npar);          fprintf(ficlog," p=%.12e",p[j]);
   y=matrix(1,npar,1,npar);        }
   x=vector(1,npar);        printf("\n");
   indx=ivector(1,npar);        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++)  #endif
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } 
   ludcmp(a,npar,indx,&pd);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {        int k[2],l;
     for (i=1;i<=npar;i++) x[i]=0;        k[0]=1;
     x[j]=1;        k[1]=-1;
     lubksb(a,npar,indx,x);        printf("Max: %.12e",(*func)(p));
     for (i=1;i<=npar;i++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
       matcov[i][j]=x[i];        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
         }
   printf("\n#Hessian matrix#\n");        printf("\n");
   for (i=1;i<=npar;i++) {        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++) {        for(l=0;l<=1;l++) {
       printf("%.3e ",hess[i][j]);          for (j=1;j<=n;j++) {
     }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     printf("\n");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   /* Recompute Inverse */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        }
   ludcmp(a,npar,indx,&pd);  #endif
   
   /*  printf("\n#Hessian matrix recomputed#\n");  
         free_vector(xit,1,n); 
   for (j=1;j<=npar;j++) {        free_vector(xits,1,n); 
     for (i=1;i<=npar;i++) x[i]=0;        free_vector(ptt,1,n); 
     x[j]=1;        free_vector(pt,1,n); 
     lubksb(a,npar,indx,x);        return; 
     for (i=1;i<=npar;i++){      } 
       y[i][j]=x[i];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       printf("%.3e ",y[i][j]);      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
     printf("\n");        xit[j]=p[j]-pt[j]; 
   }        pt[j]=p[j]; 
   */      } 
       fptt=(*func)(ptt); 
   free_matrix(a,1,npar,1,npar);      if (fptt < fp) { 
   free_matrix(y,1,npar,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   free_vector(x,1,npar);        if (t < 0.0) { 
   free_ivector(indx,1,npar);          linmin(p,xit,n,fret,func); 
   free_matrix(hess,1,npar,1,npar);          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
 }          }
   #ifdef DEBUG
 /*************** hessian matrix ****************/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double hessii( double x[], double delta, int theta, double delti[])          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 {          for(j=1;j<=n;j++){
   int i;            printf(" %.12e",xit[j]);
   int l=1, lmax=20;            fprintf(ficlog," %.12e",xit[j]);
   double k1,k2;          }
   double p2[NPARMAX+1];          printf("\n");
   double res;          fprintf(ficlog,"\n");
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #endif
   double fx;        }
   int k=0,kmax=10;      } 
   double l1;    } 
   } 
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  /**** Prevalence limit (stable prevalence)  ****************/
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     delts=delt;  {
     for(k=1 ; k <kmax; k=k+1){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       delt = delta*(l1*k);       matrix by transitions matrix until convergence is reached */
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;    int i, ii,j,k;
       p2[theta]=x[theta]-delt;    double min, max, maxmin, maxmax,sumnew=0.;
       k2=func(p2)-fx;    double **matprod2();
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double **out, cov[NCOVMAX], **pmij();
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double **newm;
          double agefin, delaymax=50 ; /* Max number of years to converge */
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for (ii=1;ii<=nlstate+ndeath;ii++)
 #endif      for (j=1;j<=nlstate+ndeath;j++){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;  
       }     cov[1]=1.;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */   
         k=kmax; l=lmax*10.;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      newm=savm;
         delts=delt;      /* Covariates have to be included here again */
       }       cov[2]=agefin;
     }    
   }        for (k=1; k<=cptcovn;k++) {
   delti[theta]=delts;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   return res;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          }
 }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 double hessij( double x[], double delti[], int thetai,int thetaj)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 {  
   int i;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int l=1, l1, lmax=20;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double k1,k2,k3,k4,res,fx;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double p2[NPARMAX+1];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int k;  
       savm=oldm;
   fx=func(x);      oldm=newm;
   for (k=1; k<=2; k++) {      maxmax=0.;
     for (i=1;i<=npar;i++) p2[i]=x[i];      for(j=1;j<=nlstate;j++){
     p2[thetai]=x[thetai]+delti[thetai]/k;        min=1.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        max=0.;
     k1=func(p2)-fx;        for(i=1; i<=nlstate; i++) {
            sumnew=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     k2=func(p2)-fx;          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        maxmin=max-min;
     k3=func(p2)-fx;        maxmax=FMAX(maxmax,maxmin);
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;      if(maxmax < ftolpl){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        return prlim;
     k4=func(p2)-fx;      }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    }
 #ifdef DEBUG  }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /*************** transition probabilities ***************/ 
   }  
   return res;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 }  {
     double s1, s2;
 /************** Inverse of matrix **************/    /*double t34;*/
 void ludcmp(double **a, int n, int *indx, double *d)    int i,j,j1, nc, ii, jj;
 {  
   int i,imax,j,k;      for(i=1; i<= nlstate; i++){
   double big,dum,sum,temp;        for(j=1; j<i;j++){
   double *vv;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              /*s2 += param[i][j][nc]*cov[nc];*/
   vv=vector(1,n);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   *d=1.0;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   for (i=1;i<=n;i++) {          }
     big=0.0;          ps[i][j]=s2;
     for (j=1;j<=n;j++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       if ((temp=fabs(a[i][j])) > big) big=temp;        }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for(j=i+1; j<=nlstate+ndeath;j++){
     vv[i]=1.0/big;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (j=1;j<=n;j++) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     for (i=1;i<j;i++) {          }
       sum=a[i][j];          ps[i][j]=s2;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;      }
     }      /*ps[3][2]=1;*/
     big=0.0;      
     for (i=j;i<=n;i++) {      for(i=1; i<= nlstate; i++){
       sum=a[i][j];        s1=0;
       for (k=1;k<j;k++)        for(j=1; j<i; j++)
         sum -= a[i][k]*a[k][j];          s1+=exp(ps[i][j]);
       a[i][j]=sum;        for(j=i+1; j<=nlstate+ndeath; j++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {          s1+=exp(ps[i][j]);
         big=dum;        ps[i][i]=1./(s1+1.);
         imax=i;        for(j=1; j<i; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        for(j=i+1; j<=nlstate+ndeath; j++)
     if (j != imax) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1;k<=n;k++) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         dum=a[imax][k];      } /* end i */
         a[imax][k]=a[j][k];      
         a[j][k]=dum;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       }        for(jj=1; jj<= nlstate+ndeath; jj++){
       *d = -(*d);          ps[ii][jj]=0;
       vv[imax]=vv[j];          ps[ii][ii]=1;
     }        }
     indx[j]=imax;      }
     if (a[j][j] == 0.0) a[j][j]=TINY;      
     if (j != n) {  
       dum=1.0/(a[j][j]);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     }  /*         printf("ddd %lf ",ps[ii][jj]); */
   }  /*       } */
   free_vector(vv,1,n);  /* Doesn't work */  /*       printf("\n "); */
 ;  /*        } */
 }  /*        printf("\n ");printf("%lf ",cov[2]); */
          /*
 void lubksb(double **a, int n, int *indx, double b[])        for(i=1; i<= npar; i++) printf("%f ",x[i]);
 {        goto end;*/
   int i,ii=0,ip,j;      return ps;
   double sum;  }
    
   for (i=1;i<=n;i++) {  /**************** Product of 2 matrices ******************/
     ip=indx[i];  
     sum=b[ip];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     b[ip]=b[i];  {
     if (ii)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     else if (sum) ii=i;    /* in, b, out are matrice of pointers which should have been initialized 
     b[i]=sum;       before: only the contents of out is modified. The function returns
   }       a pointer to pointers identical to out */
   for (i=n;i>=1;i--) {    long i, j, k;
     sum=b[i];    for(i=nrl; i<= nrh; i++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      for(k=ncolol; k<=ncoloh; k++)
     b[i]=sum/a[i][i];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   }          out[i][k] +=in[i][j]*b[j][k];
 }  
     return out;
 /************ Frequencies ********************/  }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */  
    /************* Higher Matrix Product ***************/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double *pp;  {
   double pos, k2, dateintsum=0,k2cpt=0;    /* Computes the transition matrix starting at age 'age' over 
   FILE *ficresp;       'nhstepm*hstepm*stepm' months (i.e. until
   char fileresp[FILENAMELENGTH];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
   pp=vector(1,nlstate);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       (typically every 2 years instead of every month which is too big 
   strcpy(fileresp,"p");       for the memory).
   strcat(fileresp,fileres);       Model is determined by parameters x and covariates have to be 
   if((ficresp=fopen(fileresp,"w"))==NULL) {       included manually here. 
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);       */
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int i, j, d, h, k;
   j1=0;    double **out, cov[NCOVMAX];
      double **newm;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
   for(k1=1; k1<=j;k1++){      for (j=1;j<=nlstate+ndeath;j++){
     for(i1=1; i1<=ncodemax[k1];i1++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
       j1++;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      }
         scanf("%d", i);*/    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (i=-1; i<=nlstate+ndeath; i++)      for(h=1; h <=nhstepm; h++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for(d=1; d <=hstepm; d++){
           for(m=agemin; m <= agemax+3; m++)        newm=savm;
             freq[i][jk][m]=0;        /* Covariates have to be included here again */
              cov[1]=1.;
       dateintsum=0;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       k2cpt=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (i=1; i<=imx; i++) {        for (k=1; k<=cptcovage;k++)
         bool=1;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if  (cptcovn>0) {        for (k=1; k<=cptcovprod;k++)
           for (z1=1; z1<=cptcoveff; z1++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;  
         }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         if (bool==1) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           for(m=firstpass; m<=lastpass; m++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
             k2=anint[m][i]+(mint[m][i]/12.);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        savm=oldm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;        oldm=newm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;      }
               if (m<lastpass) {      for(i=1; i<=nlstate+ndeath; i++)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(j=1;j<=nlstate+ndeath;j++) {
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          po[i][j][h]=newm[i][j];
               }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
                         */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        }
                 dateintsum=dateintsum+k2;    } /* end h */
                 k2cpt++;    return po;
               }  }
             }  
           }  
         }  /*************** log-likelihood *************/
       }  double func( double *x)
          {
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
       if  (cptcovn>0) {    double **out;
         fprintf(ficresp, "\n#********** Variable ");    double sw; /* Sum of weights */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double lli; /* Individual log likelihood */
         fprintf(ficresp, "**********\n#");    int s1, s2;
       }    double bbh, survp;
       for(i=1; i<=nlstate;i++)    long ipmx;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /*extern weight */
       fprintf(ficresp, "\n");    /* We are differentiating ll according to initial status */
          /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /*for(i=1;i<imx;i++) 
         if(i==(int)agemax+3)      printf(" %d\n",s[4][i]);
           printf("Total");    */
         else    cov[1]=1.;
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];    if(mle==1){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=-1, pos=0; m <=0 ; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             pos += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
           if(pp[jk]>=1.e-10)            for (j=1;j<=nlstate+ndeath;j++){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            }
         }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
         for(jk=1; jk <=nlstate ; jk++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for (kk=1; kk<=cptcovage;kk++) {
             pp[jk] += freq[jk][m][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1,pos=0; jk <=nlstate ; jk++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           pos += pp[jk];            savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           if(pos>=1.e-5)          } /* end mult */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        
           else          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          /* But now since version 0.9 we anticipate for bias at large stepm.
           if( i <= (int) agemax){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             if(pos>=1.e-5){           * (in months) between two waves is not a multiple of stepm, we rounded to 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);           * the nearest (and in case of equal distance, to the lowest) interval but now
               probs[i][jk][j1]= pp[jk]/pos;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             }           * probability in order to take into account the bias as a fraction of the way
             else           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);           * -stepm/2 to stepm/2 .
           }           * For stepm=1 the results are the same as for previous versions of Imach.
         }           * For stepm > 1 the results are less biased than in previous versions. 
                   */
         for(jk=-1; jk <=nlstate+ndeath; jk++)          s1=s[mw[mi][i]][i];
           for(m=-1; m <=nlstate+ndeath; m++)          s2=s[mw[mi+1][i]][i];
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          bbh=(double)bh[mi][i]/(double)stepm; 
         if(i <= (int) agemax)          /* bias bh is positive if real duration
           fprintf(ficresp,"\n");           * is higher than the multiple of stepm and negative otherwise.
         printf("\n");           */
       }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          if( s2 > nlstate){ 
   }            /* i.e. if s2 is a death state and if the date of death is known 
   dateintmean=dateintsum/k2cpt;               then the contribution to the likelihood is the probability to 
                 die between last step unit time and current  step unit time, 
   fclose(ficresp);               which is also equal to probability to die before dh 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);               minus probability to die before dh-stepm . 
   free_vector(pp,1,nlstate);               In version up to 0.92 likelihood was computed
            as if date of death was unknown. Death was treated as any other
   /* End of Freq */          health state: the date of the interview describes the actual state
 }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 /************ Prevalence ********************/          (healthy, disable or death) and IMaCh was corrected; but when we
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          introduced the exact date of death then we should have modified
 {  /* Some frequencies */          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          stepm. It is no more the probability to die between last interview
   double ***freq; /* Frequencies */          and month of death but the probability to survive from last
   double *pp;          interview up to one month before death multiplied by the
   double pos, k2;          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
   pp=vector(1,nlstate);          mortality artificially. The bad side is that we add another loop
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          which slows down the processing. The difference can be up to 10%
            lower mortality.
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            */
   j1=0;            lli=log(out[s1][s2] - savm[s1][s2]);
    
