Diff for /imach/src/imach.c between versions 1.11 and 1.108

version 1.11, 2001/05/17 16:07:14 version 1.108, 2006/01/19 18:05:42
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.108  2006/01/19 18:05:42  lievre
   individuals from different ages are interviewed on their health status    Gnuplot problem appeared...
   or degree of  disability. At least a second wave of interviews    To be fixed
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.107  2006/01/19 16:20:37  brouard
   waves and are computed for each degree of severity of disability (number    Test existence of gnuplot in imach path
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.106  2006/01/19 13:24:36  brouard
   The simplest model is the multinomial logistic model where pij is    Some cleaning and links added in html output
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.105  2006/01/05 20:23:19  lievre
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    *** empty log message ***
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.104  2005/09/30 16:11:43  lievre
     *Covariates have to be included here again* invites you to do it.    (Module): sump fixed, loop imx fixed, and simplifications.
   More covariates you add, less is the speed of the convergence.    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   The advantage that this computer programme claims, comes from that if the    (instead of missing=-1 in earlier versions) and his/her
   delay between waves is not identical for each individual, or if some    contributions to the likelihood is 1 - Prob of dying from last
   individual missed an interview, the information is not rounded or lost, but    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   taken into account using an interpolation or extrapolation.    the healthy state at last known wave). Version is 0.98
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    Revision 1.103  2005/09/30 15:54:49  lievre
   x. The delay 'h' can be split into an exact number (nh*stepm) of    (Module): sump fixed, loop imx fixed, and simplifications.
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.102  2004/09/15 17:31:30  brouard
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Add the possibility to read data file including tab characters.
   and the contribution of each individual to the likelihood is simply hPijx.  
     Revision 1.101  2004/09/15 10:38:38  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Fix on curr_time
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.100  2004/07/12 18:29:06  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Add version for Mac OS X. Just define UNIX in Makefile
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.99  2004/06/05 08:57:40  brouard
   from the European Union.    *** empty log message ***
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.98  2004/05/16 15:05:56  brouard
   can be accessed at http://euroreves.ined.fr/imach .    New version 0.97 . First attempt to estimate force of mortality
   **********************************************************************/    directly from the data i.e. without the need of knowing the health
      state at each age, but using a Gompertz model: log u =a + b*age .
 #include <math.h>    This is the basic analysis of mortality and should be done before any
 #include <stdio.h>    other analysis, in order to test if the mortality estimated from the
 #include <stdlib.h>    cross-longitudinal survey is different from the mortality estimated
 #include <unistd.h>    from other sources like vital statistic data.
   
 #define MAXLINE 256    The same imach parameter file can be used but the option for mle should be -3.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Agnès, who wrote this part of the code, tried to keep most of the
 #define windows    former routines in order to include the new code within the former code.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Current limitations:
     A) Even if you enter covariates, i.e. with the
 #define NINTERVMAX 8    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    B) There is no computation of Life Expectancy nor Life Table.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.97  2004/02/20 13:25:42  lievre
 #define MAXN 20000    Version 0.96d. Population forecasting command line is (temporarily)
 #define YEARM 12. /* Number of months per year */    suppressed.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.95  2003/07/08 07:54:34  brouard
 int npar=NPARMAX;    * imach.c (Repository):
 int nlstate=2; /* Number of live states */    (Repository): Using imachwizard code to output a more meaningful covariance
 int ndeath=1; /* Number of dead states */    matrix (cov(a12,c31) instead of numbers.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
     Revision 1.94  2003/06/27 13:00:02  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Just cleaning
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.93  2003/06/25 16:33:55  brouard
 int mle, weightopt;    (Module): On windows (cygwin) function asctime_r doesn't
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    exist so I changed back to asctime which exists.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Version 0.96b
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.92  2003/06/25 16:30:45  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    exist so I changed back to asctime which exists.
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    Revision 1.91  2003/06/25 15:30:29  brouard
   char filerese[FILENAMELENGTH];    * imach.c (Repository): Duplicated warning errors corrected.
  FILE  *ficresvij;    (Repository): Elapsed time after each iteration is now output. It
   char fileresv[FILENAMELENGTH];    helps to forecast when convergence will be reached. Elapsed time
  FILE  *ficresvpl;    is stamped in powell.  We created a new html file for the graphs
   char fileresvpl[FILENAMELENGTH];    concerning matrix of covariance. It has extension -cov.htm.
   
 #define NR_END 1    Revision 1.90  2003/06/24 12:34:15  brouard
 #define FREE_ARG char*    (Module): Some bugs corrected for windows. Also, when
 #define FTOL 1.0e-10    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define NRANSI  
 #define ITMAX 200    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define TOL 2.0e-4    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.88  2003/06/23 17:54:56  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 #define GOLD 1.618034    Revision 1.87  2003/06/18 12:26:01  brouard
 #define GLIMIT 100.0    Version 0.96
 #define TINY 1.0e-20  
     Revision 1.86  2003/06/17 20:04:08  brouard
 static double maxarg1,maxarg2;    (Module): Change position of html and gnuplot routines and added
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    routine fileappend.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.85  2003/06/17 13:12:43  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Repository): Check when date of death was earlier that
 #define rint(a) floor(a+0.5)    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 static double sqrarg;    was wrong (infinity). We still send an "Error" but patch by
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    assuming that the date of death was just one stepm after the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    interview.
     (Repository): Because some people have very long ID (first column)
 int imx;    we changed int to long in num[] and we added a new lvector for
 int stepm;    memory allocation. But we also truncated to 8 characters (left
 /* Stepm, step in month: minimum step interpolation*/    truncation)
     (Repository): No more line truncation errors.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.84  2003/06/13 21:44:43  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    * imach.c (Repository): Replace "freqsummary" at a correct
 double **pmmij;    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 double *weight;    parcimony.
 int **s; /* Status */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name )  */
 {  /*
    char *s;                             /* pointer */     Interpolated Markov Chain
    int  l1, l2;                         /* length counters */  
     Short summary of the programme:
    l1 = strlen( path );                 /* length of path */    
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    This program computes Healthy Life Expectancies from
    s = strrchr( path, '\\' );           /* find last / */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    if ( s == NULL ) {                   /* no directory, so use current */    first survey ("cross") where individuals from different ages are
 #if     defined(__bsd__)                /* get current working directory */    interviewed on their health status or degree of disability (in the
       extern char       *getwd( );    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
       if ( getwd( dirc ) == NULL ) {    (if any) in individual health status.  Health expectancies are
 #else    computed from the time spent in each health state according to a
       extern char       *getcwd( );    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    simplest model is the multinomial logistic model where pij is the
 #endif    probability to be observed in state j at the second wave
          return( GLOCK_ERROR_GETCWD );    conditional to be observed in state i at the first wave. Therefore
       }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       strcpy( name, path );             /* we've got it */    'age' is age and 'sex' is a covariate. If you want to have a more
    } else {                             /* strip direcotry from path */    complex model than "constant and age", you should modify the program
       s++;                              /* after this, the filename */    where the markup *Covariates have to be included here again* invites
       l2 = strlen( s );                 /* length of filename */    you to do it.  More covariates you add, slower the
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    convergence.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    The advantage of this computer programme, compared to a simple
       dirc[l1-l2] = 0;                  /* add zero */    multinomial logistic model, is clear when the delay between waves is not
    }    identical for each individual. Also, if a individual missed an
    l1 = strlen( dirc );                 /* length of directory */    intermediate interview, the information is lost, but taken into
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    account using an interpolation or extrapolation.  
    return( 0 );                         /* we're done */  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /******************************************/    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 void replace(char *s, char*t)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   int i;    hPijx.
   int lg=20;  
   i=0;    Also this programme outputs the covariance matrix of the parameters but also
   lg=strlen(t);    of the life expectancies. It also computes the stable prevalence. 
   for(i=0; i<= lg; i++) {    
     (s[i] = t[i]);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     if (t[i]== '\\') s[i]='/';             Institut national d'études démographiques, Paris.
   }    This software have been partly granted by Euro-REVES, a concerted action
 }    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 int nbocc(char *s, char occ)    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   int i,j=0;  
   int lg=20;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   i=0;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   lg=strlen(s);    
   for(i=0; i<= lg; i++) {    **********************************************************************/
   if  (s[i] == occ ) j++;  /*
   }    main
   return j;    read parameterfile
 }    read datafile
     concatwav
 void cutv(char *u,char *v, char*t, char occ)    freqsummary
 {    if (mle >= 1)
   int i,lg,j,p=0;      mlikeli
   i=0;    print results files
   for(j=0; j<=strlen(t)-1; j++) {    if mle==1 
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;       computes hessian
   }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
   lg=strlen(t);    open gnuplot file
   for(j=0; j<p; j++) {    open html file
     (u[j] = t[j]);    stable prevalence
   }     for age prevalim()
      u[p]='\0';    h Pij x
     variance of p varprob
    for(j=0; j<= lg; j++) {    forecasting if prevfcast==1 prevforecast call prevalence()
     if (j>=(p+1))(v[j-p-1] = t[j]);    health expectancies
   }    Variance-covariance of DFLE
 }    prevalence()
      movingaverage()
 /********************** nrerror ********************/    varevsij() 
     if popbased==1 varevsij(,popbased)
 void nrerror(char error_text[])    total life expectancies
 {    Variance of stable prevalence
   fprintf(stderr,"ERREUR ...\n");   end
   fprintf(stderr,"%s\n",error_text);  */
   exit(1);  
 }  
 /*********************** vector *******************/  
 double *vector(int nl, int nh)   
 {  #include <math.h>
   double *v;  #include <stdio.h>
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include <stdlib.h>
   if (!v) nrerror("allocation failure in vector");  #include <string.h>
   return v-nl+NR_END;  #include <unistd.h>
 }  
   #include <sys/types.h>
 /************************ free vector ******************/  #include <sys/stat.h>
 void free_vector(double*v, int nl, int nh)  #include <errno.h>
 {  extern int errno;
   free((FREE_ARG)(v+nl-NR_END));  
 }  /* #include <sys/time.h> */
   #include <time.h>
 /************************ivector *******************************/  #include "timeval.h"
 int *ivector(long nl,long nh)  
 {  /* #include <libintl.h> */
   int *v;  /* #define _(String) gettext (String) */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  #define MAXLINE 256
   return v-nl+NR_END;  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /******************free ivector **************************/  #define FILENAMELENGTH 132
 void free_ivector(int *v, long nl, long nh)  
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   free((FREE_ARG)(v+nl-NR_END));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /******************* imatrix *******************************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int **m;  #define NCOVMAX 8 /* Maximum number of covariates */
    #define MAXN 20000
   /* allocate pointers to rows */  #define YEARM 12. /* Number of months per year */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define AGESUP 130
   if (!m) nrerror("allocation failure 1 in matrix()");  #define AGEBASE 40
   m += NR_END;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   m -= nrl;  #ifdef UNIX
    #define DIRSEPARATOR '/'
    #define CHARSEPARATOR "/"
   /* allocate rows and set pointers to them */  #define ODIRSEPARATOR '\\'
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #else
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define DIRSEPARATOR '\\'
   m[nrl] += NR_END;  #define CHARSEPARATOR "\\"
   m[nrl] -= ncl;  #define ODIRSEPARATOR '/'
    #endif
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    /* $Id$ */
   /* return pointer to array of pointers to rows */  /* $State$ */
   return m;  
 }  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 /****************** free_imatrix *************************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 void free_imatrix(m,nrl,nrh,ncl,nch)  int nvar;
       int **m;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       long nch,ncl,nrh,nrl;  int npar=NPARMAX;
      /* free an int matrix allocated by imatrix() */  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   free((FREE_ARG) (m+nrl-NR_END));  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /******************* matrix *******************************/  int maxwav; /* Maxim number of waves */
 double **matrix(long nrl, long nrh, long ncl, long nch)  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;                     to the likelihood and the sum of weights (done by funcone)*/
   double **m;  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   if (!m) nrerror("allocation failure 1 in matrix()");  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m += NR_END;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m -= nrl;  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl] += NR_END;  FILE *ficlog, *ficrespow;
   m[nrl] -= ncl;  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  long ipmx; /* Number of contributions */
   return m;  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /*************************free matrix ************************/  FILE *ficresilk;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *fichtm, *fichtmcov; /* Html File */
   free((FREE_ARG)(m+nrl-NR_END));  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 /******************* ma3x *******************************/  char fileresv[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char title[MAXLINE];
   double ***m;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   if (!m) nrerror("allocation failure 1 in matrix()");  char command[FILENAMELENGTH];
   m += NR_END;  int  outcmd=0;
   m -= nrl;  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char filelog[FILENAMELENGTH]; /* Log file */
   m[nrl] += NR_END;  char filerest[FILENAMELENGTH];
   m[nrl] -= ncl;  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl][ncl] += NR_END;  struct timezone tzp;
   m[nrl][ncl] -= nll;  extern int gettimeofday();
   for (j=ncl+1; j<=nch; j++)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     m[nrl][j]=m[nrl][j-1]+nlay;  long time_value;
    extern long time();
   for (i=nrl+1; i<=nrh; i++) {  char strcurr[80], strfor[80];
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define NR_END 1
       m[i][j]=m[i][j-1]+nlay;  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
   return m;  
 }  #define NRANSI 
   #define ITMAX 200 
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define TOL 2.0e-4 
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define CGOLD 0.3819660 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define ZEPS 1.0e-10 
   free((FREE_ARG)(m+nrl-NR_END));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 }  
   #define GOLD 1.618034 
 /***************** f1dim *************************/  #define GLIMIT 100.0 
 extern int ncom;  #define TINY 1.0e-20 
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double f1dim(double x)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   int j;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double f;  #define rint(a) floor(a+0.5)
   double *xt;  
    static double sqrarg;
   xt=vector(1,ncom);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   f=(*nrfunc)(xt);  int agegomp= AGEGOMP;
   free_vector(xt,1,ncom);  
   return f;  int imx; 
 }  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   int iter;  
   double a,b,d,etemp;  int m,nb;
   double fu,fv,fw,fx;  long *num;
   double ftemp;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double e=0.0;  double **pmmij, ***probs;
    double *ageexmed,*agecens;
   a=(ax < cx ? ax : cx);  double dateintmean=0;
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  double *weight;
   fw=fv=fx=(*f)(x);  int **s; /* Status */
   for (iter=1;iter<=ITMAX;iter++) {  double *agedc, **covar, idx;
     xm=0.5*(a+b);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  double *lsurv, *lpop, *tpop;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 #ifdef DEBUG  double ftolhess; /* Tolerance for computing hessian */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /**************** split *************************/
 #endif  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       return fx;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     }    */ 
     ftemp=fu;    char  *ss;                            /* pointer */
     if (fabs(e) > tol1) {    int   l1, l2;                         /* length counters */
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);    l1 = strlen(path );                   /* length of path */
       p=(x-v)*q-(x-w)*r;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       q=2.0*(q-r);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       if (q > 0.0) p = -p;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       q=fabs(q);      strcpy( name, path );               /* we got the fullname name because no directory */
       etemp=e;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       e=d;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      /* get current working directory */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      /*    extern  char* getcwd ( char *buf , int len);*/
       else {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         d=p/q;        return( GLOCK_ERROR_GETCWD );
         u=x+d;      }
         if (u-a < tol2 || b-u < tol2)      /* got dirc from getcwd*/
           d=SIGN(tol1,xm-x);      printf(" DIRC = %s \n",dirc);
       }    } else {                              /* strip direcotry from path */
     } else {      ss++;                               /* after this, the filename */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      l2 = strlen( ss );                  /* length of filename */
     }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      strcpy( name, ss );         /* save file name */
     fu=(*f)(u);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if (fu <= fx) {      dirc[l1-l2] = 0;                    /* add zero */
       if (u >= x) a=x; else b=x;      printf(" DIRC2 = %s \n",dirc);
       SHFT(v,w,x,u)    }
         SHFT(fv,fw,fx,fu)    /* We add a separator at the end of dirc if not exists */
         } else {    l1 = strlen( dirc );                  /* length of directory */
           if (u < x) a=u; else b=u;    if( dirc[l1-1] != DIRSEPARATOR ){
           if (fu <= fw || w == x) {      dirc[l1] =  DIRSEPARATOR;
             v=w;      dirc[l1+1] = 0; 
             w=u;      printf(" DIRC3 = %s \n",dirc);
             fv=fw;    }
             fw=fu;    ss = strrchr( name, '.' );            /* find last / */
           } else if (fu <= fv || v == x || v == w) {    if (ss >0){
             v=u;      ss++;
             fv=fu;      strcpy(ext,ss);                     /* save extension */
           }      l1= strlen( name);
         }      l2= strlen(ss)+1;
   }      strncpy( finame, name, l1-l2);
   nrerror("Too many iterations in brent");      finame[l1-l2]= 0;
   *xmin=x;    }
   return fx;  
 }    return( 0 );                          /* we're done */
   }
 /****************** mnbrak ***********************/  
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /******************************************/
             double (*func)(double))  
 {  void replace_back_to_slash(char *s, char*t)
   double ulim,u,r,q, dum;  {
   double fu;    int i;
      int lg=0;
   *fa=(*func)(*ax);    i=0;
   *fb=(*func)(*bx);    lg=strlen(t);
   if (*fb > *fa) {    for(i=0; i<= lg; i++) {
     SHFT(dum,*ax,*bx,dum)      (s[i] = t[i]);
       SHFT(dum,*fb,*fa,dum)      if (t[i]== '\\') s[i]='/';
       }    }
   *cx=(*bx)+GOLD*(*bx-*ax);  }
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  int nbocc(char *s, char occ)
     r=(*bx-*ax)*(*fb-*fc);  {
     q=(*bx-*cx)*(*fb-*fa);    int i,j=0;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    int lg=20;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    i=0;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    lg=strlen(s);
     if ((*bx-u)*(u-*cx) > 0.0) {    for(i=0; i<= lg; i++) {
       fu=(*func)(u);    if  (s[i] == occ ) j++;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    }
       fu=(*func)(u);    return j;
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  void cutv(char *u,char *v, char*t, char occ)
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       u=ulim;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       fu=(*func)(u);       gives u="abcedf" and v="ghi2j" */
     } else {    int i,lg,j,p=0;
       u=(*cx)+GOLD*(*cx-*bx);    i=0;
       fu=(*func)(u);    for(j=0; j<=strlen(t)-1; j++) {
     }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     SHFT(*ax,*bx,*cx,u)    }
       SHFT(*fa,*fb,*fc,fu)  
       }    lg=strlen(t);
 }    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 /*************** linmin ************************/    }
        u[p]='\0';
 int ncom;  
 double *pcom,*xicom;     for(j=0; j<= lg; j++) {
 double (*nrfunc)(double []);      if (j>=(p+1))(v[j-p-1] = t[j]);
      }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  }
 {  
   double brent(double ax, double bx, double cx,  /********************** nrerror ********************/
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  void nrerror(char error_text[])
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    fprintf(stderr,"ERREUR ...\n");
   int j;    fprintf(stderr,"%s\n",error_text);
   double xx,xmin,bx,ax;    exit(EXIT_FAILURE);
   double fx,fb,fa;  }
    /*********************** vector *******************/
   ncom=n;  double *vector(int nl, int nh)
   pcom=vector(1,n);  {
   xicom=vector(1,n);    double *v;
   nrfunc=func;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in vector");
     pcom[j]=p[j];    return v-nl+NR_END;
     xicom[j]=xi[j];  }
   }  
   ax=0.0;  /************************ free vector ******************/
   xx=1.0;  void free_vector(double*v, int nl, int nh)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /************************ivector *******************************/
   for (j=1;j<=n;j++) {  int *ivector(long nl,long nh)
     xi[j] *= xmin;  {
     p[j] += xi[j];    int *v;
   }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   free_vector(xicom,1,n);    if (!v) nrerror("allocation failure in ivector");
   free_vector(pcom,1,n);    return v-nl+NR_END;
 }  }
   