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
  for(k1=1; k1<=j;k1++){              survp += out[s1][j];
     for(i1=1; i1<=ncodemax[k1];i1++){            lli= survp;
       j1++;          }
            
       for (i=-1; i<=nlstate+ndeath; i++)            else if  (s2==-4) {
         for (jk=-1; jk<=nlstate+ndeath; jk++)              for (j=3,survp=0. ; j<=nlstate; j++) 
           for(m=agemin; m <= agemax+3; m++)              survp += out[s1][j];
             freq[i][jk][m]=0;            lli= survp;
                }
       for (i=1; i<=imx; i++) {          
         bool=1;          else if  (s2==-5) {
         if  (cptcovn>0) {            for (j=1,survp=0. ; j<=2; j++) 
           for (z1=1; z1<=cptcoveff; z1++)              survp += out[s1][j];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            lli= survp;
               bool=0;          }
         }  
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){          else{
             k2=anint[m][i]+(mint[m][i]/12.);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          } 
               if(agev[m][i]==1) agev[m][i]=agemax+2;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          /*if(lli ==000.0)*/
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             }          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
         for(i=(int)agemin; i <= (int)agemax+3; i++){      } /* end of individual */
           for(jk=1; jk <=nlstate ; jk++){    }  else if(mle==2){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
           for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             for(m=-1, pos=0; m <=0 ; m++)            for (j=1;j<=nlstate+ndeath;j++){
             pos += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
          for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<=dh[mi][i]; d++){
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            newm=savm;
              pp[jk] += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          }            for (kk=1; kk<=cptcovage;kk++) {
                        cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          for(jk=1; jk <=nlstate ; jk++){                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            if( i <= (int) agemax){            savm=oldm;
              if(pos>=1.e-5){            oldm=newm;
                probs[i][jk][j1]= pp[jk]/pos;          } /* end mult */
              }        
            }          s1=s[mw[mi][i]][i];
          }          s2=s[mw[mi+1][i]][i];
                    bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }          ipmx +=1;
   }          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      } /* end of individual */
   free_vector(pp,1,nlstate);    }  else if(mle==3){  /* exponential inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }  /* End of Freq */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************* Waves Concatenation ***************/          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            }
      Death is a valid wave (if date is known).          for(d=0; d<dh[mi][i]; d++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            newm=savm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      and mw[mi+1][i]. dh depends on stepm.            for (kk=1; kk<=cptcovage;kk++) {
      */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   int i, mi, m;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      double sum=0., jmean=0.;*/            savm=oldm;
             oldm=newm;
   int j, k=0,jk, ju, jl;          } /* end mult */
   double sum=0.;        
   jmin=1e+5;          s1=s[mw[mi][i]][i];
   jmax=-1;          s2=s[mw[mi+1][i]][i];
   jmean=0.;          bbh=(double)bh[mi][i]/(double)stepm; 
   for(i=1; i<=imx; i++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     mi=0;          ipmx +=1;
     m=firstpass;          sw += weight[i];
     while(s[m][i] <= nlstate){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(s[m][i]>=1)        } /* end of wave */
         mw[++mi][i]=m;      } /* end of individual */
       if(m >=lastpass)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         break;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       else        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         m++;        for(mi=1; mi<= wav[i]-1; mi++){
     }/* end while */          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (s[m][i] > nlstate){            for (j=1;j<=nlstate+ndeath;j++){
       mi++;     /* Death is another wave */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /* if(mi==0)  never been interviewed correctly before death */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          /* Only death is a correct wave */            }
       mw[mi][i]=m;          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     wav[i]=mi;            for (kk=1; kk<=cptcovage;kk++) {
     if(mi==0)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            }
   }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=imx; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(mi=1; mi<wav[i];mi++){            savm=oldm;
       if (stepm <=0)            oldm=newm;
         dh[mi][i]=1;          } /* end mult */
       else{        
         if (s[mw[mi+1][i]][i] > nlstate) {          s1=s[mw[mi][i]][i];
           if (agedc[i] < 2*AGESUP) {          s2=s[mw[mi+1][i]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          if( s2 > nlstate){ 
           if(j==0) j=1;  /* Survives at least one month after exam */            lli=log(out[s1][s2] - savm[s1][s2]);
           k=k+1;          }else{
           if (j >= jmax) jmax=j;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           if (j <= jmin) jmin=j;          }
           sum=sum+j;          ipmx +=1;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         else{        } /* end of wave */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      } /* end of individual */
           k=k+1;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           if (j >= jmax) jmax=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           else if (j <= jmin)jmin=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for(mi=1; mi<= wav[i]-1; mi++){
           sum=sum+j;          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         jk= j/stepm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         jl= j -jk*stepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         ju= j -(jk+1)*stepm;            }
         if(jl <= -ju)          for(d=0; d<dh[mi][i]; d++){
           dh[mi][i]=jk;            newm=savm;
         else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=jk+1;            for (kk=1; kk<=cptcovage;kk++) {
         if(dh[mi][i]==0)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           dh[mi][i]=1; /* At least one step */            }
       }          
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmean=sum/k;            savm=oldm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            oldm=newm;
  }          } /* end mult */
 /*********** Tricode ****************************/        
 void tricode(int *Tvar, int **nbcode, int imx)          s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   int Ndum[20],ij=1, k, j, i;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int cptcode=0;          ipmx +=1;
   cptcoveff=0;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (k=0; k<19; k++) Ndum[k]=0;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   for (k=1; k<=7; k++) ncodemax[k]=0;        } /* end of wave */
       } /* end of individual */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    } /* End of if */
     for (i=1; i<=imx; i++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       ij=(int)(covar[Tvar[j]][i]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       Ndum[ij]++;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    return -l;
       if (ij > cptcode) cptcode=ij;  }
     }  
   /*************** log-likelihood *************/
     for (i=0; i<=cptcode; i++) {  double funcone( double *x)
       if(Ndum[i]!=0) ncodemax[j]++;  {
     }    /* Same as likeli but slower because of a lot of printf and if */
     ij=1;    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
     for (i=1; i<=ncodemax[j]; i++) {    double lli; /* Individual log likelihood */
       for (k=0; k<=19; k++) {    double llt;
         if (Ndum[k] != 0) {    int s1, s2;
           nbcode[Tvar[j]][ij]=k;    double bbh, survp;
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/    /*extern weight */
           ij++;    /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         if (ij > ncodemax[j]) break;    /*for(i=1;i<imx;i++) 
       }        printf(" %d\n",s[4][i]);
     }    */
   }      cov[1]=1.;
   