 /*************** powell ************************/  /******************free ivector **************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void free_ivector(int *v, long nl, long nh)
             double (*func)(double []))  {
 {    free((FREE_ARG)(v+nl-NR_END));
   void linmin(double p[], double xi[], int n, double *fret,  }
               double (*func)(double []));  
   int i,ibig,j;  /************************lvector *******************************/
   double del,t,*pt,*ptt,*xit;  long *lvector(long nl,long nh)
   double fp,fptt;  {
   double *xits;    long *v;
   pt=vector(1,n);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   ptt=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   xit=vector(1,n);    return v-nl+NR_END;
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /******************free lvector **************************/
   for (*iter=1;;++(*iter)) {  void free_lvector(long *v, long nl, long nh)
     fp=(*fret);  {
     ibig=0;    free((FREE_ARG)(v+nl-NR_END));
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /******************* imatrix *******************************/
       printf(" %d %.12f",i, p[i]);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     printf("\n");       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     for (i=1;i<=n;i++) {  { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       fptt=(*fret);    int **m; 
 #ifdef DEBUG    
       printf("fret=%lf \n",*fret);    /* allocate pointers to rows */ 
 #endif    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       printf("%d",i);fflush(stdout);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       linmin(p,xit,n,fret,func);    m += NR_END; 
       if (fabs(fptt-(*fret)) > del) {    m -= nrl; 
         del=fabs(fptt-(*fret));    
         ibig=i;    
       }    /* allocate rows and set pointers to them */ 
 #ifdef DEBUG    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       printf("%d %.12e",i,(*fret));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       for (j=1;j<=n;j++) {    m[nrl] += NR_END; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m[nrl] -= ncl; 
         printf(" x(%d)=%.12e",j,xit[j]);    
       }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       for(j=1;j<=n;j++)    
         printf(" p=%.12e",p[j]);    /* return pointer to array of pointers to rows */ 
       printf("\n");    return m; 
 #endif  } 
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /****************** free_imatrix *************************/
 #ifdef DEBUG  void free_imatrix(m,nrl,nrh,ncl,nch)
       int k[2],l;        int **m;
       k[0]=1;        long nch,ncl,nrh,nrl; 
       k[1]=-1;       /* free an int matrix allocated by imatrix() */ 
       printf("Max: %.12e",(*func)(p));  { 
       for (j=1;j<=n;j++)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         printf(" %.12e",p[j]);    free((FREE_ARG) (m+nrl-NR_END)); 
       printf("\n");  } 
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /******************* matrix *******************************/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  double **matrix(long nrl, long nrh, long ncl, long nch)
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
         }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double **m;
       }  
 #endif    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
       free_vector(xit,1,n);    m -= nrl;
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       free_vector(pt,1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       return;    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       ptt[j]=2.0*p[j]-pt[j];    return m;
       xit[j]=p[j]-pt[j];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       pt[j]=p[j];     */
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /*************************free matrix ************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
           xi[j][ibig]=xi[j][n];  }
           xi[j][n]=xit[j];  
         }  /******************* ma3x *******************************/
 #ifdef DEBUG  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         for(j=1;j<=n;j++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
           printf(" %.12e",xit[j]);    double ***m;
         printf("\n");  
 #endif    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
   }    m -= nrl;
 }  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /**** Prevalence limit ****************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl] -= ncl;
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      matrix by transitions matrix until convergence is reached */  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   int i, ii,j,k;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double min, max, maxmin, maxmax,sumnew=0.;    m[nrl][ncl] += NR_END;
   double **matprod2();    m[nrl][ncl] -= nll;
   double **out, cov[NCOVMAX], **pmij();    for (j=ncl+1; j<=nch; j++) 
   double **newm;      m[nrl][j]=m[nrl][j-1]+nlay;
   double agefin, delaymax=50 ; /* Max number of years to converge */    
     for (i=nrl+1; i<=nrh; i++) {
   for (ii=1;ii<=nlstate+ndeath;ii++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (j=1;j<=nlstate+ndeath;j++){      for (j=ncl+1; j<=nch; j++) 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        m[i][j]=m[i][j-1]+nlay;
     }    }
     return m; 
    cov[1]=1.;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
               &(m[i][j][k]) <=> *((*(m+i) + j)+k)
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  
     /* Covariates have to be included here again */  /*************************free ma3x ************************/
      cov[2]=agefin;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    {
       for (k=1; k<=cptcovn;k++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    free((FREE_ARG)(m+nrl-NR_END));
       }  }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*************** function subdirf ***********/
       for (k=1; k<=cptcovprod;k++)  char *subdirf(char fileres[])
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     /* Caution optionfilefiname is hidden */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcpy(tmpout,optionfilefiname);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return tmpout;
   }
     savm=oldm;  
     oldm=newm;  /*************** function subdirf2 ***********/
     maxmax=0.;  char *subdirf2(char fileres[], char *preop)
     for(j=1;j<=nlstate;j++){  {
       min=1.;    
       max=0.;    /* Caution optionfilefiname is hidden */
       for(i=1; i<=nlstate; i++) {    strcpy(tmpout,optionfilefiname);
         sumnew=0;    strcat(tmpout,"/");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcat(tmpout,preop);
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,fileres);
         max=FMAX(max,prlim[i][j]);    return tmpout;
         min=FMIN(min,prlim[i][j]);  }
       }  
       maxmin=max-min;  /*************** function subdirf3 ***********/
       maxmax=FMAX(maxmax,maxmin);  char *subdirf3(char fileres[], char *preop, char *preop2)
     }  {
     if(maxmax < ftolpl){    
       return prlim;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 /*************** transition probabilities **********/    strcat(tmpout,fileres);
     return tmpout;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  }
 {  
   double s1, s2;  /***************** f1dim *************************/
   /*double t34;*/  extern int ncom; 
   int i,j,j1, nc, ii, jj;  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
     for(i=1; i<= nlstate; i++){   
     for(j=1; j<i;j++){  double f1dim(double x) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  { 
         /*s2 += param[i][j][nc]*cov[nc];*/    int j; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double f;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double *xt; 
       }   
       ps[i][j]=s2;    xt=vector(1,ncom); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
     for(j=i+1; j<=nlstate+ndeath;j++){    free_vector(xt,1,ncom); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return f; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  /*****************brent *************************/
       ps[i][j]=s2;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
   }    int iter; 
   for(i=1; i<= nlstate; i++){    double a,b,d,etemp;
      s1=0;    double fu,fv,fw,fx;
     for(j=1; j<i; j++)    double ftemp;
       s1+=exp(ps[i][j]);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for(j=i+1; j<=nlstate+ndeath; j++)    double e=0.0; 
       s1+=exp(ps[i][j]);   
     ps[i][i]=1./(s1+1.);    a=(ax < cx ? ax : cx); 
     for(j=1; j<i; j++)    b=(ax > cx ? ax : cx); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    x=w=v=bx; 
     for(j=i+1; j<=nlstate+ndeath; j++)    fw=fv=fx=(*f)(x); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (iter=1;iter<=ITMAX;iter++) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      xm=0.5*(a+b); 
   } /* end i */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      printf(".");fflush(stdout);
     for(jj=1; jj<= nlstate+ndeath; jj++){      fprintf(ficlog,".");fflush(ficlog);
       ps[ii][jj]=0;  #ifdef DEBUG
       ps[ii][ii]=1;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for(jj=1; jj<= nlstate+ndeath; jj++){        *xmin=x; 
      printf("%lf ",ps[ii][jj]);        return fx; 
    }      } 
     printf("\n ");      ftemp=fu;
     }      if (fabs(e) > tol1) { 
     printf("\n ");printf("%lf ",cov[2]);*/        r=(x-w)*(fx-fv); 
 /*        q=(x-v)*(fx-fw); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        p=(x-v)*q-(x-w)*r; 
   goto end;*/        q=2.0*(q-r); 
     return ps;        if (q > 0.0) p = -p; 
 }        q=fabs(q); 
         etemp=e; 
 /**************** Product of 2 matrices ******************/        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {        else { 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          d=p/q; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          u=x+d; 
   /* in, b, out are matrice of pointers which should have been initialized          if (u-a < tol2 || b-u < tol2) 
      before: only the contents of out is modified. The function returns            d=SIGN(tol1,xm-x); 
      a pointer to pointers identical to out */        } 
   long i, j, k;      } else { 
   for(i=nrl; i<= nrh; i++)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(k=ncolol; k<=ncoloh; k++)      } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         out[i][k] +=in[i][j]*b[j][k];      fu=(*f)(u); 
       if (fu <= fx) { 
   return out;        if (u >= x) a=x; else b=x; 
 }        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
           } else { 
 /************* Higher Matrix Product ***************/            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )              v=w; 
 {              w=u; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month              fv=fw; 
      duration (i.e. until              fw=fu; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            } else if (fu <= fv || v == x || v == w) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step              v=u; 
      (typically every 2 years instead of every month which is too big).              fv=fu; 
      Model is determined by parameters x and covariates have to be            } 
      included manually here.          } 
     } 
      */    nrerror("Too many iterations in brent"); 
     *xmin=x; 
   int i, j, d, h, k;    return fx; 
   double **out, cov[NCOVMAX];  } 
   double **newm;  
   /****************** mnbrak ***********************/
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for (j=1;j<=nlstate+ndeath;j++){              double (*func)(double)) 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double ulim,u,r,q, dum;
     }    double fu; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */   
   for(h=1; h <=nhstepm; h++){    *fa=(*func)(*ax); 
     for(d=1; d <=hstepm; d++){    *fb=(*func)(*bx); 
       newm=savm;    if (*fb > *fa) { 
       /* Covariates have to be included here again */      SHFT(dum,*ax,*bx,dum) 
       cov[1]=1.;        SHFT(dum,*fb,*fa,dum) 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    *cx=(*bx)+GOLD*(*bx-*ax); 
 for (k=1; k<=cptcovage;k++)    *fc=(*func)(*cx); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    while (*fb > *fc) { 
    for (k=1; k<=cptcovprod;k++)      r=(*bx-*ax)*(*fb-*fc); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      if ((*bx-u)*(u-*cx) > 0.0) { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        fu=(*func)(u); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       savm=oldm;        fu=(*func)(u); 
       oldm=newm;        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for(i=1; i<=nlstate+ndeath; i++)            SHFT(*fb,*fc,fu,(*func)(u)) 
       for(j=1;j<=nlstate+ndeath;j++) {            } 
         po[i][j][h]=newm[i][j];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        u=ulim; 
          */        fu=(*func)(u); 
       }      } else { 
   } /* end h */        u=(*cx)+GOLD*(*cx-*bx); 
   return po;        fu=(*func)(u); 
 }      } 
       SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
 /*************** log-likelihood *************/        } 
 double func( double *x)  } 
 {  
   int i, ii, j, k, mi, d, kk;  /*************** linmin ************************/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  int ncom; 
   double sw; /* Sum of weights */  double *pcom,*xicom;
   double lli; /* Individual log likelihood */  double (*nrfunc)(double []); 
   long ipmx;   
   /*extern weight */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   /* We are differentiating ll according to initial status */  { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double brent(double ax, double bx, double cx, 
   /*for(i=1;i<imx;i++)                 double (*f)(double), double tol, double *xmin); 
     printf(" %d\n",s[4][i]);    double f1dim(double x); 
   */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   cov[1]=1.;                double *fc, double (*func)(double)); 
     int j; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double xx,xmin,bx,ax; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double fx,fb,fa;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];   
     for(mi=1; mi<= wav[i]-1; mi++){    ncom=n; 
       for (ii=1;ii<=nlstate+ndeath;ii++)    pcom=vector(1,n); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    xicom=vector(1,n); 
       for(d=0; d<dh[mi][i]; d++){    nrfunc=func; 
         newm=savm;    for (j=1;j<=n;j++) { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      pcom[j]=p[j]; 
         for (kk=1; kk<=cptcovage;kk++) {      xicom[j]=xi[j]; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    } 
         }    ax=0.0; 
            xx=1.0; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         savm=oldm;  #ifdef DEBUG
         oldm=newm;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
            fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
          #endif
       } /* end mult */    for (j=1;j<=n;j++) { 
            xi[j] *= xmin; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      p[j] += xi[j]; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    } 
       ipmx +=1;    free_vector(xicom,1,n); 
       sw += weight[i];    free_vector(pcom,1,n); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  } 
     } /* end of wave */  
   } /* end of individual */  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    long sec_left, days, hours, minutes;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    days = (time_sec) / (60*60*24);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    sec_left = (time_sec) % (60*60*24);
   return -l;    hours = (sec_left) / (60*60) ;
 }    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
 /*********** Maximum Likelihood Estimation ***************/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  }
 {  
   int i,j, iter;  /*************** powell ************************/
   double **xi,*delti;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double fret;              double (*func)(double [])) 
   xi=matrix(1,npar,1,npar);  { 
   for (i=1;i<=npar;i++)    void linmin(double p[], double xi[], int n, double *fret, 
     for (j=1;j<=npar;j++)                double (*func)(double [])); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    int i,ibig,j; 
   printf("Powell\n");    double del,t,*pt,*ptt,*xit;
   powell(p,xi,npar,ftol,&iter,&fret,func);    double fp,fptt;
     double *xits;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    int niterf, itmp;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  
     pt=vector(1,n); 
 }    ptt=vector(1,n); 
     xit=vector(1,n); 
 /**** Computes Hessian and covariance matrix ***/    xits=vector(1,n); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double  **a,**y,*x,pd;    for (*iter=1;;++(*iter)) { 
   double **hess;      fp=(*fret); 
   int i, j,jk;      ibig=0; 
   int *indx;      del=0.0; 
       last_time=curr_time;
   double hessii(double p[], double delta, int theta, double delti[]);      (void) gettimeofday(&curr_time,&tzp);
   double hessij(double p[], double delti[], int i, int j);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   void lubksb(double **a, int npar, int *indx, double b[]) ;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   void ludcmp(double **a, int npar, int *indx, double *d) ;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
      for (i=1;i<=n;i++) {
   hess=matrix(1,npar,1,npar);        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   printf("\nCalculation of the hessian matrix. Wait...\n");        fprintf(ficrespow," %.12lf", p[i]);
   for (i=1;i<=npar;i++){      }
     printf("%d",i);fflush(stdout);      printf("\n");
     hess[i][i]=hessii(p,ftolhess,i,delti);      fprintf(ficlog,"\n");
     /*printf(" %f ",p[i]);*/      fprintf(ficrespow,"\n");fflush(ficrespow);
   }      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   for (i=1;i<=npar;i++) {        strcpy(strcurr,asctime(&tm));
     for (j=1;j<=npar;j++)  {  /*       asctime_r(&tm,strcurr); */
       if (j>i) {        forecast_time=curr_time; 
         printf(".%d%d",i,j);fflush(stdout);        itmp = strlen(strcurr);
         hess[i][j]=hessij(p,delti,i,j);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         hess[j][i]=hess[i][j];          strcurr[itmp-1]='\0';
       }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        for(niterf=10;niterf<=30;niterf+=10){
   printf("\n");          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*      asctime_r(&tmf,strfor); */
            strcpy(strfor,asctime(&tmf));
   a=matrix(1,npar,1,npar);          itmp = strlen(strfor);
   y=matrix(1,npar,1,npar);          if(strfor[itmp-1]=='\n')
   x=vector(1,npar);          strfor[itmp-1]='\0';
   indx=ivector(1,npar);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        }
   ludcmp(a,npar,indx,&pd);      }
       for (i=1;i<=n;i++) { 
   for (j=1;j<=npar;j++) {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for (i=1;i<=npar;i++) x[i]=0;        fptt=(*fret); 
     x[j]=1;  #ifdef DEBUG
     lubksb(a,npar,indx,x);        printf("fret=%lf \n",*fret);
     for (i=1;i<=npar;i++){        fprintf(ficlog,"fret=%lf \n",*fret);
       matcov[i][j]=x[i];  #endif
     }        printf("%d",i);fflush(stdout);
   }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
   printf("\n#Hessian matrix#\n");        if (fabs(fptt-(*fret)) > del) { 
   for (i=1;i<=npar;i++) {          del=fabs(fptt-(*fret)); 
     for (j=1;j<=npar;j++) {          ibig=i; 
       printf("%.3e ",hess[i][j]);        } 
     }  #ifdef DEBUG
     printf("\n");        printf("%d %.12e",i,(*fret));
   }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   /* Recompute Inverse */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (i=1;i<=npar;i++)          printf(" x(%d)=%.12e",j,xit[j]);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   ludcmp(a,npar,indx,&pd);        }
         for(j=1;j<=n;j++) {
   /*  printf("\n#Hessian matrix recomputed#\n");          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   for (j=1;j<=npar;j++) {        }
     for (i=1;i<=npar;i++) x[i]=0;        printf("\n");
     x[j]=1;        fprintf(ficlog,"\n");
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){      } 
       y[i][j]=x[i];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       printf("%.3e ",y[i][j]);  #ifdef DEBUG
     }        int k[2],l;
     printf("\n");        k[0]=1;
   }        k[1]=-1;
   */        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
   free_matrix(a,1,npar,1,npar);        for (j=1;j<=n;j++) {
   free_matrix(y,1,npar,1,npar);          printf(" %.12e",p[j]);
   free_vector(x,1,npar);          fprintf(ficlog," %.12e",p[j]);
   free_ivector(indx,1,npar);        }
   free_matrix(hess,1,npar,1,npar);        printf("\n");
         fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 }          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 /*************** hessian matrix ****************/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 double hessii( double x[], double delta, int theta, double delti[])            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {          }
   int i;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int l=1, lmax=20;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double k1,k2;        }
   double p2[NPARMAX+1];  #endif
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;        free_vector(xit,1,n); 
   int k=0,kmax=10;        free_vector(xits,1,n); 
   double l1;        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   fx=func(x);        return; 
   for (i=1;i<=npar;i++) p2[i]=x[i];      } 
   for(l=0 ; l <=lmax; l++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     l1=pow(10,l);      for (j=1;j<=n;j++) { 
     delts=delt;        ptt[j]=2.0*p[j]-pt[j]; 
     for(k=1 ; k <kmax; k=k+1){        xit[j]=p[j]-pt[j]; 
       delt = delta*(l1*k);        pt[j]=p[j]; 
       p2[theta]=x[theta] +delt;      } 
       k1=func(p2)-fx;      fptt=(*func)(ptt); 
       p2[theta]=x[theta]-delt;      if (fptt < fp) { 
       k2=func(p2)-fx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        if (t < 0.0) { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          linmin(p,xit,n,fret,func); 
                for (j=1;j<=n;j++) { 
 #ifdef DEBUG            xi[j][ibig]=xi[j][n]; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            xi[j][n]=xit[j]; 
 #endif          }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #ifdef DEBUG
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         k=kmax;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          for(j=1;j<=n;j++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            printf(" %.12e",xit[j]);
         k=kmax; l=lmax*10.;            fprintf(ficlog," %.12e",xit[j]);
       }          }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          printf("\n");
         delts=delt;          fprintf(ficlog,"\n");
       }  #endif
     }        }
   }      } 
   delti[theta]=delts;    } 
   return res;  } 
    
 }  /**** Prevalence limit (stable prevalence)  ****************/
   
 double hessij( double x[], double delti[], int thetai,int thetaj)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   int i;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int l=1, l1, lmax=20;       matrix by transitions matrix until convergence is reached */
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];    int i, ii,j,k;
   int k;    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   fx=func(x);    double **out, cov[NCOVMAX], **pmij();
   for (k=1; k<=2; k++) {    double **newm;
     for (i=1;i<=npar;i++) p2[i]=x[i];    double agefin, delaymax=50 ; /* Max number of years to converge */
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (ii=1;ii<=nlstate+ndeath;ii++)
     k1=func(p2)-fx;      for (j=1;j<=nlstate+ndeath;j++){
          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;     cov[1]=1.;
     
     p2[thetai]=x[thetai]-delti[thetai]/k;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     k3=func(p2)-fx;      newm=savm;
        /* Covariates have to be included here again */
     p2[thetai]=x[thetai]-delti[thetai]/k;       cov[2]=agefin;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    
     k4=func(p2)-fx;        for (k=1; k<=cptcovn;k++) {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 #ifdef DEBUG          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        }
 #endif        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
   return res;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 }  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 /************** Inverse of matrix **************/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 void ludcmp(double **a, int n, int *indx, double *d)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int i,imax,j,k;  
   double big,dum,sum,temp;      savm=oldm;
   double *vv;      oldm=newm;
        maxmax=0.;
   vv=vector(1,n);      for(j=1;j<=nlstate;j++){
   *d=1.0;        min=1.;
   for (i=1;i<=n;i++) {        max=0.;
     big=0.0;        for(i=1; i<=nlstate; i++) {
     for (j=1;j<=n;j++)          sumnew=0;
       if ((temp=fabs(a[i][j])) > big) big=temp;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          prlim[i][j]= newm[i][j]/(1-sumnew);
     vv[i]=1.0/big;          max=FMAX(max,prlim[i][j]);
   }          min=FMIN(min,prlim[i][j]);
   for (j=1;j<=n;j++) {        }
     for (i=1;i<j;i++) {        maxmin=max-min;
       sum=a[i][j];        maxmax=FMAX(maxmax,maxmin);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;      if(maxmax < ftolpl){
     }        return prlim;
     big=0.0;      }
     for (i=j;i<=n;i++) {    }
       sum=a[i][j];  }
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  /*************** transition probabilities ***************/ 
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         big=dum;  {
         imax=i;    double s1, s2;
       }    /*double t34;*/
     }    int i,j,j1, nc, ii, jj;
     if (j != imax) {  
       for (k=1;k<=n;k++) {      for(i=1; i<= nlstate; i++){
         dum=a[imax][k];        for(j=1; j<i;j++){
         a[imax][k]=a[j][k];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         a[j][k]=dum;            /*s2 += param[i][j][nc]*cov[nc];*/
       }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       *d = -(*d);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       vv[imax]=vv[j];          }
     }          ps[i][j]=s2;
     indx[j]=imax;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     if (a[j][j] == 0.0) a[j][j]=TINY;        }
     if (j != n) {        for(j=i+1; j<=nlstate+ndeath;j++){
       dum=1.0/(a[j][j]);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   }          }
   free_vector(vv,1,n);  /* Doesn't work */          ps[i][j]=s2;
 ;        }
 }      }
       /*ps[3][2]=1;*/
 void lubksb(double **a, int n, int *indx, double b[])      
 {      for(i=1; i<= nlstate; i++){
   int i,ii=0,ip,j;        s1=0;
   double sum;        for(j=1; j<i; j++)
            s1+=exp(ps[i][j]);
   for (i=1;i<=n;i++) {        for(j=i+1; j<=nlstate+ndeath; j++)
     ip=indx[i];          s1+=exp(ps[i][j]);
     sum=b[ip];        ps[i][i]=1./(s1+1.);
     b[ip]=b[i];        for(j=1; j<i; j++)
     if (ii)          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(j=i+1; j<=nlstate+ndeath; j++)
     else if (sum) ii=i;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     b[i]=sum;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   }      } /* end i */
   for (i=n;i>=1;i--) {      
     sum=b[i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for(jj=1; jj<= nlstate+ndeath; jj++){
     b[i]=sum/a[i][i];          ps[ii][jj]=0;
   }          ps[ii][ii]=1;
 }        }
       }
 /************ Frequencies ********************/      
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)  
 {  /* Some frequencies */  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
    /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /*         printf("ddd %lf ",ps[ii][jj]); */
   double ***freq; /* Frequencies */  /*       } */
   double *pp;  /*       printf("\n "); */
   double pos;  /*        } */
   FILE *ficresp;  /*        printf("\n ");printf("%lf ",cov[2]); */
   char fileresp[FILENAMELENGTH];         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
   pp=vector(1,nlstate);        goto end;*/
       return ps;
   strcpy(fileresp,"p");  }
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  /**************** Product of 2 matrices ******************/
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   }  {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   j1=0;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   j=cptcoveff;       before: only the contents of out is modified. The function returns
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       a pointer to pointers identical to out */
     long i, j, k;
   for(k1=1; k1<=j;k1++){    for(i=nrl; i<= nrh; i++)
    for(i1=1; i1<=ncodemax[k1];i1++){      for(k=ncolol; k<=ncoloh; k++)
        j1++;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          out[i][k] +=in[i][j]*b[j][k];
          scanf("%d", i);*/  
         for (i=-1; i<=nlstate+ndeath; i++)      return out;
          for (jk=-1; jk<=nlstate+ndeath; jk++)    }
            for(m=agemin; m <= agemax+3; m++)  
              freq[i][jk][m]=0;  
          /************* Higher Matrix Product ***************/
        for (i=1; i<=imx; i++) {  
          bool=1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
          if  (cptcovn>0) {  {
            for (z1=1; z1<=cptcoveff; z1++)    /* Computes the transition matrix starting at age 'age' over 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       'nhstepm*hstepm*stepm' months (i.e. until
                bool=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
          }       nhstepm*hstepm matrices. 
           if (bool==1) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
            for(m=firstpass; m<=lastpass-1; m++){       (typically every 2 years instead of every month which is too big 
              if(agev[m][i]==0) agev[m][i]=agemax+1;       for the memory).
              if(agev[m][i]==1) agev[m][i]=agemax+2;       Model is determined by parameters x and covariates have to be 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       included manually here. 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
            }       */
          }  
        }    int i, j, d, h, k;
         if  (cptcovn>0) {    double **out, cov[NCOVMAX];
          fprintf(ficresp, "\n#********** Variable ");    double **newm;
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
        fprintf(ficresp, "**********\n#");    /* Hstepm could be zero and should return the unit matrix */
         }    for (i=1;i<=nlstate+ndeath;i++)
        for(i=1; i<=nlstate;i++)      for (j=1;j<=nlstate+ndeath;j++){
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        oldm[i][j]=(i==j ? 1.0 : 0.0);
        fprintf(ficresp, "\n");        po[i][j][0]=(i==j ? 1.0 : 0.0);
              }
   for(i=(int)agemin; i <= (int)agemax+3; i++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if(i==(int)agemax+3)    for(h=1; h <=nhstepm; h++){
       printf("Total");      for(d=1; d <=hstepm; d++){
     else        newm=savm;
       printf("Age %d", i);        /* Covariates have to be included here again */
     for(jk=1; jk <=nlstate ; jk++){        cov[1]=1.;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        for (k=1; k<=cptcovage;k++)
     for(jk=1; jk <=nlstate ; jk++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovprod;k++)
         pos += freq[jk][m][i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       if(pp[jk]>=1.e-10)  
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for(jk=1; jk <=nlstate ; jk++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        savm=oldm;
         pp[jk] += freq[jk][m][i];        oldm=newm;
     }      }
     for(jk=1,pos=0; jk <=nlstate ; jk++)      for(i=1; i<=nlstate+ndeath; i++)
       pos += pp[jk];        for(j=1;j<=nlstate+ndeath;j++) {
     for(jk=1; jk <=nlstate ; jk++){          po[i][j][h]=newm[i][j];
       if(pos>=1.e-5)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           */
       else        }
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    } /* end h */
       if( i <= (int) agemax){    return po;
         if(pos>=1.e-5)  }
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
       else  
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*************** log-likelihood *************/
       }  double func( double *x)
     }  {
     for(jk=-1; jk <=nlstate+ndeath; jk++)    int i, ii, j, k, mi, d, kk;
       for(m=-1; m <=nlstate+ndeath; m++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double **out;
     if(i <= (int) agemax)    double sw; /* Sum of weights */
       fprintf(ficresp,"\n");    double lli; /* Individual log likelihood */
     printf("\n");    int s1, s2;
     }    double bbh, survp;
     }    long ipmx;
  }    /*extern weight */
      /* We are differentiating ll according to initial status */
   fclose(ficresp);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /*for(i=1;i<imx;i++) 
   free_vector(pp,1,nlstate);      printf(" %d\n",s[4][i]);
     */
 }  /* End of Freq */    cov[1]=1.;
   
 /************* Waves Concatenation ***************/    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    if(mle==1){
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      Death is a valid wave (if date is known).        for(mi=1; mi<= wav[i]-1; mi++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          for (ii=1;ii<=nlstate+ndeath;ii++)
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            for (j=1;j<=nlstate+ndeath;j++){
      and mw[mi+1][i]. dh depends on stepm.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   int i, mi, m;          for(d=0; d<dh[mi][i]; d++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            newm=savm;
      double sum=0., jmean=0.;*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   int j, k=0,jk, ju, jl;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double sum=0.;            }
   jmin=1e+5;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmax=-1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmean=0.;            savm=oldm;
   for(i=1; i<=imx; i++){            oldm=newm;
     mi=0;          } /* end mult */
     m=firstpass;        
     while(s[m][i] <= nlstate){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       if(s[m][i]>=1)          /* But now since version 0.9 we anticipate for bias at large stepm.
         mw[++mi][i]=m;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       if(m >=lastpass)           * (in months) between two waves is not a multiple of stepm, we rounded to 
         break;           * the nearest (and in case of equal distance, to the lowest) interval but now
       else           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         m++;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     }/* end while */           * probability in order to take into account the bias as a fraction of the way
     if (s[m][i] > nlstate){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       mi++;     /* Death is another wave */           * -stepm/2 to stepm/2 .
       /* if(mi==0)  never been interviewed correctly before death */           * For stepm=1 the results are the same as for previous versions of Imach.
          /* Only death is a correct wave */           * For stepm > 1 the results are less biased than in previous versions. 
       mw[mi][i]=m;           */
     }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     wav[i]=mi;          bbh=(double)bh[mi][i]/(double)stepm; 
     if(mi==0)          /* bias bh is positive if real duration
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);           * is higher than the multiple of stepm and negative otherwise.
   }           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for(i=1; i<=imx; i++){          if( s2 > nlstate){ 
     for(mi=1; mi<wav[i];mi++){            /* i.e. if s2 is a death state and if the date of death is known 
       if (stepm <=0)               then the contribution to the likelihood is the probability to 
         dh[mi][i]=1;               die between last step unit time and current  step unit time, 
       else{               which is also equal to probability to die before dh 
         if (s[mw[mi+1][i]][i] > nlstate) {               minus probability to die before dh-stepm . 
           if (agedc[i] < 2*AGESUP) {               In version up to 0.92 likelihood was computed
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          as if date of death was unknown. Death was treated as any other
           if(j==0) j=1;  /* Survives at least one month after exam */          health state: the date of the interview describes the actual state
           k=k+1;          and not the date of a change in health state. The former idea was
           if (j >= jmax) jmax=j;          to consider that at each interview the state was recorded
           if (j <= jmin) jmin=j;          (healthy, disable or death) and IMaCh was corrected; but when we
           sum=sum+j;          introduced the exact date of death then we should have modified
           if (j<0) printf("j=%d num=%d ",j,i);          the contribution of an exact death to the likelihood. This new
           }          contribution is smaller and very dependent of the step unit
         }          stepm. It is no more the probability to die between last interview
         else{          and month of death but the probability to survive from last
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          interview up to one month before death multiplied by the
           k=k+1;          probability to die within a month. Thanks to Chris
           if (j >= jmax) jmax=j;          Jackson for correcting this bug.  Former versions increased
           else if (j <= jmin)jmin=j;          mortality artificially. The bad side is that we add another loop
           sum=sum+j;          which slows down the processing. The difference can be up to 10%
         }          lower mortality.
         jk= j/stepm;            */
         jl= j -jk*stepm;            lli=log(out[s1][s2] - savm[s1][s2]);
         ju= j -(jk+1)*stepm;  
         if(jl <= -ju)  
           dh[mi][i]=jk;          } else if  (s2==-2) {
         else            for (j=1,survp=0. ; j<=nlstate; j++) 
           dh[mi][i]=jk+1;              survp += out[s1][j];
         if(dh[mi][i]==0)            lli= survp;
           dh[mi][i]=1; /* At least one step */          }
       }          
     }          else if  (s2==-4) {
   }            for (j=3,survp=0. ; j<=nlstate; j++) 
   jmean=sum/k;              survp += out[s1][j];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            lli= survp;
 }          }
 /*********** Tricode ****************************/          
 void tricode(int *Tvar, int **nbcode, int imx)          else if  (s2==-5) {
 {            for (j=1,survp=0. ; j<=2; j++) 
   int Ndum[20],ij=1, k, j, i;              survp += out[s1][j];
   int cptcode=0;            lli= survp;
   cptcoveff=0;          }
    