  for (k=0; k<19; k++) Ndum[k]=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
  for (i=1; i<=ncovmodel-2; i++) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       ij=Tvar[i];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       Ndum[ij]++;      for(mi=1; mi<= wav[i]-1; mi++){
     }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
  ij=1;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=10; i++) {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
    if((Ndum[i]!=0) && (i<=ncovcol)){          }
      Tvaraff[ij]=i;        for(d=0; d<dh[mi][i]; d++){
      ij++;          newm=savm;
    }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  }          for (kk=1; kk<=cptcovage;kk++) {
              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     cptcoveff=ij-1;          }
 }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*********** Health Expectancies ****************/          savm=oldm;
           oldm=newm;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        } /* end mult */
 {        
   /* Health expectancies */        s1=s[mw[mi][i]][i];
   int i, j, nhstepm, hstepm, h, nstepm, k;        s2=s[mw[mi+1][i]][i];
   double age, agelim, hf;        bbh=(double)bh[mi][i]/(double)stepm; 
   double ***p3mat;        /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficreseij,"# Health expectancies\n");         */
   fprintf(ficreseij,"# Age");        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   for(i=1; i<=nlstate;i++)          lli=log(out[s1][s2] - savm[s1][s2]);
     for(j=1; j<=nlstate;j++)        } else if (mle==1){
       fprintf(ficreseij," %1d-%1d",i,j);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   fprintf(ficreseij,"\n");        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   k=1;             /* For example stepm=6 months */        } else if(mle==3){  /* exponential inter-extrapolation */
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          lli=log(out[s1][s2]); /* Original formula */
      nhstepm is the number of hstepm from age to agelim        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
      nstepm is the number of stepm from age to agelin.          lli=log(out[s1][s2]); /* Original formula */
      Look at hpijx to understand the reason of that which relies in memory size        } /* End of if */
      and note for a fixed period like k years */        ipmx +=1;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        sw += weight[i];
      survival function given by stepm (the optimization length). Unfortunately it        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      means that if the survival funtion is printed only each two years of age and if  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        if(globpr){
      results. So we changed our mind and took the option of the best precision.          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   */   %10.6f %10.6f %10.6f ", \
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   agelim=AGESUP;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            llt +=ll[k]*gipmx/gsw;
     /* nhstepm age range expressed in number of stepm */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          fprintf(ficresilk," %10.6f\n", -llt);
     /* if (stepm >= YEARM) hstepm=1;*/        }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      } /* end of wave */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* end of individual */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    if(globpr==0){ /* First time we count the contributions and weights */
     for(i=1; i<=nlstate;i++)      gipmx=ipmx;
       for(j=1; j<=nlstate;j++)      gsw=sw;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    return -l;
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  }
         }  
     fprintf(ficreseij,"%3.0f",age );  
     for(i=1; i<=nlstate;i++)  /*************** function likelione ***********/
       for(j=1; j<=nlstate;j++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);  {
       }    /* This routine should help understanding what is done with 
     fprintf(ficreseij,"\n");       the selection of individuals/waves and
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       to check the exact contribution to the likelihood.
   }       Plotting could be done.
 }     */
     int k;
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    if(*globpri !=0){ /* Just counts and sums, no printings */
 {      strcpy(fileresilk,"ilk"); 
   /* Variance of health expectancies */      strcat(fileresilk,fileres);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double **newm;        printf("Problem with resultfile: %s\n", fileresilk);
   double **dnewm,**doldm;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   int i, j, nhstepm, hstepm, h, nstepm, kk;      }
   int k, cptcode;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double *xp;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double **gp, **gm;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double ***gradg, ***trgradg;      for(k=1; k<=nlstate; k++) 
   double ***p3mat;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double age,agelim, hf;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int theta;    }
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");    *fretone=(*funcone)(p);
   fprintf(ficresvij,"# Age");    if(*globpri !=0){
   for(i=1; i<=nlstate;i++)      fclose(ficresilk);
     for(j=1; j<=nlstate;j++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      fflush(fichtm); 
   fprintf(ficresvij,"\n");    } 
     return;
   xp=vector(1,npar);  }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  
    /*********** Maximum Likelihood Estimation ***************/
   kk=1;             /* For example stepm=6 months */  
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int i,j, iter;
      nhstepm is the number of hstepm from age to agelim    double **xi;
      nstepm is the number of stepm from age to agelin.    double fret;
      Look at hpijx to understand the reason of that which relies in memory size    double fretone; /* Only one call to likelihood */
      and note for a fixed period like k years */    /*  char filerespow[FILENAMELENGTH];*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    xi=matrix(1,npar,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    for (i=1;i<=npar;i++)
      means that if the survival funtion is printed only each two years of age and if      for (j=1;j<=npar;j++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        xi[i][j]=(i==j ? 1.0 : 0.0);
      results. So we changed our mind and took the option of the best precision.    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   */    strcpy(filerespow,"pow"); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */    strcat(filerespow,fileres);
   agelim = AGESUP;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("Problem with resultfile: %s\n", filerespow);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for (i=1;i<=nlstate;i++)
     gp=matrix(0,nhstepm,1,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
     gm=matrix(0,nhstepm,1,nlstate);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    powell(p,xi,npar,ftol,&iter,&fret,func);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    fclose(ficrespow);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  }
           prlim[i][i]=probs[(int)age][i][ij];  
       }  /**** Computes Hessian and covariance matrix ***/
    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(j=1; j<= nlstate; j++){  {
         for(h=0; h<=nhstepm; h++){    double  **a,**y,*x,pd;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double **hess;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int i, j,jk;
         }    int *indx;
       }  
        double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       for(i=1; i<=npar; i++) /* Computes gradient */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      void ludcmp(double **a, int npar, int *indx, double *d) ;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double gompertz(double p[]);
      hess=matrix(1,npar,1,npar);
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
           prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
       for(j=1; j<= nlstate; j++){      fprintf(ficlog,"%d",i);fflush(ficlog);
         for(h=0; h<=nhstepm; h++){     
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      
         }      /*  printf(" %f ",p[i]);
       }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
       for(j=1; j<= nlstate; j++)    
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=npar;i++) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (j=1;j<=npar;j++)  {
         }        if (j>i) { 
     } /* End theta */          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
     for(h=0; h<=nhstepm; h++)          hess[j][i]=hess[i][j];    
       for(j=1; j<=nlstate;j++)          /*printf(" %lf ",hess[i][j]);*/
         for(theta=1; theta <=npar; theta++)        }
           trgradg[h][j][theta]=gradg[h][theta][j];      }
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("\n");
     for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n");
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(h=0;h<=nhstepm;h++){    
       for(k=0;k<=nhstepm;k++){    a=matrix(1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    y=matrix(1,npar,1,npar);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    x=vector(1,npar);
         for(i=1;i<=nlstate;i++)    indx=ivector(1,npar);
           for(j=1;j<=nlstate;j++)    for (i=1;i<=npar;i++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       }    ludcmp(a,npar,indx,&pd);
     }  
     for (j=1;j<=npar;j++) {
     fprintf(ficresvij,"%.0f ",age );      for (i=1;i<=npar;i++) x[i]=0;
     for(i=1; i<=nlstate;i++)      x[j]=1;
       for(j=1; j<=nlstate;j++){      lubksb(a,npar,indx,x);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for (i=1;i<=npar;i++){ 
       }        matcov[i][j]=x[i];
     fprintf(ficresvij,"\n");      }
     free_matrix(gp,0,nhstepm,1,nlstate);    }
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    printf("\n#Hessian matrix#\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++) { 
   } /* End age */      for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
   free_vector(xp,1,npar);        fprintf(ficlog,"%.3e ",hess[i][j]);
   free_matrix(doldm,1,nlstate,1,npar);      }
   free_matrix(dnewm,1,nlstate,1,nlstate);      printf("\n");
       fprintf(ficlog,"\n");
 }    }
   
 /************ Variance of prevlim ******************/    /* Recompute Inverse */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for (i=1;i<=npar;i++)
 {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   /* Variance of prevalence limit */    ludcmp(a,npar,indx,&pd);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    /*  printf("\n#Hessian matrix recomputed#\n");
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    for (j=1;j<=npar;j++) {
   int k, cptcode;      for (i=1;i<=npar;i++) x[i]=0;
   double *xp;      x[j]=1;
   double *gp, *gm;      lubksb(a,npar,indx,x);
   double **gradg, **trgradg;      for (i=1;i<=npar;i++){ 
   double age,agelim;        y[i][j]=x[i];
   int theta;        printf("%.3e ",y[i][j]);
            fprintf(ficlog,"%.3e ",y[i][j]);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      }
   fprintf(ficresvpl,"# Age");      printf("\n");
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"\n");
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");    */
   
   xp=vector(1,npar);    free_matrix(a,1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);    free_matrix(y,1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    free_vector(x,1,npar);
      free_ivector(indx,1,npar);
   hstepm=1*YEARM; /* Every year of age */    free_matrix(hess,1,npar,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /*************** hessian matrix ****************/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     gradg=matrix(1,npar,1,nlstate);  {
     gp=vector(1,nlstate);    int i;
     gm=vector(1,nlstate);    int l=1, lmax=20;
     double k1,k2;
     for(theta=1; theta <=npar; theta++){    double p2[NPARMAX+1];
       for(i=1; i<=npar; i++){ /* Computes gradient */    double res;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       }    double fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int k=0,kmax=10;
       for(i=1;i<=nlstate;i++)    double l1;
         gp[i] = prlim[i][i];  
        fx=func(x);
       for(i=1; i<=npar; i++) /* Computes gradient */    for (i=1;i<=npar;i++) p2[i]=x[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(l=0 ; l <=lmax; l++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      l1=pow(10,l);
       for(i=1;i<=nlstate;i++)      delts=delt;
         gm[i] = prlim[i][i];      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
       for(i=1;i<=nlstate;i++)        p2[theta]=x[theta] +delt;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        k1=func(p2)-fx;
     } /* End theta */        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
     trgradg =matrix(1,nlstate,1,npar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     for(j=1; j<=nlstate;j++)        
       for(theta=1; theta <=npar; theta++)  #ifdef DEBUG
         trgradg[j][theta]=gradg[theta][j];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(i=1;i<=nlstate;i++)  #endif
       varpl[i][(int)age] =0.;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          k=kmax;
     for(i=1;i<=nlstate;i++)        }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
     fprintf(ficresvpl,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          delts=delt;
     fprintf(ficresvpl,"\n");        }
     free_vector(gp,1,nlstate);      }
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);    delti[theta]=delts;
     free_matrix(trgradg,1,nlstate,1,npar);    return res; 
   } /* End age */    
   }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   free_matrix(dnewm,1,nlstate,1,nlstate);  {
     int i;
 }    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 /************ Variance of one-step probabilities  ******************/    double p2[NPARMAX+1];
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    int k;
 {  
   int i, j;    fx=func(x);
   int k=0, cptcode;    for (k=1; k<=2; k++) {
   double **dnewm,**doldm;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double *xp;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *gp, *gm;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double **gradg, **trgradg;      k1=func(p2)-fx;
   double age,agelim, cov[NCOVMAX];    
   int theta;      p2[thetai]=x[thetai]+delti[thetai]/k;
   char fileresprob[FILENAMELENGTH];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
   strcpy(fileresprob,"prob");    
   strcat(fileresprob,fileres);      p2[thetai]=x[thetai]-delti[thetai]/k;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     printf("Problem with resultfile: %s\n", fileresprob);      k3=func(p2)-fx;
   }    
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
   xp=vector(1,npar);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  #ifdef DEBUG
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   cov[1]=1;  #endif
   for (age=bage; age<=fage; age ++){    }
     cov[2]=age;    return res;
     gradg=matrix(1,npar,1,9);  }
     trgradg=matrix(1,9,1,npar);  
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  /************** Inverse of matrix **************/
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  void ludcmp(double **a, int n, int *indx, double *d) 
      { 
     for(theta=1; theta <=npar; theta++){    int i,imax,j,k; 
       for(i=1; i<=npar; i++)    double big,dum,sum,temp; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double *vv; 
         