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for (i=1; i<=imx; i++) {          } 
       ij=(int)(covar[Tvar[j]][i]);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       Ndum[ij]++;          /*if(lli ==000.0)*/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if (ij > cptcode) cptcode=ij;          ipmx +=1;
     }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=0; i<=cptcode; i++) {        } /* end of wave */
       if(Ndum[i]!=0) ncodemax[j]++;      } /* end of individual */
     }    }  else if(mle==2){
     ij=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1; i<=ncodemax[j]; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=0; k<=19; k++) {            for (j=1;j<=nlstate+ndeath;j++){
         if (Ndum[k] != 0) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           nbcode[Tvar[j]][ij]=k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           ij++;            }
         }          for(d=0; d<=dh[mi][i]; d++){
         if (ij > ncodemax[j]) break;            newm=savm;
       }              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
  for (k=0; k<19; k++) Ndum[k]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (i=1; i<=ncovmodel; i++) {            savm=oldm;
       ij=Tvar[i];            oldm=newm;
       Ndum[ij]++;          } /* end mult */
     }        
           s1=s[mw[mi][i]][i];
  ij=1;          s2=s[mw[mi+1][i]][i];
  for (i=1; i<=10; i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
    if((Ndum[i]!=0) && (i<=ncov)){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      Tvaraff[ij]=i;          ipmx +=1;
      ij++;          sw += weight[i];
    }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }        } /* end of wave */
        } /* end of individual */
     cptcoveff=ij-1;    }  else if(mle==3){  /* exponential inter-extrapolation */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*********** Health Expectancies ****************/        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Health expectancies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h;            }
   double age, agelim,hf;          for(d=0; d<dh[mi][i]; d++){
   double ***p3mat;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficreseij,"# Health expectancies\n");            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficreseij,"# Age");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=nlstate;i++)            }
     for(j=1; j<=nlstate;j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficreseij," %1d-%1d",i,j);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficreseij,"\n");            savm=oldm;
             oldm=newm;
   hstepm=1*YEARM; /*  Every j years of age (in month) */          } /* end mult */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        
           s1=s[mw[mi][i]][i];
   agelim=AGESUP;          s2=s[mw[mi+1][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          bbh=(double)bh[mi][i]/(double)stepm; 
     /* nhstepm age range expressed in number of stepm */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          ipmx +=1;
     /* Typically if 20 years = 20*12/6=40 stepm */          sw += weight[i];
     if (stepm >= YEARM) hstepm=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        } /* end of wave */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* end of individual */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           eij[i][j][(int)age] +=p3mat[i][j][h];            }
         }          for(d=0; d<dh[mi][i]; d++){
                newm=savm;
     hf=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (stepm >= YEARM) hf=stepm/YEARM;            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficreseij,"%.0f",age );              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){          
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficreseij,"\n");            savm=oldm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            oldm=newm;
   }          } /* end mult */
 }        
           s1=s[mw[mi][i]][i];
 /************ Variance ******************/          s2=s[mw[mi+1][i]][i];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          if( s2 > nlstate){ 
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   /* Variance of health expectancies */          }else{
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double **newm;          }
   double **dnewm,**doldm;          ipmx +=1;
   int i, j, nhstepm, hstepm, h;          sw += weight[i];
   int k, cptcode;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    double *xp;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double **gp, **gm;        } /* end of wave */
   double ***gradg, ***trgradg;      } /* end of individual */
   double ***p3mat;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double age,agelim;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int theta;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficresvij,"# Age");            for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            }
   fprintf(ficresvij,"\n");          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   xp=vector(1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   dnewm=matrix(1,nlstate,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   doldm=matrix(1,nlstate,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   hstepm=1*YEARM; /* Every year of age */          
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   agelim = AGESUP;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            savm=oldm;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            oldm=newm;
     if (stepm >= YEARM) hstepm=1;          } /* end mult */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          s1=s[mw[mi][i]][i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          s2=s[mw[mi+1][i]][i];
     gp=matrix(0,nhstepm,1,nlstate);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     gm=matrix(0,nhstepm,1,nlstate);          ipmx +=1;
           sw += weight[i];
     for(theta=1; theta <=npar; theta++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=npar; i++){ /* Computes gradient */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        } /* end of wave */
       }      } /* end of individual */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      } /* End of if */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<= nlstate; j++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(h=0; h<=nhstepm; h++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    return -l;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  }
         }  
       }  /*************** log-likelihood *************/
      double funcone( double *x)
       for(i=1; i<=npar; i++) /* Computes gradient */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Same as likeli but slower because of a lot of printf and if */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i, ii, j, k, mi, d, kk;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       for(j=1; j<= nlstate; j++){    double **out;
         for(h=0; h<=nhstepm; h++){    double lli; /* Individual log likelihood */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double llt;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    int s1, s2;
         }    double bbh, survp;
       }    /*extern weight */
       for(j=1; j<= nlstate; j++)    /* We are differentiating ll according to initial status */
         for(h=0; h<=nhstepm; h++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
     } /* End theta */    */
     cov[1]=1.;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(theta=1; theta <=npar; theta++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           trgradg[h][j][theta]=gradg[h][theta][j];      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1;i<=nlstate;i++)          for (j=1;j<=nlstate+ndeath;j++){
       for(j=1;j<=nlstate;j++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         vareij[i][j][(int)age] =0.;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(h=0;h<=nhstepm;h++){          }
       for(k=0;k<=nhstepm;k++){        for(d=0; d<dh[mi][i]; d++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          newm=savm;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(i=1;i<=nlstate;i++)          for (kk=1; kk<=cptcovage;kk++) {
           for(j=1;j<=nlstate;j++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             vareij[i][j][(int)age] += doldm[i][j];          }
       }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     h=1;          savm=oldm;
     if (stepm >= YEARM) h=stepm/YEARM;          oldm=newm;
     fprintf(ficresvij,"%.0f ",age );        } /* end mult */
     for(i=1; i<=nlstate;i++)        
       for(j=1; j<=nlstate;j++){        s1=s[mw[mi][i]][i];
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        s2=s[mw[mi+1][i]][i];
       }        bbh=(double)bh[mi][i]/(double)stepm; 
     fprintf(ficresvij,"\n");        /* bias is positive if real duration
     free_matrix(gp,0,nhstepm,1,nlstate);         * is higher than the multiple of stepm and negative otherwise.
     free_matrix(gm,0,nhstepm,1,nlstate);         */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          lli=log(out[s1][s2] - savm[s1][s2]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } else if (mle==1){
   } /* End age */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          } else if(mle==2){
   free_vector(xp,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   free_matrix(doldm,1,nlstate,1,npar);        } else if(mle==3){  /* exponential inter-extrapolation */
   free_matrix(dnewm,1,nlstate,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
 }          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 /************ Variance of prevlim ******************/          lli=log(out[s1][s2]); /* Original formula */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        } /* End of if */
 {        ipmx +=1;
   /* Variance of prevalence limit */        sw += weight[i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **newm;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double **dnewm,**doldm;        if(globpr){
   int i, j, nhstepm, hstepm;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   int k, cptcode;   %10.6f %10.6f %10.6f ", \
   double *xp;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double *gp, *gm;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double **gradg, **trgradg;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double age,agelim;            llt +=ll[k]*gipmx/gsw;
   int theta;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
              }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          fprintf(ficresilk," %10.6f\n", -llt);
   fprintf(ficresvpl,"# Age");        }
   for(i=1; i<=nlstate;i++)      } /* end of wave */
       fprintf(ficresvpl," %1d-%1d",i,i);    } /* end of individual */
   fprintf(ficresvpl,"\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   xp=vector(1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   dnewm=matrix(1,nlstate,1,npar);    if(globpr==0){ /* First time we count the contributions and weights */
   doldm=matrix(1,nlstate,1,nlstate);      gipmx=ipmx;
        gsw=sw;
   hstepm=1*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    return -l;
   agelim = AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /*************** function likelione ***********/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     gradg=matrix(1,npar,1,nlstate);  {
     gp=vector(1,nlstate);    /* This routine should help understanding what is done with 
     gm=vector(1,nlstate);       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
     for(theta=1; theta <=npar; theta++){       Plotting could be done.
       for(i=1; i<=npar; i++){ /* Computes gradient */     */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int k;
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if(*globpri !=0){ /* Just counts and sums, no printings */
       for(i=1;i<=nlstate;i++)      strcpy(fileresilk,"ilk"); 
         gp[i] = prlim[i][i];      strcat(fileresilk,fileres);
          if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(i=1; i<=npar; i++) /* Computes gradient */        printf("Problem with resultfile: %s\n", fileresilk);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         gm[i] = prlim[i][i];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(i=1;i<=nlstate;i++)      for(k=1; k<=nlstate; k++) 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     } /* End theta */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
     trgradg =matrix(1,nlstate,1,npar);  
     *fretone=(*funcone)(p);
     for(j=1; j<=nlstate;j++)    if(*globpri !=0){
       for(theta=1; theta <=npar; theta++)      fclose(ficresilk);
         trgradg[j][theta]=gradg[theta][j];      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
     for(i=1;i<=nlstate;i++)    } 
       varpl[i][(int)age] =0.;    return;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  /*********** Maximum Likelihood Estimation ***************/
   
     fprintf(ficresvpl,"%.0f ",age );  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int i,j, iter;
     fprintf(ficresvpl,"\n");    double **xi;
     free_vector(gp,1,nlstate);    double fret;
     free_vector(gm,1,nlstate);    double fretone; /* Only one call to likelihood */
     free_matrix(gradg,1,npar,1,nlstate);    /*  char filerespow[FILENAMELENGTH];*/
     free_matrix(trgradg,1,nlstate,1,npar);    xi=matrix(1,npar,1,npar);
   } /* End age */    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
   free_vector(xp,1,npar);        xi[i][j]=(i==j ? 1.0 : 0.0);
   free_matrix(doldm,1,nlstate,1,npar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
 }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
 /***********************************************/    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 /**************** Main Program *****************/    for (i=1;i<=nlstate;i++)
 /***********************************************/      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 /*int main(int argc, char *argv[])*/    fprintf(ficrespow,"\n");
 int main()  
 {    powell(p,xi,npar,ftol,&iter,&fret,func);
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fclose(ficrespow);
   double agedeb, agefin,hf;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double agemin=1.e20, agemax=-1.e20;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double fret;  
   double **xi,tmp,delta;  }
   
   double dum; /* Dummy variable */  /**** Computes Hessian and covariance matrix ***/
   double ***p3mat;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   int *indx;  {
   char line[MAXLINE], linepar[MAXLINE];    double  **a,**y,*x,pd;
   char title[MAXLINE];    double **hess;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    int i, j,jk;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    int *indx;
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   int firstobs=1, lastobs=10;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   int sdeb, sfin; /* Status at beginning and end */    void ludcmp(double **a, int npar, int *indx, double *d) ;
   int c,  h , cpt,l;    double gompertz(double p[]);
   int ju,jl, mi;    hess=matrix(1,npar,1,npar);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    printf("\nCalculation of the hessian matrix. Wait...\n");
      fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   int hstepm, nhstepm;    for (i=1;i<=npar;i++){
   double bage, fage, age, agelim, agebase;      printf("%d",i);fflush(stdout);
   double ftolpl=FTOL;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double **prlim;     
   double *severity;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double ***param; /* Matrix of parameters */      
   double  *p;      /*  printf(" %f ",p[i]);
   double **matcov; /* Matrix of covariance */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double ***delti3; /* Scale */    }
   double *delti; /* Scale */    
   double ***eij, ***vareij;    for (i=1;i<=npar;i++) {
   double **varpl; /* Variances of prevalence limits by age */      for (j=1;j<=npar;j++)  {
   double *epj, vepp;        if (j>i) { 
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";          printf(".%d%d",i,j);fflush(stdout);
   char *alph[]={"a","a","b","c","d","e"}, str[4];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
   char z[1]="c", occ;          
 #include <sys/time.h>          hess[j][i]=hess[i][j];    
 #include <time.h>          /*printf(" %lf ",hess[i][j]);*/
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        }
   /* long total_usecs;      }
   struct timeval start_time, end_time;    }
      printf("\n");
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fprintf(ficlog,"\n");
   