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    vv=vector(1,n); 
        *d=1.0; 
       k=0;    for (i=1;i<=n;i++) { 
       for(i=1; i<= (nlstate+ndeath); i++){      big=0.0; 
         for(j=1; j<=(nlstate+ndeath);j++){      for (j=1;j<=n;j++) 
            k=k+1;        if ((temp=fabs(a[i][j])) > big) big=temp; 
           gp[k]=pmmij[i][j];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         }      vv[i]=1.0/big; 
       }    } 
     for (j=1;j<=n;j++) { 
       for(i=1; i<=npar; i++)      for (i=1;i<j;i++) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        sum=a[i][j]; 
            for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      } 
       k=0;      big=0.0; 
       for(i=1; i<=(nlstate+ndeath); i++){      for (i=j;i<=n;i++) { 
         for(j=1; j<=(nlstate+ndeath);j++){        sum=a[i][j]; 
           k=k+1;        for (k=1;k<j;k++) 
           gm[k]=pmmij[i][j];          sum -= a[i][k]*a[k][j]; 
         }        a[i][j]=sum; 
       }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
                big=dum; 
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          imax=i; 
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          } 
     }      } 
       if (j != imax) { 
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        for (k=1;k<=n;k++) { 
       for(theta=1; theta <=npar; theta++)          dum=a[imax][k]; 
       trgradg[j][theta]=gradg[theta][j];          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        } 
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        *d = -(*d); 
         vv[imax]=vv[j]; 
      pmij(pmmij,cov,ncovmodel,x,nlstate);      } 
       indx[j]=imax; 
      k=0;      if (a[j][j] == 0.0) a[j][j]=TINY; 
      for(i=1; i<=(nlstate+ndeath); i++){      if (j != n) { 
        for(j=1; j<=(nlstate+ndeath);j++){        dum=1.0/(a[j][j]); 
          k=k+1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
          gm[k]=pmmij[i][j];      } 
         }    } 
      }    free_vector(vv,1,n);  /* Doesn't work */
        ;
      /*printf("\n%d ",(int)age);  } 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
          void lubksb(double **a, int n, int *indx, double b[]) 
   { 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    int i,ii=0,ip,j; 
      }*/    double sum; 
    
   fprintf(ficresprob,"\n%d ",(int)age);    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      sum=b[ip]; 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      b[ip]=b[i]; 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      if (ii) 
   }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      b[i]=sum; 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    } 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (i=n;i>=1;i--) { 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      sum=b[i]; 
 }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
  free_vector(xp,1,npar);      b[i]=sum/a[i][i]; 
 fclose(ficresprob);    } 
   } 
 }  
   /************ Frequencies ********************/
 /******************* Printing html file ***********/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  {  /* Some frequencies */
  int lastpass, int stepm, int weightopt, char model[],\    
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    int first;
  char version[], int popforecast ){    double ***freq; /* Frequencies */
   int jj1, k1, i1, cpt;    double *pp, **prop;
   FILE *fichtm;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   /*char optionfilehtm[FILENAMELENGTH];*/    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
   strcpy(optionfilehtm,optionfile);    
   strcat(optionfilehtm,".htm");    pp=vector(1,nlstate);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    prop=matrix(1,nlstate,iagemin,iagemax+3);
     printf("Problem with %s \n",optionfilehtm), exit(0);    strcpy(fileresp,"p");
   }    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      printf("Problem with prevalence resultfile: %s\n", fileresp);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 \n      exit(0);
 Total number of observations=%d <br>\n    }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 <hr  size=\"2\" color=\"#EC5E5E\">    j1=0;
  <ul><li>Outputs files<br>\n    
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    j=cptcoveff;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    first=1;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
  fprintf(fichtm,"\n        j1++;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n          scanf("%d", i);*/
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n        for (i=-5; i<=nlstate+ndeath; i++)  
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
  if(popforecast==1) fprintf(fichtm,"\n              freq[i][jk][m]=0;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      for (i=1; i<=nlstate; i++)  
         <br>",fileres,fileres,fileres,fileres);        for(m=iagemin; m <= iagemax+3; m++)
  else          prop[i][m]=0;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        
 fprintf(fichtm," <li>Graphs</li><p>");        dateintsum=0;
         k2cpt=0;
  m=cptcoveff;        for (i=1; i<=imx; i++) {
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          bool=1;
           if  (cptcovn>0) {
  jj1=0;            for (z1=1; z1<=cptcoveff; z1++) 
  for(k1=1; k1<=m;k1++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
    for(i1=1; i1<=ncodemax[k1];i1++){                bool=0;
        jj1++;          }
        if (cptcovn > 0) {          if (bool==1){
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            for(m=firstpass; m<=lastpass; m++){
          for (cpt=1; cpt<=cptcoveff;cpt++)              k2=anint[m][i]+(mint[m][i]/12.);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    if (m<lastpass) {
        for(cpt=1; cpt<nlstate;cpt++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                }
        }                
     for(cpt=1; cpt<=nlstate;cpt++) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                  dateintsum=dateintsum+k2;
 interval) in state (%d): v%s%d%d.gif <br>                  k2cpt++;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  }
      }                /*}*/
      for(cpt=1; cpt<=nlstate;cpt++) {            }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        }
      }         
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 health expectancies in states (1) and (2): e%s%d.gif<br>  fprintf(ficresp, "#Local time at start: %s", strstart);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        if  (cptcovn>0) {
 fprintf(fichtm,"\n</body>");          fprintf(ficresp, "\n#********** Variable "); 
    }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    }          fprintf(ficresp, "**********\n#");
 fclose(fichtm);        }
 }        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 /******************* Gnuplot file **************/        fprintf(ficresp, "\n");
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        
         for(i=iagemin; i <= iagemax+3; i++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          if(i==iagemax+3){
             fprintf(ficlog,"Total");
   strcpy(optionfilegnuplot,optionfilefiname);          }else{
   strcat(optionfilegnuplot,".gp.txt");            if(first==1){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              first=0;
     printf("Problem with file %s",optionfilegnuplot);              printf("See log file for details...\n");
   }            }
             fprintf(ficlog,"Age %d", i);
 #ifdef windows          }
     fprintf(ficgp,"cd \"%s\" \n",pathc);          for(jk=1; jk <=nlstate ; jk++){
 #endif            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 m=pow(2,cptcoveff);              pp[jk] += freq[jk][m][i]; 
            }
  /* 1eme*/          for(jk=1; jk <=nlstate ; jk++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {            for(m=-1, pos=0; m <=0 ; m++)
    for (k1=1; k1<= m ; k1 ++) {              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
 #ifdef windows              if(first==1){
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 #endif              }
 #ifdef unix              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            }else{
 #endif              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 for (i=1; i<= nlstate ; i ++) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
     for (i=1; i<= nlstate ; i ++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              pp[jk] += freq[jk][m][i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }       
 }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            pos += pp[jk];
      for (i=1; i<= nlstate ; i ++) {            posprop += prop[jk][i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1; jk <=nlstate ; jk++){
 }              if(pos>=1.e-5){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              if(first==1)
 #ifdef unix                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 fprintf(ficgp,"\nset ter gif small size 400,300");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 #endif            }else{
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              if(first==1)
    }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /*2 eme*/            }
             if( i <= iagemax){
   for (k1=1; k1<= m ; k1 ++) {              if(pos>=1.e-5){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                    /*probs[i][jk][j1]= pp[jk]/pos;*/
     for (i=1; i<= nlstate+1 ; i ++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       k=2*i;              }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              else
       for (j=1; j<= nlstate+1 ; j ++) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          for(jk=-1; jk <=nlstate+ndeath; jk++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            for(m=-1; m <=nlstate+ndeath; m++)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              if(freq[jk][m][i] !=0 ) {
       for (j=1; j<= nlstate+1 ; j ++) {              if(first==1)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 }                }
       fprintf(ficgp,"\" t\"\" w l 0,");          if(i <= iagemax)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            fprintf(ficresp,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {          if(first==1)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            printf("Others in log...\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficlog,"\n");
 }          }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      }
       else fprintf(ficgp,"\" t\"\" w l 0,");    }
     }    dateintmean=dateintsum/k2cpt; 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);   
   }    fclose(ficresp);
      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   /*3eme*/    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   for (k1=1; k1<= m ; k1 ++) {    /* End of Freq */
     for (cpt=1; cpt<= nlstate ; cpt ++) {  }
       k=2+nlstate*(cpt-1);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  /************ Prevalence ********************/
       for (i=1; i< nlstate ; i ++) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  {  
       }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     }       We still use firstpass and lastpass as another selection.
     }    */
     
   /* CV preval stat */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     for (k1=1; k1<= m ; k1 ++) {    double ***freq; /* Frequencies */
     for (cpt=1; cpt<nlstate ; cpt ++) {    double *pp, **prop;
       k=3;    double pos,posprop; 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    double  y2; /* in fractional years */
     int iagemin, iagemax;
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);    iagemin= (int) agemin;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    iagemax= (int) agemax;
          /*pp=vector(1,nlstate);*/
       l=3+(nlstate+ndeath)*cpt;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       for (i=1; i< nlstate ; i ++) {    j1=0;
         l=3+(nlstate+ndeath)*cpt;    
         fprintf(ficgp,"+$%d",l+i+1);    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for(k1=1; k1<=j;k1++){
     }      for(i1=1; i1<=ncodemax[k1];i1++){
   }          j1++;
          
   /* proba elementaires */        for (i=1; i<=nlstate; i++)  
    for(i=1,jk=1; i <=nlstate; i++){          for(m=iagemin; m <= iagemax+3; m++)
     for(k=1; k <=(nlstate+ndeath); k++){            prop[i][m]=0.0;
       if (k != i) {       
         for(j=1; j <=ncovmodel; j++){        for (i=1; i<=imx; i++) { /* Each individual */
                  bool=1;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          if  (cptcovn>0) {
           jk++;            for (z1=1; z1<=cptcoveff; z1++) 
           fprintf(ficgp,"\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         }                bool=0;
       }          } 
     }          if (bool==1) { 
     }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for(jk=1; jk <=m; jk++) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    i=1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    for(k2=1; k2<=nlstate; k2++) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      k3=i;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
      for(k=1; k<=(nlstate+ndeath); k++) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
        if (k != k2){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                  prop[s[m][i]][iagemax+3] += weight[i]; 
 ij=1;                } 
         for(j=3; j <=ncovmodel; j++) {              }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            } /* end selection of waves */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
             ij++;        }
           }        for(i=iagemin; i <= iagemax+3; i++){  
           else          
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         }            posprop += prop[jk][i]; 
           fprintf(ficgp,")/(1");          } 
          
         for(k1=1; k1 <=nlstate; k1++){            for(jk=1; jk <=nlstate ; jk++){     
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            if( i <=  iagemax){ 
 ij=1;              if(posprop>=1.e-5){ 
           for(j=3; j <=ncovmodel; j++){                probs[i][jk][j1]= prop[jk][i]/posprop;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              } 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            } 
             ij++;          }/* end jk */ 
           }        }/* end i */ 
           else      } /* end i1 */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    } /* end k1 */
           }    
           fprintf(ficgp,")");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         }    /*free_vector(pp,1,nlstate);*/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  }  /* End of prevalence */
         i=i+ncovmodel;  
        }  /************* Waves Concatenation ***************/
      }  
    }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  {
    }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           Death is a valid wave (if date is known).
   fclose(ficgp);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 }  /* end gnuplot */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
        */
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   int i, cpt, cptcod;       double sum=0., jmean=0.;*/
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    int first;
       for (i=1; i<=nlstate;i++)    int j, k=0,jk, ju, jl;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    double sum=0.;
           mobaverage[(int)agedeb][i][cptcod]=0.;    first=0;
        jmin=1e+5;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    jmax=-1;
       for (i=1; i<=nlstate;i++){    jmean=0.;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for(i=1; i<=imx; i++){
           for (cpt=0;cpt<=4;cpt++){      mi=0;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      m=firstpass;
           }      while(s[m][i] <= nlstate){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         }          mw[++mi][i]=m;
       }        if(m >=lastpass)
     }          break;
            else
 }          m++;
       }/* end while */
       if (s[m][i] > nlstate){
 /************** Forecasting ******************/        mi++;     /* Death is another wave */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        mw[mi][i]=m;
   int *popage;      }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;      wav[i]=mi;
   double ***p3mat;      if(mi==0){
   char fileresf[FILENAMELENGTH];        nbwarn++;
         if(first==0){
  agelim=AGESUP;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          first=1;
         }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        if(first==1){
            fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
          }
   strcpy(fileresf,"f");      } /* end mi==0 */
   strcat(fileresf,fileres);    } /* End individuals */
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    for(i=1; i<=imx; i++){
   }      for(mi=1; mi<wav[i];mi++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);        if (stepm <=0)
           dh[mi][i]=1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   if (mobilav==1) {            if (agedc[i] < 2*AGESUP) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     movingaverage(agedeb, fage, ageminpar, mobaverage);              if(j==0) j=1;  /* Survives at least one month after exam */
   }              else if(j<0){
                 nberr++;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (stepm<=12) stepsize=1;                j=1; /* Temporary Dangerous patch */
                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   agelim=AGESUP;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   hstepm=1;              }
   hstepm=hstepm/stepm;              k=k+1;
   yp1=modf(dateintmean,&yp);              if (j >= jmax) jmax=j;
   anprojmean=yp;              if (j <= jmin) jmin=j;
   yp2=modf((yp1*12),&yp);              sum=sum+j;
   mprojmean=yp;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   yp1=modf((yp2*30.5),&yp);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   jprojmean=yp;            }
   if(jprojmean==0) jprojmean=1;          }
   if(mprojmean==0) jprojmean=1;          else{
              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    
   for(cptcov=1;cptcov<=i2;cptcov++){            k=k+1;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            if (j >= jmax) jmax=j;
       k=k+1;            else if (j <= jmin)jmin=j;
       fprintf(ficresf,"\n#******");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       for(j=1;j<=cptcoveff;j++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if(j<0){
       }              nberr++;
       fprintf(ficresf,"******\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficresf,"# StartingAge FinalAge");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            }
                  sum=sum+j;
                }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          jk= j/stepm;
         fprintf(ficresf,"\n");          jl= j -jk*stepm;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            if(jl==0){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              dh[mi][i]=jk;
           nhstepm = nhstepm/hstepm;              bh[mi][i]=0;
                      }else{ /* We want a negative bias in order to only have interpolation ie
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    * at the price of an extra matrix product in likelihood */
           oldm=oldms;savm=savms;              dh[mi][i]=jk+1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                bh[mi][i]=ju;
                    }
           for (h=0; h<=nhstepm; h++){          }else{
             if (h==(int) (calagedate+YEARM*cpt)) {            if(jl <= -ju){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              dh[mi][i]=jk;
             }              bh[mi][i]=jl;       /* bias is positive if real duration
             for(j=1; j<=nlstate+ndeath;j++) {                                   * is higher than the multiple of stepm and negative otherwise.
               kk1=0.;kk2=0;                                   */
               for(i=1; i<=nlstate;i++) {                          }
                 if (mobilav==1)            else{
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              dh[mi][i]=jk+1;
                 else {              bh[mi][i]=ju;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            }
                 }            if(dh[mi][i]==0){
                              dh[mi][i]=1; /* At least one step */
               }              bh[mi][i]=ju; /* At least one step */
               if (h==(int)(calagedate+12*cpt)){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                 fprintf(ficresf," %.3f", kk1);            }
                                  } /* end if mle */
               }        }
             }      } /* end wave */
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    jmean=sum/k;
         }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }   }
   }  
          /*********** Tricode ****************************/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void tricode(int *Tvar, int **nbcode, int imx)
   {
   fclose(ficresf);    
 }    int Ndum[20],ij=1, k, j, i, maxncov=19;
 /************** Forecasting ******************/    int cptcode=0;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    cptcoveff=0; 
     
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   int *popage;    for (k=1; k<=7; k++) ncodemax[k]=0;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   double ***p3mat,***tabpop,***tabpopprev;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   char filerespop[FILENAMELENGTH];                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        Ndum[ij]++; /*store the modality */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   agelim=AGESUP;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;                                         Tvar[j]. If V=sex and male is 0 and 
                                           female is 1, then  cptcode=1.*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      }
    
        for (i=0; i<=cptcode; i++) {
   strcpy(filerespop,"pop");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   strcat(filerespop,fileres);      }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);      ij=1; 
   }      for (i=1; i<=ncodemax[j]; i++) {
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if (mobilav==1) {            
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            ij++;
     movingaverage(agedeb, fage, ageminpar, mobaverage);          }
   }          if (ij > ncodemax[j]) break; 
         }  
   stepsize=(int) (stepm+YEARM-1)/YEARM;      } 
   if (stepm<=12) stepsize=1;    }  
    
   agelim=AGESUP;   for (k=0; k< maxncov; k++) Ndum[k]=0;
    
   hstepm=1;   for (i=1; i<=ncovmodel-2; i++) { 
   hstepm=hstepm/stepm;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       ij=Tvar[i];
   if (popforecast==1) {     Ndum[ij]++;
     if((ficpop=fopen(popfile,"r"))==NULL) {   }
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }   ij=1;
     popage=ivector(0,AGESUP);   for (i=1; i<= maxncov; i++) {
     popeffectif=vector(0,AGESUP);     if((Ndum[i]!=0) && (i<=ncovcol)){
     popcount=vector(0,AGESUP);       Tvaraff[ij]=i; /*For printing */
           ij++;
     i=1;       }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;   }
       
     imx=i;   cptcoveff=ij-1; /*Number of simple covariates*/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  }
   }  
   /*********** Health Expectancies ****************/
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
       k=k+1;  
       fprintf(ficrespop,"\n#******");  {
       for(j=1;j<=cptcoveff;j++) {    /* Health expectancies */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       }    double age, agelim, hf;
       fprintf(ficrespop,"******\n");    double ***p3mat,***varhe;
       fprintf(ficrespop,"# Age");    double **dnewm,**doldm;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    double *xp;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    double **gp, **gm;
          double ***gradg, ***trgradg;
       for (cpt=0; cpt<=0;cpt++) {    int theta;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
            varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    xp=vector(1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    dnewm=matrix(1,nlstate*nlstate,1,npar);
           nhstepm = nhstepm/hstepm;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficreseij,"# Local time at start: %s", strstart);
           oldm=oldms;savm=savms;    fprintf(ficreseij,"# Health expectancies\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficreseij,"# Age");
            for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){      for(j=1; j<=nlstate;j++)
             if (h==(int) (calagedate+YEARM*cpt)) {        fprintf(ficreseij," %1d-%1d (SE)",i,j);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficreseij,"\n");
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    if(estepm < stepm){
               kk1=0.;kk2=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    else  hstepm=estepm;   
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /* We compute the life expectancy from trapezoids spaced every estepm months
                 else {     * This is mainly to measure the difference between two models: for example
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     * if stepm=24 months pijx are given only every 2 years and by summing them
                 }     * we are calculating an estimate of the Life Expectancy assuming a linear 
               }     * progression in between and thus overestimating or underestimating according
               if (h==(int)(calagedate+12*cpt)){     * to the curvature of the survival function. If, for the same date, we 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   /*fprintf(ficrespop," %.3f", kk1);     * to compare the new estimate of Life expectancy with the same linear 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/     * hypothesis. A more precise result, taking into account a more precise
               }     * curvature will be obtained if estepm is as small as stepm. */
             }  
             for(i=1; i<=nlstate;i++){    /* For example we decided to compute the life expectancy with the smallest unit */
               kk1=0.;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 for(j=1; j<=nlstate;j++){       nhstepm is the number of hstepm from age to agelim 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];       nstepm is the number of stepm from age to agelin. 
                 }       Look at hpijx to understand the reason of that which relies in memory size
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];       and note for a fixed period like estepm months */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)       means that if the survival funtion is printed only each two years of age and if
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           }       results. So we changed our mind and took the option of the best precision.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }  
      agelim=AGESUP;
   /******/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /* if (stepm >= YEARM) hstepm=1;*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           nhstepm = nhstepm/hstepm;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           oldm=oldms;savm=savms;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             if (h==(int) (calagedate+YEARM*cpt)) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
             }   
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          /* Computing  Variances of health expectancies */
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);       for(theta=1; theta <=npar; theta++){
             }        for(i=1; i<=npar; i++){ 
           }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }    
    }        cptj=0;
   }        for(j=1; j<= nlstate; j++){
            for(i=1; i<=nlstate; i++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   if (popforecast==1) {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     free_ivector(popage,0,AGESUP);            }
     free_vector(popeffectif,0,AGESUP);          }
     free_vector(popcount,0,AGESUP);        }
   }       
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i<=npar; i++) 
   fclose(ficrespop);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         
 /***********************************************/        cptj=0;
 /**************** Main Program *****************/        for(j=1; j<= nlstate; j++){
 /***********************************************/          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
 int main(int argc, char *argv[])            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 {  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            }
   double agedeb, agefin,hf;          }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        }
         for(j=1; j<= nlstate*nlstate; j++)
   double fret;          for(h=0; h<=nhstepm-1; h++){
   double **xi,tmp,delta;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   double dum; /* Dummy variable */       } 
   double ***p3mat;     
   int *indx;  /* End theta */
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];       for(h=0; h<=nhstepm-1; h++)
          for(j=1; j<=nlstate*nlstate;j++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   char filerest[FILENAMELENGTH];       
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];       for(i=1;i<=nlstate*nlstate;i++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(j=1;j<=nlstate*nlstate;j++)
   int firstobs=1, lastobs=10;          varhe[i][j][(int)age] =0.;
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;       printf("%d|",(int)age);fflush(stdout);
   int ju,jl, mi;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;       for(h=0;h<=nhstepm-1;h++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(k=0;k<=nhstepm-1;k++){
   int mobilav=0,popforecast=0;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   int hstepm, nhstepm;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;          for(i=1;i<=nlstate*nlstate;i++)
             for(j=1;j<=nlstate*nlstate;j++)
   double bage, fage, age, agelim, agebase;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   double ftolpl=FTOL;        }
   double **prlim;      }
   double *severity;      /* Computing expectancies */
   double ***param; /* Matrix of parameters */      for(i=1; i<=nlstate;i++)
   double  *p;        for(j=1; j<=nlstate;j++)
   double **matcov; /* Matrix of covariance */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double ***delti3; /* Scale */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   double *delti; /* Scale */            
   double ***eij, ***vareij;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;          }
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      fprintf(ficreseij,"%3.0f",age );
        cptj=0;
       for(i=1; i<=nlstate;i++)
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";        for(j=1; j<=nlstate;j++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }
   char z[1]="c", occ;      fprintf(ficreseij,"\n");
 #include <sys/time.h>     
 #include <time.h>      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   /* long total_usecs;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   struct timeval start_time, end_time;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    printf("\n");
   getcwd(pathcd, size);    fprintf(ficlog,"\n");
   