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   printf("\nIMACH, Version 0.64b");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   printf("\nEnter the parameter file name: ");    
     a=matrix(1,npar,1,npar);
 #ifdef windows    y=matrix(1,npar,1,npar);
   scanf("%s",pathtot);    x=vector(1,npar);
   getcwd(pathcd, size);    indx=ivector(1,npar);
   /*cygwin_split_path(pathtot,path,optionfile);    for (i=1;i<=npar;i++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   /* cutv(path,optionfile,pathtot,'\\');*/    ludcmp(a,npar,indx,&pd);
   
 split(pathtot, path,optionfile);    for (j=1;j<=npar;j++) {
   chdir(path);      for (i=1;i<=npar;i++) x[i]=0;
   replace(pathc,path);      x[j]=1;
 #endif      lubksb(a,npar,indx,x);
 #ifdef unix      for (i=1;i<=npar;i++){ 
   scanf("%s",optionfile);        matcov[i][j]=x[i];
 #endif      }
     }
 /*-------- arguments in the command line --------*/  
     printf("\n#Hessian matrix#\n");
   strcpy(fileres,"r");    fprintf(ficlog,"\n#Hessian matrix#\n");
   strcat(fileres, optionfile);    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   /*---------arguments file --------*/        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      }
     printf("Problem with optionfile %s\n",optionfile);      printf("\n");
     goto end;      fprintf(ficlog,"\n");
   }    }
   
   strcpy(filereso,"o");    /* Recompute Inverse */
   strcat(filereso,fileres);    for (i=1;i<=npar;i++)
   if((ficparo=fopen(filereso,"w"))==NULL) {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    ludcmp(a,npar,indx,&pd);
   }  
     /*  printf("\n#Hessian matrix recomputed#\n");
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    for (j=1;j<=npar;j++) {
     ungetc(c,ficpar);      for (i=1;i<=npar;i++) x[i]=0;
     fgets(line, MAXLINE, ficpar);      x[j]=1;
     puts(line);      lubksb(a,npar,indx,x);
     fputs(line,ficparo);      for (i=1;i<=npar;i++){ 
   }        y[i][j]=x[i];
   ungetc(c,ficpar);        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      printf("\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(ficlog,"\n");
     }
   covar=matrix(0,NCOVMAX,1,n);    */
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   ncovmodel=2+cptcovn;    free_vector(x,1,npar);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    free_ivector(indx,1,npar);
      free_matrix(hess,1,npar,1,npar);
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /*************** hessian matrix ****************/
     puts(line);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     fputs(line,ficparo);  {
   }    int i;
   ungetc(c,ficpar);    int l=1, lmax=20;
      double k1,k2;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double p2[NPARMAX+1];
     for(i=1; i <=nlstate; i++)    double res;
     for(j=1; j <=nlstate+ndeath-1; j++){    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double fx;
       fprintf(ficparo,"%1d%1d",i1,j1);    int k=0,kmax=10;
       printf("%1d%1d",i,j);    double l1;
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    fx=func(x);
         printf(" %lf",param[i][j][k]);    for (i=1;i<=npar;i++) p2[i]=x[i];
         fprintf(ficparo," %lf",param[i][j][k]);    for(l=0 ; l <=lmax; l++){
       }      l1=pow(10,l);
       fscanf(ficpar,"\n");      delts=delt;
       printf("\n");      for(k=1 ; k <kmax; k=k+1){
       fprintf(ficparo,"\n");        delt = delta*(l1*k);
     }        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        p2[theta]=x[theta]-delt;
   p=param[1][1];        k2=func(p2)-fx;
          /*res= (k1-2.0*fx+k2)/delt/delt; */
   /* Reads comments: lines beginning with '#' */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   while((c=getc(ficpar))=='#' && c!= EOF){        
     ungetc(c,ficpar);  #ifdef DEBUG
     fgets(line, MAXLINE, ficpar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     puts(line);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fputs(line,ficparo);  #endif
   }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   ungetc(c,ficpar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   for(i=1; i <=nlstate; i++){          k=kmax; l=lmax*10.;
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       printf("%1d%1d",i,j);          delts=delt;
       fprintf(ficparo,"%1d%1d",i1,j1);        }
       for(k=1; k<=ncovmodel;k++){      }
         fscanf(ficpar,"%le",&delti3[i][j][k]);    }
         printf(" %le",delti3[i][j][k]);    delti[theta]=delts;
         fprintf(ficparo," %le",delti3[i][j][k]);    return res; 
       }    
       fscanf(ficpar,"\n");  }
       printf("\n");  
       fprintf(ficparo,"\n");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     }  {
   }    int i;
   delti=delti3[1][1];    int l=1, l1, lmax=20;
      double k1,k2,k3,k4,res,fx;
   /* Reads comments: lines beginning with '#' */    double p2[NPARMAX+1];
   while((c=getc(ficpar))=='#' && c!= EOF){    int k;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    fx=func(x);
     puts(line);    for (k=1; k<=2; k++) {
     fputs(line,ficparo);      for (i=1;i<=npar;i++) p2[i]=x[i];
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
   ungetc(c,ficpar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k1=func(p2)-fx;
   matcov=matrix(1,npar,1,npar);    
   for(i=1; i <=npar; i++){      p2[thetai]=x[thetai]+delti[thetai]/k;
     fscanf(ficpar,"%s",&str);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     printf("%s",str);      k2=func(p2)-fx;
     fprintf(ficparo,"%s",str);    
     for(j=1; j <=i; j++){      p2[thetai]=x[thetai]-delti[thetai]/k;
       fscanf(ficpar," %le",&matcov[i][j]);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       printf(" %.5le",matcov[i][j]);      k3=func(p2)-fx;
       fprintf(ficparo," %.5le",matcov[i][j]);    
     }      p2[thetai]=x[thetai]-delti[thetai]/k;
     fscanf(ficpar,"\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     printf("\n");      k4=func(p2)-fx;
     fprintf(ficparo,"\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   }  #ifdef DEBUG
   for(i=1; i <=npar; i++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(j=i+1;j<=npar;j++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       matcov[i][j]=matcov[j][i];  #endif
        }
   printf("\n");    return res;
   }
   
     /*-------- data file ----------*/  /************** Inverse of matrix **************/
     if((ficres =fopen(fileres,"w"))==NULL) {  void ludcmp(double **a, int n, int *indx, double *d) 
       printf("Problem with resultfile: %s\n", fileres);goto end;  { 
     }    int i,imax,j,k; 
     fprintf(ficres,"#%s\n",version);    double big,dum,sum,temp; 
        double *vv; 
     if((fic=fopen(datafile,"r"))==NULL)    {   
       printf("Problem with datafile: %s\n", datafile);goto end;    vv=vector(1,n); 
     }    *d=1.0; 
     for (i=1;i<=n;i++) { 
     n= lastobs;      big=0.0; 
     severity = vector(1,maxwav);      for (j=1;j<=n;j++) 
     outcome=imatrix(1,maxwav+1,1,n);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     num=ivector(1,n);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     moisnais=vector(1,n);      vv[i]=1.0/big; 
     annais=vector(1,n);    } 
     moisdc=vector(1,n);    for (j=1;j<=n;j++) { 
     andc=vector(1,n);      for (i=1;i<j;i++) { 
     agedc=vector(1,n);        sum=a[i][j]; 
     cod=ivector(1,n);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     weight=vector(1,n);        a[i][j]=sum; 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      } 
     mint=matrix(1,maxwav,1,n);      big=0.0; 
     anint=matrix(1,maxwav,1,n);      for (i=j;i<=n;i++) { 
     s=imatrix(1,maxwav+1,1,n);        sum=a[i][j]; 
     adl=imatrix(1,maxwav+1,1,n);            for (k=1;k<j;k++) 
     tab=ivector(1,NCOVMAX);          sum -= a[i][k]*a[k][j]; 
     ncodemax=ivector(1,8);        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
     i=1;          big=dum; 
     while (fgets(line, MAXLINE, fic) != NULL)    {          imax=i; 
       if ((i >= firstobs) && (i <=lastobs)) {        } 
              } 
         for (j=maxwav;j>=1;j--){      if (j != imax) { 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        for (k=1;k<=n;k++) { 
           strcpy(line,stra);          dum=a[imax][k]; 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          a[imax][k]=a[j][k]; 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          a[j][k]=dum; 
         }        } 
                *d = -(*d); 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        vv[imax]=vv[j]; 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      } 
       indx[j]=imax; 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      if (a[j][j] == 0.0) a[j][j]=TINY; 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      if (j != n) { 
         dum=1.0/(a[j][j]); 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         for (j=ncov;j>=1;j--){      } 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    } 
         }    free_vector(vv,1,n);  /* Doesn't work */
         num[i]=atol(stra);  ;
   } 
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  
   void lubksb(double **a, int n, int *indx, double b[]) 
         i=i+1;  { 
       }    int i,ii=0,ip,j; 
     }    double sum; 
    
     /*scanf("%d",i);*/    for (i=1;i<=n;i++) { 
   imx=i-1; /* Number of individuals */      ip=indx[i]; 
       sum=b[ip]; 
   /* Calculation of the number of parameter from char model*/      b[ip]=b[i]; 
   Tvar=ivector(1,15);      if (ii) 
   Tprod=ivector(1,15);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   Tvaraff=ivector(1,15);      else if (sum) ii=i; 
   Tvard=imatrix(1,15,1,2);      b[i]=sum; 
   Tage=ivector(1,15);          } 
        for (i=n;i>=1;i--) { 
   if (strlen(model) >1){      sum=b[i]; 
     j=0, j1=0, k1=1, k2=1;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     j=nbocc(model,'+');      b[i]=sum/a[i][i]; 
     j1=nbocc(model,'*');    } 
     cptcovn=j+1;  } 
     cptcovprod=j1;  
      /************ Frequencies ********************/
      void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     strcpy(modelsav,model);  {  /* Some frequencies */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    
       printf("Error. Non available option model=%s ",model);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       goto end;    int first;
     }    double ***freq; /* Frequencies */
        double *pp, **prop;
     for(i=(j+1); i>=1;i--){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       cutv(stra,strb,modelsav,'+');    FILE *ficresp;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    char fileresp[FILENAMELENGTH];
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    
       /*scanf("%d",i);*/    pp=vector(1,nlstate);
       if (strchr(strb,'*')) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
         cutv(strd,strc,strb,'*');    strcpy(fileresp,"p");
         if (strcmp(strc,"age")==0) {    strcat(fileresp,fileres);
           cptcovprod--;    if((ficresp=fopen(fileresp,"w"))==NULL) {
           cutv(strb,stre,strd,'V');      printf("Problem with prevalence resultfile: %s\n", fileresp);
           Tvar[i]=atoi(stre);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           cptcovage++;      exit(0);
             Tage[cptcovage]=i;    }
             /*printf("stre=%s ", stre);*/    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         }    j1=0;
         else if (strcmp(strd,"age")==0) {    
           cptcovprod--;    j=cptcoveff;
           cutv(strb,stre,strc,'V');    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           Tvar[i]=atoi(stre);  
           cptcovage++;    first=1;
           Tage[cptcovage]=i;  
         }    for(k1=1; k1<=j;k1++){
         else {      for(i1=1; i1<=ncodemax[k1];i1++){
           cutv(strb,stre,strc,'V');        j1++;
           Tvar[i]=ncov+k1;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           cutv(strb,strc,strd,'V');          scanf("%d", i);*/
           Tprod[k1]=i;        for (i=-5; i<=nlstate+ndeath; i++)  
           Tvard[k1][1]=atoi(strc);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           Tvard[k1][2]=atoi(stre);            for(m=iagemin; m <= iagemax+3; m++)
           Tvar[cptcovn+k2]=Tvard[k1][1];              freq[i][jk][m]=0;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)      for (i=1; i<=nlstate; i++)  
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for(m=iagemin; m <= iagemax+3; m++)
           k1++;          prop[i][m]=0;
           k2=k2+2;        
         }        dateintsum=0;
       }        k2cpt=0;
       else {        for (i=1; i<=imx; i++) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          bool=1;
        /*  scanf("%d",i);*/          if  (cptcovn>0) {
       cutv(strd,strc,strb,'V');            for (z1=1; z1<=cptcoveff; z1++) 
       Tvar[i]=atoi(strc);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
       strcpy(modelsav,stra);            }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          if (bool==1){
         scanf("%d",i);*/            for(m=firstpass; m<=lastpass; m++){
     }              k2=anint[m][i]+(mint[m][i]/12.);
 }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   printf("cptcovprod=%d ", cptcovprod);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   scanf("%d ",i);*/                if (m<lastpass) {
     fclose(fic);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     /*  if(mle==1){*/                }
     if (weightopt != 1) { /* Maximisation without weights*/                
       for(i=1;i<=n;i++) weight[i]=1.0;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     }                  dateintsum=dateintsum+k2;
     /*-calculation of age at interview from date of interview and age at death -*/                  k2cpt++;
     agev=matrix(1,maxwav,1,imx);                }
                    /*}*/
     for (i=1; i<=imx; i++)  {            }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          }
       for(m=1; (m<= maxwav); m++){        }
         if(s[m][i] >0){         
           if (s[m][i] == nlstate+1) {        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             if(agedc[i]>0)  fprintf(ficresp, "#Local time at start: %s", strstart);
               if(moisdc[i]!=99 && andc[i]!=9999)        if  (cptcovn>0) {
               agev[m][i]=agedc[i];          fprintf(ficresp, "\n#********** Variable "); 
             else {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               if (andc[i]!=9999){          fprintf(ficresp, "**********\n#");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        }
               agev[m][i]=-1;        for(i=1; i<=nlstate;i++) 
               }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             }        fprintf(ficresp, "\n");
           }        
           else if(s[m][i] !=9){ /* Should no more exist */        for(i=iagemin; i <= iagemax+3; i++){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          if(i==iagemax+3){
             if(mint[m][i]==99 || anint[m][i]==9999)            fprintf(ficlog,"Total");
               agev[m][i]=1;          }else{
             else if(agev[m][i] <agemin){            if(first==1){
               agemin=agev[m][i];              first=0;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              printf("See log file for details...\n");
             }            }
             else if(agev[m][i] >agemax){            fprintf(ficlog,"Age %d", i);
               agemax=agev[m][i];          }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          for(jk=1; jk <=nlstate ; jk++){
             }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             /*agev[m][i]=anint[m][i]-annais[i];*/              pp[jk] += freq[jk][m][i]; 
             /*   agev[m][i] = age[i]+2*m;*/          }
           }          for(jk=1; jk <=nlstate ; jk++){
           else { /* =9 */            for(m=-1, pos=0; m <=0 ; m++)
             agev[m][i]=1;              pos += freq[jk][m][i];
             s[m][i]=-1;            if(pp[jk]>=1.e-10){
           }              if(first==1){
         }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         else /*= 0 Unknown */              }
           agev[m][i]=1;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }            }else{
                  if(first==1)
     }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<=imx; i++)  {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(m=1; (m<= maxwav); m++){            }
         if (s[m][i] > (nlstate+ndeath)) {          }
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       }              pp[jk] += freq[jk][m][i];
     }          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            pos += pp[jk];
             posprop += prop[jk][i];
     free_vector(severity,1,maxwav);          }
     free_imatrix(outcome,1,maxwav+1,1,n);          for(jk=1; jk <=nlstate ; jk++){
     free_vector(moisnais,1,n);            if(pos>=1.e-5){
     free_vector(annais,1,n);              if(first==1)
     free_matrix(mint,1,maxwav,1,n);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(anint,1,maxwav,1,n);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_vector(moisdc,1,n);            }else{
     free_vector(andc,1,n);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     wav=ivector(1,imx);            }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            if( i <= iagemax){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              if(pos>=1.e-5){
                    fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     /* Concatenates waves */                /*probs[i][jk][j1]= pp[jk]/pos;*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
               else
       Tcode=ivector(1,100);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            }
       ncodemax[1]=1;          }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          
                for(jk=-1; jk <=nlstate+ndeath; jk++)
    codtab=imatrix(1,100,1,10);            for(m=-1; m <=nlstate+ndeath; m++)
    h=0;              if(freq[jk][m][i] !=0 ) {
    m=pow(2,cptcoveff);              if(first==1)
                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
    for(k=1;k<=cptcoveff; k++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
      for(i=1; i <=(m/pow(2,k));i++){              }
        for(j=1; j <= ncodemax[k]; j++){          if(i <= iagemax)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            fprintf(ficresp,"\n");
            h++;          if(first==1)
            if (h>m) h=1;codtab[h][k]=j;            printf("Others in log...\n");
          }          fprintf(ficlog,"\n");
        }        }
      }      }
    }    }
     dateintmean=dateintsum/k2cpt; 
    