   printf("\n%s",version);    free_vector(xp,1,npar);
   if(argc <=1){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     printf("\nEnter the parameter file name: ");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     scanf("%s",pathtot);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }  }
   else{  
     strcpy(pathtot,argv[1]);  /************ Variance ******************/
   }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  {
   /*cygwin_split_path(pathtot,path,optionfile);    /* Variance of health expectancies */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   /* cutv(path,optionfile,pathtot,'\\');*/    /* double **newm;*/
     double **dnewm,**doldm;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double **dnewmp,**doldmp;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int i, j, nhstepm, hstepm, h, nstepm ;
   chdir(path);    int k, cptcode;
   replace(pathc,path);    double *xp;
     double **gp, **gm;  /* for var eij */
 /*-------- arguments in the command line --------*/    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   strcpy(fileres,"r");    double *gpp, *gmp; /* for var p point j */
   strcat(fileres, optionfilefiname);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   strcat(fileres,".txt");    /* Other files have txt extension */    double ***p3mat;
     double age,agelim, hf;
   /*---------arguments file --------*/    double ***mobaverage;
     int theta;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    char digit[4];
     printf("Problem with optionfile %s\n",optionfile);    char digitp[25];
     goto end;  
   }    char fileresprobmorprev[FILENAMELENGTH];
   
   strcpy(filereso,"o");    if(popbased==1){
   strcat(filereso,fileres);      if(mobilav!=0)
   if((ficparo=fopen(filereso,"w"))==NULL) {        strcpy(digitp,"-populbased-mobilav-");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      else strcpy(digitp,"-populbased-nomobil-");
   }    }
     else 
   /* Reads comments: lines beginning with '#' */      strcpy(digitp,"-stablbased-");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    if (mobilav!=0) {
     fgets(line, MAXLINE, ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     puts(line);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     fputs(line,ficparo);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   ungetc(c,ficpar);      }
     }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    strcpy(fileresprobmorprev,"prmorprev"); 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    sprintf(digit,"%-d",ij);
 while((c=getc(ficpar))=='#' && c!= EOF){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     ungetc(c,ficpar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     puts(line);    strcat(fileresprobmorprev,fileres);
     fputs(line,ficparo);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
        printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   covar=matrix(0,NCOVMAX,1,n);   
   cptcovn=0;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   ncovmodel=2+cptcovn;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
   /* Read guess parameters */      for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){    }  
     ungetc(c,ficpar);    fprintf(ficresprobmorprev,"\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"\n# Routine varevsij");
     puts(line);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fputs(line,ficparo);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   ungetc(c,ficpar);  /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   fprintf(ficresvij, "#Local time at start: %s", strstart);
     for(i=1; i <=nlstate; i++)    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficresvij,"# Age");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for(i=1; i<=nlstate;i++)
       fprintf(ficparo,"%1d%1d",i1,j1);      for(j=1; j<=nlstate;j++)
       printf("%1d%1d",i,j);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresvij,"\n");
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);    xp=vector(1,npar);
         fprintf(ficparo," %lf",param[i][j][k]);    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
       fscanf(ficpar,"\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       printf("\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"\n");  
     }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   p=param[1][1];    
      if(estepm < stepm){
   /* Reads comments: lines beginning with '#' */      printf ("Problem %d lower than %d\n",estepm, stepm);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    else  hstepm=estepm;   
     fgets(line, MAXLINE, ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
     puts(line);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     fputs(line,ficparo);       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
   ungetc(c,ficpar);       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */       survival function given by stepm (the optimization length). Unfortunately it
   for(i=1; i <=nlstate; i++){       means that if the survival funtion is printed every two years of age and if
     for(j=1; j <=nlstate+ndeath-1; j++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fscanf(ficpar,"%1d%1d",&i1,&j1);       results. So we changed our mind and took the option of the best precision.
       printf("%1d%1d",i,j);    */
       fprintf(ficparo,"%1d%1d",i1,j1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for(k=1; k<=ncovmodel;k++){    agelim = AGESUP;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         printf(" %le",delti3[i][j][k]);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(ficparo," %le",delti3[i][j][k]);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fscanf(ficpar,"\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       printf("\n");      gp=matrix(0,nhstepm,1,nlstate);
       fprintf(ficparo,"\n");      gm=matrix(0,nhstepm,1,nlstate);
     }  
   }  
   delti=delti3[1][1];      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   /* Reads comments: lines beginning with '#' */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fgets(line, MAXLINE, ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     puts(line);  
     fputs(line,ficparo);        if (popbased==1) {
   }          if(mobilav ==0){
   ungetc(c,ficpar);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   matcov=matrix(1,npar,1,npar);          }else{ /* mobilav */ 
   for(i=1; i <=npar; i++){            for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"%s",&str);              prlim[i][i]=mobaverage[(int)age][i][ij];
     printf("%s",str);          }
     fprintf(ficparo,"%s",str);        }
     for(j=1; j <=i; j++){    
       fscanf(ficpar," %le",&matcov[i][j]);        for(j=1; j<= nlstate; j++){
       printf(" %.5le",matcov[i][j]);          for(h=0; h<=nhstepm; h++){
       fprintf(ficparo," %.5le",matcov[i][j]);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fscanf(ficpar,"\n");          }
     printf("\n");        }
     fprintf(ficparo,"\n");        /* This for computing probability of death (h=1 means
   }           computed over hstepm matrices product = hstepm*stepm months) 
   for(i=1; i <=npar; i++)           as a weighted average of prlim.
     for(j=i+1;j<=npar;j++)        */
       matcov[i][j]=matcov[j][i];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gpp[j]=0.; i<= nlstate; i++)
   printf("\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      strcat(rfileres,".");    /* */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     if((ficres =fopen(rfileres,"w"))==NULL) {   
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        if (popbased==1) {
     }          if(mobilav ==0){
     fprintf(ficres,"#%s\n",version);            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
     /*-------- data file ----------*/          }else{ /* mobilav */ 
     if((fic=fopen(datafile,"r"))==NULL)    {            for(i=1; i<=nlstate;i++)
       printf("Problem with datafile: %s\n", datafile);goto end;              prlim[i][i]=mobaverage[(int)age][i][ij];
     }          }
         }
     n= lastobs;  
     severity = vector(1,maxwav);        for(j=1; j<= nlstate; j++){
     outcome=imatrix(1,maxwav+1,1,n);          for(h=0; h<=nhstepm; h++){
     num=ivector(1,n);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     moisnais=vector(1,n);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     annais=vector(1,n);          }
     moisdc=vector(1,n);        }
     andc=vector(1,n);        /* This for computing probability of death (h=1 means
     agedc=vector(1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     cod=ivector(1,n);           as a weighted average of prlim.
     weight=vector(1,n);        */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     mint=matrix(1,maxwav,1,n);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     anint=matrix(1,maxwav,1,n);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     s=imatrix(1,maxwav+1,1,n);        }    
     adl=imatrix(1,maxwav+1,1,n);            /* end probability of death */
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
     i=1;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     while (fgets(line, MAXLINE, fic) != NULL)    {          }
       if ((i >= firstobs) && (i <=lastobs)) {  
                for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         for (j=maxwav;j>=1;j--){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        }
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      } /* End theta */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      for(h=0; h<=nhstepm; h++) /* veij */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            trgradg[h][j][theta]=gradg[h][theta][j];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for(theta=1; theta <=npar; theta++)
         for (j=ncovcol;j>=1;j--){          trgradgp[j][theta]=gradgp[theta][j];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }  
         num[i]=atol(stra);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              for(i=1;i<=nlstate;i++)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        for(j=1;j<=nlstate;j++)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          vareij[i][j][(int)age] =0.;
   
         i=i+1;      for(h=0;h<=nhstepm;h++){
       }        for(k=0;k<=nhstepm;k++){
     }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     /* printf("ii=%d", ij);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
        scanf("%d",i);*/          for(i=1;i<=nlstate;i++)
   imx=i-1; /* Number of individuals */            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   /* for (i=1; i<=imx; i++){        }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      /* pptj */
     }*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   /* for (i=1; i<=imx; i++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
      if (s[4][i]==9)  s[4][i]=-1;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}          varppt[j][i]=doldmp[j][i];
   */      /* end ppptj */
        /*  x centered again */
   /* Calculation of the number of parameter from char model*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   Tvar=ivector(1,15);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   Tprod=ivector(1,15);   
   Tvaraff=ivector(1,15);      if (popbased==1) {
   Tvard=imatrix(1,15,1,2);        if(mobilav ==0){
   Tage=ivector(1,15);                for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   if (strlen(model) >1){        }else{ /* mobilav */ 
     j=0, j1=0, k1=1, k2=1;          for(i=1; i<=nlstate;i++)
     j=nbocc(model,'+');            prlim[i][i]=mobaverage[(int)age][i][ij];
     j1=nbocc(model,'*');        }
     cptcovn=j+1;      }
     cptcovprod=j1;               
          /* This for computing probability of death (h=1 means
     strcpy(modelsav,model);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){         as a weighted average of prlim.
       printf("Error. Non available option model=%s ",model);      */
       goto end;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
              gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     for(i=(j+1); i>=1;i--){      }    
       cutv(stra,strb,modelsav,'+');      /* end probability of death */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       /*scanf("%d",i);*/      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       if (strchr(strb,'*')) {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         cutv(strd,strc,strb,'*');        for(i=1; i<=nlstate;i++){
         if (strcmp(strc,"age")==0) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');      } 
           Tvar[i]=atoi(stre);      fprintf(ficresprobmorprev,"\n");
           cptcovage++;  
             Tage[cptcovage]=i;      fprintf(ficresvij,"%.0f ",age );
             /*printf("stre=%s ", stre);*/      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
         else if (strcmp(strd,"age")==0) {          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           cptcovprod--;        }
           cutv(strb,stre,strc,'V');      fprintf(ficresvij,"\n");
           Tvar[i]=atoi(stre);      free_matrix(gp,0,nhstepm,1,nlstate);
           cptcovage++;      free_matrix(gm,0,nhstepm,1,nlstate);
           Tage[cptcovage]=i;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         else {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cutv(strb,stre,strc,'V');    } /* End age */
           Tvar[i]=ncovcol+k1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
           cutv(strb,strc,strd,'V');    free_vector(gmp,nlstate+1,nlstate+ndeath);
           Tprod[k1]=i;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           Tvard[k1][1]=atoi(strc);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           Tvard[k1][2]=atoi(stre);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           Tvar[cptcovn+k2]=Tvard[k1][1];    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           for (k=1; k<=lastobs;k++)  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           k1++;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           k2=k2+2;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       else {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        /*  scanf("%d",i);*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       cutv(strd,strc,strb,'V');  */
       Tvar[i]=atoi(strc);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    free_vector(xp,1,npar);
         scanf("%d",i);*/    free_matrix(doldm,1,nlstate,1,nlstate);
     }    free_matrix(dnewm,1,nlstate,1,npar);
 }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("cptcovprod=%d ", cptcovprod);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   scanf("%d ",i);*/    fclose(ficresprobmorprev);
     fclose(fic);    fflush(ficgp);
     fflush(fichtm); 
     /*  if(mle==1){*/  }  /* end varevsij */
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;  /************ Variance of prevlim ******************/
     }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     /*-calculation of age at interview from date of interview and age at death -*/  {
     agev=matrix(1,maxwav,1,imx);    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     for (i=1; i<=imx; i++) {    double **newm;
       for(m=2; (m<= maxwav); m++) {    double **dnewm,**doldm;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    int i, j, nhstepm, hstepm;
          anint[m][i]=9999;    int k, cptcode;
          s[m][i]=-1;    double *xp;
        }    double *gp, *gm;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    double **gradg, **trgradg;
       }    double age,agelim;
     }    int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     for (i=1; i<=imx; i++)  {    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficresvpl,"# Age");
       for(m=1; (m<= maxwav); m++){    for(i=1; i<=nlstate;i++)
         if(s[m][i] >0){        fprintf(ficresvpl," %1d-%1d",i,i);
           if (s[m][i] >= nlstate+1) {    fprintf(ficresvpl,"\n");
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)    xp=vector(1,npar);
                 agev[m][i]=agedc[i];    dnewm=matrix(1,nlstate,1,npar);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    doldm=matrix(1,nlstate,1,nlstate);
            else {    
               if (andc[i]!=9999){    hstepm=1*YEARM; /* Every year of age */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
               agev[m][i]=-1;    agelim = AGESUP;
               }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           }      if (stepm >= YEARM) hstepm=1;
           else if(s[m][i] !=9){ /* Should no more exist */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      gradg=matrix(1,npar,1,nlstate);
             if(mint[m][i]==99 || anint[m][i]==9999)      gp=vector(1,nlstate);
               agev[m][i]=1;      gm=vector(1,nlstate);
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];      for(theta=1; theta <=npar; theta++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        for(i=1; i<=npar; i++){ /* Computes gradient */
             }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             else if(agev[m][i] >agemax){        }
               agemax=agev[m][i];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        for(i=1;i<=nlstate;i++)
             }          gp[i] = prlim[i][i];
             /*agev[m][i]=anint[m][i]-annais[i];*/      
             /*   agev[m][i] = age[i]+2*m;*/        for(i=1; i<=npar; i++) /* Computes gradient */
           }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           else { /* =9 */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             agev[m][i]=1;        for(i=1;i<=nlstate;i++)
             s[m][i]=-1;          gm[i] = prlim[i][i];
           }  
         }        for(i=1;i<=nlstate;i++)
         else /*= 0 Unknown */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           agev[m][i]=1;      } /* End theta */
       }  
          trgradg =matrix(1,nlstate,1,npar);
     }  
     for (i=1; i<=imx; i++)  {      for(j=1; j<=nlstate;j++)
       for(m=1; (m<= maxwav); m++){        for(theta=1; theta <=npar; theta++)
         if (s[m][i] > (nlstate+ndeath)) {          trgradg[j][theta]=gradg[theta][j];
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;      for(i=1;i<=nlstate;i++)
         }        varpl[i][(int)age] =0.;
       }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
     free_vector(severity,1,maxwav);      fprintf(ficresvpl,"%.0f ",age );
     free_imatrix(outcome,1,maxwav+1,1,n);      for(i=1; i<=nlstate;i++)
     free_vector(moisnais,1,n);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     free_vector(annais,1,n);      fprintf(ficresvpl,"\n");
     /* free_matrix(mint,1,maxwav,1,n);      free_vector(gp,1,nlstate);
        free_matrix(anint,1,maxwav,1,n);*/      free_vector(gm,1,nlstate);
     free_vector(moisdc,1,n);      free_matrix(gradg,1,npar,1,nlstate);
     free_vector(andc,1,n);      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
      
     wav=ivector(1,imx);    free_vector(xp,1,npar);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    free_matrix(doldm,1,nlstate,1,npar);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    free_matrix(dnewm,1,nlstate,1,nlstate);
      