    /*for(i=1; i <=m ;i++){    fclose(ficresp);
      for(k=1; k <=cptcovn; k++){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    free_vector(pp,1,nlstate);
      }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      printf("\n");    /* End of Freq */
    }  }
    scanf("%d",i);*/  
      /************ Prevalence ********************/
    /* Calculates basic frequencies. Computes observed prevalence at single age  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
        and prints on file fileres'p'. */  {  
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       We still use firstpass and lastpass as another selection.
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double ***freq; /* Frequencies */
        double *pp, **prop;
     /* For Powell, parameters are in a vector p[] starting at p[1]    double pos,posprop; 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double  y2; /* in fractional years */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    int iagemin, iagemax;
   
     if(mle==1){    iagemin= (int) agemin;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    iagemax= (int) agemax;
     }    /*pp=vector(1,nlstate);*/
        prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*--------- results files --------------*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    j1=0;
        
    jk=1;    j=cptcoveff;
    fprintf(ficres,"# Parameters\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    printf("# Parameters\n");    
    for(i=1,jk=1; i <=nlstate; i++){    for(k1=1; k1<=j;k1++){
      for(k=1; k <=(nlstate+ndeath); k++){      for(i1=1; i1<=ncodemax[k1];i1++){
        if (k != i)        j1++;
          {        
            printf("%d%d ",i,k);        for (i=1; i<=nlstate; i++)  
            fprintf(ficres,"%1d%1d ",i,k);          for(m=iagemin; m <= iagemax+3; m++)
            for(j=1; j <=ncovmodel; j++){            prop[i][m]=0.0;
              printf("%f ",p[jk]);       
              fprintf(ficres,"%f ",p[jk]);        for (i=1; i<=imx; i++) { /* Each individual */
              jk++;          bool=1;
            }          if  (cptcovn>0) {
            printf("\n");            for (z1=1; z1<=cptcoveff; z1++) 
            fprintf(ficres,"\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
          }                bool=0;
      }          } 
    }          if (bool==1) { 
  if(mle==1){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     /* Computing hessian and covariance matrix */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     ftolhess=ftol; /* Usually correct */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     hesscov(matcov, p, npar, delti, ftolhess, func);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
  }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficres,"# Scales\n");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     printf("# Scales\n");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
      for(i=1,jk=1; i <=nlstate; i++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       for(j=1; j <=nlstate+ndeath; j++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         if (j!=i) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
           fprintf(ficres,"%1d%1d",i,j);                } 
           printf("%1d%1d",i,j);              }
           for(k=1; k<=ncovmodel;k++){            } /* end selection of waves */
             printf(" %.5e",delti[jk]);          }
             fprintf(ficres," %.5e",delti[jk]);        }
             jk++;        for(i=iagemin; i <= iagemax+3; i++){  
           }          
           printf("\n");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           fprintf(ficres,"\n");            posprop += prop[jk][i]; 
         }          } 
       }  
       }          for(jk=1; jk <=nlstate ; jk++){     
                if( i <=  iagemax){ 
     k=1;              if(posprop>=1.e-5){ 
     fprintf(ficres,"# Covariance\n");                probs[i][jk][j1]= prop[jk][i]/posprop;
     printf("# Covariance\n");              } 
     for(i=1;i<=npar;i++){            } 
       /*  if (k>nlstate) k=1;          }/* end jk */ 
       i1=(i-1)/(ncovmodel*nlstate)+1;        }/* end i */ 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      } /* end i1 */
       printf("%s%d%d",alph[k],i1,tab[i]);*/    } /* end k1 */
       fprintf(ficres,"%3d",i);    
       printf("%3d",i);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       for(j=1; j<=i;j++){    /*free_vector(pp,1,nlstate);*/
         fprintf(ficres," %.5e",matcov[i][j]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         printf(" %.5e",matcov[i][j]);  }  /* End of prevalence */
       }  
       fprintf(ficres,"\n");  /************* Waves Concatenation ***************/
       printf("\n");  
       k++;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     }  {
        /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     while((c=getc(ficpar))=='#' && c!= EOF){       Death is a valid wave (if date is known).
       ungetc(c,ficpar);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       fgets(line, MAXLINE, ficpar);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       puts(line);       and mw[mi+1][i]. dh depends on stepm.
       fputs(line,ficparo);       */
     }  
     ungetc(c,ficpar);    int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);       double sum=0., jmean=0.;*/
        int first;
     if (fage <= 2) {    int j, k=0,jk, ju, jl;
       bage = agemin;    double sum=0.;
       fage = agemax;    first=0;
     }    jmin=1e+5;
     jmax=-1;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    jmean=0.;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    for(i=1; i<=imx; i++){
       mi=0;
          m=firstpass;
 /*------------ gnuplot -------------*/      while(s[m][i] <= nlstate){
 chdir(pathcd);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   if((ficgp=fopen("graph.plt","w"))==NULL) {          mw[++mi][i]=m;
     printf("Problem with file graph.gp");goto end;        if(m >=lastpass)
   }          break;
 #ifdef windows        else
   fprintf(ficgp,"cd \"%s\" \n",pathc);          m++;
 #endif      }/* end while */
 m=pow(2,cptcoveff);      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
  /* 1eme*/        /* if(mi==0)  never been interviewed correctly before death */
   for (cpt=1; cpt<= nlstate ; cpt ++) {           /* Only death is a correct wave */
    for (k1=1; k1<= m ; k1 ++) {        mw[mi][i]=m;
       }
 #ifdef windows  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      wav[i]=mi;
 #endif      if(mi==0){
 #ifdef unix        nbwarn++;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);        if(first==0){
 #endif          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
 for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if(first==1){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 }        }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      } /* end mi==0 */
     for (i=1; i<= nlstate ; i ++) {    } /* End individuals */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=imx; i++){
 }      for(mi=1; mi<wav[i];mi++){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        if (stepm <=0)
      for (i=1; i<= nlstate ; i ++) {          dh[mi][i]=1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 }              if (agedc[i] < 2*AGESUP) {
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 #ifdef unix              if(j==0) j=1;  /* Survives at least one month after exam */
 fprintf(ficgp,"\nset ter gif small size 400,300");              else if(j<0){
 #endif                nberr++;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }                j=1; /* Temporary Dangerous patch */
   }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   /*2 eme*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   for (k1=1; k1<= m ; k1 ++) {              }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);              k=k+1;
                  if (j >= jmax) jmax=j;
     for (i=1; i<= nlstate+1 ; i ++) {              if (j <= jmin) jmin=j;
       k=2*i;              sum=sum+j;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       for (j=1; j<= nlstate+1 ; j ++) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            else{
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {            k=k+1;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            if (j >= jmax) jmax=j;
         else fprintf(ficgp," \%%*lf (\%%*lf)");            else if (j <= jmin)jmin=j;
 }              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       fprintf(ficgp,"\" t\"\" w l 0,");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(j<0){
       for (j=1; j<= nlstate+1 ; j ++) {              nberr++;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }              }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            sum=sum+j;
       else fprintf(ficgp,"\" t\"\" w l 0,");          }
     }          jk= j/stepm;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          jl= j -jk*stepm;
   }          ju= j -(jk+1)*stepm;
            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   /*3eme*/            if(jl==0){
               dh[mi][i]=jk;
   for (k1=1; k1<= m ; k1 ++) {              bh[mi][i]=0;
     for (cpt=1; cpt<= nlstate ; cpt ++) {            }else{ /* We want a negative bias in order to only have interpolation ie
       k=2+nlstate*(cpt-1);                    * at the price of an extra matrix product in likelihood */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              dh[mi][i]=jk+1;
       for (i=1; i< nlstate ; i ++) {              bh[mi][i]=ju;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            }
       }          }else{
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            if(jl <= -ju){
     }              dh[mi][i]=jk;
   }              bh[mi][i]=jl;       /* bias is positive if real duration
                                     * is higher than the multiple of stepm and negative otherwise.
   /* CV preval stat */                                   */
   for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<nlstate ; cpt ++) {            else{
       k=3;              dh[mi][i]=jk+1;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);              bh[mi][i]=ju;
       for (i=1; i< nlstate ; i ++)            }
         fprintf(ficgp,"+$%d",k+i+1);            if(dh[mi][i]==0){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              dh[mi][i]=1; /* At least one step */
                    bh[mi][i]=ju; /* At least one step */
       l=3+(nlstate+ndeath)*cpt;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }
       for (i=1; i< nlstate ; i ++) {          } /* end if mle */
         l=3+(nlstate+ndeath)*cpt;        }
         fprintf(ficgp,"+$%d",l+i+1);      } /* end wave */
       }    }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      jmean=sum/k;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   }   }
   