     /* Concatenates waves */  }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       Tcode=ivector(1,100);  {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    int i, j=0,  i1, k1, l1, t, tj;
       ncodemax[1]=1;    int k2, l2, j1,  z1;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    int k=0,l, cptcode;
          int first=1, first1;
    codtab=imatrix(1,100,1,10);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
    h=0;    double **dnewm,**doldm;
    m=pow(2,cptcoveff);    double *xp;
      double *gp, *gm;
    for(k=1;k<=cptcoveff; k++){    double **gradg, **trgradg;
      for(i=1; i <=(m/pow(2,k));i++){    double **mu;
        for(j=1; j <= ncodemax[k]; j++){    double age,agelim, cov[NCOVMAX];
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
            h++;    int theta;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    char fileresprob[FILENAMELENGTH];
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    char fileresprobcov[FILENAMELENGTH];
          }    char fileresprobcor[FILENAMELENGTH];
        }  
      }    double ***varpij;
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    strcpy(fileresprob,"prob"); 
       codtab[1][2]=1;codtab[2][2]=2; */    strcat(fileresprob,fileres);
    /* for(i=1; i <=m ;i++){    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       for(k=1; k <=cptcovn; k++){      printf("Problem with resultfile: %s\n", fileresprob);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       }    }
       printf("\n");    strcpy(fileresprobcov,"probcov"); 
       }    strcat(fileresprobcov,fileres);
       scanf("%d",i);*/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcov);
    /* Calculates basic frequencies. Computes observed prevalence at single age      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        and prints on file fileres'p'. */    }
     strcpy(fileresprobcor,"probcor"); 
        strcat(fileresprobcor,fileres);
        if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem with resultfile: %s\n", fileresprobcor);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
          printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     if(mle==1){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(ficresprob,"# Age");
     }    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
        fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     /*--------- results files --------------*/    fprintf(ficresprobcov,"# Age");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for(i=1; i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){      for(j=1; j<=(nlstate+ndeath);j++){
      for(k=1; k <=(nlstate+ndeath); k++){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
        if (k != i)        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
            printf("%d%d ",i,k);      }  
            fprintf(ficres,"%1d%1d ",i,k);   /* fprintf(ficresprob,"\n");
            for(j=1; j <=ncovmodel; j++){    fprintf(ficresprobcov,"\n");
              printf("%f ",p[jk]);    fprintf(ficresprobcor,"\n");
              fprintf(ficres,"%f ",p[jk]);   */
              jk++;   xp=vector(1,npar);
            }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            printf("\n");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
            fprintf(ficres,"\n");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
          }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      }    first=1;
    }    fprintf(ficgp,"\n# Routine varprob");
  if(mle==1){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     /* Computing hessian and covariance matrix */    fprintf(fichtm,"\n");
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
  }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    file %s<br>\n",optionfilehtmcov);
     printf("# Scales (for hessian or gradient estimation)\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
      for(i=1,jk=1; i <=nlstate; i++){  and drawn. It helps understanding how is the covariance between two incidences.\
       for(j=1; j <=nlstate+ndeath; j++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         if (j!=i) {    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           fprintf(ficres,"%1d%1d",i,j);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           printf("%1d%1d",i,j);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           for(k=1; k<=ncovmodel;k++){  standard deviations wide on each axis. <br>\
             printf(" %.5e",delti[jk]);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
             fprintf(ficres," %.5e",delti[jk]);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             jk++;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           }  
           printf("\n");    cov[1]=1;
           fprintf(ficres,"\n");    tj=cptcoveff;
         }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       }    j1=0;
      }    for(t=1; t<=tj;t++){
          for(i1=1; i1<=ncodemax[t];i1++){ 
     k=1;        j1++;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        if  (cptcovn>0) {
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficresprob, "\n#********** Variable "); 
     for(i=1;i<=npar;i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       /*  if (k>nlstate) k=1;          fprintf(ficresprob, "**********\n#\n");
       i1=(i-1)/(ncovmodel*nlstate)+1;          fprintf(ficresprobcov, "\n#********** Variable "); 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%s%d%d",alph[k],i1,tab[i]);*/          fprintf(ficresprobcov, "**********\n#\n");
       fprintf(ficres,"%3d",i);          
       printf("%3d",i);          fprintf(ficgp, "\n#********** Variable "); 
       for(j=1; j<=i;j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficres," %.5e",matcov[i][j]);          fprintf(ficgp, "**********\n#\n");
         printf(" %.5e",matcov[i][j]);          
       }          
       fprintf(ficres,"\n");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       k++;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     }          
              fprintf(ficresprobcor, "\n#********** Variable ");    
     while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       ungetc(c,ficpar);          fprintf(ficresprobcor, "**********\n#");    
       fgets(line, MAXLINE, ficpar);        }
       puts(line);        
       fputs(line,ficparo);        for (age=bage; age<=fage; age ++){ 
     }          cov[2]=age;
     ungetc(c,ficpar);          for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);          }
              for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     if (fage <= 2) {          for (k=1; k<=cptcovprod;k++)
       bage = ageminpar;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fage = agemaxpar;          
     }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
              trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          gp=vector(1,(nlstate)*(nlstate+ndeath));
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);          gm=vector(1,(nlstate)*(nlstate+ndeath));
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);      
            for(theta=1; theta <=npar; theta++){
     while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=npar; i++)
     ungetc(c,ficpar);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     fgets(line, MAXLINE, ficpar);            
     puts(line);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fputs(line,ficparo);            
   }            k=0;
   ungetc(c,ficpar);            for(i=1; i<= (nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                k=k+1;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                gp[k]=pmmij[i][j];
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              }
                  }
   while((c=getc(ficpar))=='#' && c!= EOF){            
     ungetc(c,ficpar);            for(i=1; i<=npar; i++)
     fgets(line, MAXLINE, ficpar);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     puts(line);      
     fputs(line,ficparo);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   }            k=0;
   ungetc(c,ficpar);            for(i=1; i<=(nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                gm[k]=pmmij[i][j];
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              }
             }
   fscanf(ficpar,"pop_based=%d\n",&popbased);       
   fprintf(ficparo,"pop_based=%d\n",popbased);              for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   fprintf(ficres,"pop_based=%d\n",popbased);                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
            }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     fgets(line, MAXLINE, ficpar);            for(theta=1; theta <=npar; theta++)
     puts(line);              trgradg[j][theta]=gradg[theta][j];
     fputs(line,ficparo);          
   }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   ungetc(c,ficpar);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
 while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);          k=0;
     fgets(line, MAXLINE, ficpar);          for(i=1; i<=(nlstate); i++){
     puts(line);            for(j=1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);              k=k+1;
   }              mu[k][(int) age]=pmmij[i][j];
   ungetc(c,ficpar);            }
           }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              varpij[i][j][(int)age] = doldm[i][j];
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 /*------------ gnuplot -------------*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              }*/
 /*------------ free_vector  -------------*/  
  chdir(path);          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
  free_ivector(wav,1,imx);          fprintf(ficresprobcor,"\n%d ",(int)age);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
  free_ivector(num,1,n);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
  free_vector(agedc,1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
  fclose(ficparo);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
  fclose(ficres);          }
           i=0;
 /*--------- index.htm --------*/          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   /*--------------- Prevalence limit --------------*/              for (j=1; j<=i;j++){
                  fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   strcpy(filerespl,"pl");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   strcat(filerespl,fileres);              }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          }/* end of loop for state */
   }        } /* end of loop for age */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");        /* Confidence intervalle of pij  */
   fprintf(ficrespl,"#Age ");        /*
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          fprintf(ficgp,"\nset noparametric;unset label");
   fprintf(ficrespl,"\n");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   prlim=matrix(1,nlstate,1,nlstate);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   agebase=ageminpar;        first1=1;
   agelim=agemaxpar;        for (k2=1; k2<=(nlstate);k2++){
   ftolpl=1.e-10;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   i1=cptcoveff;            if(l2==k2) continue;
   if (cptcovn < 1){i1=1;}            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
   for(cptcov=1;cptcov<=i1;cptcov++){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                if(l1==k1) continue;
         k=k+1;                i=(k1-1)*(nlstate+ndeath)+l1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                if(i<=j) continue;
         fprintf(ficrespl,"\n#******");                for (age=bage; age<=fage; age ++){ 
         for(j=1;j<=cptcoveff;j++)                  if ((int)age %5==0){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         fprintf(ficrespl,"******\n");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                            cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         for (age=agebase; age<=agelim; age++){                    mu1=mu[i][(int) age]/stepm*YEARM ;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    mu2=mu[j][(int) age]/stepm*YEARM;
           fprintf(ficrespl,"%.0f",age );                    c12=cv12/sqrt(v1*v2);
           for(i=1; i<=nlstate;i++)                    /* Computing eigen value of matrix of covariance */
           fprintf(ficrespl," %.5f", prlim[i][i]);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           fprintf(ficrespl,"\n");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         }                    /* Eigen vectors */
       }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     }                    /*v21=sqrt(1.-v11*v11); *//* error */
   fclose(ficrespl);                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
   /*------------- h Pij x at various ages ------------*/                    v22=v11;
                      tnalp=v21/v11;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                    if(first1==1){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                      first1=0;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   }                    }
   printf("Computing pij: result on file '%s' \n", filerespij);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      /*printf(fignu*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   /*if (stepm<=24) stepsize=2;*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
   agelim=AGESUP;                      first=0;
   hstepm=stepsize*YEARM; /* Every year of age */                      fprintf(ficgp,"\nset parametric;unset label");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   k=0;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   for(cptcov=1;cptcov<=i1;cptcov++){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       k=k+1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         fprintf(ficrespij,"\n#****** ");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         for(j=1;j<=cptcoveff;j++)                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         fprintf(ficrespij,"******\n");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                              fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           oldm=oldms;savm=savms;                    }else{
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                        first=0;
           fprintf(ficrespij,"# Age");                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             for(j=1; j<=nlstate+ndeath;j++)                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               fprintf(ficrespij," %1d-%1d",i,j);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           fprintf(ficrespij,"\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           for (h=0; h<=nhstepm; h++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                    }/* if first */
             for(i=1; i<=nlstate;i++)                  } /* age mod 5 */
               for(j=1; j<=nlstate+ndeath;j++)                } /* end loop age */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             fprintf(ficrespij,"\n");                first=1;
           }              } /*l12 */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            } /* k12 */
           fprintf(ficrespij,"\n");          } /*l1 */
         }        }/* k1 */
     }      } /* loop covariates */
   }    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
   fclose(ficrespij);    fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
   /*---------- Forecasting ------------------*/    fflush(ficgp);
   if((stepm == 1) && (strcmp(model,".")==0)){    fflush(fichtmcov);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
     free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  /******************* Printing html file ***********/
     free_vector(weight,1,n);}  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   else{                    int lastpass, int stepm, int weightopt, char model[],\
     erreur=108;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                    int popforecast, int estepm ,\
   }                    double jprev1, double mprev1,double anprev1, \
                      double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   /*---------- Health expectancies and variances ------------*/  
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   strcpy(filerest,"t");     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   strcat(filerest,fileres);  </ul>");
   if((ficrest=fopen(filerest,"w"))==NULL) {     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   printf("Computing Total LEs with variances: file '%s' \n", filerest);     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   strcpy(filerese,"e");     fprintf(fichtm,"\
   strcat(filerese,fileres);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   if((ficreseij=fopen(filerese,"w"))==NULL) {             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);     fprintf(fichtm,"\
   }   - Life expectancies by age and initial health status (estepm=%2d months): \
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   m=cptcoveff;
   }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
    jj1=0;
   k=0;   for(k1=1; k1<=m;k1++){
   for(cptcov=1;cptcov<=i1;cptcov++){     for(i1=1; i1<=ncodemax[k1];i1++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       jj1++;
       k=k+1;       if (cptcovn > 0) {
       fprintf(ficrest,"\n#****** ");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       for(j=1;j<=cptcoveff;j++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficrest,"******\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
       fprintf(ficreseij,"\n#****** ");       /* Pij */
       for(j=1;j<=cptcoveff;j++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       fprintf(ficreseij,"******\n");       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       fprintf(ficresvij,"\n#****** ");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
       for(j=1;j<=cptcoveff;j++)  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         /* Stable prevalence in each health state */
       fprintf(ficresvij,"******\n");         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       oldm=oldms;savm=savms;         }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);         for(cpt=1; cpt<=nlstate;cpt++) {
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
       oldm=oldms;savm=savms;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       }
         } /* end i1 */
    }/* End k1 */
     fprintf(fichtm,"</ul>");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");   fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       epj=vector(1,nlstate+1);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         if (popbased==1) {           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
           for(i=1; i<=nlstate;i++)   fprintf(fichtm,"\
             prlim[i][i]=probs[(int)age][i][k];   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
          
         fprintf(ficrest," %4.0f",age);   fprintf(fichtm,"\
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           for(i=1, epj[j]=0.;i <=nlstate;i++) {           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   fprintf(fichtm,"\
           }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
           epj[nlstate+1] +=epj[j];           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
         }   fprintf(fichtm,"\
         for(i=1, vepp=0.;i <=nlstate;i++)   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
           for(j=1;j <=nlstate;j++)           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
             vepp += vareij[i][j][(int)age];   fprintf(fichtm,"\
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
         for(j=1;j <=nlstate;j++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }  /*  if(popforecast==1) fprintf(fichtm,"\n */
         fprintf(ficrest,"\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     }  /*      <br>",fileres,fileres,fileres,fileres); */
   }  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fclose(ficreseij);   fflush(fichtm);
   fclose(ficresvij);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   fclose(ficrest);  
   fclose(ficpar);   m=cptcoveff;
   free_vector(epj,1,nlstate+1);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
   /*------- Variance limit prevalence------*/     jj1=0;
    for(k1=1; k1<=m;k1++){
   strcpy(fileresvpl,"vpl");     for(i1=1; i1<=ncodemax[k1];i1++){
   strcat(fileresvpl,fileres);       jj1++;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {       if (cptcovn > 0) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     exit(0);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   k=0;       for(cpt=1; cpt<=nlstate;cpt++) {
   for(cptcov=1;cptcov<=i1;cptcov++){         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       k=k+1;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       fprintf(ficresvpl,"\n#****** ");       }
       for(j=1;j<=cptcoveff;j++)       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  health expectancies in states (1) and (2): %s%d.png<br>\
       fprintf(ficresvpl,"******\n");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           } /* end i1 */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);   }/* End k1 */
       oldm=oldms;savm=savms;   fprintf(fichtm,"</ul>");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   fflush(fichtm);
     }  }
  }  
   /******************* Gnuplot file **************/
   fclose(ficresvpl);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   /*---------- End : free ----------------*/    char dirfileres[132],optfileres[132];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      int ng;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*     printf("Problem with file %s",optionfilegnuplot); */
    /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
    /*   } */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    /*#ifdef windows */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      /*#endif */
      m=pow(2,cptcoveff);
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);    strcpy(dirfileres,optionfilefiname);
   free_matrix(agev,1,maxwav,1,imx);    strcpy(optfileres,"vpl");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
   if(erreur >0)     for (k1=1; k1<= m ; k1 ++) {
     printf("End of Imach with error or warning %d\n",erreur);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   else   printf("End of Imach\n");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       fprintf(ficgp,"set xlabel \"Age\" \n\
    set ylabel \"Probability\" \n\
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  set ter png small\n\
   /*printf("Total time was %d uSec.\n", total_usecs);*/  set size 0.65,0.65\n\
   /*------ End -----------*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
  end:         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 #ifdef windows         else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* chdir(pathcd);*/       }
 #endif       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
  /*system("wgnuplot graph.plt");*/       for (i=1; i<= nlstate ; i ++) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  /*system("cd ../gp37mgw");*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/       } 
  strcpy(plotcmd,GNUPLOTPROGRAM);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
  strcat(plotcmd," ");       for (i=1; i<= nlstate ; i ++) {
  strcat(plotcmd,optionfilegnuplot);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  system(plotcmd);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
 #ifdef windows       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   while (z[0] != 'q') {     }
     /* chdir(path); */    }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    /*2 eme*/
     scanf("%s",z);    
     if (z[0] == 'c') system("./imach");    for (k1=1; k1<= m ; k1 ++) { 
     else if (z[0] == 'e') system(optionfilehtm);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     else if (z[0] == 'g') system(plotcmd);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     else if (z[0] == 'q') exit(0);      
   }      for (i=1; i<= nlstate+1 ; i ++) {
 #endif        k=2*i;
 }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.108


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>