   /* proba elementaires */  /*********** Tricode ****************************/
    for(i=1,jk=1; i <=nlstate; i++){  void tricode(int *Tvar, int **nbcode, int imx)
     for(k=1; k <=(nlstate+ndeath); k++){  {
       if (k != i) {    
         for(j=1; j <=ncovmodel; j++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    int cptcode=0;
           /*fprintf(ficgp,"%s",alph[1]);*/    cptcoveff=0; 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);   
           jk++;    for (k=0; k<maxncov; k++) Ndum[k]=0;
           fprintf(ficgp,"\n");    for (k=1; k<=7; k++) ncodemax[k]=0;
         }  
       }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     }                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   for(jk=1; jk <=m; jk++) {        Ndum[ij]++; /*store the modality */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    i=1;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
    for(k2=1; k2<=nlstate; k2++) {                                         Tvar[j]. If V=sex and male is 0 and 
      k3=i;                                         female is 1, then  cptcode=1.*/
      for(k=1; k<=(nlstate+ndeath); k++) {      }
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      for (i=0; i<=cptcode; i++) {
 ij=1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
         for(j=3; j <=ncovmodel; j++) {      }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      ij=1; 
             ij++;      for (i=1; i<=ncodemax[j]; i++) {
           }        for (k=0; k<= maxncov; k++) {
           else          if (Ndum[k] != 0) {
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            nbcode[Tvar[j]][ij]=k; 
         }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           fprintf(ficgp,")/(1");            
                    ij++;
         for(k1=1; k1 <=nlstate; k1++){            }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          if (ij > ncodemax[j]) break; 
 ij=1;        }  
           for(j=3; j <=ncovmodel; j++){      } 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;   for (k=0; k< maxncov; k++) Ndum[k]=0;
           }  
           else   for (i=1; i<=ncovmodel-2; i++) { 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           }     ij=Tvar[i];
           fprintf(ficgp,")");     Ndum[ij]++;
         }   }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   ij=1;
         i=i+ncovmodel;   for (i=1; i<= maxncov; i++) {
        }     if((Ndum[i]!=0) && (i<=ncovcol)){
      }       Tvaraff[ij]=i; /*For printing */
    }       ij++;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);     }
   }   }
       
   fclose(ficgp);   cptcoveff=ij-1; /*Number of simple covariates*/
      }
 chdir(path);  
     free_matrix(agev,1,maxwav,1,imx);  /*********** Health Expectancies ****************/
     free_ivector(wav,1,imx);  
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
      {
     free_imatrix(s,1,maxwav+1,1,n);    /* Health expectancies */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
        double age, agelim, hf;
     free_ivector(num,1,n);    double ***p3mat,***varhe;
     free_vector(agedc,1,n);    double **dnewm,**doldm;
     free_vector(weight,1,n);    double *xp;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    double **gp, **gm;
     fclose(ficparo);    double ***gradg, ***trgradg;
     fclose(ficres);    int theta;
     /*  }*/  
        varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
    /*________fin mle=1_________*/    xp=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      
     /* No more information from the sample is required now */    fprintf(ficreseij,"# Local time at start: %s", strstart);
   /* Reads comments: lines beginning with '#' */    fprintf(ficreseij,"# Health expectancies\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficreseij,"# Age");
     ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);      for(j=1; j<=nlstate;j++)
     puts(line);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fputs(line,ficparo);    fprintf(ficreseij,"\n");
   }  
   ungetc(c,ficpar);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    else  hstepm=estepm;   
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    /* We compute the life expectancy from trapezoids spaced every estepm months
 /*--------- index.htm --------*/     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   strcpy(optionfilehtm,optionfile);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   strcat(optionfilehtm,".htm");     * progression in between and thus overestimating or underestimating according
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {     * to the curvature of the survival function. If, for the same date, we 
     printf("Problem with %s \n",optionfilehtm);goto end;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">     * curvature will be obtained if estepm is as small as stepm. */
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>  
 Total number of observations=%d <br>    /* For example we decided to compute the life expectancy with the smallest unit */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 <hr  size=\"2\" color=\"#EC5E5E\">       nhstepm is the number of hstepm from age to agelim 
 <li>Outputs files<br><br>\n       nstepm is the number of stepm from age to agelin. 
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n       Look at hpijx to understand the reason of that which relies in memory size
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>       and note for a fixed period like estepm months */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>       survival function given by stepm (the optimization length). Unfortunately it
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>       means that if the survival funtion is printed only each two years of age and if
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>       results. So we changed our mind and took the option of the best precision.
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
  fprintf(fichtm," <li>Graphs</li><p>");    agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  m=cptcoveff;      /* nhstepm age range expressed in number of stepm */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  j1=0;      /* if (stepm >= YEARM) hstepm=1;*/
  for(k1=1; k1<=m;k1++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    for(i1=1; i1<=ncodemax[k1];i1++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        j1++;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        if (cptcovn > 0) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
          for (cpt=1; cpt<=cptcoveff;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>   
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      /* Computing  Variances of health expectancies */
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {       for(theta=1; theta <=npar; theta++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for(i=1; i<=npar; i++){ 
 interval) in state (%d): v%s%d%d.gif <br>          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          }
      }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      for(cpt=1; cpt<=nlstate;cpt++) {    
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        cptj=0;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for(j=1; j<= nlstate; j++){
      }          for(i=1; i<=nlstate; i++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            cptj=cptj+1;
 health expectancies in states (1) and (2): e%s%d.gif<br>            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 fprintf(fichtm,"\n</body>");            }
    }          }
  }        }
 fclose(fichtm);       
        
   /*--------------- Prevalence limit --------------*/        for(i=1; i<=npar; i++) 
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   strcpy(filerespl,"pl");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcat(filerespl,fileres);        
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        cptj=0;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for(j=1; j<= nlstate; j++){
   }          for(i=1;i<=nlstate;i++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            cptj=cptj+1;
   fprintf(ficrespl,"#Prevalence limit\n");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   fprintf(ficrespl,"\n");            }
            }
   prlim=matrix(1,nlstate,1,nlstate);        }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<= nlstate*nlstate; j++)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(h=0; h<=nhstepm-1; h++){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       } 
   k=0;     
   agebase=agemin;  /* End theta */
   agelim=agemax;  
   ftolpl=1.e-10;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   for(cptcov=1;cptcov<=i1;cptcov++){          for(theta=1; theta <=npar; theta++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            trgradg[h][j][theta]=gradg[h][theta][j];
         k=k+1;       
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");       for(i=1;i<=nlstate*nlstate;i++)
         for(j=1;j<=cptcoveff;j++)        for(j=1;j<=nlstate*nlstate;j++)
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          varhe[i][j][(int)age] =0.;
         fprintf(ficrespl,"******\n");  
               printf("%d|",(int)age);fflush(stdout);
         for (age=agebase; age<=agelim; age++){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       for(h=0;h<=nhstepm-1;h++){
           fprintf(ficrespl,"%.0f",age );        for(k=0;k<=nhstepm-1;k++){
           for(i=1; i<=nlstate;i++)          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           fprintf(ficrespl," %.5f", prlim[i][i]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           fprintf(ficrespl,"\n");          for(i=1;i<=nlstate*nlstate;i++)
         }            for(j=1;j<=nlstate*nlstate;j++)
       }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     }        }
   fclose(ficrespl);      }
   /*------------- h Pij x at various ages ------------*/      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        for(j=1; j<=nlstate;j++)
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   }            
   printf("Computing pij: result on file '%s' \n", filerespij);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   if (stepm<=24) stepsize=2;  
       fprintf(ficreseij,"%3.0f",age );
   agelim=AGESUP;      cptj=0;
   hstepm=stepsize*YEARM; /* Every year of age */      for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for(j=1; j<=nlstate;j++){
            cptj++;
   k=0;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficreseij,"\n");
       k=k+1;     
         fprintf(ficrespij,"\n#****** ");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         for(j=1;j<=cptcoveff;j++)      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         fprintf(ficrespij,"******\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    printf("\n");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficlog,"\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    free_vector(xp,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           fprintf(ficrespij,"# Age");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           for(i=1; i<=nlstate;i++)    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
             for(j=1; j<=nlstate+ndeath;j++)  }
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");  /************ Variance ******************/
           for (h=0; h<=nhstepm; h++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  {
             for(i=1; i<=nlstate;i++)    /* Variance of health expectancies */
               for(j=1; j<=nlstate+ndeath;j++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /* double **newm;*/
             fprintf(ficrespij,"\n");    double **dnewm,**doldm;
           }    double **dnewmp,**doldmp;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, j, nhstepm, hstepm, h, nstepm ;
           fprintf(ficrespij,"\n");    int k, cptcode;
         }    double *xp;
     }    double **gp, **gm;  /* for var eij */
   }    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   fclose(ficrespij);    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   /*---------- Health expectancies and variances ------------*/    double ***p3mat;
     double age,agelim, hf;
   strcpy(filerest,"t");    double ***mobaverage;
   strcat(filerest,fileres);    int theta;
   if((ficrest=fopen(filerest,"w"))==NULL) {    char digit[4];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    char digitp[25];
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
   strcpy(filerese,"e");      if(mobilav!=0)
   strcat(filerese,fileres);        strcpy(digitp,"-populbased-mobilav-");
   if((ficreseij=fopen(filerese,"w"))==NULL) {      else strcpy(digitp,"-populbased-nomobil-");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
   }    else 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      strcpy(digitp,"-stablbased-");
   
  strcpy(fileresv,"v");    if (mobilav!=0) {
   strcat(fileresv,fileres);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      }
     }
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    strcpy(fileresprobmorprev,"prmorprev"); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    sprintf(digit,"%-d",ij);
       k=k+1;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       fprintf(ficrest,"\n#****** ");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for(j=1;j<=cptcoveff;j++)    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(fileresprobmorprev,fileres);
       fprintf(ficrest,"******\n");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficreseij,"\n#****** ");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficreseij,"******\n");   
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficresvij,"\n#****** ");    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fprintf(ficresvij,"******\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(i=1; i<=nlstate;i++)
       oldm=oldms;savm=savms;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      }  
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficresprobmorprev,"\n");
       oldm=oldms;savm=savms;    fprintf(ficgp,"\n# Routine varevsij");
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
          fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /*   } */
       fprintf(ficrest,"\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficresvij, "#Local time at start: %s", strstart);
       hf=1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       if (stepm >= YEARM) hf=stepm/YEARM;    fprintf(ficresvij,"# Age");
       epj=vector(1,nlstate+1);    for(i=1; i<=nlstate;i++)
       for(age=bage; age <=fage ;age++){      for(j=1; j<=nlstate;j++)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
         fprintf(ficrest," %.0f",age);    fprintf(ficresvij,"\n");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    xp=vector(1,npar);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    dnewm=matrix(1,nlstate,1,npar);
           }    doldm=matrix(1,nlstate,1,nlstate);
           epj[nlstate+1] +=epj[j];    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             vepp += vareij[i][j][(int)age];    gpp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    gmp=vector(nlstate+1,nlstate+ndeath);
         for(j=1;j <=nlstate;j++){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    
         }    if(estepm < stepm){
         fprintf(ficrest,"\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
     }    else  hstepm=estepm;   
   }    /* For example we decided to compute the life expectancy with the smallest unit */
            /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  fclose(ficreseij);       nhstepm is the number of hstepm from age to agelim 
  fclose(ficresvij);       nstepm is the number of stepm from age to agelin. 
   fclose(ficrest);       Look at hpijx to understand the reason of that which relies in memory size
   fclose(ficpar);       and note for a fixed period like k years */
   free_vector(epj,1,nlstate+1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /*  scanf("%d ",i); */       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
   /*------- Variance limit prevalence------*/         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
 strcpy(fileresvpl,"vpl");    */
   strcat(fileresvpl,fileres);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    agelim = AGESUP;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     exit(0);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
  k=0;      gp=matrix(0,nhstepm,1,nlstate);
  for(cptcov=1;cptcov<=i1;cptcov++){      gm=matrix(0,nhstepm,1,nlstate);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
      k=k+1;  
      fprintf(ficresvpl,"\n#****** ");      for(theta=1; theta <=npar; theta++){
      for(j=1;j<=cptcoveff;j++)        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      fprintf(ficresvpl,"******\n");        }
              hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        if (popbased==1) {
    }          if(mobilav ==0){
  }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   fclose(ficresvpl);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   /*---------- End : free ----------------*/              prlim[i][i]=mobaverage[(int)age][i][ij];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          }
          }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   free_matrix(matcov,1,npar,1,npar);           as a weighted average of prlim.
   free_vector(delti,1,npar);        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
   printf("End of Imach\n");        }    
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        /* end probability of death */
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /*printf("Total time was %d uSec.\n", total_usecs);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /*------ End -----------*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  end:   
 #ifdef windows        if (popbased==1) {
  chdir(pathcd);          if(mobilav ==0){
 #endif            for(i=1; i<=nlstate;i++)
  /*system("wgnuplot graph.plt");*/              prlim[i][i]=probs[(int)age][i][ij];
  /*system("../gp37mgw/wgnuplot graph.plt");*/          }else{ /* mobilav */ 
  /*system("cd ../gp37mgw");*/            for(i=1; i<=nlstate;i++)
  system("..\\gp37mgw\\wgnuplot graph.plt");              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
 #ifdef windows        }
   while (z[0] != 'q') {  
     chdir(pathcd);        for(j=1; j<= nlstate; j++){
     printf("\nType e to edit output files, c to start again, and q for exiting: ");          for(h=0; h<=nhstepm; h++){
     scanf("%s",z);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     if (z[0] == 'c') system("./imach");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     else if (z[0] == 'e') {          }
       chdir(path);        }
       system(optionfilehtm);        /* This for computing probability of death (h=1 means
     }           computed over hstepm matrices product = hstepm*stepm months) 
     else if (z[0] == 'q') exit(0);           as a weighted average of prlim.
   }        */
 #endif        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.11  
changed lines
  Added in v.1.108


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>